
Received 21 February 2020; revised 12 March 2020; accepted 19 March 2020.
Date of publication 23 March 2020; date of current version 17 April 2020.

Digital Object Identifier 10.1109/OJCOMS.2020.2982770

Sum of Fisher-Snedecor F Random
Variables and Its Applications

HONGYANG DU1, JIAYI ZHANG 1 (Member, IEEE), JULIAN CHENG 2 (Senior Member, IEEE),
AND BO AI 3 (Senior Member, IEEE)

1School of Electronic and Information Engineering, Beijing Jiaotong University, Beijing 100044, China

2School of Engineering, University of British Columbia, Kelowna, BC V1V 1V7, Canada

3State Key Laboratory of Rail Traffic Control and Safety, Beijing Jiaotong University, Beijing 100044, China

CORRESPONDING AUTHOR: J. ZHANG (e-mail: jiayizhang@bjtu.edu.cn)

This work was supported in part by the National Key Research and Development Program under Grant 2016YFE0200900, in part by the Royal Society Newton
Advanced Fellowship under Grant NA191006, in part by the State Key Laboratory of Rail Traffic Control and Safety under Grant RCS2018ZZ007 and
Grant RCS2019ZZ007, in part by the National Natural Science Foundation of China under Grant 61971027, Grant U1834210, Grant 61961130391,

Grant 61625106, and Grant 61725101, in part by the Beijing Natural Science Foundation under Grant 4182049 and Grant L171005, in part by the Engineering
Research Center of Mobile Communications, Ministry of Education under Grant CQUPT-MCT-201804, in part by the Science and
Technology Key Project of Guangdong Province, China, under Grant 2019B010157001, in part by the National Training Program

of Innovation and Entrepreneurship for Undergraduates under Grant 202010004002, and in part by ZTE Corporation.

ABSTRACT The statistical characterization of a sum of random variables (RVs) is useful for investigating
the performance of wireless communication systems. We derive exact closed-form expressions for the
probability density function (PDF) and cumulative distribution function (CDF) of a sum of independent
but not identically distributed (i.n.i.d.) Fisher-Snedecor F RVs. Both PDF and CDF are expressed in terms
of the multivariate Fox’s H-function. Besides, a simple and accurate approximation to the sum of i.n.i.d.
Fisher-Snedecor F variates is presented using the moment matching method. The obtained PDF and
CDF are used to evaluate the performance of wireless communication applications including the outage
probability, the effective capacity, and the channel capacities under four different adaptive transmission
strategies. Moreover, the corresponding approximate expressions are obtained to provide useful insights for
the design and deployment of wireless communication systems. In addition, we derive simple asymptotic
expressions for the proposed mathematical analysis in the high signal-to-noise ratio regime. Finally, the
numerical results demonstrate the accuracy of the derived expressions.

INDEX TERMS Channel capacity, effective capacity, Fisher-Snedecor F-distribution, sum of random
variables.

I. INTRODUCTION

RECENTLY, the Fisher-Snedecor F distribution was
proposed [1] as a tractable fading model to describe

the combined effects of shadowing and multipath fading
in future wireless communications. This distribution can
be reduced to some common fading models, such as
Nakagami-m, Rician, and Rayleigh fading channels [2]–[5].
Furthermore, it is found [1] that the F distribution can
provide a better fit to the experimental data obtained for
device-to-device (D2D) and wearable communication links,
especially at 5.8 GHz, as compared with the well established
generalized-K (GK) distribution. In addition, its probability

density function (PDF) consists of only elementary func-
tions and it leads to more tractable analysis than the GK
model [1]. Due to its promising properties, the performance
of digital communication systems over F distributed fading
channels has been analyzed in [6]–[11] and the references
therein.
The sum of random variables (RVs) has a wide range

of important applications in the performance analysis of
wireless communication systems. For example, to enhance
the quality of the received signal, maximal-ratio combining
(MRC) can be deployed at the receiver to maximize the
combiner output signal-to-noise ratio (SNR) [12]. The MRC
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receiver operating over different fading channels has been
extensively studied [13]–[18]. Furthermore, approximations
to distributions of sum of RVs have been also intensively
studied [19]–[22], and several methods have been adopted
to simplify the performance analysis.
The PDF and cumulative distribution function (CDF)

of the sum of Fisher-Snedecor F RVs have been derived
in terms of Lauricella multivariate hypergeometric func-
tion [23]. However, there are some several typographical
errors in the PDF and CDF expressions for both inde-
pendent but not identically distributed (i.n.i.d.) case and
independent and identically distributed (i.i.d.) case that are
respectively given as [23, eq. (4)], [23, eq. (5)], [23, eq. (8)]
and [23, eq. (9)]. Furthermore, these analytical results are
difficult to be used in the performance analysis of MRC
systems over Fisher-Snedecor F fading channels due to
the complex Lauricella multivariate hypergeometric function.
Moreover, the authors in [23] obtained outage probabil-
ity (OP) and outage capacity expressions involving L-fold
Mellin-Barnes type contour integral, where L is the num-
ber of diversity branches. These results cannot be calculated
efficiently because the integration will be more difficult to
converge as L increases. Thus, the insights into the system
performance are limited.
In addition, the authors in [24] presented exact closed-

form expressions for PDF and CDF of the sum of i.n.i.d.
H-function RVs. Thus, the distribution of the sum of Fisher-
Snedecor F RVs can be derived as a special case. However,
the calculation of multivariate Fox’s H-function proposed
in [24] is time-consuming because when its multivariate
Fox’s H-function is written in the form of Merlin-Barnes
integral, we observe that it has L integral variables in the
same gamma function. Besides, the statistical characteriza-
tion is challenging, if not impossible, to derive the important
performance metrics. For the i.i.d. case, the difficulty of
calculation will not be reduced either.
To fill this gap, we re-investigate the statistical charac-

terization of the sum of i.n.i.d. Fisher-Snedecor F RVs
and leverage the PDF and CDF expressions to analyze
the performance of the MRC receiver in terms of out-
age probability, channel capacity, and effective capacity.
The main contributions of this paper are summarized
as follows:

• We derive exact closed-form expressions for the PDF
and CDF of the sum of i.n.i.d. Fisher-Snedecor F RVs
in terms of a new form of multivariate Fox’s H-function,
which can be efficiently programmed in standard
software packages (e.g., MATLAB, Mathematica and
Python) [25]–[28]. In addition, when the multivariate
Fox’s H-function is written in the form of Merlin-
Barnes integral, there are at most two integral variables
in the same gamma function, so the calculation process
is efficient.

• We introduce a paradigm based on the moment match-
ing method to obtain a simple approximation to the
sum of Fisher-Snedecor F RVs using another single

F RV. To improve the accuracy of the approxima-
tion, we propose an adjustment factor to modify the
error in the lower and upper tail regions. The approx-
imated expression is easier to evaluate. We employ
the Kolmogorov-Smirnov (KS) goodness-of-fit test to
show that the single F distribution is a highly accurate
approximation to the sum of F RVs.

• We derive novel analytical expressions for important
performance metrics, namely the OP, the effective
capacity, and the channel capacities under four different
adaptive transmission schemes, including optimal rate
adaptation with constant transmit power (ORA), simul-
taneous optimal power and rate adaptation (OPRA),
channel inversion with fixed rate (CIFR) and truncated
channel inversion with fixed rate (TIFR). Moreover, the
final value theorem is used to avoid the conflict between
the definition of the multivariate Fox’s H-function and
the analytical expressions.

• We derive highly accurate and simplified closed-form
approximations for the studied performance metrics
by using a single F distribution. Furthermore, we
pursue an asymptotic performance analysis in the high-
SNR regime. The derived results can provide useful
insights into the effects of different system and fading
parameters on the performance.

The remainder of the paper is organized as follows. In
Section II, we introduce the statistical characterizations of
the F distribution and the definition of multivariable Fox’s
H-function. Exact closed-form PDF and CDF expressions of
the sum of Fisher-Snedecor F RVs are derived in Section III.
Section IV provides a single F distribution to approximate
the distribution of sum of F RVs using the moment matching
method for the first, second and third moments, and the KS
goodness-of-fit statistical test is evaluated. In Section V, we
investigate the performance in several wireless communica-
tions scenarios, and present simple asymptotic expressions.
Section VI provides the numerical results and the accuracy
of the obtained expressions is validated via Monte Carlo
simulations. Finally, Section VII concludes this paper.

II. PRELIMINARIES
A. STATISTICS OF FISHER-SNEDECOR F RANDOM
VARIABLES
The PDF and CDF of the instantaneous SNR, γ , at the
destination over Fisher-Snedecor F fading channels are,
respectively, given by [29, eq. (6)], [29, eq. (12)].

fγ (γ ) = mm(ms − 1)ms γ̄msγm−1

B(m,ms)(mγ + (ms − 1)γ̄ )m+ms , (1)

and

Fγ (γ ) = mm−1γm

B(m,ms)(ms − 1)mγ̄m

× 2F1

(
m,m+ ms,m+ 1;− mγ

(ms − 1)γ̄

)
, (2)
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where B(·, ·) denotes the beta function [30, eq. (8.38)]; 2F1(·)
denotes the Gauss hypergeometric function [30, eq. (9.10)]
and ms > 1; the parameters m, ms, and γ denote the number
of multipath clusters, shadowing shape, and average SNR,
respectively
The MGF of γ is given by [29, eq. (10)]

Mγ (s) = 1F1

(
m; 1 − ms; sγ̄ (ms − 1)

m

)

+
�(−ms)

(
sγ̄ (ms−1)

m

)ms
B(m,ms)

× 1F1

(
m+ ms; 1 + ms; sγ̄ (ms − 1)

m

)
, (3)

where 1F1(·, ·, ·) denotes the Kummer confluent hyper-
geometric function [30, eq. (9.210.1)]. Using the
definition of Tricomi confluent hypergeometric func-
tion [30, eq. (9.210.2)], after some algebraic manipulations,
we obtain

Mγ (s) = �(m+ ms)

�(ms)
�

(
m, 1 − ms; sγ̄ (ms − 1)

m

)
, (4)

where �(·, ·; ·) is the Tricomi confluent hypergeometric
function, which can be expressed as the Meijer’s G-
function [30, eq. (9.301)], and (4) can be written as
in [23, eq. (2)].
The nth moment of the Fisher-Snedecor F distribution

can be derived in closed-form as [29, eq. (9)]. With the aid
of [30, eq. (8.384.1)], one obtains

E
[
γ n
] =

(
(ms − 1)γ̄

m

)n B(m+ n,ms − n)

B(m,ms)
, (5)

where E[ · ] denotes the mathematical expectation.

B. MULTIVARIABLE FOX’S H-FUNCTION
Multivariable Fox’s H-function has several notations.
Among them, we choose a widely adopted notation given
as [31, eq. (A.1)] which is shown as (6) at the bottom of

the page, where j �
√−1,

�(ζ1, . . . , ζr) =
∏n

j=1 �
(

1 − aj +∑r
i=1 α

(i)
j ζi

)
∏p

j=n+1 �
(
aj −∑r

i=1 α
(i)
j ζi

)

×
⎛
⎝ q∏
j=1

�

(
1 − bj +

r∑
i=1

β
(i)
j ζi

)⎞
⎠

−1

, (7)

and

φi(ζi) =
∏mi

λ=1 �
(
d(i)
λ − δ

(i)
λ ζi

)∏ni
j=1 �

(
1 − c(i)j + γ

(i)
j ζi

)
∏pi

j=ni+1 �
(
c(i)j − γ

(i)
j ζi

)∏qi
λ=mi+1 �

(
1 − d(i)

λ + δ
(i)
λ ζi

) .

(8)

Although the numerical evaluation for multivariate Fox’s H-
function is unavailable in popular mathematical packages
such as MATLAB and Mathematica, many implementations
have been reported [25]–[28]. For example, two Mathematica
implementations of the single Fox’s H-function are pro-
vided in [25] and [27] using the Mellin Barnes integral.
Although both the Lauricella multivariate hypergeometric
function and the multivariate Fox’s H-function can be cal-
culated using multiple contour integral of Mellin-Barnes
type, the calculation of L-fold Mellin-Barnes integral is
inefficient because the integration will be more difficult to
converge as L increases. Thus, the calculation time will be
large. Furthermore, for the multivariate Fox’s H-function,
an efficient GPU-oriented MATLAB routine was intro-
duced in [26, Appendix C]. By translating the Mellin-Barnes
contour constraints into a linear optimization problem, a
code automating the contour definition was also proposed
in [26, Appendix D]. Moreover, a Python implementation
for the multivariable Fox’s H-function was presented in [28]
by estimating a multivariate integral using simple rectangle
quadrature. In the following, we utilize the efficient Python
implementation to evaluate our results. The code can provide
accurate results, i.e., its execution time for ternary Fox’s H-
function is less than a few seconds. If we use the Mellin
Barnes integral, it takes much longer time (e.g., more than
ten minutes) to obtain the same result.

III. SUM OF FISHER-SNEDECOR F RANDOM VARIABLES
In this section, we investigate the statistical characteriza-
tion of the sum of Fisher-Snedecor F RVs and derive
exact closed-form expressions for PDF and CDF. Let z �

H[z1, . . . , zr] � H0,n:m1,n1;...;mr,nr
p,q:p1,q1;...;pr,qr

⎡
⎢⎣
z1
...

zr

∣∣∣∣∣∣∣

(
aj;α

(1)
j , . . . , α

(r)
j

)
1,p

:
(
c(1)
j , γ

(1)
j

)
1,p1

; · · · ;
(
c(r)j , γ

(r)
j

)
1,pr(

bj;β
(1)
j , . . . , β

(r)
j

)
1,q

:
(
d(1)
j , δ

(1)
j

)
1,q1

; · · · ;
(
d(r)
j , δ

(r)
j

)
1,qr

⎤
⎥⎦

= 1

(2π j)r

∫
L1

· · ·
∫
Lr

�(ζ1, . . . , ζr)

{
r∏
i=1

φi(ζi)z
ζi
i

}
dζ1 · · · dζr (6)
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γ1+γ2+· · ·+γL, where γ� ∼ F(γ �,m�,ms� ) (� = 1, . . . ,L)
are i.n.i.d. Fisher-Snedecor F RVs.
Theorem 1: The PDF of the sum of Fisher-Snedecor F

RVs z is given by

fZ(z) = 1

z
∏L

�=1 �(m�)�
(
ms�
)HPDF, (9)

where

HPDF � H0,L−1:1,2;0,0;··· ;0,0;0,0
L−1,0:2,1;0,0;··· ;0,0;0,1

×

⎛
⎜⎜⎜⎝

A1/A2
...

AL−1/AL
zAL

∣∣∣∣∣∣∣∣∣
ν2, . . . , νL : (1, 1),

(
1 − ms1 , 1

);−
−:(m1, 1); (1, 1)

⎞
⎟⎟⎟⎠,

(10)

and ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A�
�= m�/

(
γ̄�

(
ms� − 1

))
(� = 1, . . . ,L),

AL+1 = 1,

μk = 0, . . . , 0︸ ︷︷ ︸
k−2

, 1,−1, 0, . . . , 0

︸ ︷︷ ︸
L

,

μ̄k = 0, . . . , 0︸ ︷︷ ︸
k−2

,−1, 1, 0, . . . , 0

︸ ︷︷ ︸
L

,

νk = (1 − mk;μk), (1; μ̄k),
(
1 − msk ; μ̄k

)
.

(11)

Proof: Please refer to Appendix A.
Theorem 2: The CDF of the sum of Fisher-Snedecor F

RVs z is given by

FZ(z) = 1∏L
�=1 �(m�)�

(
ms�
)HCDF, (12)

where

HCDF � H0,L−1:1,2;0,0;··· ;0,0;0,0
L−1,0:2,1;0,0;··· ;0,0;0,1

×

⎛
⎜⎜⎜⎝

A1/A2
...

AL−1/AL
zAL

∣∣∣∣∣∣∣∣∣
ν2, . . . , νL : (1, 1),

(
1 − ms1 , 1

);−
−:(m1, 1); (0, 1)

⎞
⎟⎟⎟⎠.

(13)

Proof: Following similar procedures as in Appendix A,
we can derive the CDF of z by taking the inverse Laplace
transform of Mz(s)/s.
For the i.i.d. case, we have A�/A�+1 = 1. Thus, eqs. (9)

and (12) can be calculated more efficiently.

IV. ACCURATE CLOSED-FORM APPROXIMATIONS
In this section, we present accurate closed-form approxima-
tions to the distribution of a sum of Fisher-Snedecor F RVs

using a single Fisher-Snedecor F RV,1 which can be used
to provide more insights into the impact of the parameters
on the overall system performance. The parameters γ̄ , mF
and msF are obtained using the moment matching method
for the first, second and third moments.

A. SINGLE F APPROXIMATION TO THE SUM OF
SQUARED F -DISTRIBUTED RVS
Theorem 3: For the sum of i.n.i.d. F RVs, the parameters
of single F distribution are given by⎧⎪⎨

⎪⎩
γ̄F=∑L

i=1 γ̄i,

mF = − 2(HF−YF )
HF−2YF+HFYF ,

msF = 4HF−3YF−1
2HF−YF−1 ,

(14)

where HF and YF can be calculated as

HF �
∑L

�=1 (H� − ε� − 1)γ̄ 2
�(∑L

�=1 γ̄�

)2
+ 1,

YF
�=
∑L

�=1 (H�Y� − ε�Y� − 1)γ̄ 3
� +

(∑L
�=1 γ̄�

)3 − 3
∑L

�=1 (H� − ε� − 1)γ̄ 3
�(∑L

�=1 γ̄�

)(∑L
�=1 (H� − ε� − 1)γ̄ 2

� +
(∑L

�=1 γ̄�

)2
)

+
3
(∑L

�=1 (H� − ε� − 1)γ̄ 2
�

)
(∑L

�=1 (H� − ε� − 1)γ̄ 2
� +

(∑L
�=1 γ̄�

)2
) , (15)

where H� = (1+m�)(ms�−1)

m�(ms�−2)
(� = 1, . . . ,L), Y� =

(ms�−1)(2+m�)

m�(ms�−3)
and ε� is the factor that can be adjusted to

minimize the difference between the approximate and the
exact statistics. For example, we can choose ε� to minimize
the Kolmogorov distance.2

For the i.i.d case, let H� = H (� = 1, . . . ,L), Y� = Y ,
m = m�, ms = ms� , ε = ε�, γ̄ = γ̄�, so the parameters of
single F distribution are given by⎧⎪⎨

⎪⎩
γ̄F=Lγ̄ ,

mF = − 2(HF−YF )
HF−2YF+HFYF ,

msF = 4HF−3YF−1
2HF−YF−1 ,

(16)

where {
HF � (H−ε−1)

L + 1,

YF � (H−ε)Y+L2+3L(H−ε)−3L−3(H−ε)+2
L(H−ε)−L+L2 .

(17)

Proof: Please refer to Appendix B.

1. With the help of (A-2) and (A-5), we can re-write the MGF of a sum
of Fisher-Snedecor F RVs and the MGF of a single Fisher-Snedecor F
RV as Mellin-Barnes integrals, and observe that they are similar to each
other. In addition, using the MATLAB distribution fit tool, it also has been
observed that the single Fisher-Snedecor F distribution can serve as an
efficient approximation to the sum of Fisher-Snedecor F distribution.

2. Note that obtaining the exact closed-form expression for the optimal
value of ε� is difficult, if not impossible. However, the CDF can be calcu-
lated efficiently by using the Python code. Thus, using the fading parameters
involved in the sum of RVs, we can perform the KS goodness-of-fit test eas-
ily to obtain the εopt by minimizing the largest absolute difference between
the analytical and empirical CDFs. Thus, the optimal values of the adjust-
ment factor for different small-scale and shadowing parameters are given
in Fig. 2. By using εopt, we prove that the approximate results can match
the exact ones and Monte Carlo simulations well in Section VI.
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FIGURE 1. KS goodness-of-fit test statistic for the exact and the approximate
distributions with 5% significance level for L = 2.

B. KS GOODNESS-OF-FIT TEST
KS goodness-of-fit statistical test can be used to test the
accuracy of the proposed approximations [32], [33]. The KS
test is defined as the largest absolute difference between two
CDFs, which can be expressed as

T
�= max

∣∣FZ(z) − FẐ(z)
∣∣, (18)

where FZ(z) is the analytical CDF of RV Z and FẐ(z) is the
empirical CDF of RV Ẑ.

Let us define H0 as the null hypothesis under which the
observed data of Ẑ belong to the CDF of the approximate
distribution FZ(z). Hypothesis H0 is accepted if T < Tmax.
The critical value Tmax = √−(1/2v) ln(α/2) corresponds to
a significance level of α [32].

Without loss of generality, we consider a sum of two i.i.d.
Fisher-Snedecor F RVs with channel parameters m = m�

and ms = ms� (� = 1, 2). The average SNR is set by γ̄ =
γ̄� = 1 dB. The exact results of CDF have been obtained by
averaging at least v = 104, and one obtains Tmax = 0.0136
for α = 5%. Fig. 1 depicts the KS test statistic for different
combinations of m and ms, and the corresponding optimal
adjustment factor ε is shown in the Fig. 2. It is obvious that
H0 is accepted with 95% significance for different settings
of parameters. In conclusion, the single F distribution is a
highly accurate approximation to the sum of F RVs.

V. APPLICATIONS TO WIRELESS COMMUNICATIONS
In this section, we present six applications in wireless com-
munication systems, including OP, effective capacity, and
channel capacities under four different adaptive transmission
strategies. We assume communication over a fading channel
that follows Fisher-Snedecor F distribution and a diversity
receiver employs MRC.

A. OUTAGE PROBABILITY
The OP is defined as the probability that the instantaneous
SNR is less than a predetermined threshold γth. The combiner

FIGURE 2. Adjustment factor that minimizes the absolute value of the difference
between the exact and the approximate distributions for L = 2.

output SNR Z is simply the sum of the individual branches
SNRs and the OP can be directly calculated as

Pout = P(Z < γth) = FZ(γth), (19)

where γth is the minimum usable SNR threshold. Therefore,
the OP of the MRC receiver can be directly evaluated by
using (12).
Proposition 1: A highly accurate and simple approxima-

tion of OP can be derived using single F fading channel
as

Po,F � mFmF−1γth
mF

B
(
mF ,msF

)(
msF − 1

)mF ¯γFmF

× 2F1

(
mF ,mF + msF ,mF + 1;− mFγth(

msF − 1
)
γ̄F

)
.

(20)

The asymptotic expansions of the OP for high SNRs can
be obtained by computing the residue [28]. Let us con-
sider the residue at the points ζ = (ζ1, . . . , ζL), where
ζ� = minj=1,...,m�

(d(�)
j /δ

(�)
j ) (� = 1, . . . ,L). We obtain the

approximate OP expression as

Po,appr � 1

�
(

1 +∑L
�=1 m�

)
L∏

�=1

�
(
ms� + m�

)
�
(
ms�
)

(
γthm�

γ̄�

(
ms� − 1

)
)m�

.

(21)

B. EFFECTIVE CAPACITY
With the developments of modern wireless communication,
a wide range of services with diverse Quality of Service
(QoS) requirements have sprung up, leading to a growing
need for QoS guarantees such as different bandwidth and
delay constraints. However, because the wireless channel
suffers from time-varying fading impairments, the channel
capacity based on the concept of Shannon capacity is insuf-
ficient to characterize the effective transmission data rate.
The effective capacity, which accounts for the achievable
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capacity subject to the incurred latency relating to the cor-
responding buffer occupancy, is a useful and insightful
information theoretic measure particularly in emerging tech-
nologies [13], [34]–[38]. The effective capacity normalized
by the bandwidth can be defined as [39, eq. (11)]

Ceff = − 1

A
log2

(∫ ∞

0

1

(1 + z)A
fz(z)dz

)
bit /s/Hz, (22)

where z = ∑L
�=1 γ�, γ� ∼ F(γ �,m�,ms� ) (� = 1, . . . ,L),

and

A = BTθ

ln 2
(23)

is a delay constraint with the asymptotic decay rate of the
buffer occupancy θ , system bandwidth B and the block
length T .
Proposition 2: For the i.n.i.d. case, the effective capacity

can be deduced as

Ceff = − 1

A
log2

(
A

�(1 + A)

L∏
�=1

1

�(m�)�
(
ms�
)Heff

)
, (24)

where

Heff � H0,L−1:1,2;0,0;··· ;0,0;1,1
L−1,0:2,1;0,0;··· ;0,0;1,2

×

⎛
⎜⎜⎜⎝

A1/A2
...

AL−1/AL
AL

∣∣∣∣∣∣∣∣∣
ν2, . . . , νL : (1, 1),

(
1 − ms1 , 1

); (1, 1)

−:(m1, 1); (A, 1), (0, 1)

⎞
⎟⎟⎟⎠.

(25)

Proof: Please refer to Appendix C.
Remark 1: A highly accurate approximation of effective

capacity can be derived using a single F fading channel by
setting L = 1 in (24). After some algebraic manipulations,
we obtain the same result as [29, eq. (33)] which provides
useful insights because it can be used as a benchmark for
the derivation of simpler approximations or bounds. The
approximation of effective capacity in the high-SNR region
under F fading channels was also derived as [29, eq. (41)],
which can be used as the approximation of (24).

C. CHANNEL CAPACITY
In the following, we analyze the channel capacity
performance under four different adaptive transmission
schemes, namely CIFR, TIFR, ORA and OPRA.

1) CHANNEL INVERSION WITH FIXED RATE

CIFR ensures a fixed data rate at the receiver by inverting
the channel and adapting the transmit power. The channel

capacity under CIFR is defined as [40]

CCIFR = Blog2

(
1 + 1∫∞

0
fZ(z)
z dz

)
. (26)

Proposition 3: The channel capacity under CIFR can be
expressed as

CCIFR = Blog2

⎛
⎝1 + 1∏L

�=1
s

�
(
ms�
)
�(m�)

HCIFR

⎞
⎠, (27)

where

HCIFR � H0,L−1:1,2;0,0;··· ;0,0;0,1
L−1,0:2,1;0,0;··· ;0,0;1,1

×

⎛
⎜⎜⎜⎝

A1/sA2
...

AL−1/sAL
AL/s

∣∣∣∣∣∣∣∣∣
ν2, . . . , νL : (1, 1),

(
1 − ms1 , 1

); (2, 1)

−:(m1, 1); (1, 1)

⎞
⎟⎟⎟⎠

(28)

and s is a number close to zero (e.g., s = 10−6).
Proof: Please refer to Appendix D.
Remark 2: With the aid of Theorem 3, a highly accurate

approximation of the channel capacity per unit bandwidth
under CIFR can be deduced using single F fading chan-
nel. Setting L = 1 in (27) and we obtain the same result
as [9, eq. (23)] after some algebraic manipulations. Notice
that [9, eq. (23)] is insightful and we can observe that m
and ms have the same influence to the channel capacity
under CIFR approximately. Besides, it is easy to see that
the channel capacity under CIFR increases as m and ms
increase. Under the F composite fading channel, a high
SNR approximation of channel capacity under CIFR was
derived as [9, eq. (26)], which can be used as the high-SNR
approximation of (27).

2) TRUNCATED CHANNEL INVERSION WITH FIXED RATE

Another approach is to use a modified inversion policy that
inverts the channel fading only above a fixed cutoff fade
depth. The channel capacity under TIFR policy is defined
as

CTIFR = Blog2

(
1 + 1∫∞

z0
fZ(z)
z dz

)∫ ∞

z0
fZ(z)dz, (29)

where z0 is a cutoff level that can be selected to achieve
a specified outage probability or to maximize (29). Notice
that (29) reduces to (26) when z0 approaches zero.
Proposition 4: The closed-form expression for the capacity

under TIFR is given by

CTIFR = Blog2

⎛
⎝1 + 1

1
z0

∏L
�=1

1
�
(
ms�
)
�(m�)

HTIFR

⎞
⎠

×
(

1 −
L∏

�=1

1

�
(
ms�
)
�(m�)

HCDF

)
, (30)
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where

HTIFR � H0,L−1:1,2;0,0;··· ;0,0;1,0
L−1,0:2,1;0,0;··· ;0,0;1,2

×

⎛
⎜⎜⎜⎜⎝

z0A1/A2
...

z0AL−1/AL
z0AL

∣∣∣∣∣∣∣∣∣∣
ν2, . . . , νL : (1, 1),

(
1 − ms1 , 1

); (2, 1)

−:(m1, 1); (1, 1)(1, 1)

⎞
⎟⎟⎟⎟⎠.

(31)

Proof: Please refer to Appendix E.
Remark 3: Using Theorem 3, an accurate approxima-

tion of the channel capacity under TIFR can be derived
by single F fading channel. Substituting L = 1 in (30),
after some algebraic manipulations, we can get the same
result as [9, eq. (27)] and [9, eq. (28)]. An approximation
of channel capacity under TIFR in the high-SNR region is
given by [9, eq. (30)], which can be used as the high SNR
approximation of (30) with the aid of (14).

3) OPTIMAL RATE ADAPTATION WITH CONSTANT
TRANSMIT POWER

The channel capacity under ORA with a constant transmit
power is given by [40, eq. (29)]

CORA = B
∫ ∞

0
log2(1 + z)fZ(z)dz. (32)

Proposition 5: Under the ORA scheme, the channel capacity
can be expressed as

CORA = B

s ln(2)

L∏
�=1

1

�
(
ms�
)
�(m�)

HORA, (33)

where

HORA � H0,L+ 2:1,2;0,0;··· ;0,0;0,0;1,1
L+ 3,0:2,1;0,0;··· ;0,0;0,1;1,2

×
(
�ORA

∣∣∣∣∣
ν′

2, · · · , ν′
L, (0; 0, · · · , 0, − 1, − 1), (0; 0, · · · , 0, − 1, − 1),

− :(m1, 1); (1, 1); (1, 1), (0, 1)

(1; 0, · · · , 0, 1, 1), (2; 0, · · · , 0, 1, 1) : (1, 1),
(
1 −ms1 , 1

); − ; (1, 1)

−

)
,

(34)

ν′
k = (1 − mk;μk, 0), (1; μ̄k, 0), (1 − msk ; μ̄k, 0) and

�ORA � (A1/A2, . . . ,AL−1/AL,AL, s)T.

Proof: Please refer to Appendix F.
Remark 4: With the help of Theorem 3, channel capacity

under ORA has a tight approximation which can be derived
using single F fading channel. Substituting (D-2) into (D-1)
and letting L = 1, we obtain the same result as [9, eq. (19)].
An approximation of [9, eq. (19)] in the high-SNR region is
given by [29, eq. (26)]. Using (14), we obtain a simple alge-
braic representation of the approximation of channel capacity
under ORA in the high-SNR region as [29, eq. (26)], which
also provides useful insights on the impact of the involved
parameters. For example, it is evident that eq. (26) in [29]
can be expressed in terms of γF . This transformation is
useful in quantifying the average SNR value under different
fading conditions.

4) OPTIMAL POWER AND RATE ADAPTATION

Under OPRA, the channel capacity is given by [41, eq. (7)]

COPRA = B
∫ ∞

γ0

log2

(
z

γ0

)
fZ(z)dz, (35)

where γ0 is the cutoff carrier-to-noise ratio value. No data
is sent below γ0, and γ0 must satisfy [41, eq. (6)]∫ ∞

γ0

(
1

γ0
− 1

z

)
fZ(z)dz = 1. (36)

Let

S(z) =
{ 1

γ0
− 1

z z ≥ γ0,

0 otherwise,
(37)

the channel capacity under OPRA can also be written as

COPRA = B
∫ ∞

0
log2(1 + S(z)z)fZ(z)dz. (38)

Proposition 6: The channel capacity under OPRA is derived
as

COPRA =
L∏

�=1

1

�(m�)�
(
ms�
)HOPRA, (39)

where

HOPRA � H0,L+1:1,2;0,0;··· ;0,0;0,0;1,0
L+3,0:2,1;0,0;··· ;0,0;0,1;0,1

×
(
�OPRA

∣∣∣∣∣
ν′

2, · · · , ν′
L, (1; 0, . . . , 0,−1,−1), (1; 0, · · · , 0,−1,−1),

−:(m1, 1); (1, 1); (0, 1)

(1; 0, . . . , 0, 1, 1), (1; 0, . . . , 0, 1, 1) : (1, 1),
(
1 − ms1 , 1

);−;−
−

)

(40)

and �OPRA � (γ0A1/A2, . . . , γ0AL−1/AL, γ0AL, s)T.
Proof: Please refer to Appendix G.
Remark 5: Based on Theorem 3, a tight approximation of

channel capacity under OPRA can be derived using single
F fading channel. Substituting (D-3) into (D-1) and letting
L = 1, the same result as [29, eq. (52)] is obtained. Note
that [29, eq. (52)] is suitable for analysis both analytically
and numerically and can used as a benchmark for further
derivation of an approximation. In the high-SNR regime, the
approximation of (39) is given as [29, eq. (57)].
Remark 6: To determine the value of γ0, we can

rewrite (36) as

1

γ0

∫ ∞

γ0

fZ(z)dz

︸ ︷︷ ︸
I8

−
∫ ∞

γ0

fZ(z)

z
dz

︸ ︷︷ ︸
I9

= 0, (41)

where I8 and I9 have been solved in (D-1) and (D-4)
respectively. Thus, it follows that

0 = 1

γ0

(
1 −

L∏
�=1

1

�
(
ms�
)
�(m�)

HCDF

)

−
L∏

�=1

1

�
(
ms�
)
�(m�)

HTIFR. (42)
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FIGURE 3. PDF for the sum of squared F -distributed RVs.

A detailed proof of the existence of γ0 in the range [0, 1]
is given in [42]. Thus, with the aid of (42), γ0 can be
solved with mathematical software and we find that using
the dichotomy for iterations within 20 times can make the
error less than 10−6.
Remark 7: Channel capacity in AWGN, in bits per second,

is given by Shannons formula as [43]

CAWGN = B log2(1 + z). (43)

The relationship of CORA, COPRA and CAWGN can be
obtained by applying the Jensen’s inequality as [44]

0 ≤ COPRA − CORA ≤ min
(
COPRA,− log2 γ0

)
, (44a)

CORA ≤ CAWGN (44b)

and there is no general order relation between COPRA and
CAWGN.

VI. NUMERICAL RESULTS
In this section, analytical results are presented to illustrate
the proposed applications of the sum of Fisher-Snedecor
F RVs in wireless communication systems. All results are
substantiated by Monte Carlo simulations.
Figures 3 and 4, respectively, plot the PDF and CDF

of the sum of Fisher-Snedecor F RVs and their proposed
approximation obtained by moment matching method for dif-
ferent values of ms and L, assuming ms� = ms (� = 1, 2, 3),
m� = 2, γ� = 0 dB. In both figures, it can be observed that
the approximate PDFs and CDFs match the exact ones well
for all considered cases. Furthermore, analytical results per-
fectly match Monte Carlo simulations, thus validating our
results. In addition, analytical results of the PDF for the sum
of Fisher-Snedecor F RVs given as [23, eq. (8)] are shown
in Fig. 3. As it can be seen, the analytical results do not
match well the Monte Carlo simulations at low-ms values.
Moreover, Fig. 4 shows the impact of different values of L.
As L increases, analytical results of the CDF for the sum
of Fisher-Snedecor F RVs given as [23, eq. (9)] are more
inaccurate.

FIGURE 4. CDF for the sum of squared F -distributed RVs.

FIGURE 5. Outage probability versus average SNR for dual, triple and quadruple
MRC receivers.

Figure 5 depicts the OP performance versus average SNR
γ for a dual-, triple- and quadruple-branch MRC receivers
with γ� = γ (� = 1, 2, 3, 4), γth = 0 dB, m� = 1.5, ms� = 5.
As it can be observed, the OP decreases as the average SNR
and L increase. Again, it is evident that the exact results
match the approximate ones and Monte Carlo simulations
well. In addition, the asymptotic expressions match well the
exact ones at high SNR values thus proving their validity
and versatility. The OP performance improvement is more
pronounced by increasing L = 2 to L = 3.

Figures 6–9 show the analytical and simulated channel
capacities versus average SNR γ under different adap-
tive transmission strategies respectively, assuming L = 2.
Figs. 6 and 7 illustrate the channel capacity increases as m
increases, while Figs. 8 and 9 depict the channel capacity
increases as ms increases, which means favorable system
parameters can lead to a large channel capacity. Once
again, perfect agreement is observed between analytical
results, approximate results and Monte Carlo simulations in
Figs. 6–9.
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FIGURE 6. Channel capacity under CIFR versus average SNR for L = 2,
m1 = m2 = m, ms1 = 2.5 and ms2 = 10.

FIGURE 7. Channel capacity under TIFR versus average SNR for L = 2,
m1 = m2 = m, γ0 = 0 dB and ms1 = ms2 = 2.5.

As shown in Fig. 10, four different adaptive transmission
strategies provide different channel capacities. Obviously, the
relation we proposed in (7) is shown. As it can be observed,
the channel capacity under OPRA is the largest among those
adaptive transmission strategies, which is followed by the
channel capacity under ORA. The channel capacity under
TIFR and CIFR converges in the high-SNR regime because
the asymptotic expressions of those two cases are the same
for m > 1. This finding can be also observed in channel
capacity under OPRA and ORA. Moreover, analytical and
approximate results agree well with Monte Carlo simulations.
Figure 11 illustrates the effective capacity of MRC systems

over i.n.i.d. F fading channels as a function of the delay
constraint A for different settings of the parameters ms and
L, assuming ms� = ms, m� = 5, γ� = 10 dB (� = 1, 2, 3). It
can be easily observed that, the effective capacity increases
as ms and L increase. This is because of the fact that large
value of ms induces low shadowing effect and large value
of L means more receive power. For a certain setting of the

FIGURE 8. Channel capacity under ORA versus average SNR for L = 2,
ms1 = ms2 = ms , and m1 = m2 = 2.5.

FIGURE 9. Channel capacity under OPRA versus average SNR for L = 2,
ms1 = ms2 = ms and m1 = m2 = 2.5.

FIGURE 10. Channel capacity under four different adaptive transmission strategies
versus average SNR for L=2.

parameters, the effective capacity increases as A decreases
(i.e., large delay). Thus, the considered system can support
larger arrival rates having a larger delay constraint. Fig. 11
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FIGURE 11. Effective capacity of MRC receivers over i.n.i.d. F fading channels
versus the delay constraint A.

shows a perfect agreement of the Monte Carlo simulations
and analytical and simulation results, which confirms the
validity of the analytical result in (24).

VII. CONCLUSION
We presented exact expressions for the PDF and CDF of sum
of i.n.i.d. Fisher-Snedecor F RVs. In addition, we proposed
the single F distribution with an adjusted form of param-
eters to approximate the sum of F distribution by using
the moment matching method. The derived results show
that the introduced adjustment results closely approximate
in both the lower and upper tail regions. This sufficiently
accurate region-wise approximation significantly simplify
the performance analysis of MRC diversity receivers over
the F fading channels. To this end, novel, computation-
ally efficient analytical expressions were obtained for OP,
effective capacity and channel capacities under different
adaptive transmission strategies. Finally, extensive numer-
ical results have been presented to validate the proposed
analytical expressions and an excellent agreement has been
observed.

APPENDIX A
PROOF OF THEOREM 1
The PDF of z can be obtained as

fz(z) = L−1{Mz(s); z} = 1

2π j

∫
L
Mz(s)e

zsds, (A-1)

where L−1{·} denotes the inverse Laplace transform and
Mz(s) is the MGF of z. Because the Fisher-Snedecor F RVs
are independent, we can obtain the MGF of the z using (4)
as

Mz(s) =
L∏

�=1

�
(
m� + ms�

)
�
(
ms�
) �

(
m�; 1 − ms�;

sγ̄�

(
ms� − 1

)
m�

)
.

(A-2)

Substituting (A-2) into (A-1) and using [45, eq. (8.4.46.1)],
we can derive the MGF of z as

fz(z) = 1

2π j

∫
L

L∏
�=1

1

�
(
ms�
)
�(m�)

× G2,1
1,2

(
sγ̄�

(
ms� − 1

)
m�

∣∣∣∣∣
1 − m�

0,ms�

)
ezsds, (A-3)

where the integration path of L goes from σ −∞j to σ +∞j
and σ ∈ R.
With the aid of [30, eq. (9.301)], the product of Meijer’s

G-functions can be expressed as

IG � G2,1
1,2

(
sγ̄1
(
ms1 − 1

)
m1

∣∣∣∣∣
1 − m1
0,ms1

)

×
L∏

�=2

G2,1
1,2

(
sγ̄�

(
ms� − 1

)
m�

∣∣∣∣∣
1 − m�

0,ms�

)

= 1

2π j

∫
L1

ϒ(ζ1)

(
A1

A2

)ζ1
(
A2

s

)ζ1

dζ1

×
L∏

�=2

G2,1
1,2

(
s

A�

∣∣∣∣ 1 − m�

0,ms�

)
, (A-4)

where ζ0 = 0, L� (� = 1, . . . ,L) goes from
σ� − ∞j to σ� + ∞j, σ� ∈ R and ϒ(ζ�) �
�(m� + ζ�−1 − ζ�)�(−ζ�−1 + ζ�)�(ms� − ζ�−1 + ζ�).
Using [46, eq. (07.34.16.0001.01)] and rewriting each
Meijer’s G-function as a Mellin-Barnes integral, we
express (A-4) as

IG =
(

1

2π j

)L ∫
L1

· · ·
∫
LL

L∏
�=1

ϒ(ζ�)

×
L∏

�=1

(
A�

A�+1

)ζ�
(

1

s

)ζL

dζ1 · · · dζL. (A-5)

Substituting (A-5) into (A-3), we obtain

fz(z) =
(

1

2π j

)L L∏
�=1

1

�
(
ms�
)
�(m�)

∫
L1

· · ·
∫
LL

L∏
�=1

ϒ(ζ�)

×
L∏

�=1

(
A�

A�+1

)ζ� 1

2π j

∫
L
s−ζLezsds

︸ ︷︷ ︸
IA

dζ1 · · · dζL. (A-6)

Using [30, eq. (8.315.1)], we can solve IA as

IA = z−1+ζL

�(ζL)
. (A-7)

Substituting (A-7) into (A-6), we can write (A-6) as

fz(z) =
(

1

2π j

)L L∏
�=1

1

z�
(
ms�
)
�(m�)

×
∫
L1

· · ·
∫
LL

∏L
�=1 ϒ(ζ�)

�(ζL)

L∏
�=1

(
A�

A�+1

)ζ�

zζLdζ1 · · · dζL.

(A-8)
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The proof is completed by deriving (9) using the definition
of the multivariate H-function [31, eq. (A.1)].

APPENDIX B
PROOF OF THEOREM 3
The parameters of the proposed distributions can be obtained
in a straightforward manner by employing a simple moment
matching technique. Let us start with L = 2 and z = γ1 +
γ2, z ∼ F(γ ,m,ms) and γ� ∼ F(γ �,m�,ms� ) (� = 1, 2).
The first, second and third moments of the sum of two
independent RVs can be written as⎧⎨
⎩
E[z] = E[γ1] + E[γ2],
E
[
z2
] = E

[
γ 2

1

]+ E
[
γ 2

2

]+ 2E
[
γ1
]
E
[
γ2
]
,

E
[
z3
] = E

[
γ 3

1

]+ E
[
γ 3

2

]+ 3E
[
γ 2

1

]
E
[
γ2
]+ 3E

[
γ1
]
E
[
γ 2

2

]
.

(B-1)

With the help of (5) and the moment matching method,
eq. (B-1) can be written as⎧⎨
⎩

γ̄F=γ̄1 + γ̄2,

HF γ̄ 2 = H1γ̄
2
1 + H2γ̄

2
2 +2γ̄1γ̄2,

HFYF γ̄ 3 = H1Y1γ̄
3
1 + H2Y2γ̄

3
2 + 3H1γ̄

2
1 γ̄2 + 3H2γ̄1γ̄

2
2 ,

(B-2)

where HF = (1+m)(ms−1)
m(ms−2)

, YF = (ms−1)(2+m)
m(ms−3)

, H� =
(1+m�)(ms�−1)

m�(ms�−2)
, Y� = (ms�−1)(2+m�)

m�(ms�−3)
(� = 1, 2). In the com-

posite fading channel, an F fading channel’s amount of
fading (AF), which is often used as a relative measure of
the severity of fading, is derived in [1] as (HF − 1). By
solving (B-2), we obtain⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

γ̄F = γ̄1 + γ̄2,

HF = H1γ̄
2
1 +H2γ̄

2
2 +2γ̄1γ̄2

(γ̄1+γ̄2)
2 = (H1−1)γ̄ 2

1 +(H2−1)γ̄ 2
2

(γ̄1+γ̄2)
2 + 1,

YF = H1Y1γ̄
3
1 +H2Y2γ̄

3
2 +3γ̄ 2

1 γ̄2H1+3γ̄1γ̄
2
2 H2

(γ̄1+γ̄2)
(
H1γ̄

2
1 +H2γ̄

2
2 +2γ̄1γ̄2

)
= (H1Y1−1)γ̄ 3

1 +(H2Y2−1)γ̄ 3
2 +(γ̄1+γ̄2)

3−3
(
γ̄ 3

1 (H1−1)+γ̄ 3
2 (H2−1)

)
(γ̄1+γ̄2)

(
(H1−1)γ̄ 2

1 +(H2−1)γ̄ 2
2 +(γ̄1+γ̄2)

2)
+ 3

(
γ̄ 2

1 (H1−1)+γ̄ 2
2 (H2−1)

)
(
(H1−1)γ̄ 2

1 +(H2−1)γ̄ 2
2 +(γ̄1+γ̄2)

2)
(B-3)

Equations (B-3) can be generalized for the sum of L i.n.i.d.
Fisher-Snedecor F RVs as [47]⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

γ̄F=∑L
�=1 γ̄�,

HF =
∑L

�=1 (H�−1)γ̄ 2
�(∑L

�=1 γ̄�

)2 + 1,

YF =
∑L

�=1 (H�Y�−1)γ̄ 3
� +
(∑L

�=1 γ̄�

)3−3
∑L

�=1 (H�−1)γ̄ 3
�(∑L

�=1 γ̄�

)(∑L
�=1 (H�−1)γ̄ 2

� +
(∑L

�=1 γ̄�

)2
)

+ 3
(∑L

�=1 (H�−1)γ̄ 2
�

)
(∑L

�=1 (H�−1)γ̄ 2
� +
(∑L

�=1 γ̄�

)2
)

(B-4)

However, the parameters of a single F distribution calculated
by (B-4) result in a relatively large approximation error in the
lower and upper tail regions because we only match the first,
second and third moments. This error can be modified by
introducing an adjustment factor ε. The proof is completed
by deriving (14) and (15).

APPENDIX C
PROOF FOR PROPOSITION 2
Using the classical Newton-Leibniz formula, we can
rewrite (22) as

Ceff = − 1

A
log2

(∫ ∞

0

1

(1 + z)A
fz(z)dz

)

= − 1

A
log2

⎛
⎜⎜⎜⎝A
∫ ∞

0

Fz(z)

(1 + z)A+1
dz

︸ ︷︷ ︸
I1

⎞
⎟⎟⎟⎠. (C-1)

With the help of (12), I1 can be expressed as

I1 =
L∏

�=1

1

�(m�)�
(
ms�
)
(

1

2π j

)L

×
∫ ∞

0

1

(1 + z)A+1

∫
L1

∫
L2

· · ·
∫
LL

1

�(1 + ζ�)

×
L∏

�=1

ϒ(ζ�)

(
A�

A�+1

)ζ�

zζLdζ1dζ2 · · · dζLdz. (C-2)

According to Fubini’s theorem, we can exchange the order
of integration in I1, and derive

I1 =
L∏

�=1

1

�(m�)�
(
ms�
)
(

1

2π j

)L

×
∫
L1

∫
L2

· · ·
∫
LL

1

�(1 + ζL)

L∏
�=1

ϒ(ζ�)

(
A�

A�+1

)ζ�

×
∫ ∞

0

zζL

(1 + z)A+1
dz

︸ ︷︷ ︸
I2

dζ1dζ2 · · · dζL. (C-3)

Using [30, eq. (3.194.3)], we can solve I2 as

I2 = �(ζL)�(A− ζL)

�(1 + A)
. (C-4)

We complete the proof combining (C-4), (C-3), (C-1) and (6).

APPENDIX D
PROOF FOR PROPOSITION 3
With the aid of (9), the integral in (26) can be written as

I3 =
L∏

�=1

1

�
(
ms�
)
�(m�)

(
1

2π j

)L

×
∫ ∞

0

∫
L1

∫
L2

· · ·
∫
LL

L∏
�=1

ϒ(ζ�)

(
A�

A�+1

)ζ�

× 1

�(ζL)
z−2+ζLdζ1dζ2 · · · dζLdz. (D-1)

Let L{p(t)} = P(x). According to the property of Laplace
transform, we have

L
{∫ t

0
p(z)dz

}
= P(x)

x
. (D-2)
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With the help of the final value theorem, it follows that

lim
t→∞

(∫ t

0
p(z)dz

)
= s

P(s)

s
= P(s). (D-3)

We can use (D-3) to obtain∫ ∞

0
z−2+ζLdz = L

{
z−2+ζL

}
=
(

1

s

)ζL−1

�(ζL − 1). (D-4)

Employing (D-1) and (D-4), we can rewrite I3 as

I3 =
L∏

�=1

s

�
(
ms�
)
�(m�)

(
1

2π j

)L ∫
L1

∫
L2

· · ·
∫
LL

�(ζL − 1)

�(ζL)

×
L∏

�=1

ϒ(ζ�)

(
A�

sA�+1

)ζ�

dζ1dζ2 · · · dζL. (D-5)

Substituting (D-5) into (26) and using (6), we obtain (27)
which completes the proof.

APPENDIX E
PROOF FOR PROPOSITION 4
Observe that∫ ∞

z0
fZ(z)dz = 1 −

∫ z0

0
fZ(z)dz = 1 − FZ(z0), (D-1)

where FZ(z0) can be deduced using (12). Thus, CTIFR can
be expressed as

CTIFR = Blog2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 + 1∫ ∞

z0

fZ(z)

z
dz

︸ ︷︷ ︸
I5

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

×
(

1 −
L∏

�=1

1

�
(
ms�
)
�(m�)

HCDF

)
. (D-2)

Substituting (9) into (D-2), we can rewrite I5 as

I5 =
L∏

�=1

1

�
(
ms�
)
�(m�)

(
1

2π j

)L

×
∫ ∞

z0

∫
L1

∫
L2

· · ·
∫
LL

1

�(ζL)

L∏
�=1

ϒ(ζ�)

(
A�

A�+1

)ζ�

× z−2+ζLdζ1dζ2 · · · dζLdz. (D-3)

Note that the order of integration can be interchangeable
according to Fubini’s theorem. Thus, we can express I5 as

I5 =
L∏

�=1

1

�
(
ms�
)
�(m�)

(
1

2π j

)L

×
∫
L1

∫
L2

· · ·
∫
LL

�(1 − ζL)

�(ζL)�(2 − ζL)

×
L∏

�=1

ϒ(ζ�)

(
z0A�

A�+1

)ζ�

dζ1dζ2 · · · dζL. (D-4)

Employing (6) and substituting (D-4) into (D-2), we
obtain (30) to complete the proof.

APPENDIX F
PROOF FOR PROPOSITION 5
Substituting (9) into (32) and changing the order of inte-
gration, the channel capacity under ORA can be expressed
as

CORA = B
L∏

�=1

1

�
(
ms�
)
�(m�)

(
1

2π j

)L ∫
L1

×
∫
L2

· · ·
∫
LL

1

�(ζL)

L∏
�=1

ϒ(ζ�)

(
A�

A�+1

)ζ�

×
∫ ∞

0
log2(1 + z)z−1+ζLdz

︸ ︷︷ ︸
I6

dζ1dζ2 · · · dζL. (D-1)

With the help of [48, eq. (2.6.9.21)] and [30, eq. (8.334.3)],
I6 can be deduced as

I6 =
∫ ∞

0
log2(1 + z)z−1+ζLdγ= − 1

ln 2
�(ζL)�(−ζL),

(D-2)

where −1 < R(ζL) < 0.
To avoid potential conflicts with the definition of the mul-

tivariate H-function, employing [49, eq. (2.5.16)], we can
express I6 as

I6= 1

ln(2)

∫ ∞

0
G1,2

2,2

(
z

∣∣∣∣ ζL, ζL
ζL, ζL − 1

)
dz. (D-3)

Using [30, eq. (9.301)] and the Laplace transform of Meijer’s
G-function [46, eq. (07.34.22.0003.01)], we obtain

L
{
G1,2

2,2

(
z

∣∣∣∣ ζL, ζL
ζL, ζL − 1

)}
= 1

x
G1,3

3,2

(
1

x

∣∣∣∣ 0, ζL, ζL
ζL, ζL − 1

)

=
∫
LL+1

�(1 − ζL+1)�
2(1 − ζL − ζL+1)�(ζL + ζL+1)

�(2 − ζL − ζL+1)

× xζL+1 dζL+1. (D-4)

Thus, using the final value theorem and following the similar
procedures as the proof of (27), we can rewrite the channel
capacity under ORA as

CORA = B

s ln(2)

L∏
�=1

1

�
(
ms�
)
�(m�)

(
1

2π i

)L+1

×
∫
L1

∫
L2

· · ·
∫
LL+1

�2(1 − ζL − ζL+1)�(ζL + ζL+1)

�(2 − ζL − ζL+1)�(ζL)

×
L∏

�=1

ϒ(ζ�)

(
A�

A�+1

)ζ�

× �(1 − ζL+1)�(ζL+1)

�(ζL+1 + 1)
sζL+1dζ1dζ2 · · · dζL+1. (D-5)

Equation (33) is obtained using (D-5) and (6), and the proof
is complete.
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APPENDIX G
PROOF FOR PROPOSITION 6
Substituting (9) into (35) and changing the order of integra-
tion, we can rewrite the channel capacity under OPRA as

COPRA =
L∏

�=1

1

�(m�)�
(
ms�
)
(

1

2π j

)L ∫
L1

×
∫
L2

· · ·
∫
LL

1

�(ζL)

L∏
�=1

ϒ(ζ�)

(
A�

A�+1

)ζ�

×
∫ ∞

γ0

log2

(
z

γ0

)
z−1+ζLdz

︸ ︷︷ ︸
I7

dζ1dζ2 · · · dζL. (D-1)

Let t = z/γ0 − 1 and we have

I7 = γ0
ζL

∫ ∞

0
log2(t + 1)(t + 1)−1+ζLdt. (D-2)

Using [48, eq. (2.6.10.49)], [48, eq. (II.2)] and
[30, eq. (8.331.1)], we can solve I7 as

I7 = 1

ln 2

�(−ζL)�(−ζL)γ0
ζL

�(1 − ζL)�(1 − ζL)
. (D-3)

However, eq. (D-3) has conflict with the definition of the
multivariate ’s H-function; therefore, we choose another way
to solve I7. Using the final value theorem and following the
similar procedures as the proof of (27), we can rewrite I7 as

I7 = 1

2π j
γ0

ζL

∫
LL+1

�2(−ζL − ζL+1ζ�)�(−ζL+1)

�2(1 − −ζL − ζL+1ζ�)
sζL+1dζL+1.

(D-4)

Substituting (D-4) into (D-1), we obtain

COPRA =
L∏

�=1

1

�(m�)�
(
ms�
)
(

1

2π j

)L+1

×
∫
L1

∫
L2

· · ·
∫
LL+1

�2(−ζL − ζL+1)

�(ζL)�2(1 − ζL − ζL+1)
sζL+1

×
L∏

�=1

ϒ(ζ�)

(
γ0A�

A�+1

)ζ�

�(−ζL+1)dζ1dζ2 · · · dζL+1.

(D-5)

With the help of (6), we obtain (39). The proof is now
complete.
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