
Received 13 December 2019; revised 20 January 2020; accepted 2 February 2020. Date of publication 6 February 2020; date of current version 26 February 2020.

Digital Object Identifier 10.1109/OJCOMS.2020.2971613

A Game-Theoretic Approach for Non-Cooperative
Load Balancing Among Competing Cloudlets

SOURAV MONDAL 1 (Student Member, IEEE), GOUTAM DAS2 (Member, IEEE),
AND ELAINE WONG 1 (Senior Member, IEEE)

1Department of Electrical and Electronic Engineering, University of Melbourne, Melbourne, VIC 3010, Australia
2G. S. Sanyal School of Telecommunications, Indian Institute of Technology Kharagpur, Kharagpur 721302, India

CORRESPONDING AUTHOR: S. MONDAL (e-mail: smondal@student.unimelb.edu.au)

ABSTRACT To deliver high performance and reliability to the mobile users in accessing mobile
cloud services, the major interest is currently given to the integration of centralized cloud computing
and distributed edge computing infrastructures. In such a heterogeneous network ecosystem, multiple
cloudlets from different service providers coexist. However, to meet the stringent latency requirements
of computation-intensive and mission-critical applications, overloaded cloudlets can offload some of the
incoming job requests to their relatively under-loaded neighboring cloudlets. In this paper, we propose a
novel economic and non-cooperative game-theoretic model for load balancing among competitive cloudlets.
This model aims to maximize the utilities of all the competing cloudlets while meeting the end-to-end
latency of the users. We characterize the problem as a generalized Nash equilibrium problem and investi-
gate the existence and uniqueness of a pure-strategy Nash equilibrium. We design a variational inequality
based algorithm to compute the pure-strategy Nash equilibrium. We show that all the competing cloudlets
are able to maximize their utilities by employing our proposed Nash equilibrium computation offload
strategy in both under- and overloaded conditions. We also show through numerical evaluations that
our load balancing model outperforms some of the existing game-theoretic load balancing frameworks,
especially in a highly overloaded condition.

INDEX TERMS Cloudlet computing, non-cooperative load balancing, generalized Nash equilibrium,
variational inequality.

I. INTRODUCTION

THE MOBILE cloud computing technology facilitated
the usage of communication and computation intensive

applications in mobile devices by compensating their lim-
itations in battery, memory, and computational resources.
With the proliferation of low-latency applications such as
virtual reality, augmented reality, teleoperation, online gam-
ing, and tactile Internet, requiring an end-to-end latency
constraint of 10-100 ms, the evolution of edge-computing
solutions was expedited [1]. Based on the recent proposal
for the use of clusters of computers called cloudlets [2],
researchers designed efficient frameworks for cloudlet place-
ment over wireless access networks [3]–[5]. In addition to the
overwhelming popularity of wireless access networks, very
recently the authors of [6]–[10] proposed cloudlet placement
frameworks over optical and fiber-wireless access networks.

Note that cloudlet computing systems are essentially dis-
tributed computing systems, and in any distributed system,
job request allocation and load balancing are considered
as important research challenges [11]. To address the job
request problem, the authors of [12]–[16] proposed efficient
frameworks for job request allocation from mobile devices
to cloudlets. Nonetheless, due to the highly dynamic mobil-
ity pattern of mobile devices and randomness of job request
arrival process, cloudlets get overloaded or under-loaded at
different points of time. Thus, researchers realized the neces-
sity of designing efficient frameworks for load balancing
among neighboring cloudlets as an immediate challenge [17]
and the authors of [18]–[26] designed efficient load balancing
frameworks among neighboring cloudlets.
We critically observe that minimization of end-to-end

latency of the cloudlets is stressed in most of the existing

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

226 VOLUME 1, 2020

HTTPS://ORCID.ORG/0000-0002-5467-2545
HTTPS://ORCID.ORG/0000-0002-2561-3482

works on load balancing among cloudlets. However, practical
users are satisfied if the job requests are processed within the
predefined quality-of-service (QoS) latency target. Hence,
latency minimization beyond the QoS latency target for the
cloudlets is not always a desired objective from a practical
viewpoint. For example, a user is equally satisfied if a job
request is processed by 5 ms, 9 ms, or 10 ms, when the actual
QoS latency target is 10 ms. Nonetheless, if the cloudlets fail
to meet the QoS latency target, a significant penalty should
be incurred, especially for low-latency applications. With
this realization, we design a novel game-theoretic objective
function that yields the maximum utility for cloudlets when
the end-to-end latency is equal to the QoS latency target.
Furthermore, our designed objective function provides an
opportunity to each cloudlet for accepting some extra load
from their neighboring cloudlets and gain some economic
benefit, whenever the concerned cloudlet is operating well
within its QoS latency target.
We also observe that none of the existing load balanc-

ing frameworks considers a practical heterogeneous cloudlet
environment, where cloudlets from the same as well as
different service providers compete with each other over
the same customer base. This implies that each cloudlet
needs to pay some extra incentive for offloading job
requests to neighboring cloudlets from different service
providers, but no such payment is required for offloading job
requests to cloudlets from the same service provider. Thus,
the multi-party economic interaction among heterogeneous
neighboring cloudlets has yet to be captured in [18]–[26] and
the implementation of economic and game theoretic models
to analyze the interaction among multiple cloudlets to partic-
ipate in the market competition have yet to be studied. Note
that an optimization framework formulates a common objec-
tive function for all the neighboring cloudlets to decide their
optimal load balancing strategies. When all the neighboring
cloudlets belong to the same service provider, they abide by
this solution. Nonetheless, when cloudlets from the same as
well as different service providers coexist, some cloudlets
may deviate from a centralized optimal solution if they find it
more profitable. Thus, a game-theoretic framework becomes
inevitable for such cases as a game-theoretic solution like
Nash equilibrium (NE) is self-enforcing in nature [27].
Recently, researchers are also exploring various machine

learning based approaches to solve practical problems, but
complex supervised learning models like artificial neural
networks rely heavily on historical data to make decisions.
Such frameworks are highly inefficient for load balancing
among cloudlets in real-time, especially in a dynamic sce-
nario where there is low correlation between the trained data
and real-time data [28]. We also observe that a large body of
the existing works on load balancing among cloudlets use
distributed frameworks, but they are not designed for job
requests with stringent QoS latency targets. Thus, we propose
a centralized control protocol that makes the load balancing
decision before the actual job request arrival and cloudlets
can start to process them immediately after arrival. In many

practical market competitions, the business among various
service providers is facilitated through a mediator who pro-
vides some mandatory rules or guidelines [29]. Similarly, in
this work also, we consider that a neutral mediator super-
vises the computation offloading game amongst the cloudlets.
Our conjecture is that the proposed mediator installs some
computational facility in the neighborhood of the cloudlets
for computation of NE and performing other network man-
agement operations. If the computational facility is installed
by some particular service provider, it may produce biased
load balancing decisions. All the competing cloudlets send
their predicted job request arrival rates to the mediator, which
computes the NE load balancing strategies for the cloudlets,
and broadcasts to them before the actual job request arrival.
Our primary contributions in this paper are summarized as
follows:
(i) We formulate the load balancing problem among

cloudlets from multiple service providers as a
novel economic and non-cooperative game theoretic
problem. In this setup, each neighboring cloudlet, both
from the same and different service providers, gets a
scope to maximize its utility while meeting the QoS
latency targets of mobile device users.

(ii) Furthermore, we show that the objective functions
of all cloudlets and the constraints create a convex
problem. Thus, by applying the variational inequal-
ity approach we solve the formulated generalized NE
(GNE) problem and design an efficient centralized
algorithm suitable for our problem.

(iii) Finally, we show that all the participating cloudlets are
able to achieve higher utilities under different network
load conditions by mutual computation offloading
according to our proposed NE strategies than some of
the recent game-theoretic load balancing models. The
performance of our proposed model in terms of aver-
age end-to-end latency and utility values is also better
than these frameworks, especially in highly overloaded
conditions.

The rest of this paper is organized as follows. Section II
reviews some related works. Section III presents the fun-
damental system design considerations and control design
for the load balancing game among neighboring cloudlets.
Section IV formulates the non-cooperative game and dis-
cusses properties like existence and uniqueness of the GNE
of the game. Section V designs an efficient algorithm for the
computation of the GNE. Section VI presents and discusses
the simulation results. Finally, Section VII summarizes our
primary observations and achievements by using the game
theoretic framework.

II. RELATED WORKS
Load balancing among edge computing nodes like cloudlets
is an important research problem and recently, a few
researchers proposed load balancing models based on
optimization and game-theoretic methods. In existing litera-
ture, primarily centralized and decentralized control models

VOLUME 1, 2020 227

MONDAL et al.: GAME-THEORETIC APPROACH FOR NON-COOPERATIVE LOAD BALANCING AMONG COMPETING CLOUDLETS

TABLE 1. Comparison with existing load balancing works.

are used to solve load balancing problems [17]. In central-
ized control models, an oracle controller node makes the load
balancing decision that is aware of the entire network status
in real-time. All the distributed nodes under its supervision
send their local information to the controller node and in
turn, they are informed about their load balancing strategies.
This model is very easy to implement but may face some
performance issues due to inter-node communication bot-
tleneck when the network is spread across large geography
and dynamic in nature. The authors of [18] designed a cen-
tralized framework by formulating a latency minimization
problem and proposing a network-flow based heuristic algo-
rithm to solve the problem. In optimization method based
models, a common objective function and a set of constraints
are formulated to compute the optimal load balancing strate-
gies for all the cloudlets. Such models can provide fast and
efficient methods to solve the problem, but they are difficult
to impose on a practical network scenario where cloudlets
from different service providers coexist. The authors of [19]
studied and compared three load balancing schemes, viz.,
no sharing, random sharing, and least loaded sharing among
neighboring cloudlets with different degrees of collaboration.
On the other hand, in decentralized control models, all

the distributed nodes decide their load balancing strategies
through their local interaction with neighboring nodes and
the supervision of a controller node is not required. In [20],
the authors proposed a distributed load balancing scheme for
minimizing the average latency of Internet-of-Things devices
associated to fog nodes co-located with cellular base stations.
Although this model is more robust for large networks, it
introduces excessive exchange of control messages and com-
putational load in the network. Recently, the interest to apply
cooperative and non-cooperative game-theoretic models on
various network-related problems is growing because game
theory provides several powerful methods to analyze and
study the interaction among distributed agents under conflicts
and cooperation [27]. The authors of [21] proposed a coop-
erative load balancing scheme where under-loaded cloudlets
cooperate with their neighboring overloaded cloudlets to

minimize their blocking probability and processing latency.
In [22], the authors proposed a cooperative game-theoretic
task allocation framework with a dynamic incentive feedback
mechanism. The authors showed that their proposed frame-
work can satisfy QoS requirements of the applications while
the edge devices gained a much higher payoff compared to
state-of-the-art frameworks. Again, the authors of [23] for-
mulated a potential non-cooperative game for cost-effective
edge user allocation to edge computing nodes that also keeps
the workload distribution balanced. The authors showed that
this problem admits a unique NE solution and designed an
efficient decentralized algorithm to compute the NE. In addi-
tion to this, reinforcement learning algorithms can also prove
to be a useful approach for solving load balancing prob-
lems but may present various complexity and convergence
challenges in real-time [30].
Two recent works, [24], [25] are very much close to

our current work. In [25], the authors proposed a dis-
tributed non-cooperative load balancing game among neigh-
boring cloudlets in small-cell networks and compared its
performance with a centralized load balancing framework.
In this game formulation, each cloudlet tries to minimize
their end-to-end latency cost subject to explicit energy and
latency constraints. Hence, this model performs really well if
the network is moderately loaded, but performs very poorly
under high load conditions. However, when the latency con-
straints of the cloudlets start to violate, the overloaded
cloudlets are no longer able to offload any job requests
and the overall latency performance degrades. In [24], the
authors formulate a non-cooperative load balancing game by
defining the expected latency of each cloudlet as a disutility
function and try to minimize its value. The authors propose
an iterative proximal algorithm to compute a Nash equilib-
rium solution. In this algorithm, at first all the cloudlets are
sorted depending on their server availability and none of
the cloudlets is allowed to offload until their incoming job
requests reach a certain threshold. Nonetheless, due to this
load balancing strategy, it happens often that the most under-
loaded cloudlets receive a large number of job requests from

228 VOLUME 1, 2020

FIGURE 1. A schematic diagram showing the interactions among N competing cloudlets, supervised by a neutral mediator and the a timing diagram illustrating the overall
control design.

their overloaded neighboring cloudlets and the end-to-end
latency overshoots.
To avoid the aforementioned issues, we incorporate the

QoS latency target in our game formulation in a tactful way
so that the game does not become infeasible, even under high
load conditions. Thus, overloaded cloudlets may not be able
to offload their complete extra load to their under-loaded
neighbors, but offload to the maximum extent possible. In
such cases, the overloaded cloudlets may exceed the QoS
latency target, but the under-loaded cloudlets will meet the
QoS latency target, while all the cloudlets maximizing their
utilities. The utility of each cloudlet includes the revenue
earned for all the job requests received and the penalty for
end-to-end latency. In Table 1, we provide a brief comparison
of our current work with some of the existing works.

III. SYSTEM MODEL
A. FUNDAMENTAL SYSTEM DESIGN CONSIDERATIONS
Fig. 1 presents a schematic diagram that shows the
interaction among the participants of our proposed load bal-
ancing game viz., mobile devices, competing cloudlets, and
a mediator. Each mobile device offloads its job requests to
the nearest cloudlet. As we consider a heterogeneous deploy-
ment scenario, the neighboring cloudlets may belong to same
as well as different service providers. We consider that there
are N competing cloudlets in the network, where N ≥ 2,
and the set of cloudlets is denoted by C = {1, 2, . . . ,N}.
A computational facility is installed by the mediator in the
proximity of all the competing cloudlets to supervise the
computation offloading game among them. The set of com-
peting cloudlets C and their respective processing capacity
are common knowledge, which implies that all the cloudlets
and the mediator are aware of each others’ presence [31].
We consider quasi-static mobility to model the mobility of

mobile users and assume that a typical mobile user cannot
move beyond the coverage area of a cloudlet within 1-10
ms. This implies that the mobile users can be considered to

be almost stationary during computation offloading period
to a cloudlet but may move later [16]. The cloudlets either
start to process the received job requests or strategically
offload a fraction of it to its neighboring cloudlets to meet
the intended QoS latency target DQ. Note that if any highly
overloaded cloudlet cannot process some of its total incom-
ing job requests within DQ, it needs to drop those job request
and pay a penalty for that. In our system model, we consider
that each cloudlet first estimates their future incoming job
requests of (n+ 1)th time-slot at nth time-slot by using the
information from (n− 1)th time-slot. Although, job request
arrival process is a non-stationary process, but it is pseudo-
stationary in nature, because the mean arrival rate does not
vary abruptly, rather gradually. Thus, a quick prediction of
incoming job request arrival rate with 80-90% accuracy is
possible [32]. Each cloudlet also estimates the transmission
latency of the incoming job requests from the mobile devices
and the intermediate transmission latencies with its neigh-
boring cloudlets [33]. Each cloudlet periodically executes
the learning algorithms at an interval of DQ and sends this
information to the mediator for computation of NE load bal-
ancing strategies. Nonetheless, the design of load-predictive
algorithms is beyond the scope of this paper and hence,
consider the algorithm in [33].
Each cloudlet has a finite (possibly different) number

of processors. We further assume that each unit proces-
sor present in the network have similar job processing
capability. If we assume that the ith cloudlet has a sin-
gle processor then the average service rate is μi (jobs/s)
depending on the incoming job requests. In practice, all
the competing cloudlets can have different values of μi

because of the nature of the jobs that arrive at each of
this cloudlet. Therefore μi indicate a parametric descrip-
tion of arrived jobs at the ith cloudlet. We further assume
that the cloudlets use virtual machines to process multiple
job requests received from mobile devices in parallel. From
the Google cluster-usage traces, it can be shown that

VOLUME 1, 2020 229

MONDAL et al.: GAME-THEORETIC APPROACH FOR NON-COOPERATIVE LOAD BALANCING AMONG COMPETING CLOUDLETS

job request arrival times and their service times follow
exponential distributions, and hence can be considered as
Poisson processes [34]. Therefore, we model the cloudlets
as M/M/1 queuing systems [25]. Note that, M/M/1 queue
provides the upper bound of processing latency of a cloudlet
when the aggregated processing rate of all the processors
are considered, i.e., the worst-case processing latency of the
cloudlets are considered. This ensures that when the average
latency of each cloudlet meets the QoS latency target DQ,
then all the incoming job requests are processed within DQ.
We consider that the average job request arrival rate from

all the corresponding mobile devices to a cloudlet i ∈ C
is λi. The individual job requests from mobile devices can be
denoted by the total number of CPU cycles required to com-
plete the job w, and the desired QoS latency target DQ [16].
However, in this work, we are considering a batch of incom-
ing job requests to the cloudlets rather than individual job
requests. Thus, the computational and latency requirements
of all the incoming job requests to ith cloudlet are denoted
by the consolidated tuple (μi, λi,DQ). We assume that the
network has sufficient bandwidth to accommodate all the
job request packets. The job request arrival rate λi can be
directly determined by counting the number of incoming
packets over each time-slot. If the ith cloudlet has ni number
of processors with complete parallel processing enabled, then
the required service rate for supporting the total CPU cycles
of all the job requests received within a time-slot rate can
be determined as μii = niμi. Moreover, when ith cloudlet
offloads some job requests to its neighboring jth cloudlet,
then the corresponding service rate for the respective job
requests is defined as μij = niμj. Note that, we consider
a statistical average value of DQ of all the incoming job
requests to each cloudlet and hence, different cloudlets can
have different DQ values. However, through some internal
job scheduling scheme, each cloudlet can prioritize the pro-
cessing of some of the incoming job requests, based on their
priority or urgency while meeting the average latency target
DQ over each time interval.
The average job request arrival rate varies over differ-

ent time intervals, and hence, we assume that each λi
is independently and uniformly distributed over the sup-
port �i = [0, λmaxi],∀i ∈ C. Therefore, the computation
load profile of all the competing cloudlets is represented
as λ = (λ1, λ2, . . . , λN) ∈ � = (�1 × �2 × · · · × �N).
In a completely distributed computation offload scenario,
neighboring cloudlets need to exchange various information
about incoming job requests and their offload strategies to
compute the NE. This introduces a huge number of control-
packet exchanges among the cloudlets. This problem can
be very easily solved if all the cloudlets periodically send
the information about incoming job requests to the com-
putational facility installed by the mediator. The mediator
computes the NE strategies for computation offloading for
all the cloudlets over that time-slot by using a centralized
algorithm and broadcast to the competing cloudlets, as shown
in Fig. 1.

As the incoming job requests to the cloudlets are randomly
varying over time, the actual scenario can be thought of a
Bayesian game setup, but a Bayesian NE of a game is much
weaker than a pure-strategy NE [31]. Thus, if the compet-
ing cloudlets are regulated to reveal their computation load
profile truthfully under the supervision of a mediator, com-
putation of a strong pure-strategy NE becomes feasible. The
competing cloudlets are non-cooperative and rational utility
maximizers, but the mediator, on the other hand, does not
have any utility associated with the incoming job requests.
Hence, they can supervise a fair competition among the
participating cloudlets. Note that, an incentive compatible
mechanism can be used to ensure the elicitation of truthful
information from the participating cloudlets, but we consider
the mechanism design beyond the scope of this paper.

B. CONTROL DESIGN OF THE LOAD-BALANCING GAME
We show the overall control mechanism of this game for-
mulation among neighboring competing cloudlets under the
supervision of a mediator with the aid of a brief timing dia-
gram in Fig. 1 and summarize the fundamental stages as
follows:

(a) Each cloudlet periodically executes a load-predictive
learning algorithm at every nth time-slot by using
the information from (n− 1)th time-slot and the data
available regarding the job arrival history to predict
the incoming job request arrival rate of the (n + 1)th

time-slot.
(b) Along with job request arrival rate, each cloudlet also

estimates the transmission latency of the incoming job
requests from the mobile devices by using the given
stochastic parameters (latency) of wireless and opti-
cal interfaces, as well as, estimates the intermediate
transmission latencies with its neighboring cloudlets.

(c) After learning all this information, each cloudlet com-
municates the estimated incoming job request arrival
rate and the transmission latencies to the computational
facility installed by the mediator.

(d) The mediator computes the NE computation offload-
ing strategy by employing a centralized algorithm and
broadcasts to all the competing cloudlets before the
(n+ 1)th time-slot.

(e) Accordingly, the cloudlets offload some fraction of
their total incoming job requests to their neighboring
cloudlets when the (n+ 1)th time-slot arrives.

IV. ECONOMIC AND NON-COOPERATIVE LOAD
BALANCING GAME AMONG CLOUDLETS
In this section, we formulate the load balancing problem
among N ≥ 2 neighboring cloudlets from same as well as
different service providers, under the supervision of a neutral
mediator, as a continous-kernel non-cooperative game. This
game theoretic model provides us rules/guidelines on how
load balancing strategies should be determined, based on the
communicated information.

230 VOLUME 1, 2020

A. LOAD BALANCING PROBLEM AMONG N ≥ 2
CLOUDLETS
In a practical deployment scenario, each cloudlet tries to
minimize the end-to-end latency of the job requests received
from the mobile devices, while maximizing their utilities.
Thus, when overloaded cloudlets intend to offload a fraction
of its job requests to its under-loaded neighboring cloudlets
and the under-loaded cloudlets intend to receive some addi-
tional job requests from its overloaded neighboring cloudlets.
The complete job request offloading strategy space of all
cloudlets is defined as a matrix � = (�T

1 ,�T
2 , . . . , �T

N)T ⊂
R
N×N , where ϕi = (ϕi1, ϕi2, . . . , ϕiN) ∈ �i ⊂ R

N ,
ϕij ∈ �ij = [0, 1] ⊂ R, and

∑N
j=1 ϕij = 1,∀i ∈ C. Each

ϕij denotes the fraction of job requests ith cloudlet offloads
to its jth neighboring cloudlet. Due to the non-homogeneous
service rates of the neighboring cloudlets, all the received
job requests at each ith cloudlet are served with different
service rates, e.g., ϕiiλi = (1−∑j �=i ϕij)λi jobs/s are served
with service rate μii job/s and

∑
j �=i ϕjiλj jobs/s are served

with service rate μji jobs/s. Therefore, to compute the overall
processing and queuing latency of the received job requests
at each cloudlet, we need to use a multi-dimensional Markov
chain for M/M/1 queues [35]. For this analysis, we make
the following assumptions:

• Each ith cloudlet serves (mi1,mi2, . . . ,miN) job requests
over each time-slot, where mij denotes the independent
job requests received from jth cloudlet.

• The detailed balance equations for each ith

cloudlet hold for all the pairs of adjacent states
(mi1, . . . ,mij, . . . ,miN) and (mi1, . . . ,mij+1, . . . ,miN),

ϕjiλjPi
(
mi1, . . . ,mij, . . . ,miN

)

= μjiPi
(
mi1, . . . ,mij + 1, . . . ,miN

)
,∀i, j ∈ C.

• The stationary state probability distribution of each ith

cloudlet can be expressed in the following product
form,

Pi(mi1,mi2, . . . ,miN) = Pi1(mi1)Pi2(mi2) . . . PiN(miN).

• The number of job requests received from jth neighbor-
ing cloudlet by each ith cloudlet follows the geometric
distribution, Pi

(
mij
) = ρ

mij
ji

(
1− ρji

)
, where ρji = ϕjiλj

μji
.

With the above mentioned assumptions, we derive the
following closed form expression for average number of job
requests served by each ith cloudlet:

Mi =
∞∑

mi1=0

∞∑

mi2=0

· · ·
∞∑

miN=0

⎧
⎨

⎩
(mi1+ . . .+miN)

N∏

j=1

ρ
mij
ji

(
1−ρji

)
⎫
⎬

⎭

=
∑N

j=1

{
ρji
∏N

k=1,k �=j(1−ρki)
}

∏N
j=1

(
1−ρji

) . (1)

Therefore, by using Little’s theorem [35] and (1), we get
the overall processing and queuing latency of the job requests

at ith cloudlet as follows:

Ti
(
ϕi, ϕ−i

) = 1

ϕiiλi +∑j �=i ϕjiλj

×
⎛

⎝

∑N
j=1

{
ρji
∏N

k=1,k �=j(1− ρki)
}

∏N
j=1

(
1− ρij

)

⎞

⎠

= 1

ϕiiλi +∑j �=i ϕjiλj

×
⎛

⎝

∑N
j=1

{
ϕjiλj

∏N
k=1,k �=j(μki − ϕkiλk)

}

∏N
j=1

(
μji − ϕijλj

)

⎞

⎠. (2)

Nonetheless, in a stable market scenario, all the service
providers tend to install cloudlets with similar processing
capabilities (i.e., ni = nj,∀i, j) to maintain the feasibil-
ity of the non-cooperative load balancing competition over
the same customer base and the corresponding service rate
request of arrived jobs at each cloudlet tends to become equal
as they arrive from almost similar locality and customer base
(i.e., μi = μj,∀i, j). Thus, we consider that the processors
of all the neighboring cloudlets have similar service rates
for the incoming job requests from their associated mobile
devices, i.e., μii = μji and hence, the overall processing and
queuing latency of the job requests at ith cloudlet can be
derived as follows:

T̃i
(
ϕi,ϕ−i

) = 1

μii −
(

1−∑j �=i ϕij
)
λi −∑j �=i ϕjiλj

. (3)

With this, the average end-to-end latency of the job
requests arriving at ith cloudlet during each time interval
can be computed as follows:

Ti = tui+
⎛

⎝1−
∑

j �=i
ϕij

⎞

⎠

⎡

⎣ 1

μii−
(

1−∑j �=i ϕij
)
λi−∑j �=i ϕjiλj

⎤

⎦

+
N∑

j=1,j �=i
ϕij

[

tij+ 1

μjj−ϕijλi−∑k �=i ϕkjλk

]

, (4)

where, tui denotes the average round-trip data transmission
latency among mobile devices and the corresponding ith

cloudlet, and tij denotes the inter-cloudlet round-trip data
transmission latency. We note that unlike cloud servers,
cloudlets have finite computational resources and may fail to
meet the QoS latency target for all the incoming job requests
over a time interval. In that case, the cloudlets drop those
job requests that are not processed within the QoS latency
target DQ. Therefore, as a performance measure, we find the
probability that the incoming job requests at ith cloudlet are
dropped as,

P≥DQ =
∫ ∞

DQ

1

Ti
exp

{

− 1

Ti
x

}

dx = exp

{

−DQTi
}

. (5)

Nonetheless, if we consider each cloudlet as an M/M/1/K
queueing system with a finite capacity for job requests over
each timeslot, then we can find the equivalent capacity of

VOLUME 1, 2020 231

MONDAL et al.: GAME-THEORETIC APPROACH FOR NON-COOPERATIVE LOAD BALANCING AMONG COMPETING CLOUDLETS

each cloudlet by equating (5) to its blocking probability as
follows:

(μii − λi)λ
K
i(

μK+1
ii − λK+1

i

) = exp

{

−DQTi
}

. (6)

B. ECONOMIC AND NON-COOPERATIVE GAME
FORMULATION
In this paper, we consider the most commonly used pric-
ing schemes, e.g., pay-as-you-go policy, where users pay
a fixed price per job request without any long-term com-
mitments [36]. Note that, each cloudlet receives a linearly
proportional price per workload (�1) for the total amount of
incoming job requests from all the connected mobile devices.
Each cloudlet pays a linearly proportional price per workload
(�2) for offloading job requests to a neighboring cloudlet
from a different service provider and also, receives a lin-
early proportional price for executing its neighbor’s offloaded
jobs. The cloudlets can also cooperate or bargain among
themselves to decide the value of �2, but this leads to a
cooperative or bargaining game-theoretic model, which is
part of our future work. We define a parameter γij to distin-
guish the price for offloading a job request to neighboring
cloudlets as follows:

γij =

⎧
⎪⎪⎨

⎪⎪⎩

1; if a cloudlet offloads job requests to a cloudlet
from a different service provider

0; if a cloudlet offloads job requests to a cloudlet
that shares the same service provider

This implies that every ith cloudlet needs to pay a price
to jth cloudlet for offloading any job requests only when
it belongs to a different service provider, i.e., γij = 1.
In addition to these, each cloudlet pays a penalty price
with a proportionality cost factor (�3) for exceeding the
QoS target latency DQ. In this work, we consider a lin-
ear penalty price similar to the linear latency cost designed
in [25]. To capture the complete economic interaction
among mobile devices and cloudlets in this game, we
choose to define the complete utility function of each com-
peting cloudlet UN

i (ϕi,ϕ−i),∀i ∈ C, where ϕ−i =
(ϕ1, . . . ,ϕi−1,ϕi+1, . . . ,ϕN), as follows:

UN
i

(
ϕi,ϕ−i

) = �1
λi

μii
+�2

N∑

j=1,j �=i
γjiϕji

λj

μii

− �2

N∑

j=1,j �=i
γijϕij

λi

μjj
−
{

ζ

[
ϕiiλi+∑j �=i ϕjiλj

μii

]

+η

}

− �3
λi

μii

{

tui+ϕii

[
1

μii−ϕiiλi−∑j �=i ϕjiλj

]

+
N∑

j=1,j �=i
ϕij

[

tij+ 1

μjj−ϕijλi−∑k �=i ϕkjλk

]

−DQ
⎫
⎬

⎭
,∀i ∈ C.

(7)

The first term in (7) denotes the total payment received
by the cloudlet from mobile users and is linearly propor-
tional to the average workload. The second term denotes the
payment ith cloudlet receives from jth cloudlet to execute its
offloaded job requests and the third term denotes the pay-
ment ith cloudlet makes to jth cloudlet for offloading job
requests. Note that these terms are essential to distinguish
payments for offloading job requests among heterogeneous
cloudlets from same as well as different service providers.
The fourth term denotes the cost of operation of ith cloudlet,
where ζ denotes cloudlet operation cost per unit processing
rate and η denotes the default cost of cloudlet operation. The
default cost of cloudlet operation arises due to the idle energy
consumption of the cloudlet, which is nearly 70% of the
maximum energy consumption by the cloudlet. Finally, the
fifth term denotes the penalty of ith cloudlet when the over-
all latency (sum of transmission, processing, and queueing
latencies) of all the job requests received from the associated
mobile devices exceeds the QoS target latency DQ. We con-
sider that the competing cloudlets are individually rational
and impose the following constraint such that the utility of
each cloudlet is more than or equal to their default utility
without offloading any job requests, i.e.,

UN
i

(
ϕi,ϕ−i

) ≥ U0
i = �1

λi

μii
−
{

ζ

[
λi

μii

]

+η

}

− �3
λi

μii

{

tui+ 1

μii−λi
−DQ

}

,∀i ∈ C. (8)

Clearly, none of the cloudlets try to offload any job
requests to their neighboring cloudlets until they are over-
loaded. The above constraints defined in (8) are called
jointly shared constraints as they impact upon all the com-
peting cloudlets. It can be shown that these constraints
are jointly concave in nature because UN

i (ϕi,ϕ−i),∀i ∈ C
are concave functions of ϕ. As the average incoming job
request arrival rate λi is a continuous parameter and ϕi
is a vector of continuous variables, hence the utility func-
tion defined in (7) is also continuous and is expected to
provide finite utilities to both the cloudlets, as long as
the QoS target latency is met. We consider the utility
function only under the condition of stable operation, i.e.,
[μii − (1−∑j �=i ϕij)λi −

∑
j �=i ϕjiλj] ≥ 0,∀i, j �= i ∈ C, and

the following constraint is also applied:

0 ≤ ϕij ≤ 1,

N∑

j=1

ϕij = 1,∀i ∈ C. (9)

In general, all the competing cloudlets are risk neutral
and intend to solve the maximization problem summarized
as follows:

P : max
ϕi∈�i

UN
i

(
ϕi,ϕ−i

)

subject to 0 ≤ ϕij ≤ 1,

N∑

j=1

ϕij = 1,

UN
i

(
ϕi,ϕ−i

) ≥ U0
i .

232 VOLUME 1, 2020

FIGURE 2. A sample utility function of ith cloudlet against job request offload
fraction of neighboring jth cloudlet.

It is interesting to note that in this load balancing game,
each competing cloudlet is interested in maximizing their
individual utilities rather than strictly minimizing the aver-
age end-to-end latency as most of the existing works. Hence,
the cloudlets are always interested in receiving some job
requests from neighboring cloudlets as long as the QoS
latency requirement DQ is met and some extra incentive
is gained. Fig. 2 shows that with a sufficient amount of
job requests and a set of properly chosen parameters �1,
�2, and �3, the utility function ith cloudlet monotonically
increases as more job requests are offloaded by the neigh-
boring jth cloudlet until the total end-to-end latency is equal
to the target QoS latency value DQ. The maximum utility
is achieved at the point where the total end-to-end latency
is equal to DQ and the utility starts to decrease beyond
this point. Therefore, the fraction of incoming job requests
offloaded by an overloaded cloudlet is controlled by the over-
loaded cloudlet itself as well as its under-loaded neighboring
cloudlets. Hence, it is essential to include all the latency
terms in the utility function (7). Furthermore, note that due
to the utility function (7) and constraints (9)-(8), which does
not provide an explicit latency bound on the participating
cloudlets, even highly over-loaded cloudlets can participate
in the game and can offload some of the job requests to the
relatively under-loaded neighboring cloudlets. This makes
their utility higher than the utility by not participating in the
game. Nonetheless, under such conditions the game formu-
lation in [25] that has explicit delay bound on participating
cloudlets becomes infeasible and hence, a valid NE solution
can not be obtained. Now, we analyze the existence and
uniqueness criteria of our proposed game formulation in the
following subsection.

C. EXISTENCE AND UNIQUENESS OF THE NASH
EQUILIBRIUM
We specify a non-cooperative load balancing game � =
〈C, (�i)i∈C , (UN

i (ϕi,ϕ−i))i∈C〉, among competing cloudlets
as a tuple consisting of the members of the set of com-
peting cloudlets C, the strategy space of each cloudlet is

�i = {ϕi ∈ �i : UN
i (ϕi,ϕ−i) ≥ U0

i ,∀i ∈ C}, and the
utility functions of all cloudlets UN

i (ϕi,ϕ−i),∀i ∈ C. With
the given game form �, we prefer to investigate the NE
of the problem, because none of the competing cloudlets
find it beneficial to deviate unilaterally from the NE com-
putational offload strategy set ϕ∗ = (ϕ∗T1 ,ϕ∗T2 , . . . ,ϕ∗TN). In
other words, with the above game formulation, each compet-
ing cloudlet has to maximize the utility function (7) subject
to constraints (9)-(8). Thus, not only the utility functions
of all competing cloudlets are coupled like in a usual NE
problem, but the strategy sets of all competing cloudlets
are also coupled. Hence, due to the presence of the jointly
shared constraints (8), we classify this problem as a GNE
problem [37]. In other words, the complete solution space
� of the game � cannot be constructed as a direct Cartesian
product of the solution space of the individual competing
cloudlets, but we also need to apply the shared constraints
on the Cartesian product of the solution space of the indi-
vidual competing cloudlets. In general, the GNE problems
are very difficult to solve and almost intractable in most of
the cases as they present severe analytical difficulties [38].
However, a special class of GNE problems can be solved
by mapping the problem to a variational inequality (VI) and
such equilibria are called variational equilibria [39]. Note
that, VI is a well-known technique used to solve a broader
class of convex optimization problems and we recall the
definition as: given a closed and convex subset K ⊆ R

n

and a vector-valued function F : K → R
n, the VI problem,

denoted VI(K ,F), consists in finding a vector x∗ ∈ K
(called a solution of the VI) such that:

(
y− x∗)TF(x∗) ≥ 0,∀y ∈ K . (17)

The following theorems show that our non-cooperative
game formulation also falls under the special class of GNE
problems that can be solved using VI. Moreover, the solution
of the GNE is unique when it exists.
Theorem 1: The game � = 〈C, (�i)i∈C , (UN

i (ϕi,ϕ−i))i∈C〉
is equivalent to VI(,F), where F := ∇ϕi(U

N
i (ϕi,ϕ−i))i∈C .

This theorem shows that our current game formulation can
be successfully mapped to an equivalent VI problem by using
a few fundamental characteristics. Please see Appendix A
for a detailed proof.
Theorem 2: The game � = 〈C, (�i)i∈C , (UN

i (ϕi,ϕ−i))i∈C〉
represented by VI(,F), where F := ∇ϕi(U

N
i (ϕi,ϕ−i))i∈C

admits a unique pure-strategy NE.
A NE (in pure strategies) of the game � can be defined

as a strategy profile ϕ∗ that satisfies, UN
i (ϕ∗i ,ϕ∗−i) ≥

UN
i (ϕ′i,ϕ∗−i),∀ϕ′i ∈ �i and ∀i ∈ C. Moreover, this NE can

also be interpreted as the intersection or the fixed point of
the best-response functions of the competing cloudlets [31].
Please see Appendix B for a detailed proof.

D. EFFICIENCY OF NE OF THE LOAD BALANCING GAME
It is a general notion that the NE of non-cooperative games
yields sub-optimal utilities for the players. Therefore, we

VOLUME 1, 2020 233

MONDAL et al.: GAME-THEORETIC APPROACH FOR NON-COOPERATIVE LOAD BALANCING AMONG COMPETING CLOUDLETS

need to analyze the NE of our proposed load balancing
game among cloudlets corresponding to the best case and
the worst case. For the proposed load balancing game �, the
price of anarchy (PoA) is defined as the ratio of the sum of
the utility functions of all players at the worst case NE and
at the social optimum solution [31], as follows:

PoA(�) = minϕ∈�NE
∑N

i=1 U
N
i

(
ϕi,ϕ−i

)

maxϕ∈�
∑N

i=1 U
N
i

(
ϕi,ϕ−i

) (18)

where �NE denotes the set of all possible NE solutions.
Again, the price of stability (PoS) of the load balancing
game � is defined as the ratio of the sum of the utility
functions of all players at the best case NE and at the social
optimum solution [31], as follows:

PoS(�) = maxϕ∈�NE
∑N

i=1 U
N
i

(
ϕi,ϕ−i

)

maxϕ∈�
∑N

i=1 U
N
i

(
ϕi,ϕ−i

) (19)

Note that the values of PoA and PoS are different in
general, but PoA(�) = PoS(�) for the load balancing game
� as there exists a unique NE. Furthermore, we can derive
bounds on PoA by exploiting the smoothness of our game
formulation. We note that ϕ∗ is a NE and ϕ′i ∈ �i. Hence,
we can write UN

i (ϕ∗i ,ϕ∗−i) ≥ UN
i (ϕ′i,ϕ∗−i),∀i ∈ C as well as,

N∑

i=1

UN
i

(
ϕ∗i , ϕ∗−i

) ≥
N∑

i=1

UN
i

(
ϕ′i, ϕ∗−i

)

≥ ν

N∑

i=1

UN
i

(
ϕ′i, ϕ′−i

)− δ

N∑

i=1

UN
i

(
ϕ∗i , ϕ∗−i

)
,

(20)

where, ν > 0 and δ ≥ 1. The inequality (20) holds as the
utility functions are smooth and concave functions defined
over a compact and convex set [40]. Now, considering ϕ′ as
the social optimal solution, we derive the following bound
on PoA:

ν

1+ δ
≤ PoA(�) ≤ 1, (21)

where the best-possible bound can be derived from sup{ ν
1+δ
}

such that inequality (20) is satisfied.

V. ALGORITHM FOR COMPUTATION OF GNE
Based on the computation load profile received from com-
peting cloudlets, the computational facility installed by the
mediator can centrally compute the NE of the game �.
Assuming that ϕ∗ is a solution of the GNE problem, if for a
competing cloudlet i ∈ C, a suitable constraint qualification
holds, then there exist vectors of Lagrange multipliers, e.g.,
αi ∈ R

N−1, β i ∈ R
N−1, and ξ i ∈ R

N so that the classical
KKT conditions are satisfied as below:

∇ϕiU
N
i +∇ϕi

(
αTi ϕi + βTi

(
1− ϕi

)+ ξTi

(
UN
i − U0

i

)

i∈C

)
= 0,

(22)

αTi ϕi = 0, (23)

βTi
(
1− ϕi

) = 0, (24)

Algorithm 1 Projection Algorithm With Constant Step Size

1: Initialization: Choose any Lagrange multipliers α0, β0,
ξ0 ≥ 0, step size ω > 0, and tolerance limit ε > 0. Set
the index t = 0.

2: Output: NE of the computation offload game ϕ∗.
3: If αt, β t, and ξ t satisfies a desirable tolerance limit:

STOP.
4: Given αt, β t, and ξ t, compute ϕt(αt,β t, ξ t) as the

NE solution of the GNE problem (22)-(25) with fixed
Lagrange multipliers α = αt, β = β t, and ξ = ξ t;

5: Update the Lagrange multipliers: for all i, j ∈ C ,
compute

αt+1
ij = [αtij − ω(ϕij)]

+,∀i �= j,

β t+1
ij = [β tij − ω(1− ϕij)]

+,∀i �= j,

ξ t+1
ij = [ξ tij − ω(UN

i − U0
i)]
+,∀i, j,

where [z]+ = max{0, z}.
6: Set t← t + 1; go to Step 3.

ξTi

(
UN
i − U0

i

)

i∈C = 0. (25)

Now, we stack all the KKT conditions of all the competing
cloudlets to formulate a VI corresponding to our current
game formulation. The solution of this VI problem is the
NE of our currently formulated game.
Theorem 3: A solution ϕ∗ is a variational equilibrium

of the game (22)-(25) if and only if Lagrange multipliers
α∗,β∗, ξ∗ exists such that (ϕ∗,α∗,β∗, ξ∗) is a solution of
VI(,F).

Please see Appendix C for a detailed proof. By using the
above theorem, we design a gradient projection algorithm
with constant step size [39]. The convergence rate of such
an algorithm is greatly dependent on the desired tolerance
limit ε we want to achieve, and the number of iterations
required for achieving ‖ϕt − ϕ∗‖ ≤ ε is t ≥ t̄ with

t̄ = log

(
ε(1− ‖�F‖)∥
∥ϕ(1) − ϕ(0)

∥
∥

)

/ log(‖�F‖), (26)

where ϕ∗ is the unique NE of the game � and ‖�F‖ < 1
is the best-response contraction constant, as defined in [39].
If the network consists of a large number of cloudlets, to
prevent an exponential increase in the strategy space of each
cloudlet, we can discourage the cloudlets to offload job
requests to far-away cloudlets. This can be done by observing
that the intermediate transmission latency among neighbor-
ing cloudlets tij is greater than some threshold latency of
choice. As the first-order expressions (11), as shown at the
bottom of the next page, (12) and (13), as shown at the bot-
tom of p. 11, create a system of nonlinear implicit equations
of ϕ, we use Newton-Raphson method [41] to compute ϕt

numerically. The steps of the algorithm are summarized in
Algorithm 1. Note that, the quasi-linear utility functions of
each competing cloudlets (10), as shown at the bottom of

234 VOLUME 1, 2020

the next page almost linearly increase as long as the overall
latency is below the target QoS latency, but as soon as the
cloudlets are overloaded, their utility starts to decrease due to
the sharp non-linear increase of latency penalty. Therefore,
overloaded cloudlets always try to offload to their under-
loaded neighboring cloudlets. On the other hand, during very
low load condition, cloudlets either do not prefer to offload
or offload in a very small amount.

VI. RESULTS AND DISCUSSIONS
In this section, we investigate various behavioural aspects
of the proposed load balancing strategy through numeri-
cal evaluations. For this purpose, we consider a set of 10
neighboring cloudlets from same as well as different ser-
vice providers. In this work, we consider average processing
rate μii varies within 10000-15000 jobs/s and incoming job
request to each cloudlet λi varies within 0-15000 jobs/s.
The QoS latency target considered is DQ = 10 ms. We con-
sider the average value of tui between mobile devices and
cloudlets as 2 msec. The intermediate transmission latency
among neighboring cloudlets tij varies within 0.5-1 msec. In
actual practice, sometimes the proper price factors are also
determined by applying the multiple criteria decision-making
theory [42]. In this work, we arbitrarily choose normalized
values of �1 = 5 × 102, �2 = 1 × 106, �3 = 5 × 108,
ζ = 300, and η = 700 just to illustrate various properties
of this game-theoretic computation offloading framework.
Moreover, for our VI based algorithm to compute NE of the
load balancing game, we choose a step size ω = 0.1, and a
tolerance limit ε = 10−4.
Fig. 3a shows a comparison among average end-to-end

latency performance of all the participating cloudlets against
job request arrival rate with our currently proposed game and
games proposed in [25] (labelled as “ref. game-1”) and [24]
(labelled as “ref. game-2”), respectively. In this case, we

FIGURE 3. Comparison of end-to-end latency and utility values of competing
cloudlets with high variance (0-4000 jobs/s) in incoming job request arrival rates
among neighboring cloudlets with our proposed game and other games proposed
in [24], [25].

consider a high variance in job request arrival rates among
under and overloaded cloudlets (within 0-4000 jobs/s) and
the service rates of all the cloudlets are μii = 10000 jobs/s.
We see that when the load condition is low or moder-
ate, the ref. game-1 performs best because it always tries

UN
i

(
ϕi,ϕ−i

) = �1
λi

μii
+�2

N∑

j=1,j �=i
γjiϕji

λj

μii
−�2

N∑

j=1,j �=i
γijϕij

λi

μjj
−
⎧
⎨

⎩
ζ

⎡

⎣

(
1−∑j �=i ϕij

)
λi+∑j �=i ϕjiλj

μii

⎤

⎦+η

⎫
⎬

⎭

− �3
λi

μii

⎧
⎨

⎩
tui+

⎛

⎝1−
N∑

j=1,j �=i
ϕij

⎞

⎠

⎡

⎣ 1
(
μii−

(
1−∑j �=i ϕij

)
λi−∑j �=i ϕjiλj

)

⎤

⎦

+
N∑

j=1,j �=i
ϕij

⎡

⎣tij+ 1
(
μjj−ϕijλi−∑k �=i ϕkjλk

)

⎤

⎦−DQ
⎫
⎬

⎭
,∀i ∈ C (10)

∂UN
i

∂ϕij
= −�2γij

λi

μjj
+ζ

λi

μii
−�3

λi

μii

⎧
⎪⎨

⎪⎩
− μii−∑j �=i ϕjiλj
(
μii−

(
1−ϕij−∑k �=i,j ϕik

)
λi−∑j �=i ϕjiλj

)2
+ tij

+
μjj−

(
1−∑k �=j ϕjk

)
λj−∑k �=i,j ϕkjλk

(
μjj−

(
1−∑k �=j ϕjk

)
λj−ϕijλi−∑k �=i,j ϕkjλk

)2

⎫
⎪⎬

⎪⎭
,∀i, j ∈ C (11)

VOLUME 1, 2020 235

MONDAL et al.: GAME-THEORETIC APPROACH FOR NON-COOPERATIVE LOAD BALANCING AMONG COMPETING CLOUDLETS

to minimize the end-to-end latency. Under such conditions,
both our proposed game and ref. game-2 performs poorer
because these models do not allow the cloudlets to offload
anything. However, after reaching a certain threshold in
incoming job requests, ref. game-2 allows the cloudlets to
offload job requests and their latency performance starts to
improve. Nonetheless, when all the cloudlets become suffi-
ciently overloaded, our game allows the cloudlets to offload
and performs relatively better than both ref. game-1 and ref.
game-2. This happens because, in our game it is ensured that
all the under-loaded cloudlets operate within the QoS target
latency bound, DQ and over-loaded cloudlets may exceed
DQ, but they are allowed to offload to the maximum extent
possible. Whereas, ref. game-1 becomes infeasible in high
load condition as their explicit latency constraints start to
violate and ref. game-2 tends to overload the under-loaded
cloudlets by offloading job requests in an uncontrolled way
to them.
Next, Fig. 3b shows a comparison among average utility

values of all the participating cloudlets against job request
arrival rate with our game, ref. game-1, and ref. game-2.
It is clear that under all the network condition, the aver-
age economic utility values of the cloudlets with our game
is relatively better than both ref. game-1, and ref. game-2.
This primarily happens due to the typical characteristics of
our utility function definition as shown in Fig. 2. With our
game formulation, cloudlets do not offload until they are suf-
ficiently overloaded and the under-loaded cloudlets receive
job requests until their end-to-end latency reaches DQ, where
the maximum utility is achieved. Hence, the mutual incentive
payment for computation offloading is not required. When
the cloudlets are sufficiently overloaded, they start to offload

so that the latency penalty does not become high enough to
reduce the actual utility UN

i below their default utility U0
i .

Similarly, Fig. 4a shows a comparison among average
end-to-end latency performance and Fig. 4b shows a com-
parison among average utility values of all the participating
cloudlets against job request arrival rate with our game, ref.
game-1, and ref. game-2. Nonetheless, in this case, we con-
sider a moderate variance in job request arrival rates among
under and overloaded cloudlets (within 0-2000 jobs/s) and
the service rates of all the cloudlets are μii = 10000 jobs/s.
Note that both the plots show similar behavior as in Fig. 3a
and Fig. 3b. However, as the difference in job request arrival
rates among under and overloaded cloudlets is lesser than
the previous case, the room for offloading job requests by
overloaded cloudlets to under-loaded cloudlets is also lesser.
Hence, the average end-to-end latency starts to overshoot
much earlier and the average utility gained is also less.
Again, we present a comparison among average end-to-

end latency performance in Fig. 5a and comparison among
average utility values of all the participating cloudlets in
Fig. 5b with our game, ref. game-1, and ref. game-2. In
this case, we keep the job request arrival rates of all the
cloudlets equal but vary their service rates. Thus, to cal-
culate the processing latency of each cloudlet, we need to
use (2) instead of (3) and this creates a very general load
balancing scenario. At first, we consider a high variance
(10000-15000 jobs/s) of service rates among neighboring
cloudlets and observe similar patterns of the graphs as before,
but the end-to-end latency and utility values are relatively
better as the service rates of some cloudlets are much higher
than the average job request arrival rate. We present sim-
ilar graphs in Fig. 6a and in Fig. 6b, but we consider

∂UN
i

∂ϕji
= �2γji

λj

μii
−ζ

λj

μii
−�3

λi

μii

⎧
⎪⎨

⎪⎩

(
1−∑j �=i ϕij

)
λj

(
μii−

(
1−∑j �=i ϕij

)
λi−∑j �=i ϕjiλj

)2
− ϕijλj
(
μjj−

(
1−ϕji−∑k �=i,j ϕjk

)
λj−∑k �=j ϕkjλk

)2

⎫
⎪⎬

⎪⎭
,

∀i, j ∈ C (12)

∂UN
i

∂ϕjk
= �3

λi

μii

⎧
⎪⎨

⎪⎩

ϕijλj
(
μjj−

(
1−ϕji−∑k �=i,j ϕjk

)
λj−∑k �=j ϕkjλk

)2

⎫
⎪⎬

⎪⎭
,∀i, j, k ∈ C (13)

∂2UN
i

∂ϕ2
ij

= −2�3
λ2
i

μii

⎧
⎪⎨

⎪⎩

μii−∑j �=i ϕjiλj
(
μii−

(
1−ϕij−∑k �=i,j ϕik

)
λi−∑j �=i ϕjiλj

)3
+

μjj−
(

1−∑k �=j ϕjk
)
λj−∑k �=i,j ϕkjλk

(
μjj−

(
1−∑k �=j ϕjk

)
λj−ϕijλi−∑k �=i,j ϕkjλk

)3

⎫
⎪⎬

⎪⎭
< 0

∀i, j ∈ C (14)

∂2UN
i

∂ϕij∂ϕik
= −2�3

λ2
i

μii

⎧
⎪⎨

⎪⎩

μii−∑j �=i ϕjiλj
(
μii−

(
1−ϕij−∑k �=i,j ϕik

)
λi−∑j �=i ϕjiλj

)3

⎫
⎪⎬

⎪⎭
< 0,∀i, j, k ∈ C (15)

∂2UN
i

∂ϕ2
ji

= −2�3
λiλj

μii

⎧
⎪⎨

⎪⎩

(
1−∑j �=i ϕij

)
λj

(
μii−

(
1−∑j �=i ϕij

)
λi−∑j �=i ϕjiλj

)3
+ ϕijλj
(
μjj−

(
1−ϕji−∑k �=i,j ϕjk

)
λj−∑k �=j ϕkjλk

)3

⎫
⎪⎬

⎪⎭
< 0,∀i, j ∈ C

(16)

236 VOLUME 1, 2020

FIGURE 4. Comparison of end-to-end latency and utility values of competing
cloudlets with moderate variance (0-2000 jobs/s) in incoming job request arrival rates
among neighboring cloudlets with our proposed game and other games proposed
in [24], [25].

a moderate variance (10000-12000 jobs/s) of service rates
among neighboring cloudlets. As a consequence, the latency
and utility performance is slightly poorer than the previous
graphs as the under-loaded cloudlets have lesser room to
receive job requests from overloaded cloudlets.
To further understand the efficiency of the NE of our

proposed load balancing game, we provide another compara-
tive result against the global optimal solution in Fig. 7. Again
we consider a high variance in job request arrival rates among
under and overloaded cloudlets (within 0-4000 jobs/s) and
the service rates of all the cloudlets are μii = 10000 jobs/s.
This figure shows that average utility values of the cloudlets
are almost same with both NE and global optimal load bal-
ancing strategies under low and high load conditions. During
such cases, neighboring cloudlets do not offload any job
requests to each other. However, under moderate load con-
ditions, when overloaded cloudlets can offload some job
requests to their under-loaded neighbors, the average util-
ity of the cloudlets are slightly better with global optimal
solution.
Fig. 8 shows the convergence rate of Algorithm 1 for

three neighboring cloudlets such that the figure is not unnec-
essarily overcrowded. We consider an average processing
rate μii = 10000 jobs/s for each cloudlet and the respec-
tive incoming job requests are λ1 = 9500 jobs/s, λ2 =

FIGURE 5. Comparison of end-to-end latency and utility values of competing
cloudlets with high variance (10000-15000 jobs/s) in service rates among neighboring
cloudlets and same job request arrival rates with our proposed game and other games
proposed in [24], [25].

9200 jobs/s, and λ3 = 5000 jobs/s. In this case, both
Cloudlet-1 and Cloudlet-2 are overloaded and hence, offloads
certain fraction of their total incoming job requests to the
under-loaded Cloudlet-3. As Cloudlet-1 is the most over-
loaded, the computation offload fraction of Cloudlet-1 is
more than that of Cloudlet-2.
Furthermore, in Fig. 9, we show the impact of prediction

accuracy of the incoming job request arrival rates on the NE
utility values of the competing cloudlets. For the job request
arrival rate prediction, we use the moving-average method
based ARMA algorithm proposed in [33] and consider that
job request arrival rates to each cloudlet remains station-
ary for 30 seconds. This algorithm works very efficiently
when the incoming job requests are self-similar in nature
and varies gradually over time. Again, we consider three
cloudlets with μii = 10000 jobs/s and λi varying within
0-10000 jobs/s. Therefore, from the plot we observe that
whenever the actual job request arrival rates of the cloudlets
change, the NE utility values of the cloudlets based on
the predicted job request arrival rate are slightly erroneous.
However, within a few time-slots, each cloudlet is able to
accurately predict the actual job request arrival rate and
hence, the NE utilities of cloudlets with predicted job request
arrival rates match to the NE utilities with actual job request
arrival rates.

VOLUME 1, 2020 237

MONDAL et al.: GAME-THEORETIC APPROACH FOR NON-COOPERATIVE LOAD BALANCING AMONG COMPETING CLOUDLETS

FIGURE 6. Comparison of end-to-end latency and utility values of competing
cloudlets with moderate variance (10000-12000 jobs/s) in service rates among
neighboring cloudlets and same job request arrival rates with our proposed game and
other games in [24], [25].

FIGURE 7. Comparison of NE utility values of competing cloudlets with high
variance (0-4000 jobs/s) in incoming job request arrival rates among neighboring
cloudlets with the global optimal solution.

It is interesting to note that the NE solution of our
game formulation is actually dependent on the primary
game design parameters �1, �2, �3, ζ and η. Therefore,
the optimal values of these parameters can be determined
by studying various market equilibrium conditions for pro-
viding cloud-based services. Thus, in Figs. 10a and 10b
we show the variation of utilities of two under-loaded and
overloaded cloudlets against �2 and �3, respectively with
λi = 9990 jobs/s and λj = 5000 jobs/s. Firstly, we consider
�1 = 500, �3 = 5×108, ζ = 300, and η = 700 and tune �2,

FIGURE 8. Computation offload decision of cloudlets versus (parallel update)
iterations achieved using Algorithm 1. We consider three cloudlets with
μii = 10000 jobs/s and λ1 = 9500 jobs/s, λ2 = 9200 jobs/s, and λ3 = 5000 jobs/s.

FIGURE 9. Comparison of NE utility values of competing cloudlets with actual and
predicted in incoming job request arrival rates to neighboring cloudlets with
μii = 10000 jobs/s and λi varying within 0-10000 jobs/s.

and secondly, we consider �1 = 500, and �2 = 1×106 and
tune �3. By observing such plots with different combinations
of network parameters, suitable proportionality price factors
can be chosen.

VII. CONCLUSION
In this paper, we have proposed a novel economic and
non-cooperative game theoretic model among multiple com-
petitive cloudlets from same as well as different service
providers in a heterogeneous cloudlet deployment scenario.
We have identified the problem as a special class of GNE
problems with jointly-concave shared constraints, which can
be solved by VI approach. In turn, we have rigorously
proven the existence and uniqueness of a pure-strategy NE
of the formulated problem. Moreover, we have designed an
efficient algorithm to compute the pure-strategy NE load
balancing strategy among multiple cloudlets. By applying
this framework over a heterogeneous cloudlet network, we
have shown that all the competing cloudlets are able to
maximize their utilities in under-loaded and overloaded con-
ditions by strategically offloading their incoming job requests
to their neighboring cloudlets according to our proposed
NE strategy, which is greater than or equal to the utility
when not participating in the market competition. Moreover,
we have shown that our game formulation outperforms

238 VOLUME 1, 2020

FIGURE 10. Variation of utilities of under-loaded (λj = 5000 jobs/s) and overloaded
(λi = 9990 jobs/s) cloudlets (with μii = 10000 jobs/s) against proportionality price
factors 	2 and 	3.

some of the recently proposed game-theoretic load balancing
frameworks, especially in high load conditions.

APPENDIX A
PROOF OF THEOREM 1
Proof: At first, we observe that the solution space of
VI(,F) defined as = (� ∩ ℵ) ⊆ [0, 1]N×N , is closed
and bounded, i.e., compact, where

ℵ =
{
ϕ ∈ [0, 1]N×N : UN

i ≥ U0
i ,∀i ∈ C

}
. (27)

Note that, due to constraint (5), we can remove diago-
nal strategy elements as ϕii = (1 − ∑N

j=1,j �=i ϕij) and by
using this expression, we re-write the utility function of
each cloudlet as in (7). Now, to prove the concavity of
the utility functions subject to the condition [μii − (1 −∑

j �=i ϕij)λi−
∑

j �=i ϕjiλj] ≥ 0,∀i, j �= i ∈ C, at first we com-
pute the first-order partial derivative (8) and set it to 0. Next,
we derive the second-order partial derivatives as shown in

(11)-(13). Clearly, the diagonal elements
∂2UN

i

∂ϕ2
ij
, and the non-

diagonal elements
∂2UN

i
∂ϕij∂ϕik

are such that the Hessian matrix

for UN
i (ϕi,ϕ−i),∀i ∈ C is negative semi-definite. Hence,

the utility functions UN
i (ϕi,ϕ−i),∀i ∈ C are jointly con-

cave over ϕ. Therefore, the solution space of the game
� = 〈C, (�i)i∈C , (UN

i (ϕi,ϕ−i))i∈C〉 created by (5) and the

jointly concave shared constraints (6) is also a convex set.
Hence, for each competing cloudlet i ∈ C:

i. the (non-empty) strategy space �i is compact and
convex;

ii. the utility function UN
i (ϕi,ϕ−i) is concave and con-

tinuously differentiable in ϕi ∈ �i for every fixed ϕ−i.
The above conditions are the sufficient conditions to imply

that the game � is equivalent to the VI(,F), where F =
∇ϕi(U

N
i (ϕi,ϕ−i))i∈C [38], [43]. This theorem also implies

that there exists at least one pure-strategy NE of the game
� if i is non-empty.

APPENDIX B
PROOF OF THEOREM 2
Proof: The best response function of cloudlet i ∈ C can

be represented by (8), i.e.,
∂UN

i
∂ϕij
= 0. However, the expres-

sions are implicitly coupled among all ϕij,∀i, j �= i ∈ C
and presents analytically difficulties to verify the mono-
tonicity of the best-response functions of the competing
cloudlets. In this situation, we consider the utility function
U2
i (ϕi, ϕ−i),∀i ∈ C between N = 2 competing cloudlets first.

To show the monotonicity of ϕ1 = g(ϕ2) and ϕ2 = h(ϕ1), we
evaluate the expressions for second-order partial derivatives
as follows:

∂2U2
1

∂ϕ2
1

= −2�3
λ2

1

μ11

{
(μ11 − ϕ2λ2)

(μ11 − (1− ϕ1)λ1 − ϕ2λ2)
3

+ (μ2 − (1− ϕ2)λ2)

(μ22 − (1− ϕ2)λ2 − ϕ1λ1)
3

}

< 0,

(28)
∂2U2

2

∂ϕ2
2

= −2�3
λ2

2

μ22

{
(μ11 − (1− ϕ1)λ1)

(μ11 − (1− ϕ1)λ1 − ϕ2λ2)
3

+ (μ22 − ϕ1λ1)

(μ22 − (1− ϕ2)λ2 − ϕ1λ1)
3

}

< 0,

(29)
∂2U2

1

∂ϕ2∂ϕ1
= �3

λ1λ2

μ11

[
μ11 + (1− ϕ1)λ1 − ϕ2λ2

(μ11 − (1− ϕ1)λ1 − ϕ2λ2)
3

+ μ22 − (1− ϕ2)λ2 + ϕ1λ1

(μ22 − (1− ϕ2)λ2 − ϕ1λ1)
3

]

> 0,

(30)
∂2U2

2

∂ϕ1∂ϕ2
= �3

λ1λ2

μ22

[
μ11 − (1− ϕ1)λ1 + ϕ2λ2

(μ11 − (1− ϕ1)λ1 − ϕ2λ2)
3

+ μ22 + (1− ϕ2)λ2 − ϕ1λ1

(μ22 − (1− ϕ2)λ2 − ϕ1λ1)
3

]

> 0.

(31)

Therefore, by using implicit function theorem [44]
and (28)-(31), we evaluate expressions for dϕ1/dϕ2 and
dϕ2/dϕ1 as follows:

dϕ1

dϕ2
= dg(ϕ2)

dϕ2
= −

(
∂2U2

1
∂ϕ2∂ϕ1

)

(
∂2U2

1
∂ϕ2

1

) > 0, (32)

VOLUME 1, 2020 239

MONDAL et al.: GAME-THEORETIC APPROACH FOR NON-COOPERATIVE LOAD BALANCING AMONG COMPETING CLOUDLETS

dϕ2

dϕ1
= dh(ϕ1)

dϕ1
= −

(
∂2U2

2
∂ϕ1∂ϕ2

)

(
∂2U2

2
∂ϕ2

2

) > 0. (33)

Therefore, the best-response functions of both the compet-
ing cloudlets are strongly monotone. As the utility functions
of the competing cloudlets in the N ≥ 2 cloudlet game
� = 〈C, (�i)i∈C , (UN

i (ϕi,ϕ−i))i∈C〉 is a direct linear exten-
sion of the N = 2 cloudlet game, hence the best-response
functions of all the competing cloudlets are also strongly
monotone. This ensures that the game � has a unique pure-
strategy NE, but this does not necessarily imply that the
corresponding VI(,F) has a unique solution. However, as
the complete solution space ⊆ [0, 1]N×N of VI(,F)

is compact and convex, the uniqueness of the solution can
be guaranteed. This proves that the game � represented by
VI(,F), where F = ∇ϕi(U

N
i (ϕi,ϕ−i))i∈C attains a unique

pure-strategy NE [38], [43].

APPENDIX C
PROOF OF THEOREM 3
Proof: The definition of F = ∇ϕi(U

N
i (ϕi,ϕ−i))i∈C allows us

to write the KKT conditions for VI(,F) as follows:

⎛

⎜
⎝

∇ϕ1
UN

1
...

∇ϕNU
N
N

⎞

⎟
⎠+

⎛

⎝
α

β

ξ

⎞

⎠

T

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

∇ϕ1
ϕ1

...

∇ϕNϕN
∇ϕ1

(
1− ϕ1

)

...

∇ϕN

(
1− ϕN

)

∇ϕ1

(
UN
i − U0

i

)
i∈C

...

∇ϕN

(
UN
i − U0

i

)
i∈C

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

= 0, (34)

⎛

⎝
α

β

ξ

⎞

⎠

T⎛

⎝
ϕ

1− ϕ(
UN
i − U0

i

)
i∈C

⎞

⎠ = 0. (35)

As the solution space is compact and convex, the KKT
conditions (34)-(35) attains a solution. Therefore, we can
conclude by directly comparing (34)-(35) with (22)-(25) that
if there exists Lagrange multipliers (α∗,β∗, ξ∗) such that ϕ∗
is a solution of VI(,F), then it is also a solution of the
corresponding game �.

REFERENCES
[1] E. Wong, M. P. I. Dias, and L. Ruan, “Predictive resource allocation

for tactile Internet capable passive optical LANs,” J. Lightw. Technol.,
vol. 35, no. 13, pp. 2629–2641, Jul. 1, 2017.

[2] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, “The case
for VM-based cloudlets in mobile,” IEEE Pervasive Comput., vol. 8,
no. 4, pp. 14–23, Oct.–Dec. 2009.

[3] A. Ceselli, M. Premoli, and S. Secci, “Mobile edge cloud network
design optimization,” IEEE/ACM Trans. Netw., vol. 25, no. 3,
pp. 1818–1831, Jun. 2017.

[4] Z. Xu, W. Liang, W. Xu, M. Jia, and S. Guo, “Efficient algorithms for
capacitated cloudlet placements,” IEEE Trans. Parallel Distrib. Syst.,
vol. 27, no. 10, pp. 2866–2880, Oct. 2016.

[5] Q. Fan and N. Ansari, “Cost aware cloudlet placement for big data
processing at the edge,” in Proc. IEEE Int. Conf. Commun. (ICC),
May 2017, pp. 1–6.

[6] B. P. Rimal, D. P. Van, and M. Maier, “Cloudlet fiber-wireless access
for mobile-edge computing,” IEEE Trans. Wireless Commun., vol. 16,
no. 6, pp. 3601–3618, Jun. 2017.

[7] S. Mondal, G. Das, and E. Wong, “CCOMPASSION: A hybrid
cloudlet placement framework over passive optical access network,”
in Proc. IEEE Conf. Comput. Commun., Apr. 2018, pp. 1–9.

[8] S. Mondal, G. Das, and E. Wong, “Cost-optimal cloudlet place-
ment frameworks over fiber-wireless access networks for low-latency
applications,” J. Netw. Comput. Appl., vol. 138, pp. 27–38, Jul. 2019.

[9] R. I. Tinini, D. M. Batista, G. B. Figueiredo, M. Tornatore, and
B. Mukherjee, “Low-latency and energy-efficient BBU placement and
VPON formation in virtualized cloud-fog RAN,” IEEE/OSA J. Opt.
Commun. Netw., vol. 11, no. 4, pp. B37–B48, Apr. 2019.

[10] S. Mondal, G. Das, and E. Wong, “Efficient cost-optimization frame-
works for hybrid cloudlet placement over fiber-wireless networks,”
IEEE/OSA J. Opt. Commun. Netw., vol. 11, no. 8, pp. 437–451,
Aug. 2019.

[11] A. Yousefpour et al., “All one needs to know about fog computing
and related edge computing paradigms: A complete survey,” J. Syst.
Archit., vol. 98, pp. 289–330, Sep. 2019.

[12] Q. Fan and N. Ansari, “Application aware workload allocation for
edge computing-based IoT,” IEEE Internet Things J., vol. 5, no. 3,
pp. 2146–2153, Jun. 2018.

[13] V. Cardellini et al., “A game-theoretic approach to computation
offloading in mobile cloud computing,” Math. Program., vol. 157,
no. 2, pp. 421–449, Jun. 2016.

[14] X. Chen, “Decentralized computation offloading game for mobile
cloud computing,” IEEE Trans. Parallel Distrib. Syst., vol. 26, no. 4,
pp. 974–983, Apr. 2015.

[15] B. P. Rimal and M. Maier, “Mobile data offloading in FiWi enhanced
LTE-A heterogeneous networks,” IEEE/OSA J. Opt. Commun. Netw.,
vol. 9, no. 7, pp. 601–615, Jul. 2017.

[16] H. Cao and J. Cai, “Distributed multiuser computation offload-
ing for cloudlet-based mobile cloud computing: A game-theoretic
machine learning approach,” IEEE Trans. Veh. Technol., vol. 67, no. 1,
pp. 752–764, Jan. 2018.

[17] Y. Jiang, “A survey of task allocation and load balancing in dis-
tributed systems,” IEEE Trans. Parallel Distrib. Syst., vol. 27, no. 2,
pp. 585–599, Feb. 2016.

[18] M. Jia, W. Liang, Z. Xu, and M. Huang, “Cloudlet load balancing in
wireless metropolitan area networks,” in Proc. 35th Annu. IEEE Int.
Conf. Comput. Commun. (INFOCOM), Apr. 2016, pp. 1–9.

[19] L. Liu, S. Chan, G. Han, M. Guizani, and M. Bandai, “Performance
modeling of representative load sharing schemes for clustered servers
in multiaccess edge computing,” IEEE Internet Things J., vol. 6, no. 3,
pp. 4880–4888, Jun. 2019.

[20] Q. Fan and N. Ansari, “Towards workload balancing in fog com-
puting empowered IoT,” IEEE Trans. Netw. Sci. Eng., early access,
doi: 10.1109/TNSE.2018.2852762.

[21] R. Beraldi, A. Mtibaa, and H. Alnuweiri, “Cooperative load balancing
scheme for edge computing resources,” in Proc. 2nd Int. Conf. Fog
Mobile Edge Comput. (FMEC), May 2017, pp. 94–100.

[22] D. Zhang, Y. Ma, C. Zheng, Y. Zhang, X. S. Hu, and D. Wang,
“Cooperative-competitive task allocation in edge computing for delay-
sensitive social sensing,” in Proc. IEEE/ACM Symp. Edge Comput.
(SEC), Oct. 2018, pp. 243–259.

[23] Q. He et al., “A game-theoretical approach for user allocation in edge
computing environment,” IEEE Trans. Parallel Distrib. Syst., vol. 31,
no. 3, pp. 515–529, Mar. 2020.

[24] C. Liu, K. Li, and K. Li, “A game approach to multi-servers load
balancing with load-dependent server availability consideration,” IEEE
Trans. Cloud Comput., early access, doi: 10.1109/TCC.2018.2790404.

[25] L. Chen, S. Zhou, and J. Xu, “Computation peer offloading for
energy-constrained mobile edge computing in small-cell networks,”
IEEE/ACM Trans. Netw., vol. 26, no. 4, pp. 1619–1632, Aug. 2018.

[26] S. Mondal, G. Das, and E. Wong, “Computation offloading in optical
access cloudlet networks: A game-theoretic approach,” IEEE Commun.
Lett., vol. 21, no. 7, pp. 1481–1484, Jul. 2018.

[27] S. Penmatsa and A. T. Chronopoulos, “Game-theoretic static load bal-
ancing for distributed systems,” J. Parallel Distrib. Comput., vol. 71,
no. 4, pp. 537–555, 2011.

240 VOLUME 1, 2020

http://dx.doi.org/10.1109/TNSE.2018.2852762
http://dx.doi.org/10.1109/TCC.2018.2790404

[28] K. P. Murphy, Machine Learning: A Probabilistic Perspective.
Cambridge, MA, USA: MIT Press, 2012.

[29] A. Mas-Colell, M. D. Whinston, and J. R. Green, Microeconomic
Theory (OUP Catalogue). Oxford, U.K.: Oxford Univ. Press, 1995.

[30] X. Zhou, K. Wang, W. Jia, and M. Guo, “Reinforcement learning-
based adaptive resource management of differentiated services in
GEO-distributed data centers,” in Proc. IEEE/ACM 25th Int. Symp.
Quality Service (IWQoS), Jun. 2017, pp. 1–6.

[31] Y. Shoham and K. Leyton-Brown, Multiagent Systems: Algorithmic,
Game-Theoretic, and Logical Foundations. New York, NY, USA:
Cambridge Univ. Press, 2008.

[32] F. Tang, Z. M. Fadlullah, B. Mao, and N. Kato, “An intelligent traffic
load prediction-based adaptive channel assignment algorithm in SDN-
IoT: A deep learning approach,” IEEE Internet Things J., vol. 5, no. 6,
pp. 5141–5154, Dec. 2018.

[33] C. Bhar, N. Chatur, A. Mukhopadhyay, G. Das, and D. Datta,
“Designing a green optical network unit using ARMA-based traf-
fic prediction for quality of service-aware traffic,” Photon. Netw.
Commun., vol. 32, no. 3, pp. 407–421, Dec. 2016.

[34] C. Jiang, Y. Chen, Q. Wang, and K. J. R. Liu, “Data-driven stochas-
tic scheduling and dynamic auction in IaaS,” in Proc. IEEE Global
Commun. Conf. (GLOBECOM), Dec. 2015, pp. 1–6.

[35] D. P. Bertsekas and R. G. Gallager, Delay Models in Data Networks.
Englewood Cliffs, NJ, USA: Prentice-Hall, 1992, ch. 3, pp. 149–270.

[36] IBM Cloud Pricing. Accessed: Feb. 2020. [Online]. Available:
https://www.ibm.com/cloud/pricing

[37] J. Rosen, “Existence and uniqueness of equilibrium points for concave
N-person games,” Econometrica, vol. 33, no. 3, pp. 520–534, 1965.

[38] F. Facchinei, A. Fischer, and V. Piccialli, “On generalized Nash
games and variational inequalities,” Oper. Res. Lett., vol. 35, no. 2,
pp. 159–164, Mar. 2007.

[39] G. Scutari, F. Facchinei, J. S. Pang, and D. P. Palomar, “Real and
complex monotone communication games,” IEEE Trans. Inf. Theory,
vol. 60, no. 7, pp. 4197–4231, Jul. 2014.

[40] T. Roughgarden, “Intrinsic robustness of the price of anarchy,” J.
ACM, vol. 62, no. 5, pp. 1–32, Nov. 2015.

[41] C. J. Zarowski, An Introduction to Numerical Analysis for Electrical
and Computer Engineers. Hoboken, NJ, USA: Wiley 2004.

[42] J. Wallenius, P. C. Fishburn, S. Zionts, J. S. Dyer, R. E. Steuer,
and K. Deb, “Multiple criteria decision making, multiattribute utility
theory: Recent accomplishments and what lies ahead,” Manag. Sci.,
vol. 54, no. 7, pp. 1336–1349, 2008.

[43] G. Scutari, D. P. Palomar, F. Facchinei, and J. S. Pang, “Convex
optimization, game theory, and variational inequality theory,” IEEE
Signal Process. Mag., vol. 27, no. 3, pp. 35–49, May 2010.

[44] W. Rudin, Principles of Mathematical Analysis, 3rd ed. New York,
NY, USA: McGraw-Hill, 1976.

SOURAV MONDAL (Student Member, IEEE)
received the B.Tech. degree in electronics and
communication engineering from Kalyani Govt.
Engineering College, West Bengal University
of Technology in 2012, and the M.Tech.
degree in telecommunication systems engineer-
ing from the Department of Electronics and
Electrical Communication Engineering, Indian
Institute of Technology Kharagpur in 2014. He
is currently pursuing the doctoral degree with
the Department of Electrical and Electronic

Engineering, University of Melbourne and has started to work on Cloudlet
based edge-computing for low-latency applications over optical access
networks.

GOUTAM DAS (Member, IEEE) received the
M.Tech. degree from the Indian Institute of
Technology Kharagpur, Kharagpur, India, in 2001,
and the Ph.D. degree from the University of
Melbourne, Australia, in 2008. He has also worked
as a Senior Research Engineer with General
Electric R&D Center from 2001 to 2004. He has
also worked as a Postdoctoral Fellow with Ghent
University, Belgium, from 2009 to 2011. He is
currently working as an Assistant Professor with
the Indian Institute of Technology Kharagpur. His

research interest is in the area of both optical as well as wireless networking.

ELAINE WONG (Senior Member, IEEE) received
the B.E. and Ph.D. degrees from the University
of Melbourne, Melbourne, VIC, Australia, where
she is currently a Professor. Her research interests
include energy-efficient optical and wireless
networks, optical-wireless integration, broadband
applications of vertical-cavity surface-emitting
lasers, wireless sensor body area networks, and
emerging optical and wireless technologies for
tactile Internet. She has coauthored more than
150 journal and conference publications. She

has served on the editorial board for the JOURNAL OF LIGHTWAVE

TECHNOLOGY and the Journal of Optical Communications and Networking.

VOLUME 1, 2020 241

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

