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ABSTRACT New frequency bands, such as the mmWave at 28 GHz for fifth Generation networks in
Frequency Range 2, are being introduced to accomplish the required throughput for new services such as
remote surveillance, object tracking, and factory automation. These high-frequency bands are sensible to
reflections and diffraction. Therefore, accurate path loss calculation relies on advanced models and ray
tracing. However, this is time-consuming, and evaluating a large set of candidate solutions is no longer
possible when planning the optimal number and location of base stations in the network planning process.
This paper investigates the use of machine learning to approximate a complex mmWave ray-tracing-based
path loss model in indoor scenarios. The much lower calculation time allows us to approximate the
ray-tracer path loss estimation well and to apply a genetic algorithm for realizing network planning.
The machine learning model is trained and validated for two buildings and tested with another, with an
average of the Mean Absolute Error of 2.8 dB over all cases. It is shown that the combination of Machine
Learning and Genetic Algorithm is able to find a network deployment in the FR2 band accounting for
the minimum number of access points and minimum electromagnetic exposure, while still providing a
predefined coverage percentage inside the building.

INDEX TERMS 28 GHz, 5G, FR2, genetic algorithm, network planning, mmWaves, modeling machine
learning, path loss, ray tracing, wireless InSite.

I. INTRODUCTION

FIFTH-GENERATION (5G) Technology is designed to
broaden the reach of mobile technology beyond Long-

Term Evolution (LTE) capabilities [1]. The 5G mobile
initiative is a tremendous collective effort to specify,
standardize, design, manufacture, and deploy the next
cellular network generation. 5G is characterized by three
key features: faster speeds, lower latency, and the abil-
ity to connect many devices at the same time [2]. It
will support demanding services such as enhanced Mobile
Broadband, Ultra-Reliable, Low Latency Communications,
and massive Machine-Type Communications, which will
require high data rates and latencies of a few millisec-
onds [3]. Because of higher bandwidth and new antenna

technology, 5G enables a significant increase in data-
rate sent through wireless systems [4]. It operates in two
Frequency Ranges (FR): FR1 (includes sub-6 GHz), and FR2
(which includes the millimeter-wave band, from 24.25 to
52.6 GHz) [5].
Many of the use cases for 5G target indoor scenarios,

among others, smart building monitoring, factory automa-
tion, and objects/people tracking inside a building/factory [6].
The easiest way to address these scenarios is via the existing
outdoor network [7] but often, high building penetration
losses impact the desired performance [8], [9]. In [8], the
authors experimentally demonstrated a 30 dB - 100 dB
(depending on the wall materials) excess path loss at
distances beyond 50 m from the Base Station (BS). Hence,
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understanding propagation characteristics in indoor scenarios
is of vital importance in 5G networks.
Wireless network planning and optimizations play an

important role in modern wireless communications. Usually,
to find the optimal network deployment the evaluation of
many candidate solutions is needed to meet requirements
related to a targeted QoS and a minimal deployment cost,
energy consumption, and/or human exposure. In indoor
scenarios, the PL estimation is challenging because of the
complexity of the environment and the impact of multipath.
One option is to use heuristic models [10] or models based
on ray-tracing (RT) techniques [11].

Especially at high frequencies (mmWave communica-
tions), reflections and diffractions are very sensitive to
variations in the indoor propagation environment [12].
To estimate the Path Loss (PL) in these indoor envi-
ronments a PL calculation based on ray-tracing (RT)
models is more accurate than the use of traditional sta-
tistical models [13], [14]. However, RT models are much
more time-consuming. When performing network planning,
hundreds of candidate network deployments are evalu-
ate [15]. Therefore, ray-tracing path loss models are less
suited to use in the optimal network design process, as
calculation time can become excessively or unfeasibly
large.
In this research work, we propose a generic method

based on the Gaussian Process (GP) algorithm for the PL
estimation of 5G signals at 28 GHz in indoor environ-
ments. The obtained model is much quicker to evaluate
and is used in combination with a Genetic Algorithm
(GA) [16] to perform 5G network planning, allowing
finding an optimal network deployment, which would not
be possible using a ray tracing-based path loss model.
The novelty of this research article is (i) we propose a
generic machine learning model that can approximate Path
Loss (PL) in indoor environments for mmWaves, (ii) we
demonstrate the effectiveness of combining ML + GA
for wireless network planning, which can lead to more
efficient and optimized network deployments, (iii) we per-
form network deployment that ensures a minimum coverage
percentage (95-100%) and accounts for minimum Human
Electromagnetic Exposure based on the ray-tracing PL
model, and (iv) we present a flexible solution that can quickly
optimize deployments with other Quality of Service (QoS),
energy, and/or exposure constraints, performing a Pareto
analysis.
We show that an advanced and computationally expensive

path loss model, like the one based on RT methods, can
be well approximated by a ML-based PL model, allowing
faster PL calculation for a given area. Such a quick, but still
accurate PL model allows the possibility of more thorough
exploration of the optimization space to find the optimal
network deployment (number and location of APs). It is
shown that the proposed approach is accurate and able to
meet flexible coverage requirements (95% to 100%) and
allows easy replanning with adjusted optimization settings,

thanks to the largely reduced time to explore the solution
space.
The remainder of this paper is organized as follows.

Section II discusses related works on mmWave PL estimation
and network optimization approaches in the mmWave band.
Section III describes the scenarios for designing the model,
and the method used to estimate the PL. Section IV
discusses the performance of the PL estimation using the ML
algorithm. Also, we investigate the quality of the resulting
network planning solution, by comparing it with the Remcom
Wireless InSite software (RT-based tool) output in terms
of the coverage percentage of the ML-GA-based network
design. Finally, Section V presents the conclusions of this
research.

II. RELATED WORKS
A. PATH LOSS ESTIMATION AND MACHINE LEARNING
(ML)
In [17], the authors investigated several simple machine
learning models like an Artificial Neural Network (ANN)
or Linear Regression Model to predict the received signal
strength in wireless networks (WIFI, 2.4 GHz) based on
environmental parameters, with the best performance in
terms of Mean Squared Error (MSE) and Mean Absolute
Error (MAE = 4.92 dB for the training dataset and
MAE = 5.37 dB for the testing dataset) achieved for the
ANN model. The main limitation of this research is related
to constructing the dataset and building the ML model. The
authors used a fixed AP position for building the dataset,
which limits the generality and affects the performance of the
ML model if the AP is moved to another location with more
obstacles. In [18], the authors proposed a deep learning-
based indoor WiFi (5 GHz) path loss modeling approach,
specifically, an algorithm that generates input images based
on measurement locations and a floor plan. The input images
contain information regarding the propagation environment
between the fixed access points (AP) and measurement
locations. A convolutional neural network (CNN) model
was trained to learn the features of the indoor environment
and approximate the underlying functions of the WiFi
signal propagation. Its deep learning-based indoor path loss
model was shown to achieve superior performance over 3D
ray-tracing methods. The average root mean square error
(RMSE) between the predicted and measured received signal
strength values in the two scenarios was 4.63 dB. The
universality of this model is limited though, as using the
model in a new scenario requires training the ML model
with information related to the new building/office/house.
In [19], a new training strategy to train PL models at
28 GHz band based on a convolutional neural network
(CNN) was proposed. The strategy was based on meta-
learning which performs well in few-shot learning scenarios
with multiple tasks comprising a meta-task. It was shown
that the indoor PL model based on a CNN configured
with multiple beams can outperform the CNN models by a
conventional training algorithm as well as empirical models.
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The authors mentioned that the model could be applied in
other scenarios, but no results were shown regarding this
statement. In [20], the authors reported the inclusion of
Kriging as a tool for modeling mmWave indoor propagation,
as it considers all the singularities and site-associated features
that are implicit in the measured samples. For the 28 GHz
band, the Kriging-aided model improves the accuracy in
predicting path loss with 3.1 dB RMSE (3.6 dB RMSE
without the Kriging model). In this study, the authors did
not provide details about the dataset construction and the
inputs used to train the ML algorithm, which makes it
difficult to know the generacity of the model. In addition,
they did not provide details related to the time required
to perform calculations. In [21], the authors presented a
methodology of data-driven techniques applied to predict
path loss in 28 GHz using ML algorithms (random forest,
decision tree, lasso regression, gradient boosting, and neural
network-deep learning). The data for building the dataset
was described in [22] and updated in this research to
reflect an indoor environment. The authors compared the
estimation performance of all the five proposed algorithms
with measurement results, at the 28-GHz band, and the
highest R2 accuracy of 97.4% was achieved by the random
forest algorithm. In this study, the authors did not provide
information about the geography of the scenario, the number
of walls, and the wall material. In addition, all the inputs for
the ML model (at least the ones stated in the manuscript)
are not related to the environment, which might affect the
model’s performance in case of using it in other indoor
scenarios. In [23], the authors introduced a deep learning
model (U-Net architectures) that estimates simulated indoor
radio propagation maps at 5 GHz. To generate the dataset,
the authors avoid proprietary software because they require
manual inputs of floor plans and simulation parameters,
which is not feasible when simulating hundreds or thousands
of scenarios. The inputs are white and black floor plans
describing the walls in the scenarios and up to five AP
positions. The authors obtained an MAE of around 1 dB
in a small portion of 20 x 20 m2 in a university building.
The proposed method was at least 30 times faster than
WinProp software. However, the paper lacks a validation
in another building. Also, they did not use the model
for network deployment optimization. In [24], the authors
introduced a Python-based tool designed to enhance the
prediction of wireless network signals for WIFI 2.4 GHz
and 5Ghz in indoor settings using neural networks. The
approach employed allows for adaptive learning from the
environment to improve prediction accuracy. By comparing
with real measurements, the study demonstrated its superior
accuracy (MAE = 3.5 dB) in signal loss prediction against
traditional models (best performance for One Slope model
with MAE = 19.4 dB) through comparative analysis. Despite
the results, the authors limited their comparison only to the
traditional models. In larger environments, with a higher
number of obstacles, the universality of the tool could be
compromised.

B. PATH LOSS ESTIMATION USING RAY-TRACING
METHODS
Several works have tried to emulate the signal propagation
in indoor and outdoor environments [13], [15], [25], [26].
At higher frequencies, ray-tracing approaches have shown
to be more accurate in predicting PL [27], but the required
time and computer power needed make it difficult to perform
several simulations and achieve good accuracy. In [15],
the authors conducted a ray-tracing simulation using a 3D
floor plan. The obtained results show that the existing
indoor solutions operating at 2.6 GHz can be reused at
3.5 GHz frequency with minor power adjustment, or by
using antennas with a little higher gain. However, the authors
stated that a new deployment (the existing one does not
meet the coverage requirements) is required due to the
complexity of the environment for an Ultra Dense Network
at 28 GHz. In [25], the authors developed an Adaptive Path
Sensing Method (APSM) for indoor radio wave propagation
prediction at 4.5 GHz, 28 GHz, and 38 GHz. Measurement
campaigns, which cover indoor line-of-sight (LOS), non-
line-of-sight (NLOS), and different room scenarios were
conducted. The proposed method was evaluated through
a computerized modeling tool by comparing the Received
Signal Strength Indicator (RSSI) with measurement data and
the conventional Shooting-Bouncing Ray-Tracing (SBRT)
method. The experiment was conducted with one transmitter
and 83 receivers in an in-house scenario with 21 m x 30 m.
The simulations were performed for one receiver each time
(after all the rays are launched the Rx point was re-
positioned). The needed time for launching all the rays for
one Rx was around 7 seconds. The comparison results show
that the APSM achieves higher RSSI accuracy than SBRT
and takes 7 seconds for the combination Tx-Rx vs. 23 sec-
onds for the SBRT method (the process was repeated 83
times, one time per Rx point). The proposed APSM method
has effectively minimized the computational resources and
time needed by 60%. However, to perform network planning
(evaluation of hundreds of AP candidates), with a higher
number of Rx points the required time is too high. In [26], the
authors developed and experimentally validated an Efficient
Three-Dimensional Ray-Tracing (ETRT) method to calculate
the indoor radio wave propagation at 28 GHz. Compared
with the conventional SBRT method, the proposed ETRT
method showed better agreement with measurement data.
Despite the accuracy achieved in this research, the authors
do not mention any improvement in the required calculation
time and the needed computational power. In [13], the
authors proposed a simplification that can reduce the
complexity of the ray-tracing in the mmWave without sig-
nificantly affecting the model’s accuracy. Specifically, they
considered processing only multipath components (MPCs)
whose received power is above a certain threshold, relative
to the strongest MPC, and limiting the maximum number
of reflections for each MPC. They demonstrated that by
limiting the MPC the complexity and calculation time were
reduced from hundreds of minutes to hundreds of seconds.
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The research works stated in this section demonstrate that
the ray-tracing method offers good accuracy in terms of
propagation path loss calculation at mmWave frequencies,
but is time-consuming. Many efforts have been conducted
to simplify the algorithms together with the required time to
make calculations. To accomplish the objective, the authors
used a reduced number of transmitters and receivers in the
scenarios. However, to use those results in a realistic situation
and perform network design, hundreds of AP candidates
should be evaluated for providing coverage to a floor. In these
cases, the required time to calculate one network deployment
plays an important role. The research in this work is focused
on a method based on ML (to estimate the PL) and GA
(to find the optimal AP distribution on a floor) using the
ML PL model, to find network designs subject to constraints
(coverage, cost, and human exposure).

C. ELECTROMAGNETIC HUMAN EXPOSURE
The increasing use of wireless networks in our life
has generated a common concern related to the general
public’s exposure to RF (radio-frequency) electromagnetic
fields used for wireless telecommunication. International
Institutions such as IEEE [28] and ICNIRP (International
Commission on Non-Ionizing Radiation Protection) [29]
have issued safety guidelines to limit the maximal electric-
field strength due to wireless communications. A lot of
research has been conducted on the characterization of RF
exposure [30], [31], [32].
In [30], the authors developed a heuristic indoor network

planner for exposure calculation and optimization of wireless
networks, jointly optimizing coverage and exposure, for
homogeneous WiFi or heterogeneous networks (WiFi-LTE).
In [31], the authors minimized the whole-body exposure
doses (uplink and downlink) for indoor wireless network
deployments in four simulation scenarios. For WiFi, down-
link doses were reduced by more than 95% by the optimized
deployment and for UMTS, total dose reductions varied
between 73% and 83%. In [32], the authors designed a multi-
objective optimization algorithm implemented to maximize
the user coverage while minimizing the downlink (DL) and
uplink (UL) exposure in a 5G network topology.

D. NETWORK OPTIMIZATION AT MMWAVE
FREQUENCIES
5G networks are also being deployed over mmWave
(28 GHz) where ray-tracing models have been shown to
perform well to estimate the PL. In [33], an attempt has
been made to perform network planning using an RT-
based PL model. The authors proposed an algorithm for
determining the minimum number of transmitting antennas
as well as their appropriate locations to provide optimized
wireless coverage in the indoor environment. The proposed
algorithm uses a ray-tracing method to estimate the received
signal level among 6 sampling points in the indoor area
due to one or more transmitters and the Genetic Algorithm
(GA) incorporated with the Breadth First Search (BFS)

to determine the minimum number of transmitters and
their corresponding locations to achieve the optimum wire-
less coverage. The algorithm achieved better performance
compared with existing ones, reducing the computation
time by as much as 99%. However, to perform network
evaluations the authors only evaluated 6 AP candidates with a
maximum of 25 receiver points. In [34], the authors aimed to
optimize the deployment of indoor small base stations (5G at
3.5 GHz) using a hybrid algorithm that combines differential
evolution and particle swarm optimization (PSO). The core
methodology involves correcting the wireless propagation
model ITU R.P. 1238 using the least squares method
to account for real-world nonlinearities that affect signal
propagation indoors. The authors concluded that the method
provides a robust solution for indoor wireless network layout
planning. Despite the assessment, this approach was tested
in a room of 15x15x3 m and with a very simple floor plan.
To prove the generality of the model the authors did not
provide any evidence of the performance in a more complex
room/floor.
Most PL models at higher (e.g., 28 GHz) frequencies are

RT-based. To the authors’ knowledge, no more 5G network
planning at 28 GHz (or at mmWave frequencies) has been
executed due to the large RT calculation time, making
a thorough exploration of the solution space impossible.
No attempts (to the best of our knowledge) have been
made yet to optimize (downlink (DL)) exposure due to
indoor 5G network deployments. This research will aim at
mimicking a 28 GHz RT-based PL with machine learning
to offer a flexible 5G network deployment optimization
tool at 28 GHz, able to account for coverage and exposure
requirements.

III. METHODS AND SCENARIOS
This section describes the indoor network planning method-
ology, using a machine-learning generated path loss model
obtained from ray tracing simulations, incorporated into a
genetic algorithm for finding the optimal network deploy-
ment (number and location of 5G stations at 28 GHz). First,
for a large set of transmit-receive links in a set of training
buildings, we use a ray-tracing tool to calculate the target
PL [dB]. For each of these links, we also determine a set
of easy-to-calculate inputs (minimizing calculation time but
expecting to have a large predictive power for the path loss,
see Table 2). With this set of inputs and with the target PL
from the ray-tracing tool as output, we train and validate (this
process is only executed once until we obtain the trained
model) a Machine Learning model that approximates the
ray-tracing PL, but is calculated much faster. In a second
stage, we rely on the estimated PL from the created ML
model (see Section II-E.3) in a Genetic Algorithm that
searches for an optimal wireless network deployment, subject
to coverage constraints (at least the 95% of all possible Rx
points must be covered) and striving for a minimum number
of deployed base stations, and minimum electromagnetic
exposure. This ML model is a less complex approximation
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FIGURE 1. Flow-graph of the proposed approach and its validation with the
Wireless InSite. RT: ray-tracing; ML: Machine Learning.

of the ray-tracing PL model. Consequently, the model can
be used in a GA, which requires the evaluation of a lot of
candidate deployment solutions, and thus, a lot of otherwise
time-consuming path loss calculations. For the purpose of
validating our proposed approach, the received power and
coverage percentage of the deployments obtained with the
ML-based path loss model in the area compared with the
results obtained using the initial ray tracer path loss model.
Figure 1 shows a flow graph of the proposed approach.

Compared to the typical log-distance, multi-wall model,
or Indoor Dominant Path (IDP) model based on [10], the
RT method for PL models is more advanced, as it evaluates
the different paths between transmitter and receiver. The
goal of the ML model is to accurately estimate this PL
value, based on a set of relevant inputs that can be easily
obtained or calculated. In our research, an ML algorithm is
trained and validated with input variables that have a low
calculation time, such as the distance between the AP and
the receiver locations, the number of walls in the direct line
to the source, and wall penetration loss. To calculate the
losses related to the walls we consider the incident angle
of the direct beam from Tx to Rx and the materials of the
walls. To account for the impact of reflecting walls, we
include reflection losses of rays under four NLoS directions
(± 10◦/20◦ with respect to the LoS direction). Finally, to
assess the ML model performance, we compare the PL
estimated with the ML and the PL calculated with the
Wireless InSite software [35], [36].

A. REMCOM WIRELESS INSITE FOR PATH LOSS
GENERATION
The 3D RT method used was executed via Remcom
Wireless InSite 3.3.5 software. We used the X3D variant
of the ray-tracing method, which supports efficient parallel
computations using multi-core Compute Unified Device
Architecture (CUDA)- capable Graphics Processing Units
(GPUs), and a processor, such as the Nvidia GForce RTX
3050Ti series.
The X3D ray model was developed by Remcom to provide

a highly accurate, full 3D propagation model capable of
running on a graphics processing unit (GPU) and using multi-
threading for fast runtimes. This model also uses Remcom’s
depth-first and exact path algorithms to overcome some of

the shortcomings of the traditional SBRT. X3D does not have
any restrictions on geometry shape or transmitter/receiver
height. This accurate model includes reflections, transmis-
sions and diffractions, and frequency-dependent atmospheric
absorption. The SBRT method requires a collection radius to
be constructed around receiver locations to compensate for
the discrete ray shooting. Any rays intersecting the sphere
are considered to reach the receiver. The exact path corrects
SBR ray paths so that they end at the exact receiver location.
This correction reduces errors in calculated power and phase
associated with SBR but at the cost of longer run times
required by methods based on image theory [35], [36], [37].

B. PATH LOSS ESTIMATION USING MACHINE LEARNING
In the Wireless InSite software, the needed time for calcu-
lating the received signal in all the grid points (1107 points
located with a grid size of 1 m, see Figure 2(e)) for one AP
is around 2 minutes for the 5th floor of the iGent building.
Therefore, we investigate if these advanced PL models can
be well approximated using an ML model. We here apply the
Gaussian Process (GP) for regression [38], [39]. Regression
models based on GP are simple to implement, flexible, and
fully probabilistic models [39]. The ML will estimate the PL
(i.e., dependent variable, model output) using equation (2)
after being fed with a number of inputs (i.e., independent
variables) that have a correlation with the output variable. To
achieve the desired accuracy, the algorithm must be trained
and validated to learn which is the output that corresponds
to the given inputs using a training dataset (known samples
where a number of inputs corresponding to a true output).
During the training process, the ML model iteratively adjusts
its coefficients to minimize the MAE between the predicted
and the true path loss using Equation (1), where N is the
number of observations in the training and validation dataset,
PLML is the PL estimation made by the ML model using a
vector of inputs, and PLWI is the PL calculated by the RT
software, for observation i.

MAE = 1

N

N∑

i=1

|PLML − PLWI | (1)

1) GAUSSIAN PROCESS ALGORITHM

Gaussian Processes (GPs) are an approach to regression
problems. This section aims to present the basics of GPs
without going too deep into the algorithm. For a more
elaborate discussion of GPs, we refer the reader to more
detailed literature [40]. The prediction problem can be
formulated as follows: given a set of N observations
Y = {y1, y2, . . . , yN} of a dependent variable (PL values)
and the independent variables would be the vector X =
{x1, x2, . . . , xN} in the Gaussian Process framework where
x1, x2, . . . , xN each are 13-dimensional input vectors (see
Table 2, Section III-D). By dividing the dataset in n samples
for training and m samples for validating the model (where
N = n + m) the X and Y vectors can be defined as, Y =
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FIGURE 2. Indoor environments with APs locations used to generate the training
and validation datasets. Red crosses represent the APs locations. Black dots
represent the Rx points with a grid size of 1 m. (a) iGent building 5thth floor
(b) Zuiderpoort building 3rd floor (c) Koutitas building.

{y1, y2, . . . , yn} and X = {x1, x2, . . . , xn} as training vectors,
and Y∗ = {y1, y2, . . . , ym} and X∗ = {x1, x2, . . . , xm} as
validation vectors.

Consider an observation y (see Equation (2)), which can
be described by the kernel function or covariance function of
the Gaussian process distribution [40]. The kernel function
together with the mean function f(X) define the Gaussian
process distribution.

Y ∼ GP(f (X),K(X,X) (2)

The objective is now to predict the Y∗ (PLML in
equation (1)) given the validation input X∗. Recalling that a
GP is a set of variables which have a consistent Gaussian
distribution with mean zero, we can represent our problem
as equation (3) [41]:

[
f
f∗

]
∼ N

(
0,

[
K(X,X) + σ 2

n I K(X,X∗)
K(X∗,X) K(X∗,X∗)

])
(3)

Here, σ 2
n I is distributed noise added to the Gaussian

process distribution with variance σn. K(X,X∗) provides the
covariance between the training values (X) and the validation
values (X∗) whose output value (Y∗) we are estimating.
K(X∗,X∗) represents the similarity of any two observations
from the vector X∗.
Once defined the problem, it is straightforward to make

predictions for new test points, using straightforward alge-
braic matrix manipulation. However, in practical applications
it is unlikely to know which covariance function to use.
The exponentiated quadratic kernel (also known as squared
exponential kernel, Gaussian kernel or radial basis function
kernel) is a popular kernel used in Gaussian process
modeling and can be computed as:

K(X,X∗) = σ 2
f exp

(
− 1

2l2
(X − X∗)2

)
+ σ 2

mδ (4)

The reliability of our regression is then dependent on how
well we select the parameters that the selected covariance
function requires (l, σf , σm) [42]. Assume Θ = {l, σf , σm}
as a set of hyperparameters needed for a given covariance
function, where l is the length-scale (corresponds to the
frequency of the functions represented by the Gaussian pro-
cess), σf the signal noise and σm the noise variance. Because
of its simplicity, in this work we use the Gradient Descent
technique to find the set of near-optimal hyperparameters in
equation (4).

C. STUDY AREAS
For training and validating, and testing our model we
investigate three different buildings (iGent and Zuiderpoort
in Ghent, Belgium, and the building used in Koutitas and
Samaras [43], further denoted as ‘Koutitas’, Table 1) with
different characteristics and complexity. To obtain a general
model, we selected buildings with different layouts and types
of walls (materials and thickness) and penetration losses. To
build the model, we train and validate with the information
from two buildings and test it with the third one (not in the
training and validating dataset). This process is repeated for
all three possible combinations.
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TABLE 1. iGent and Zuiderpoort are office buildings in the city of Ghent, Belgium,
and Koutitas, in Greece. AP = Access Point.

The investigated buildings are described in Table 1. The
aim is to deploy 5G sources operating at 28 GHz, placed
at 2.5 m above the ground, with an Equivalent Isotopically
Radiated Power (EIRP) configurable between 5 dBm and
40 dBm. The 5G receiver was assumed to be at carrying
height, i.e., 1.3 m, above the ground level.
A general RT procedure relies on a ray-optics approxima-

tion of the Maxwell equations. A transmitter is modeled by
launching rays from its center in a finite set of directions,
distributed over the complete unit sphere. A ray is propagated
through the environment predefined with its geometry and
material properties, undergoing reflections, refractions, and
diffractions, until its power reaches a predefined threshold.
If a ray passes in the vicinity of a receiver, it contributes
to the total field at that receiver’s location. Assuming that
terminals (or points of interest) can be distributed all around
360 degrees around AP, with the purpose of accounting
for the maximum possible level at any point, the AP will
be treated (also the receivers) as having an equivalent
omnidirectional antenna with the gain equal 2.15 dB. To
construct a training dataset we put several APs (13 APs
for the iGent 5th floor, 18 for the Zuiderpoort building,
and 15 for the Koutitas building, see Figure 2(e)) located
at 2.5 m high, transmitting at 20 dBm. To build a model
based on the building environment, it was necessary to
consider the electromagnetic parameters of the walls and
other structural elements, such as concrete walls, brick walls,
and partition walls made of drywall. The electromagnetic
parameters of all elements were extracted from the ITU
documents [44], with the incidence angle, we calculate
the reflection and penetration losses based on the Fresnel
formulas for reflection and transmission [45].

D. DATASET CONSTRUCTION
For training, validating, and testing the ML PL model we
analyze three buildings. We use RT simulation data from
two buildings to train and validate the ML model and the
third building is used for testing (not included in the training
and validating process, see Section III-C). In the buildings
used for training and validating the model, we include all
information from all APs is in the same dataset to have a
maximal of training PL samples. For evaluation of the ML
PL model on the third building (test building), we consider
5 random AP locations: we estimate the path loss for all
the AP-to-grid point links with the constructed ML model

and compare the result with the RT software-generated PL
value. Each building is equipped with several 5G sources
(Table 1), and the PL information is generated according
to the Remcom Wireless InSite ray-tracing software. These
PL samples are calculated on a 1 m regular grid spanning
the entire building, between APs and receiver locations. The
goal is to estimate the PL (output) samples, not by finding
the different paths between Tx and Rx (like RT models), but
based on a set of 13 easy-to-calculate inputs (See Table 2).
These inputs are expected to have a predictive power for the
path loss and are easy to calculate, minimizing calculation
time for the ML model.

1) MAE VALIDATION AND NUMBER OF APS FOR MODEL
TRAINING

To build the training dataset we simulate the PL between
different AP locations and receiver locations in the building,
using the ray-tracing software (Section III-A). To determine
the minimum required number of APs to create the training
dataset for one-specific building, we adopt the following
procedure. The resulting dataset from the combination of AP-
Rx links is denoted Di, where i is the index of the simulated
AP. Combining the information from different APs in a floor,
we generate different sub-datasets (D1,D2,D3, . . . ,Dn,
where, n = total number of AP). For training, we increase
the number of samples by adding a dataset D until the
information from one dataset remains to validate the model
(see steps below). However, in the validation process, we
use a single dataset (D) and calculate its MAE. The final
MAE of each step is the mean of all MAEs for every single
D. To validate the MAE we use the following procedure:

• Train with D = [D1], validate with D2;D3; · · · ;Dn,
and MAE = Mean(MAED2;MAED3; · · · ;MAEDn)

• Train with D = [D1;D2], validate with D3;D4; · · · ;Dn,
and MAE = Mean(MAED3;MAED4; · · · ;MAEDn)

• Train with D = [D1;D2;D3], validate with
D4;D5; · · · ;Dn, and MAE = Mean(MAED4;MAED5;· · · ;MAEDn)

• The process continues until D = [D1;D2; . . . ;Dn−1]
and validate with Dn.

Finally, to estimate the value of the MAE we calculate
the Progressive Average (PAVE) of all previously calculated
MAE values. If the MAE stabilizes, it means that the number
of simulated APs is enough to train and validate the model.
Otherwise, we need to calculate more PL values for different
combinations of AP-Rx, where the AP location on the floor
must be different.

E. NETWORK PLANNING AND GENETIC ALGORITHM
As no ray-tracing-based network planning output is available
as a benchmark solution here, we evaluate the performance
of the model in terms of the covered percentage. The GA-
proposed solution is evaluated with the RT software and
compared with our method to verify that in every Rx point,
we meet the required quality of service.
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TABLE 2. Description of the inputs used to build the dataset for training and validate
the ML model.

1) ML+GA BASED NETWORK PLANNING APPROACH

To find the optimal deployment with a minimal number of
5G APs and still provide the required quality of service,
we use the approach of Figure 1, and the link budget
parameters from Table 3. The core of the system is a Genetic
Algorithm [47]. The inputs are the floor plan and the PL
estimation made with the ML algorithm for every possible
AP-Rx link. The output of the model is a set of APs, that

TABLE 3. Parameter settings and link budget parameters for the network
optimization. MCS is the Modulation and Coding Scheme. SNR is the Signal Noise
Ratio. Rx is the minimal received power to satisfy the SNR requirement accounting for
the given shadowing and fading margins.

provides the required coverage for all the points inside the
building. In the end, this coverage percentage is then verified
with the RT software.
According to Table 3 the minimum received signal level

we require for a network deployment is approximately -
75 dBm (these values were calculated considering a 95%
shadowing and 99% fading margin of 9 dB and 6 dB
respectively [48]). The EIRP_AP used for the network
optimization is 5dBm to 40 dBm (see Section III-E.4).
Hence, the maximum PL (EIRP_APmax−Rx, see Table 3 for
Rx values) that is to be considered here is 115 dB. Then, to
properly account for the MAE, we train and validate the ML
model with PL values higher than 115 dB as only these PL
links will be relevant in a network planning process: receiver
points with a higher PL will be covered by another AP.
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2) ELECTROMAGNETIC EXPOSURE

To find the optimal network deployment, the GA accounts
for the minimum number of APs considering coverage
requirements (according to Table 3) and the minimum
electromagnetic field exposure at 28 GHz.
We consider the incident power density SLoc [W/m2] at

a certain location of the floor as a metric for characterizing
the exposure caused by all radiating APs (N_AP) in the
network [51].

SLoc =
N_AP∑

i=1

E2
APi

377
(5)

We derive EAPi [V/m] [31] from the path loss as follows:

EAPi = 10

(
EIRPAPi

+10·log10(DCDLTDD)−43.15+20·log10(fAPi
)−PL

)

20 (6)

where PL is the Path Loss in [dB], fAPi is the AP frequency
in [MHz], DCDLTDD is the TDD duty cycle in the downlink
(DCDLTDD = 0.75) capturing the fact that the BS does not
transmit continuously during the data connection. To obtain
an optimal network deployment, the GA aims to minimize
the s (see Equation (9)).

3) GENETIC ALGORITHM

The GA was modified to find the minimal number of
APs, maximum coverage percentage, and minimum expo-
sure, but still providing the required bitrate, according to
Table 3. Figure 3 shows the flow graph of the modified
GA for finding the minimal number of APs. In the GA,
a possible network solution is called “Individual”, and it
is characterized by an array containing the state of the
respective APs, where each AP corresponds to a gene of
a solution. Every Individual (Xi, i = 1 · · · .population_size)
is represented by an M-dimensional vector, where M is the
number of candidate APs (locations are set on a 4 m grid
spanning the entire building). Finally, M is equal to 70 for
iGent building and 97 for Zuiderpoort building (we refer the
reader to Section IV-B).

Xi = (
Xi,1,Xi,2, . . . ,Xi,M

)
(7)

with Xi,j, j = 1 · · ·M, a gene of the solution Xi, representing
either switched off (set to 0) or switched on (set to 1) [47].
The GA starts with an “Initialization′′ step during which

the scenario parameters are set. It defines the minimum
Rx signal level (RxMin) which is equal to the Rx threshold
defined in Table 3, the value of incident power density
(SArea), which is the current maximal power density when all
possible AP candidates are deployed in the building, initially
set as SAreaMax , and the EIRP_AP = 40 dBm (the maximum
possible value), which is changing during the optimization
process.
To characterize the exposure on a building floor, we use

the incident power density in the entire area (SArea) [31]
(defined in equation (8)). This metric combines the average
SArea50 (50 percentile of the SLoc values over the building

FIGURE 3. Flow graph of Genetic Algorithm used for network deployment. RX is the
received signal level. s is the incident power density calculated with Equation (9).

floor, median value) and SArea95 (95 percentile of the SLoc
values over the building floor, ‘maximal’ value), similar to
the approach followed in [30]. To account for the minimum
value of SArea (SAreaMin), in the “Initialization” process we
define it as SAreaMax . In every iteration, the GA calculates a
new value of SArea and it is compared with the previously
calculated value and should be lower or equal (if true, the
SAreaMin = SArea). After the initialization phase, all candidate
APs are randomly switched on (set to 1) or off (set to 0).
Each iteration it(it = 1, . . . , Imax, Imax = 100) consists of
the following consecutive steps.

• Sorting – sort all previous “Individuals′′ by their score
values. The score is based on the solution, where
coverage of all grid points is the first requirement, the
second one is the minimum number of APs, and the
minimal exposure is the last one. To score an individual,
we use the following formula:

Score = APdep + (100 − Cov) + K · SArea
SAreaMax

(8)

where APdep is the sum of the switched-on APs of the
solution Xi (see equation (7)), Cov is the percentage of
grid points that are covered with the minimum Rx level,
SArea is the incident power density value calculated with
the equation (9), K is a factor used to balance the weight
of each the three criteria in the formula (K = 5), and
SAreaMax is the maximum value of SArea calculated in
the “Initialization′′ process.

SArea =
(
w1 · SArea50 + w2 · SArea95

)

(w1 + w2)
(9)

Where SArea50 and SArea95 are the 50 percentile and 95
percentile respectively of the incident power density
values over the considered area. We choose to include
SArea50 into the metric to account for the median
exposure on the building floor, and also SArea95 , to
account for the maximal exposure values. Here, we will
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assume an equal impact of SArea50 and SArea95 on the
metric and set both w1 and w2 at a value of 0.5 [31].

• Crossover – from the sorted population, a new popula-
tion is created where the best_individuals are transferred
unchanged to the new population. The other new
child solutions (population_size → best_individuals)
are obtained from a crossover operation between two
individuals. Each child gene is inherited from either
one of the corresponding parent genes, with equal
probability. The newly created child solution is added
to the new population.

• Mutation – It is the process where all the “Individuals′′
in the new solution are mutated. Based on the score, if
the new score is lower than the old one, the mutated
individual replaces the old population. Otherwise,
another “Individual” is selected looking for a better
score. The mutation operation is as follows:

– If not all receiver locations are covered (Rx <

RxMin), one inactive AP close to the uncovered area
is switched on.

– If all receiver locations are covered (Rx ≥ RxMin)
and SArea < SAreaMin , the value of SAreaMin is now the
new one calculated (SAreaMin = SArea) and the EIRP
of one random AP is decreased 1 dB (or switched
off when its power is equal to EIRP_APMin).

– If all receiver locations are covered (Rx ≥ RxMin),
but SArea > SAreaMin the EIRP of one random AP
is decreased 1 dB (or switched off when its power
is equal to EIRP_APMin).

4) NETWORK OPTIMIZATION

As the goal for maximizing coverage and minimizing the
amount of APs, contradicts with the goal for minimizing
exposure, we define network optimality based on the
Pareto theorem [52]. It presents a trade-off between the
coverage percentage, the required number of APs in the final
deployment, and the power density.
Pareto Efficiency: Pareto optimality is a concept of

efficiency used in the social sciences, including economics
and political science. The Pareto optimal state is defined as
a state where it is not possible to make a single objective
better without making at least another one worse [53]. In
engineering, it is used when more than one parameter needs
to be optimized (multi-objective optimization problem).
Then, for a set of choices and a metric to value them, it is
possible to find a set that is Pareto efficient. This is called
the Pareto front (set of non-dominated solutions) [54]. Hence
using the Pareto front, it is possible to determine the trade-off
between all parameters depending on the design constraints.
In Pareto optimization, the maximization of a certain

parameter leads to the minimization of at least one other.
Then, it is possible to evaluate several combinations of
performance indicators, each one with a certain weight
(Pareto coefficient) in the optimization algorithm. The
general Pareto equation P is defined as a set of n independent

metrics G multiplied by a certain weight W.

P(W1;W2; · · · ;Wn)

= {W1 · G1;W2 · G2; · · · ;Wn · Gn} (10)

where for any combination of W1;W2; · · · ;Wn the following
condition should be satisfied:

n∑

i=1

Wi = 1 (11)

Network Optimization: Section III-E.1 describes the pro-
cedure to minimize the number of APs and the exposure
by means of the incident power density, and maximize the
coverage percentage in an indoor environment using a ML+
GA approach.
For the network optimization, the algorithm dynamically

changes the EIRP_AP from 5 to 40 dBm for each candidate
solution the GA encounters in the process. For each combi-
nation of the Pareto coefficients (coefficients defining how
each parameter is weighted when optimizing the network), a
network solution is retrieved with different EIRP_AP value,
different coverage percentage, different exposure value, and
returns the number of APs.
The GA will obtain the network deployment for different

candidate solutions. For each network solution, the three
parameters (coverage percentage, number of APs, exposure)
are calculated and stored. After all network deployments are
retrieved, the whole Pareto population is mapped. Each point
in the graph represents a solution for a certain Pareto weight
combination. In this way, it is possible to assess the network
performance for each parameter and find the best trade-off
(Pareto front).

IV. RESULTS AND DISCUSSION
A. PL ESTIMATION WITH MACHINE LEARNING
In Section III-C and D, the inputs of the datasets used for
training and validating, and testing the model were presented.
To evaluate the model quality, we trained and validated three
variants (see Section III-C). Figure 4, shows a scatter plot
with the performance of the ML-estimated values vs. the
assumed true values (RT software calculation) for the three
variants and for the validation building, where the average
of the MAE for the three variants is 2.8 dB.
The model trained and validated with iGent and

Zuiderpoort buildings and tested with Koutitas build-
ing (MAE = 2.5 dB for the maximum allowed PL,
Figure 4(a)) performs better than the another two vari-
ants (MAE = 2.7 dB, Figure 4(b) and MAE = 3.3 dB,
Figure 4(c)). As it has the estimated values closer to the
perfect prediction line (black line), especially for low-power
APs and high-throughput requirements (i.e., lower path loss
links), the obtained MAE values are in line with other models
at other frequency bands (i.e., [17], [18], [20]). To validate
the MAE in the training process and to make a stable ML PL
model, we used the procedure described in Section III-D.1.
Figure 5 shows the PAVE of the MAEs value in the training
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FIGURE 4. PL comparison between the RT software calculation and the
ML-estimated ones. (a) Model trained and validated with iGent and Zuiderpoort
building and tested with Koutitas building. (b) Model trained and validated with
Zuiderpoort and Koutitas building and tested with iGent building. (c) Model trained
and validated with iGent and Koutitas building and tested with Zuiderpoort building.

process, where the MAE is converging to a value while
the number of APs simulated inside the floor is increased.
Compared with the results obtained in Section IV-A, using

FIGURE 5. Mean Absolute Error validation in the training process, where “Number
of APs” is the total number of APs used to build the training and validation dataset.
(a) Progressive Average for iGent building. (b) Progressive Average for Zuiderpoort
building. (c) Progressive Average for Koutitas building.

one building we reduce the MAE, but the generality of the
ML model could be reduced.
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To illustrate the accuracy of the PL estimations, we
compare the received signal power estimated by the
proposed ML model with the RT software calculation
(EIRP_AP=40 dBm) in the building area. Figure 6(c)
compares the simulated Rx due to a randomly placed AP,
according to the RT software (Figure 6(a)) and according
to the ML PL model (Figure 6(b)) for the iGent building.
The received signal level was limited to the maximum
allowed PL (115 dB, see Table 3). The MAE between the
calculation with RT software and the estimation with ML
is 3.5 dB.

B. NETWORK PLANNING
1) WIRELESS NETWORK PLANNING

Once we have the ML model trained, validated, and
tested, we can now easily adopt the fast and accurate ML
model for network planning, using the GA as explained
in Section III-E.3. First, we only consider coverage and
the number of AP as a constraint (K=0 in Equation (8)).
The reception quality specifications for the floors in the
three buildings (Section III-C) were taken from Table 3.
Figure 7 shows the resulting network deployment based
on the setting 12/16QAM/9.5dB/3080 Mbps/−64dBm from
Table 3.

Table 4 summarizes the deployment results using the
proposed ML+GA, accounting only for the minimum
number of APs. The ML model for each scenario is
based only on training values collected in the two other
buildings, showcasing the envisioned general applicability.
The RT software does not include functionality to perform
network deployments in an indoor environment, so there
is no benchmark to evaluate the quality of the proposed
network deployment. However, applying the Wireless InSite
software to the ML+GA deployment can assess the coverage
percentage of the GA-proposed deployment. Figure 8 shows
the network deployment obtained with the combination
ML+GA, but in this case, it was assessed using the RT
software to compare the coverage requirement. For this
network deployment, the MAE between our solution and the
calculation made with the RT software is 3.2 dB for iGent
building, 3.4 dB for Zuiderpoort building and 2.6 dB for
Koutitas building.
Table 4 confirms that the ML+GA-proposed solution is

reliable as the coverage percentage with the target throughput
is at least 96.6% (1514/1568 receiver points covered).
Related to the time to make calculations it can be noticed
that the all possible AP candidates, the RT software is
more time-consuming (96 minutes for the iGent building,
258 minutes for the Zuiderpoort building, and 110 minutes
for Koutitas building) than the ML approach (ML-processing
time [min] column in Table 4). It should be pointed out
that the points not covered with the aimed throughput
are not uncovered: they are covered but possibly with
lower throughput. It should be noted, that the ML PL
calculation for all possible AP-Rx links for training the
model requires a one-time calculation (ML-processing Time

FIGURE 6. Receiver power comparison between the calculation made with Wireless
InSite software versus the estimation using the ML model trained and validated with
iGent building. White dots are the AP location. EIRP_AP= 40 dBm.(a) Estimation with
ray-tracing software. (b)Estimation with ML model. (c) Error [dB] between the ML
model and the RT software.

in Table 4). However, these values can be re-used when
another throughput requirement is set or when room-specific
requirements are set.
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TABLE 4. Summary of the network deployment using the ML+GA proposal for the setting 12/16QAM/9.5dB/3080 Mbps/-64dBm and accounting only for the minimum number of
APs. EIRP_AP = 20 dBm. ∗MAE between the calculation made by the RT software and the estimation made by the ML+GA approach for this network deployment.

TABLE 5. Network deployment using the ML+GA proposal for the setting 12/16QAM/9.5dB/3080Mbps/-64dBm and accounting for minimum Electromagnetic Exposure.
EIRP_AP = 17 dBm. ∗MAE between the calculation made by the RT software and the estimation made by the ML+GA approach.

2) WIRELESS NETWORK PLANNING FOR MINIMUM
HUMAN ELECTROMAGNETIC EXPOSURE

To account for the human exposure, we set parameter K
in Equation (8) to (5). Table 5 summarizes the deploy-
ment using the proposal ML+GA accounting for minimum
power density. To validate the approach of introducing
this constraint, we evaluated the average received power
of the GA-proposed deployment, according to the RT
software. By comparing the results in terms of coverage
percentage, we can notice that the RT tool shows around
1% more than the ML+GA. The results show that S is
indeed reduced (at least 21%) after applying the exposure
minimization (see column ‘Reduction’ in Table 5), but at
the expense of a higher number of required APs (+3 for
the three buildings). However, in the validation with the
RT tool the reduction of S is 19%, but at the expense
of a higher coverage. These results illustrate the trade-off
between the number of APs and the exposure within the
network.
Therefore, we investigate this trade-off via the Pareto front

shon in Figure 9. Using equation (11) the simulations were
performed, and the three parameters (coverage percentage,
number of required AP and transmitted power) were stored.
In the end, we show five different graphs, which represent the
Pareto front for the 95% (the minimum coverage percentage
we guarantee in our design) to 100% coverage. For a low
number of deployed APs, and different coverage percentage
value a different value of SArea was obtained, which means
if we need more coverage keeping low the number of AP,
the EIRP_AP should be higher. However, when the number
of APs is increased (corresponding with a lower possible
EIRP_AP), the SArea value trends to a minimum of 0.02
μW/m2 with a more homogeneous exposure value in the
area.

3) COMPUTATIONAL COMPLEXITY

The proposed method in this research consists of a GA with a
path loss model based on a ML-model, drastically improving
calculation time compared to a traditional approach of a GA
with a ray-tracing PL model.
The overall computational complexity of an SBR ray

tracer, for a single transmitter-receiver link, increases with
the number of rays launched by the transmitter, the number
of objects to be tested for intersections with the rays.
Complexity increases linearly with the number of allowed
reflections and exponentially with the number of diffractions,
as diffractions involve the creation of new rays around the
diffracting edge [55]. Making abstraction of this difference
and treating them as similar interactions, we can consider
the complexity for one given access point location to be
O(rnm3), with r the number of receiver points in the area, n
the number of rays shot per transmitter-receiver link, and m
the number of elements in the environment that could interact
with each ray (here assuming 3 possible interactions). In
the context of network planning, where a lot of different
candidate access point locations need to be evaluated, this
rapidly leads to excessive calculation time.
The complexity of the (one-time) offline training of the

machine learning model is largely determined by the matrix
operations involved in handling the covariance matrix K of
the data, with dimensions nxn, where the n is the number
(data from two buildings) of data points used in the dataset
(n = 14391 for iGent building, n = 27234 for Zuiderpoort
building and n = 14400 for Koutitas building, see Table 1).
The complexity for this algorithm is given by O(n3) [56]. One
data point corresponds to a ray tracing calculation for one
transmitter-receiver link. Once the machine learning model is
obtained, its evaluation is solving a linear equation to obtain
the PL corresponding with the set of correlated inputs.
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FIGURE 7. Network deployment using GA and ML models for 12/16QAM/9.5dB/3080
Mbps/-64dBm (See Table 3) and accounting only for the minimum number of APs.
White dots represent the APs locations. EIRP_AP = 20 dBm. (a) iGent building.
(b) Zuiderpoort building. (c) Koutitas building.

In general, the computational complexity of GAs depends
on various factors and settings. The overall computational
complexity of a genetic algorithm per generation can be
estimated as the sum of the complexities of evaluating the
fitness of all individuals, performing selection, crossover, and
mutation. Thus, for one generation, the complexity might
be approximated as C = O(N ∗ Cf + N ∗ CGO), with N the
population size, Cf the complexity of evaluating the fitness
function, and C the total complexity of the genetic operations
(selection, crossover, mutation). Here, Cf (equation (7)) is
a simple linear evaluation. Given G generations, the total
complexity of the GA would be, C = O(G ∗ N ∗ (Cf +
CGO)) [57].

FIGURE 8. Network deployment tested with ray-tracing software using the APs
locations obtained with the combination ML + GA. White dots represent the APs
locations. EIRP_AP = 20 dBm. (a) iGent building. (b) Zuiderpoort building. (c) Koutitas
building.

The main advantage of the proposed approach in this
research, is that the ML model is trained and validated only
once, offering a flexible solution (optimized with a GA) that
can quickly optimize deployments with other QoS, energy,
and/or exposure constraints. However, using ray tracing in
combination with a GA is not feasible when we must
evaluate several candidates for network deployments because
of the high demand of computational resources and time
consuming.

V. CONCLUSION AND FUTURE WORK
We propose a novel indoor 5G network planning approach in
the mmWave (28GHz) based on the combination of Machine
Learning and a Genetic Algorithm. With information from
two buildings, we constructed a generic model (validated
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FIGURE 9. Trade-off between the required number of APs and the 95 percentile of
SArea varying the transmitted power.

in other building) able to estimate the PL generated by a
complex ray-tracing model (Remcom Wireless Insite) based
on information related to the floor environment. We use
a GP algorithm to build the generic PL model. In the
second phase, the ML model is used in combination with
a GA to perform network planning for finding the minimal
number of APs to provide coverage and accounting for the
minimum electromagnetic exposure. The proposed ML+GA
is able to provide the desired coverage requirements to
at least 95% of the Rx points with an average of the
MAE of 4.9 dB (compared to the ray-tracer PL output)
and provides full flexibility towards re-planning, with only
a minor impact on model performance. Accounting for a
minimum of electromagnetic exposure our model was able to
reduce the incident power density by at least 18%. A Pareto
front showed how network deployments form a trade-off
between exposure, the required number of APs, and coverage
percentage.
Future work will consist of using the ML+GA approach

in combination with massive MIMO and beam-forming to
perform exposure-aware network planning in a dynamic
industrial scenario with operators performing specific tasks
inside a factory (Industry 4.0).
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