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ABSTRACT Mobile edge caching is regarded as a promising technology for reducing network latency
and alleviating network congestion by efficiently offloading data traffic and computations to cache-enabled
edge nodes. To fully leverage the benefits of edge caching, it is essential to jointly optimize caching and
communication strategies, accounting for dynamic content request pattern and unstable nature of wireless
mobile networks. Motivated by this, we study a joint cache replacement and user association strategy
for minimizing the content delivery latency in cache-enabled cloud radio access network (C-RAN) where
remote radio heads (RRHs) cache some contents for serving the content request without downloading the
requested content from centralized baseband unit (BBU) via fronthaul. Unlike traditional cache placement
strategies, our cache replacement facilitates gradual and timely updates while serving user content requests,
without imposing additional network overhead. Specifically, whenever a user requests a content, BBU
makes decisions on selecting a RRH for serving user request and on replacing the cached data of the
selected RRH by taking into account the user location, cache status of RRHs, and impact on subsequent
content deliveries. We optimize the selection of RRH to serve user request and the replacement of
cached data by formulating a latency minimization problem using Markov Decision Process (MDP). This
formulation considers the tradeoff between cache hit ratio and communication reliability. To develop
an effective strategy for solving the MDP, we employ a deep reinforcement learning (DRL) algorithm
and design a novel neural network structure and input feature map, specifically tailored to our problem
domain. Simulation results show that the proposed approach learns effective strategy appropriate to a
given environment, thereby outperforming not only the traditional rule-based strategies but also a typical
DRL algorithm in terms of average latency. The proposed approach is shown to be relatively robust to
time-variant content popularity by quickly adapting to new popularity distribution.

INDEX TERMS Cache replacement, C-RAN, DRL, mobile edge caching, user association.

I. INTRODUCTION

NETWORK densification is considered as an effective
solution to cope with the rapid growth of mobile

traffics, driven primarily by the proliferation of mobile
devices and the increasing demand for high data-rate
services [1]. The dense deployment of base stations (BSs)
significantly improve the area throughput by increasing
spatial spectrum reuse with the reduced communication
distance [2], [3]. However, the dense BS deployment entails

a high inter-cell interference and a high total cost of
ownership (TCO) including capital expenditure (CAPEX)
and operating expenditure (OPEX), and these are considered
as main obstacles for deploying more BSs.
As an effective architecture to deal with aforementioned

challenges, cloud radio access network (C-RAN) has been
considered in [4], [5], [6], [7]. In C-RAN, the baseband
processing for multiple distributed access points, called
remote radio heads (RRHs), is conducted at a centralized
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baseband unit (BBU). In virtue of the centralized processing,
C-RAN architecture enhances the inter-cell interference
management as well as improves the resource efficiency with
resource pooling. Furthermore, wireless fronthaul between
RRHs and centralized BBU provides ease of network
deployment, flexibility, and cost-effectiveness. One of the
main challenges of C-RAN is to deal with the performance
bottleneck caused by the limited wireless fronthaul capacity
and stability [8]. To improve the network throughput by
avoiding bottleneck in wireless fronthaul, the communication
resource allocation and transmission techniques have been
extensively investigated in various scenarios [4], [5], [6], [7].

With the paradigm shift from connection-centric commu-
nications to content-centric communications, such as video
streaming services, caching capability at edge nodes has
attracted great attention as a powerful tool to mitigate
the problems caused by the limited fronthaul capac-
ity [9], [10], [11]. In cache-enabled wireless networks, the
content cached at the edge nodes can be exploited to reduce
not only the traffic burden on the fronthaul network but
also the communication latency from a remote server by
offloading traffic to relative cheap memory resources. Since
such gains are generally proportional to the cache hit ratio,
edge caching are becoming more prominent with the facts
that a few popular contents account for most of mobile traffic
and the price per unit of the memory capacity required for
caching declines consistently [12], [13], [14]. In a cache-
enabled network with a single BS, the BS is required to
cache some contents with highest request probabilities to
maximize the cache hit ratio and the network performance.
When there is no prior information on the content popularity,
the processes of learning content popularity and caching
popular content have been tackled with algorithms for
the multi-armed bandit (MAB) problem [15]. In small-
cell networks with multiple BSs, the content placements at
BSs should additionally take account of content-centric user
association to improve cache hit ratio [16], [17]. In other
words, since the content-centric user association makes it
possible to utilize the cached contents at multiple nearby
BSs to deal with a user request, caching contents with
highest request probabilities at all BSs are not always
the optimal content placement strategy for maximizing
the cache hit ratio. Accordingly, for given user and BS
deployments, the content placement for BSs has been inves-
tigated to improve the network performance in a centralized
manner [18], [19], [20]. In situations where the content
popularity information is initially unknown, an algorithm
for MAB problem has been adopted for the decentralized
content placement and sharing among BSs [21]. In addition
to the content placement, the user association also should
be carefully decided by taking account of BS-user link
conditions and cache status at BSs jointly to strike a
balance between the cache hit ratio and communication
reliability [22], [23]. In this context, the joint optimization
of content placement and user association have been tackled
with iterative algorithms [24], [25], [26], [27], [28], [28],

[29], latent factor model (LFM) [30], and deep reinforcement
learning (DRL) [31], [32].

Generally, the content placement strategy periodically
updates the cached contents in a proactive manner. Such
proactive and periodic cache update makes the content
placement strategy unsuitable for dynamic environments with
high user mobility and non-stationary content popularity
distribution since it does not change the cached content in-
between the update periods. Especially in scenarios where
content popularity must be inferred from user requests,
changes in content popularity information tends to be
predominantly observed during peak hours. However, tradi-
tional cache placement strategies, which typically schedule
periodic updates during off-peak hours to avoid network
congestion, often struggle to effectively adapt to popularity
changes observed during peak hours. For continuous and
prompt adaptation to dynamic environments, the cached
content can be managed in a reactive manner with cache
replacement strategies. Although the typical strategies used
in content delivery network (CDN), such as least recently
used (LRU) and frequently used (LFU), can be utilized
for online cache update in cache-enabled edge networks,
their performance gain is limited by their independence on
network topology and link condition. The optimization of
cache replacement strategy can be considered as sequential
decision problem, where a content is sequentially replaced
to enhance the long-term network performance under
uncertainty on its consequences. Based on the sequential
structure, the cache replacement has been formulated as
Markov decision process (MDP) and solved with DRL
approaches in [33], [34]. Multi-agent Q-learning-based cache
replacement has been investigated to improve cache hit ratio
in a cache-enabled dense network with simplified wireless
channel model [33]. In the cellular network where devices
are capable of device-to-device communication, effective
cache replacement strategy for minimizing transmission cost
has been investigated in [34]. These works have shown
that the cache replacement strategies derived from the
reinforcement learning (RL) outperforms LRU and LFU
based strategies by taking additional account of network
topology and cache status. Although the results in [33], [34]
have shown the effectiveness of RL on solving the cache
replacement problems, it is unable to apply their methods to
practical scenarios with high-dimensional state spaces due
to limitations of lookup table-based learning algorithms. To
deal with such limitations of the classical RL algorithms,
DRL algorithms have been utilized for deriving practical
cache replacement strategies [35], [36], [37], [38], [39]. The
DRL-based cache replacement for a single BS has been
investigated to cope with dynamic content popularity in [35].
In cellular networks with multiple cache-enabled BSs, DRL
has been utilized to derive centralized cache replacement
strategy that takes advantage of cooperative edge caching to
improve network performances [36]. To improve scalability,
the decentralized cache replacement strategies have been
developed with multi-agent DRL algorithms in cellular
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networks [37], [38]. A federated learning-based cooperative
caching framework was developed in [39] to address the
challenge of reducing high computation and communication
costs for distributed cache optimization in mobile edge
networks.
Although the joint optimization with user association has

potential to boost the edge caching gain by expanding
available caches for serving a user, similarly as in the
case of content placement [24], [25], [26], [27], [28], [31],
[32], the conventional work on the cache replacement have
not considered the cache-aware flexible user association.
Specifically, most existing studies on cache replacement
have considered fixed cellular regions and corresponding
user associations, so that their cache replacement strategies
have concentrated on cooperative edge caching for given
user association [34], [36], [37], [38]. Furthermore, existing
studies on cache replacement have neglected the physical
layer issues, such as wireless channel fading and transmission
errors, in the problem formulation.
Motivated by these, we study the joint cache replacement

and user association problem for minimizing the expected
content delivery latency in cache-enabled C-RAN where the
cache status and user association of multiple RRHs are coor-
dinated by the centralized BBU. We focus on reducing the
latency caused by re-transmissions with wireless transmis-
sion failure. In other words, bad channel conditions with deep
fading may lead to the delivery latency with re-transmissions
in wireless fronthaul and access links. Moreover, since the
latency depends on not only the number of re-transmissions
but also the availability of the associated RRH’s cache, there
is a tradeoff between the communication reliability and the
cache hit ratio in the joint optimization of user association
and cache replacement. By taking into account this tradeoff
relationship and the nature of the cache replacement, the
problem is formulated by MDP and is tackled with the
DRL algorithm to derive the strategy adaptable to time-
variant wireless channel and content popularity. Moreover, to
facilitate learning, we design a novel structure of deep neural
network (DNN) and corresponding input feature map on the
basis of the problem characteristics, such as the consecutive
chunk delivery for a content request and the interrelationships
among caches of RRHs. Simulation results show that the
proposed strategy is able to achieve lower average latency
than location-based and content-based user associations with
traditional rule-based cache replacement. This indicates that
the proposed learning approach is able to learn an effective
cache replacement and user association strategy to minimize
the expected latency by balancing communication reliability
and cache hit ratio. Furthermore, it is important to note that
the proposed learning approach outperforms a typical DRL
algorithm in terms of not only the average latency but also
the convergence rate of the training process. This indicates
that the DNN structure and input feature design based on
the problem characteristics are useful to facilitate appropriate
training by limiting unnecessary propagation in the model
update. Based on such benefits, the proposed approach is

TABLE 1. List of abbreviations.

shown to rapidly adapt to environmental changes in non-
stationary scenarios with time-variant content popularity.
The main contributions of our work can be summarized

as follows:

1) To the best of our knowledge, this is an initial
work that formulates the joint optimization of user
association and cache replacement in cache-enabled
C-RAN with considering the tradeoff relationship
between communication reliability and cache hit ratio.

2) Based on the characteristics of the problem, we design
novel structures of DNN and input feature map that
are specialized for solving the formulated MDP with
DRL algorithm. The proposed learning approach not
only improves the convergence speed of model training
but also enables the converged strategy to achieve
lower average latency than the typical DRL algorithm.
Furthermore, such benefits make it possible for the
strategy to adapt to the content popularity changes
rapidly.

3) The simulation results show that the proposed approach
not only outperforms the traditional rule-based strate-
gies in all simulation environments but also achieves
the performance comparable to the optimal strategy
in some special cases. Furthermore, the behavior of
the converged strategy provides valuable insights into
the way of user association and cache replacement to
minimize the expected latency in various situations.
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FIGURE 1. Cache-enabled C-RAN with K = 4 RRHs.

The remainder of the paper is organized as follows.
Section II introduces the system model. In Section III,
joint user association and cache replacement problem is
formulated in the form of MDP, and the DRL algorithm
for solving MDP is presented. Section IV provides the
novel structure of DNN and corresponding input feature map
for facilitating the training process of the DRL algorithm,
and the performance of the proposed approach is evaluated
through intensive simulations in Section V. Finally, we
conclude this paper in Section VI.

II. SYSTEM MODEL
As illustrated in Fig. 1, we consider C-RAN with a single
centralized BBU and K cache-enabled RRHs. The centralized
BBU manages the entire network to efficiently deal with the
content request of user located within the coverage area, and
the one of RRHs delivers the requested content after associa-
tion with the content requesting user. Note that a user is able
to associate with any RRH within entire coverage area. It is
assumed that there is no interference in wireless fronthaul
and access links with the centralized resource coordination at
the BBU. We consider 2-dimensional coordinate to represent
the location of nodes, and the coverage is defined as the
set of coordinates C = {(x, y) : |x| ≤ xmax, |y| ≤ ymax}. The
centralized BBU is assumed to be located in the center of the
coverage, and its coordinate is denoted by the origin (0, 0). A
content requesting user is assumed to be located in a random
coordinate (xusr,i, yusr,i) ∈ C. Fig. 1 shows an example of
network deployment with K = 4. Each content is partitioned
into Np equal-sized chunks and is transferred and cached in
the unit of chunk. The centralized BBU is assumed to be
able to download all L contents from data servers via the
wired-backhaul network, but RRH k ∈ {1, 2, . . . ,K} is able
to cache a set of chunksMk whose cardinality cannot exceed

the memory capacity, |Mk| ≤ M. If a chunk of the requested
content is not cached at the associated RRH, it needs to
retrieve the chunk from the centralized BBU via wireless
fronthaul. The centralized BBU is assumed to know the
locations of RRHs, cache status of each RRH, and location of
content requesting user. Based on the location information,
the centralized BBU knows the long-term channel state
information (CSI) of all fronthaul and access links. Based
on such information, the centralized BBU makes decisions
on the user association by selecting RRH to deliver a chunk
of the requested content and the cache replacement of the
associated RRH by selecting a cached chunk to be replaced
with new chunk in case that the requested chunk is not
cached at the associated RRH. In other words, for each
chunk delivery of the requested content, the centralized
BBU controls the user association and cache replacement
to reduce the long-term average latency for dealing with a
series of content requests. Note that user re-associations are
facilitated within the centralized BBU, significantly reducing
the associated overhead and delay [40]. Hence, the frequent
user re-associations are assumed not to be problematic in
our framework, unlike conventional cellular networks.
Suppose RRH k is selected for delivering a chunk μi,n,

which is chunk n of the i-th content request, to the user.
If the selected RRH does not cache the chunk μi,n /∈Mk,
it has to retrieve the chunk from BBU through wireless
fronthaul link and replace one of cached chunks with the
new one. Considering channel fading in wireless fronthaul,
the probability of transmission failure can be represented as

pFH,k = Pr
[
BFH log2

(
1+ |hFH,k|2ρFH

)
≤ R

]

= 1− exp

[
− 2RFH − 1

ρFHd
−αFH
FH,k

]
, (1)

where ρFH denotes a transmit signal-to-noise-ratio (SNR)
in the fronthaul transmission, BFH denotes a transmission
bandwidth of fronthaul link, R denotes a transmission rate,
RFH = R

BFH
, and hFH,k ∼ CN (0, d−αFH

FH,k ) denotes the fading
channel gain of link from the centralized BBU to RRH k.
Herein, dFH,k and αFH denote the link distance and path
loss exponent, respectively. For reliable content delivery,
the centralized BBU re-transmits the chunk until RRH
successfully receives it. Hence, the number of transmissions
for successful chunk delivery nFH,k can be considered as
a random variable that follows geometric distribution with
success probability 1 − pFH,k. After the successful chunk
reception at RRH k, the set Mk is updated by replacing one
of cached chunks with the newly received one according
to the decision of the centralized BBU. Then, the RRH k
is able to deliver the chunk μi,n to the requesting user via
access link. Similar to the wireless fronthaul link, the chunk
transmission in the access link can fail with the probability

pAC,k = 1− exp

[
− 2RAC − 1

ρACd
−αAC
AC,k

]
, (2)
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where dAC,k denotes distance of the access link from RRH k
to user, RAC = R

BAC
denotes a transmission rate normalized

by the access link bandwidth BAC, and ρAC and αAC denote
SNR and path loss exponent in access link. The number
of transmissions nAC,k for successful chunk delivery follows
geometric distribution with success probability 1 − pAC,k.
Note that the failure probability pAC,k depends on the
location of the content requesting user, while the failure
probability pFH,k is constant since the location of RRH does
not change.
On the other hand, if the selected RRH k already caches

the requested chunk μi,n ∈Mk, the RRH is able to transmit
the chunk μi,n to the user via access link without fronthaul
use. Hence, there is no update on Mk.

Suppose that transmissions over fronthaul link and access
link take times of τFH and τAC, respectively. The values of
τFH and τAC are dependant on processing time of receiving
node and transmission time interval (TTI) of radio access
technology (RAT). Then, the communication latency for
delivering the chunk μi,n to the user can be represented as

τi,n =
{

τBH + nFH,kτFH + nAC,kτAC, μi,n /∈Mk

nAC,kτAC, μi,n ∈Mk
, (3)

where τBH denotes the time for BBU to download the
requested chunk from a remote data server. Note that it
is able to avoid the latency occurred in backhaul and
fronthaul links if the requested chunk is already cached at the
associated RRH, μi,n ∈Mk. Eventually, as a performance
measure, we consider the long-term latency for dealing with
T consecutive content requests from users as follows.

τsum =
T∑
i=1

Np∑
n=1

τi,n. (4)

As shown in (1), (2), and (3), the transmission reliability
and the cache availability are two main factors affecting the
latency τsum. There is a tradeoff between the two factors in
the network latency reduction. For example, if the centralized
BBU adopts the distance-based user association to minimize
the transmission failure, the available caches are limited to
the chunks cached at the nearest RRH to the user. If the
centralized BBU adopts the content-based user association
with non-overlapped chunk caching to maximize the cache
hit ratio, the access link transmission fails more frequently
with a long access link distance. Accordingly, the joint
optimization of the user association and cache replacement
is important to minimize the long-term latency τsum.

III. LEARNING BASED JOINT USER ASSOCIATION AND
CACHE REPLACEMENT
It is hard to derive an explicit solution of the joint
user association and cache replacement problem with the
offline optimization techniques due to the following reasons:
i) Our problem is required to make a series of decisions
on user association and cache replacement without the
future information, such as the user locations, the requested

contents, and the cached chunks of the RRHs. ii) The
history of decision makings determines the cache status of
RRHs, which has impact on subsequent decision makings.
Consequently, each decision making has to be concerned
with not only the efficient chunk delivery in present situation
but also its influence on the future chunk delivery.

A. PROBLEM FORMULATION WITH MDP
We formulate the problem with MDP, which provides a
mathematical framework for modeling decision making in
situations where outcomes are partly random and partly
under the control of a decision maker. For the sake of
notational simplicity, we define t = Np(i − 1) + n as the
decision making step for delivering chunk n of the i-th
requested content. Hence, the subscripts i and n of symbols
can be replaced with t, e.g., μi,n → μt. The MDP of our
problem consists of the following four components:
• State: A state at time step t is defined as a tuple

st =
(
μt,

(
xusr,t, yusr,t

)
,Mall,t

)
, (5)

where (xusr,t, yusr,t) denotes a coordinate of the
content requesting user at step t and Mall,t =
(M1,t,M2,t, . . . ,MK,t) denotes a tuple of the caching
sets at step t. Note that the coordinate (xusr,t, yusr,t) is
assumed to be fixed at least for Np consecutive steps,
Np(i−1)+1 ≤ t ≤ Npi, to complete the content delivery
to the i-th content requesting user. Define S as the set
of all possible states.

• Action: An action at step t is defined as a tuple

at = (k, μ̆k), (6)

where k denotes the index of RRH which serves the
content requesting user, and μ̆k ∈ Mk,t denotes a
chunk that is replaced with the new one μt. Note that
user association persists when the value of k remains
constant across successive time intervals. Additionally,
cache replacement is disregarded if the replacement
indicator μ̆k aligns with the requested chunk μk. Define
A as the set of all possible actions.

• Transition probability: If t mod Np �= 0, the delivery of
a requested content is not completed, so that the next
chunk μt+1 will be transmitted to the same user. Hence,
if t mod Np �= 0, the action at = (k, μ̆k) leads to the
state transition from st to st+1 composed of

μt+1 = μi,n+1,(
xusr,t+1, yusr,t+1

) = (
xusr,t, yusr,t

)
,

Mk′,t+1 =
{Mk′,t if k′ �= k
Mk′,t\{μ̆k′ } ∪ {μt} if k′ = k

. (7)

On the other hand, if t mod Np = 0 and t is not
terminal step, the system starts to deliver a content
requested by a new user. Since the requesting user and
its requesting content change independently with the
history, the requesting user location (xusr,t+1, yusr,t+1)

and the chunk μt+1 are determined independently with
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the previous action at and state st. Specifically, the
action at = (k, μ̆k) leads to the state transition from st
to st+1 composed of

μt+1 = μi+1,1,(
xusr,t+1, yusr,t+1

) ∈ C,

Mk′,t+1 =
{Mk′,t if k′ �= k
Mk′,t\{μ̆k′ } ∪ {μt} if k′ = k

. (8)

The next chunk μt+1 becomes the initial chunk of
the new requesting content μi+1,1, which is randomly
determined with the content popularity distribution.
The user location (xusr,t+1, yusr,t+1) is an independent
random coordinate belonging to C. The caching sets are
updated by the action at in the same way as (7).

• Reward: After taking action at, it is able to obtain the
reward

rt+1 = −τt. (9)

From (3), it is evident that transmission reliability,
influenced by the associated RRH k, and cache hit ratio,
influenced by cache status Mk, are primary factors
affecting reward enhancement. However, as discussed
in Section II, it is unable to maximize the gains of both
factors simultaneously due to conflicting strategies for
optimizing cache hit ratio and transmission reliability in
terms of reward. Therefore, the centralized BBU should
carefully balance these factors when taking action.

With a discount factor γ ∈ [0, 1], the return at time step
t ∈ {1, 2, . . . ,NpT} is defined as

Gt =
TNp∑
t′=t

γ t
′−trt′+1

= −
TNp∑
t′=t

γ t
′−tτt′ . (10)

Eventually, under the MDP framework, the objective is to
derive the optimal way of selecting actions, called a policy,
for maximizing the expected value of return (10) for t ∈
{1, 2, . . . ,NpT}. Note that the maximization of the expected
return is equivalent to the minimization of the expected
latency for dealing with T consecutive content requests.

B. DEEP REINFORCEMENT LEARNING
Numerous advanced DRL algorithms are applicable for
deriving a joint user association and cache replacement
strategy that effectively minimizes the latency under the
formulated MDP. In this study, we employ deep Q-network
(DQN) as a fundamental and representative DRL algorithm
and enhance its training process by developing a feature map
and DNN structure. Importantly, these developed compo-
nents can be reused for evaluating the state in other advanced
DRL algorithms, such as double DQN (DDQN) [41] and
deep deterministic policy gradient (DDPG) [31], [42], [43].

Algorithm 1 Deep Q-Network [44]
1: Initialize replay memory B
2: Initialize parameters θ randomly
3: Initialize target parameters θ̄ ← θ
4: for each episode do
5: for t = 1,NpT do
6: Observe state st
7: Select action at = arg max

a∈A
Q(st, a; θ)+ wa

8: Observe reward rt and next state st+1
9: Store transition (st, at, rt, st+1) in B

10: Sample mini-batch of (st′ , at′ , rt′ , st′+1) from B
11: gt′ ←

{
rt′ , t′ + 1 = NpT
rt′ + γ max

a′∈A
Q(st′+1, a′; θ̄ ) , t′ + 1 �= NpT

12: Perform a stochastic gradient descent step on(
gt′ − Q(st′ , at′ ; θ)

)2 with respect to θ

13: Reset target parameters θ̄ ← θ
14: end for
15: end for

At every time step t, the average return, called Q-value,
is computed to evaluate state-action pairs and strategy is
updated on the basis of the Q-value. The Q-value for action
a ∈ A and state s ∈ S is defined as

Q(s, a) = E[Gt|st = s, at = a]. (11)

In our MDP structure, it is hard to compute and store
Q-values for all possible state-action pairs since there are

infinitely many states with
(LNp
M

)K
possible cache status

and continuous user coordinate. To deal with infinitely
many states, we adopt DQN algorithm that utilizes DNN
to approximate the relationship between state-action pair
and its corresponding expected return [44]. In other words,
instead of computing Q-values for all state-action pairs,
DQN constructs a DNN-based action-value function that well
approximates the actual Q-values for all state s and action
a pairs as follows

Q(s, a) ≈ Q(s, a; θ), (12)

where θ ∈ R
D denotes parameters for DNN model.

Specifically, the numerical representation of state s, called
input feature X(s), is defined to facilitate processing with
DNN model. For an input feature X(s), the DNN model
ζ(X(s); θ) is trained to return the approximated Q-values
of all |A| actions at the state s. In other words, a Q-value
Q(s, a; θ) is one entry of the output vector of the DNN
model ζ(X(s); θ). For the sake of notational simplicity, we
omit writing the explicit dependence of the input feature on
the state s in the rest of paper.

The DQN algorithm for training the parameter θ is
presented in Algorithm 1. In the line 7 of Algorithm 1, wa ∼
N (0, σ 2

w) denotes the artificial Gaussian noise for exploration
of under-exploited actions. With the trained parameters θ

from Algorithm 1, the strategy is determined by selecting
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FIGURE 2. Process of the proposed framework.

an action a ∈ A that maximizes the approximated Q-value
of current state s ∈ S ,

π(a|s) =
{

1 if a = arg max
a′∈A

Q
(
s, a′; θ)

0 otherwise.
(13)

Eventually, the training process for optimized joint user
association and cache replacement, including its interaction
with the environment, is depicted in Fig. 2. This illustration
offers a comprehensive overview of our system’s entire
process.

IV. NEURAL NETWORK DESIGN
Although universal approximation theorem states that DNN
can well-approximate any continuous function [45], it is not
straightforward to train the parameters θ for the accurate
Q-value approximation. Therefore, it is required to carefully
design the input features X and DNN model ζ(X; θ) by
taking into account the problem characteristics to facilitate
the desirable parameter training.
In the proposed design, we construct an input feature X as

a matrix whose entries are functions of the state information
(μt, (xusr,t, yusr,t),Mall,t). Specifically, the chunks of all
contents are indexed by j ∈ {1, 2, . . . ,LNp}, and the content
l ∈ {1, 2, . . . ,L} consists of the chunks indexed by j ∈ {(l−
1)Np + 1, (l − 1)Np + 2, . . . , lNp}. Based on this indexing,
each chunk j is represented as an one-hot encoded vector
qTj ∈ {0, 1}1×LNp . In other words, the requested chunk j
is denoted by a vector qj with all entries 0 except 1 in
the j-th entry. To represent the cache statuses of K RRHs,
we define a matrix M ∈ {0, 1}K×LNp whose entry mk,j in
the k-th row and j-th column is 1 if the chunk j is cached
in RRH k and 0 otherwise. Due to the memory capacity
of RRHs, the entries in k-th row of the matrix M satisfy∑LNp

j=1 mk,j ≤ M for k ∈ {1, 2, . . . ,K}. The transmission

failure probabilities of K access links are denoted by a vector
pAC = [pAC,1, pAC,2, . . . , pAC,K]T .

Based on the requested chunk qj, cache status M, and
transmission failure probability pAC, we define the feature
map X ∈ R

K×LNp whose entry in the k-th row and j-th
column is

xk,j = θ
(0)
1

(
1− pAC,k

)+ θ
(0)
2 qj + mk,j, (14)

where θ
(0)
1 , θ

(0)
2 ∈ R denote trainable parameters for

balancing the importance of transmission reliability 1−pAC,
requested chunk qj, and cache status M in a decision making.
As illustrated in Fig. 2, the proposed DNN consists of

two 1D-convolution layers and three fully connected (FC)
layers. In the proposed DNN structure, the convolution layers
are designed on the basis of two important characteristics
of the problem. First, in the process of a content delivery,
Np consecutive chunks of the requested content should be
sequentially delivered to the user. In other words, the chunk
j + 1 is delivered after successful delivery of the chunk
j if j mod Np �= 0. For this reason, the cache status on
remaining undelivered chunks of the requested content is
important to avoid replacing them before delivery. On the
other hand, if j mod Np = 0, the delivery of chunk j + 1
is independent with the delivery of chunk j. Based on such
correlation between Np chunks of a content, we introduce
a convolution layer with C1 filters tailored to the content
size as a first layer of the proposed DNN. Specifically, each
filter c1 ∈ {1, 2, . . . ,C1} is a row vector consisting of Np

trainable parameters, θ
(1)
c1 ∈ R

1×Np , and the strides of the
convolution operation with the feature map X along column
and row are Np and 1, respectively. Second, in selection of the
cached chunk to be replaced, the duplicated chunk caching
at multiple RRHs is an important information for managing
the cache hit ratio of the network. The replacement of a
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TABLE 2. Specification of the proposed DNN.

chunk with high cache duplication can increase the cache
hit ratio. To facilitate the extraction of the feature on the
cache duplication from the state information, we introduce
the convolution layer with C2 filters as a second layer of the
proposed DNN. Specifically, each filter c2 ∈ {1, 2, . . . ,C2}
is a column vector consisting of K trainable parameters,
θ

(2)
c2 ∈ R

K×1, and the stride of the convolution operation
with the output of the first layer is 1. Note that there are no
pooling layers after the convolution layers, contrary to the
general convolutional neural network (CNN).
Following the two convolution layers, three FC layers

produce the approximated Q-values for all actions in current
state on the basis of the extracted features. The three FC
layers involve F1, F2, and F3 = KLNp units. The leaky
rectified linear unit (ReLU), which returns max{x, 0.01x}
for an input x, is adopted as the activation function for all
convolution and FC layers. Eventually, the details of the
proposed DNN structure are summarized in Table 2.

V. SIMULATION RESULT
In this section, the performance of the learning-based joint
user association and cache replacement strategy is evaluated
via computer simulations. In all simulation environments,
each content request is generated according to Zipf’s law
with the exponent s, and K RRHs are regularly deployed
within the coverage areas. Unless otherwise stated, we use
the system parameters described in Table 3 in all simulation
results. For performance comparisons, we consider some
baseline strategies on cache replacement and user association
as follows:
• No-cache: All K RRHs do not have the caching
capability. The user associates with the nearest RRH,
and the associated RRH should receive all chunks of the
requested content from the centralized BBU to forward
them to the user.

• Distance-based user association and least frequently
used replacement (DUA-LFU): The user associates with
the nearest RRH, and the associated RRH removes
the least frequently used chunk whenever its memory
is overflowed with the new chunk received from the
centralized BBU.

• Cache-based user association and least frequently used
replacement (CUA-LFU): The user associates with the
nearest RRH that caches the requested chunk, and the
RRH removes the least frequently used chunk whenever

TABLE 3. Simulation environment.

its memory is overflowed. If the requested chunk is not
cached at any RRHs, it operates in the same manner as
DUA-LFU.

Note that most conventional edge caching strategies are
not applicable to our problem as they were not designed
for making sequential decisions on user association and
cache replacement. In addition, to see the effectiveness of
the proposed DRL approach, we compare it with several
learning-based benchmark methods.

• DDQN: This method utilizes DDQN algorithm [41] for
training the model and making decisions. It leverages
the input feature map and DNN structure proposed in
our work.

• DDPG: This method utilizes DDPG algorithm [42] for
training the model and making decisions. The proposed
input feature map is applied to both the actor and critic
networks. The critic network adopts the proposed DNN
structure, while the actor network consists of three FC
layers.

• Typical DQN/DDQN/DDPG: These methods train mod-
els and make decisions according to their respective
DQN/DDQN/DDPG algorithms. They employ a stan-
dard DNN architecture comprising five FC layers and
a basic input feature vector as follows.

xFCN =
[
mT ,qTj ,p

T
AC

]T
, (15)

where m ∈ {0, 1}KLNp×1 denotes a binary cache status
vector that is concatenation of the columns of M.

The parameter updates in DRL-based methods are per-
formed using the adaptive moment estimation (ADAM)
optimizer, with the hyperparameters specified in Table 4. In
the proposed DNN structure, the numbers of filters are C1 =
C2 = 20 and the numbers of units in three FC layers are
F1 = 400, F2 = 320, and F3 = 320. In the DNN structure
of typical DQN, the numbers of units in five FC layers are
F1 = 400, F2 = 400, F3 = 400, F4 = 320, and F5 = 320.

Fig. 3 shows the long-term average latency, τsum/T , as the
episode progresses. At the beginning of the initial episode,
the memory of each RRH is initialized with random M

VOLUME 5, 2024 3045



JEON et al.: LEARNING-BASED JOINT USER ASSOCIATION AND CACHE REPLACEMENT

TABLE 4. Hyper-parameters for learning.

FIGURE 3. Average latency versus episodes.

chunks in all methods since no prior information regarding
content popularity is assumed. The large performance gap
between No-cache and LFU-based baseline strategies, i.e.,
DUA-LFU and CUA-LFU, shows that the caching capa-
bility can provide significant performance gain in terms
of the average latency. Unlike three baseline strategies
that do not incorporate learning, learning-based approaches
iteratively refine their strategies through experience gained
from episodes. Eventually, learning-based approaches using
DQN and DDQN are shown to outperform the two rule-
based strategies after undergoing sufficient training episodes.
Additionally, both our proposed method and DDQN exhibit
enhanced performance over typical DQN and DDQN in
terms of convergence rate and average latency, thereby
validating the effectiveness of the proposed input feature
map and DNN structure. However, methods based on DDPG
fail to learn an effective strategy. This is likely because
DDPG, primarily designed for continuous action spaces,
is not optimally suited for the discrete action space of
our problem [48]. Notably, in our problem, the DQN-
based method is shown to outperform more advanced DRL
algorithms, specifically DDQN and DDPG, in terms of
convergence rate and training stability. While DDQN and
DDPG have been developed to address certain limitations
of the DQN algorithm, they introduce additional complexity,
which can hinder convergence and lead to instability dur-
ing training, especially in simpler environments [49], [50].
To focus on our main contributions and streamline the
presentation, the results from DDQN and DDPG are omitted
in the subsequent figures. This decision stems from DDQN’s
behavior being similar to that of DQN, albeit with a bit

FIGURE 4. Normalized histogram of the chunk cache counts.

slower convergence rate, and DDPG’s inability to learn an
effective strategy.
Fig. 4 shows the normalized histogram of the chunk cache

counts at K = 4 RRHs while handling 10,000 consecutive
content requests. For example, if the chunk j is cached at
all K = 4 RRHs all the time, the length of corresponding
stacked bar becomes 4 with four equi-sized pieces. For
DQN-based approaches, the simulation results are obtained
by adopting the trained DNN after 20,000 training episodes.
It is shown that the cache distributions of the LFU-based
strategies are relatively more concentrated on some popular
contents compared to the DQN-based approaches due to
their popularity-based cache replacement. Furthermore, in
the LFU-based strategies, the cache distributions of all RRHs
are shown to be almost the same. This is because each
RRH conducts the same popularity-based cache replacement
independently with the cache status of the other RRHs.
On the other hand, the cache distributions of DQN-based
approaches are relatively spread out since they additionally
consider the cooperative caching concept to improve the
cache hit ratio by jointly optimizing the user association and
cache replacement. Specifically, some popular contents are
cached at multiple RRHs similarly to LFU-based strategies
for improving communication reliability in access link, but
unpopular contents are cached at a single or only a few
RRHs for increasing the cache hit ratio. However, from the
observation of typical DQN that some unpopular contents
are cached at unnecessarily many RRHs, we can see that
the strategy learnt from typical DQN does not fully exploit
the cooperative caching gain. Consequently, the proposed
approach facilitates learning cooperative caching concept
for less popular content, which primarily contributes to its
achievement of lower average latency compared to the typical
DRL approaches, as demonstrated in Fig. 3.

Figs. 5, 6, 7 show the effect of system parameters on
the average latency. In all these figures, the results obtained
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FIGURE 5. Average latency versus coverage area, xmax and ymax.

FIGURE 6. Average latency versus content popularity concentration, s.

from learning-based approaches utilize DNNs pre-trained
with 20,000 episodes. Results for the No-cache are omitted
due to its significant performance gap compared to other
methods.
Fig. 5 shows the long-term average latency against the

system coverage, xmax and ymax. Since the system coverage
is directly related to the communication link distance, the
wide system coverage leads to high transmission failure
probability as shown in (1) and (2). In consequence,
the average latency increases with the system coverage
in all methods. However, the average latency increases
differently across methods due to variations in the number
of channel uses, influenced significantly by user association
and cache status. In scenarios where the transmission
failure probability is low with a limited coverage area,
the influence of re-transmissions on the latency becomes
negligibly small. When communication reliability is no
longer the primary concern, the optimal strategy prioritizes
maximizing the cache hit ratio, leading to behave like
CUA-LFU. Note that the proposed method demonstrates
an average latency that aligns with CUA-LFU, exhibiting
optimal performance within a limited coverage area. On
the other hand, when the transmission failure probability is
high with a large coverage, the communication reliability

FIGURE 7. Average latency versus memory capacity of a RRH, M .

becomes the dominant factor in the latency. Therefore,
in such contexts, prioritizing meticulous management of
communication reliability over cache hit ratio is crucial for
user association and cache replacement strategies, resembling
the behavior of DUA-LFU. The proposed method exhibits
this optimal characteristics by showing the average latency
of the proposed approach getting closer to that of DUA-LFU
as the coverage increases. Based on these observations, it
is evident that the proposed approach is able to learn an
effective strategies tailored to specific cell coverage areas,
facilitated by the designed input feature map and DNN.
Fig. 6 shows the long-term average latency against the

content popularity concentration, s. The popularity con-
centration on a few contents grows with Zipf’s exponent
s, and the repeated requests of a few popular contents
can reduce the latency by improving the cache hit ratio.
Consequently, the average latency decreases with increasing
s across all examined methods. When the popularity dis-
tribution is highly concentrated on a few contents with a
high s, it becomes necessary to duplicate cache the most
popular contents across multiple RRHs. This is essential for
enhancing cache hit ratio while maintaining communication
reliability. As a result, the optimal strategy tends to converge
towards DUA-LFU for extremely high s. It’s worth noting
that the proposed method is demonstrated to achieve such
optimal performance for very large s. On the other hand,
when the popularity distribution is widely dispersed with
a low s, the proposed method demonstrates significant
performance improvements through cooperative caching. In
this approach, RRHs strategically cache data chunks to
minimize duplication.
Fig. 7 shows the long-term average latency against the

memory capacity of a RRH, M. It is shown that the latency
decreases with M in all strategies, and the proposed approach
outperforms all the other baseline methods regardless of M.
Observing that the performance gap between the proposed
scheme and other baseline methods widens with increasing
M, it becomes evident that joint optimization of user
association and cache replacement is crucial, especially in
scenarios requiring cooperative caching.
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FIGURE 8. Average latency versus episode with time-variant content popularity.

In Fig. 8, we consider a non-stationary scenario where the
content popularity changes over time. The content request
probabilities are assumed to be circularly shifted by 5 ranks
every 500 episodes. For example, if the request probability of
content l ∈ {1, 2, . . . ,L} is qr, it changes to qr−5 if r > 5 or
qL+r−5 if r ≤ 5 after 500 episodes. The result shows that the
change in content popularity increases the average latency
instantly in all strategies, but it is reduced back down after
a few episodes. DUA-LFU shows a relatively high latency
rise when content popularity changes, compared to the
other strategies. This phenomenon comes from the fact that
the cache distribution of DUA-LFU is highly concentrated
on a few popular contents as shown in Fig. 4. In other
words, since all the RRHs cache almost the same chunks
in DUA-LFU, the cache hit ratio is affected severely by the
change in content popularity. Furthermore, it is interesting
to note that although typical DQN fails to converge due to
its slow learning convergence speed, the accelerated training
process with the proposed approach makes it possible to
successfully learn an effective strategy despite the content
popularity changes. This is attributed to the design of our
input feature map and DNN, facilitating the capture of
relationships among content chunks and RRHs’ cache status.

VI. CONCLUSION
In this paper, we have proposed a DRL based the joint
user association and cache replacement strategy to minimize
the content delivery latency in cache-enabled small-cell
networks. We have formulated a sequential decision problem
with MDP, and designed a novel DNN structure and input
feature map for DQN algorithm by taking into account
the problem characteristics to derive an effective strategy.
Simulation results in various environments have shown that
the proposed scheme outperforms not only the traditional
user association and cache replacement strategies but also
typical DQN algorithm in terms of the average latency. This
implies that the proposed DNN and input feature designs
facilitate to derive the improved strategy by exploiting
the interrelation between network elements in the training
process of DQN algorithm. From the observation that the

performance gap between the proposed approach and the
other baseline strategies grows with the memory capacity of
RRHs, we can also see that the well optimized strategy is
increasingly important with the rapid advances in memory
technology. In addition, even if the content popularity
changes in the middle of training process, the proposed
scheme has been shown to quickly adapt to the new content
popularity.
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