
Received 11 March 2024; revised 13 April 2024; accepted 24 April 2024. Date of publication 1 May 2024; date of current version 23 May 2024.

Digital Object Identifier 10.1109/OJCOMS.2024.3396077

Resource-Efficient Spectrum-Based Traffic
Classification on Constrained Devices

DAVID GÓEZ1 , ESRA AYCAN BEYAZIT1, LUIS A. FLETSCHER2, JUAN F. BOTERO 2, NATALIA GAVIRIA2,
STEVEN LATRÉ1, AND MIGUEL CAMELO 1

1Department of Computer Science, University of Antwerp—imec, 2000 Antwerp, Belgium

2Departamento de Ingeniería Electrónica, Universidad de Antioquia, Medellín 050010, Colombia

CORRESPONDING AUTHOR: D. GÓEZ (e-mail: GermanDavid.GoezSanchez@uantwerpen.be)

This work was supported in part by the Antwerpen IDLab Group; in part by the Universidad de Antioquia GITA Group; in part by the European Union’s Horizon
2020 Research and Innovation Program under Grant 101017109 (DAEMON); in part by the Colombian Ministry of Science Technology and Innovation

(Minciencias); and in part by the Communications Regulation Commission (CRC) under Contract CT 80740-035-2022.

ABSTRACT Traffic Classification (TC) systems are designed to identify the applications generating
network traffic. Recent advancements in TC leverage Deep Learning (DL) techniques, surpassing traditional
methods in complex scenarios, including those with encrypted traffic. Notably, state-of-the-art DL-based
TC systems have been developed for wireless networks using Physical Layer (L1) packets. This approach
overcomes the common limitation in TC research that assumes traffic flows within a wired network under a
single network management domain. Despite their benefits, DL-based TC systems often demand significant
computational resources, typically available only in cloud environments. Consequently, deploying models
at the edge is often infeasible due to their resource-intensive nature, given their original training and
optimization for high-resource environments. The inherent challenge lies in adapting these systems for
edge computing scenarios, including deployment at access points. In this paper, we propose a novel
methodology that exploits expert knowledge in combination with recent advances in Multi-Task Learning
(MTL) and Deep Neural Network (DNN) optimization to allow spectrum-based TC systems to run on
constrained devices. This paper propose a well-defined and innovative methodology for resource-efficient,
spectrum-based TC to address this issue, combining MTL with DNN optimization techniques. Performance
evaluations on an NVIDIA Jetson TX2 demonstrate that our most optimized MTL model, handling four TC
tasks, can reduce memory requirements by a factor of 2.65x and improve execution time by 3.6x compared
to sequential execution of four Single-Task Learning (STL) models in a server-grade configuration, with
minimal accuracy impact (less than a 0.5% drop) and energy efficiency of 0.97 millijoules per sample
at inference. Compared to other edge platforms such as the Raspberry Pi model 3B+ (RPI3B+) with a
low-power Artificial Intelligence (AI)-accelerator such as the Coral Tensor Processing Unit (TPU), the
NVIDIA Jetson achieves a 12-fold improvement in energy efficiency with no impact on accuracy.These are
the first available results to provide a benchmark for different performance metrics (memory, computing,
energy) over heterogeneous constrained devices for this type of TC system.

INDEX TERMS Artificial intelligence, deep learning, multi-task learning, power consumption, energy
efficiency, parallel computing, IQ samples, traffic classification, AI accelerator.

I. INTRODUCTION

IN THE modern era, wireless communication systems
have become a cornerstone of global connectivity, pivotal

in connecting many devices ranging from smartphones to

emerging Internet of Things (IoT) technologies [1]. As these
systems evolve to accommodate a growing number of devices
and data-intensive applications, the challenge of efficiently
managing spectrum resources while ensuring optimal Quality

c© 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.

For more information, see https://creativecommons.org/licenses/by/4.0/

3066 VOLUME 5, 2024

HTTPS://ORCID.ORG/0000-0001-7658-0994
HTTPS://ORCID.ORG/0000-0002-7072-8924
HTTPS://ORCID.ORG/0000-0001-8152-7143

of Service (QoS) becomes increasingly significant [2]. One
critical aspect in this context is the use of TC systems to
understand network traffic behavior. These systems enable
the correlation of traffic patterns with bandwidth and latency
requirements and facilitate enforcing specific security and
QoS policies [1], [3], [4].
Traditional TC systems primarily operate at the network or

application layer (byte/protocol representation), employing
various techniques such as Deep Packet Inspection (DPI),
port-based analysis, and statistical Machine Learning (ML)-
based flow analysis [4]. However, these methods have faced
significant challenges in performance, scalability, privacy
concerns, and the ability to handle encrypted traffic [5]. DL-
based TC systems have surpassed such traditional methods
and can be considered the state-of-the-art approach to
designing them [5], [6]. However, TC systems often assume
that traffic belongs to the same network domain and utilize
a byte/protocol representation at the Link Layer (L2) or
above, typically in a wired network environment. Although
this system is efficient in wired environments, it also faces
limitations when dealing with heterogeneous and complex
settings like wireless networks.
A new generation of DL-based TC systems operating

at the spectrum level has emerged in response to the
abovementioned limitations [7], [8], [9]. Analyzing network
traffic using L1 packets offers a unique perspective, allowing
the classification of traffic types based on their spectral
signatures, encryption independence, network domain, or the
technology generating the L1 packets. However, it has been
shown that the resulting DL models are large and complex,
requiring high-end capacity hardware for deployment and
execution. This is primarily due to L1 packets, in contrast to
L2 or higher packet representations, which undergo modula-
tion, coding, and sometimes encryption before transmission.
Consequently, transmitting identical user L2 packets can lead
to varied spectral representations.
Consider, for example, the models presented in [7],

which demanded high-performance accelerators such as
the Tesla V1001 Graphics Processing Units (GPUs) (5120
Compute Unified Device Architecture (CUDA) cores and
32GB Random-Access Memory (RAM)) or GTX 1080 Ti2

GPUs (3584 CUDA cores and 11GB RAM) for both model
training and achieving real-time inference. These models
proved impractical for real-time execution on laptop-grade
GPUs like the GTX 16503 due to limited memory (4GB),
allowing only a small number of samples to be batched
for inference. Additionally, the low number of CUDA cores
(1024) contributes to increased inference time per sample.
Furthermore, even with a Data Center (DC)-grade server,
scalability is hindered as the resources required to run these
TC systems are proportional to the number of models running
in parallel.

1https://www.nvidia.com/en-gb/data-center/tesla-v100/
2https://www.nvidia.com/en-gb/geforce/graphics-cards/geforce-gtx-1080-

ti/specifications/
3https://www.nvidia.com/en-eu/geforce/gaming-laptops/gtx-1650/

MTL refers to a type of ML where multiple learning
tasks are simultaneously solved [10], providing the advantage
of shared knowledge among these tasks. This approach
proves particularly effective in complex domains like TC,
where different yet related tasks can mutually inform and
improve each other. Recently, state-of-the-art TC systems
have embraced MTL to facilitate TC at the edge, allowing a
single model to both classify traffic and predict future traffic
loads [4], [11], [12]. In this approach, most of the layers
used for feature extraction are shared, with only the final
layers (one branch for the classifier and one for prediction)
remaining independent. However, this may not suffice to
ensure the real-time performance of TC systems using L1
packets beyond DC-grade computing hardware. Furthermore,
in the field of Signals Intelligence (SIGINT), which relies
on raw spectral data, the state-of-the-art has predominantly
focused on optimizing STL DNN models for inference on
constrained devices [13], [14], specifically in classification
tasks such as Automatic Modulation Classification (AMC)
[15], [16] and Technology Recognition (TR) [17].
To perform TC at the edge or beyond (e.g., at the Access

Point (AP) itself), novel approaches to achieving TC at L1
that are both resource-efficient and capable of operating
under hardware constraints require a tailor-made design. This
design integrates expert knowledge (e.g., selecting the most
suitable layer for feature extraction based on the input data),
the model architecture (STL vs. MTL), and the optimization
required based on the target device and Key Performance
Indicator (KPI) for inference (e.g., inference time).
This study proposes a novel methodology for designing

TC systems operating at the spectrum level, tailored for
devices with constrained computational resources under 15
Watts. The given power range aligns with the typical power
consumption in edge and IoT APs [18], [19]. The main
contributions of this paper are summarized as follows:

1) A methodology that leverages the latest advancements
in MTL and lightweight ML algorithms to provide
an efficient and effective solution for this problem.
To the best knowledge of the authors, this is the
first work proposing a detailed methodology to design
tailor-made DNN for TC at the spectrum level,
providing both STL and MTL models that can run on
constrained devices such as the NVIDIA Jetson TX2,4

removing the limitations of state-of-the-art works that
are resource hungry such as our previous one [7].

2) The design of an optimized MTL architecture on
Convolutional Neural Network (CNN) and Dynamic
Task Prioritization (DTP) training for TC using
L1 packets for constrained devices. Compared to
the state-of-the-art of byte-based TC [12], [20] and
SIGINT-related tasks, e.g., AMC using In-phase and
Quadrature components (IQ) samples [21], our work
also addresses the problem of balancing the learning
across different tasks.

4https://developer.nvidia.com/embedded/jetson-tx2

VOLUME 5, 2024 3067

GÓEZ et al.: RESOURCE-EFFICIENT SPECTRUM-BASED TC ON CONSTRAINED DEVICES

3) Extensive experimentation is provided to assess the
flexibility of the proposed methodology in creating
an optimized MTL model for TC at the spectrum
level. The resulting model can run four TC tasks on a
constrained device like the NVIDIA Jetson TX2. More
specifically, our most optimized MTL model, handling
four TC tasks, can reduce memory requirements by a
factor of 2.65x and improve execution time by 3.6x
compared to the sequential execution of four STL
models in a server-grade configuration, with less than a
0.5% drop in accuracy, ensuring a performance aligned
to what it is expected for real-time TC according to [7].

4) Performance evaluation and analysis of the energy
(joules) and power (watts) consumption, together with
the energy efficiency (joules/sample) of the resulting
optimized MTL model, are obtained when running on
three different edge hardware platforms: the NVIDIA
Jetson TX2, a RPI3B+,5 and a Coral TPU USB
Accelerator.6 The results show that the NVIDIA Jetson
TX2 achieves energy efficiency for TC at 0.97 milli-
joules per sample, marking a 12-fold improvement over
the RPI3B+ when leveraging the Coral TPU as an AI
accelerator while maintaining real-time execution.The
results indicate that the Jetson TX2 achieves energy
efficiency for TC equivalent to 0.97 millijoules per
sample, representing a 12-fold improvement in energy
efficiency compared to the RPI3B+ when utilizing
the Coral TPU as an AI accelerator and while
still ensuring real-time execution. Combined with the
previous contribution, these results represent the first
comprehensive benchmark for diverse performance
metrics (memory, computing, energy) across various
constrained devices for this type of TC system.

The rest of the article is structured as follows. Section II
provides an overview of related work. Section III presents
a two-step methodology for spectrum-based and resource-
efficient TC, with design and implementation details about
the first and second phases presented in Sections IV and V,
respectively. Section VI discusses the performance evaluation
of the optimized and non-optimized STL and MTL models
resulting from our methodology on constrained devices such
as the NVIDIA Jetson TX2 and RPI3B+ with and without
AI accelerators such as the Coral TPU. Finally, Section VII
summarizes our conclusions and outlines future work. For
the convenience of readers, Table 1 lists the acronyms used
in this paper.

II. RELATED WORK
This section introduces key works in TC, covering spec-
trum representation, MTL approaches, and optimized DNN
architectures tailored for computational efficiency in TC. For
an in-depth exploration of ML/DL approaches for TC, we
recommend referring to [3] and [22]. Those interested in

5https://www.raspberrypi.com/products/raspberry-pi-3-model-b-plus/
6https://coral.ai/docs/accelerator/datasheet/

TABLE 1. List of acronyms used in this paper.

MTL can find valuable insights in [10], and for optimization
methods focusing on DNN in constrained devices, [23]
provides a comprehensive resource.

3068 VOLUME 5, 2024

A. TC AT ANY LAYER
Several works, including [7], [9], [24], [25], have identi-
fied limitations in byte-based approaches when applied to
wireless networks. In response, recent years have seen the
emergence of spectrum-based TC systems that work on
raw spectrum data. A pioneer work in this domain is
presented in [24]. The authors proposed a classification
algorithm based on a Discrete Autocorrelation Function
(DAF) that uses binary information collected by spectrum
sensing to identify the pattern traffic of the primary user. The
proposed algorithm identified traffic patterns as stochastic
and deterministic ones. Another approach was presented by
Liu et al. in [26], which utilizes a similar input data format
but employs more advanced classifiers, such as Estimate-
Then-Classify (ETC), in order to remove the assumption
from previous works of having a perfect period measurement
of the primary user activity.
Testi et al. have proposed using ML classifiers to directly

identify YouTube and WhatsApp applications from spectrum
data [25]. Input data for these algorithms comprises four
specific features (mean, variance, kurtosis, and packet rate)
extracted from 5-second captures of IQ samples. The Single-
Hidden-Layer Neural Network (SHLNN) has achieved an
accuracy exceeding 97%.

A different approach was taken by theauthors in [9], [27],
who introduced a CNN-based TC algorithm using images
representing snapshots of the radio spectrum with an accu-
racy of up to 96% using a synthetic dataset. However, these
approaches assume that IQ samples come from single-user
and single-flow scenarios, which requires a mechanism to
identify the flows directly on the spectrum. Girmay et al. [28]
tackled this limitation by proposing a traffic characterization
process where the output of an IQ-based TR module is used
to identify the traffic characteristics of the technologies in
terms of channel occupancy time, transmission pattern, and
frame count using binary representations, a representation
similar to the one used in [24] and [26]. The obtained results
showed that the proposed solution can be used to characterize
the identified traffic effectively.
An alternative to overcome the limitations discussed

in [9], [27] is to leverage raw L1 packets, e.g., based on
IQ samples, and conduct TC directly on them. Using a
Recurrent Neural Network (RNN) architecture, the authors
in [29] demonstrate that TC on raw spectrum data can be
achieved using short time series (a few hundred samples)
with an accuracy of ≤ 85%. While this accuracy might seem
low compared to byte-based TC systems, it is important
to note that L1 packets were single-modulated with no
coding, non-encrypted, and transmitted with a low data
rate. As experimentally demonstrated later in [7], one
contributing factor to this performance could be the use
of RNN architectures, such as Long Short-Term Memory
(LSTM) [30], [31], which are known to face challenges in
terms of inefficient training and achieving high accuracy
with large data sequences [32], [33], [34].

More recently, [7] have proposed two DNN-based clas-
sifiers, a novel 2D-CNN spectrum-based TC and a Gated
Recurrent Unit (GRU) as baseline architecture, and have
benchmarked their performance on three TC tasks at different
protocol layers. The performance evaluations show that the
2D-CNN model can achieve an accuracy above 92% in
the most demanding TC task, with only a 4.37% drop in
accuracy compared to a byte-based DL approach. The model
exhibits microsecond per-packet prediction time on server-
grade hardware, which is very promising for delivering
real-time spectrum-based traffic analyzers.

B. MTL FOR TC
The authors in [4] highlight that most research in Network
Monitoring Services (NMS) predominantly concentrates on
STL. This means each model is specifically developed and
trained for a distinct task, such as TC, traffic prediction, or
anomaly detection. To address this limitation, MTL strategies
are suggested. In [4], the authors employ an MTL framework
to concurrently address TC and traffic prediction using a two-
step process with Autoencoder (AE). They use traffic data
that includes Downlink Control Information (DCI) messages
with a detailed time granularity of 1 millisecond.Compared
to conventional STL approaches, which did not use AE and
tackle classification and prediction tasks separately, the MTL
approach always provided the highest performance.
Another MTL model for TC has been presented in [35].

In their framework, a CNN-based model using statistical
features is developed to solve tasks such as traffic classes,
bandwidth requirements, and duration of traffic flows. The
statistical features are packet length, inter-arrival time, and
packet direction. The experiments have demonstrated that,
even with a reduced amount of labeled data, the classification
accuracy remained high, underscoring the effectiveness of
MTL in situations with limited data availability. Similar
conclusions were provided by [36], where MTL trained with
only 150 labeled samples can emulate the 94.67% accuracy
achieved through STL with 6139 labeled samples.
A distributed approach for MTL has been presented

in [20], where Gossip Learning (GL) is used to exchange
peer-to-peer information during training.The proposed
LSTM-based model uses 84 transmission-related features
from different protocol stack layers to feed a shared AE,
which acts as a feature extractor and then connects to dense
(fully-connected) layers, which act as predictors. The results
show that the distributed MTL approach performs similarly
but saves energy concerning their correspondent centralized
versions and benchmark solutions.
Authors in [12] presented the DISTILLER classifier,

which adopts a multi-modal MTL approach for encrypted
TC. It simultaneously utilizes heterogeneous inputs to
address multiple related classification tasks, supporting vari-
ous application scenarios with diversified network visibility.
The DISTILLER architecture incorporates single-modality
layers for the payload and protocol field modalities, including

VOLUME 5, 2024 3069

GÓEZ et al.: RESOURCE-EFFICIENT SPECTRUM-BASED TC ON CONSTRAINED DEVICES

1D convolutional layers, bidirectional GRU, and dense lay-
ers. Intermediate features from these modalities are merged
and fed into the shared representation and task-specific
layers, with the outputs obtained via Rectified Linear Unit
(ReLU) activations. The results showed that DISTILLER
outperformed the baselineMTL architectures.
More recently, a Multi-Task Transformer (MTT) model

has been proposed to jointly address application identifi-
cation and traffic characterization tasks [37]. In MTT, the
input packet is represented as a sequence of bytes and
utilizes a multi-head attention mechanism to extract features.
This approach is notable for being the first to introduce
transformers into the multi-task classification of network
traffic.Experimental results have shown that the MTT model
efficiently produces both outcomes in approximately 0.1
milliseconds per packet, meeting the demands for real-time
online TC with an F1 score above 98% on both tasks,
outperforming previous state-of-the-art work.
Authors in [38] combined a CNN-based transformer with

meta-learning to avoid the costly task of model retraining
and enable out-of-distribution traffic sample classification.
Different from the previous approach, the authors first split
the raw traffic files by session, and then convert each
packet into a fixed-format gray-scale image as input to
the model. The performance evaluations showed that the
proposed architecture outperformed other baselines based on
DNNs and transformers in terms of both accuracy (≤ 93%)
and lower inference time (0.96ms).

C. OPTIMIZED DNN FOR TC
In recent years, optimization techniques have been proposed
to reduce the complexity of DNN-based architectures for
TC at L2 or above. At the architectural level, authors
in [39], [40], and [37] have included attention mechanisms to
reduce the number of hidden layers since these mechanisms
help to process only relevant subsets of high-dimensional
inputs and to focus on the most pertinent aspects of the
data. In all cases, the models outperform the state-of-the-art
baselines in terms of accuracy while improving execution
time (up to 50% reduction) with similar model sizes.

Other approaches include model optimization using com-
pression techniques [23]. In [41], Lu et al. propose a
compressed Network In Network (NIN) model for TC.
They design a step-wise pruning and Knowledge Distillation
(KD) strategy to train the compressed model, aiming to
reduce storage and computing resources. The resulting model
achieved a 50% reduction in model size with up to a
30% improvement in computation time compared with the
uncompressed NIN model. In terms of accuracy, the models
achieved an average F1 score of 98.05%, surpassing that
of the CNN state-of-the-art model used as a baseline.
Although the experimentation did not evaluate the model
on a constrained device, the calculated Tera Operations Per
Second (TOPS) of their best model would be suitable for
constrained devices.

The NIN basic architecture is optimized in a follow-up
work using self-distillation and KD for TC [42]. The model
is further optimized with pruning to remove redundant filters
and employs knowledge distillation to train compressed
models without compromising performance. Performance
evaluation showed that the model could achieve a processing
time of less than 0.023 ms/sample with nearly a 99%
computational overhead reduction compared to the baseline.
Although the results seem promising, no validation has been
provided on constrained devices.

D. RESEARCH GAPS AND POSITION OF THIS WORK IN
THE LITERATURE
In this paper, we exploit advances in MTL techniques and
DNN optimization via a novel methodology to offer an
efficient and effective solution for TC that covers the three
previously mentioned dimensions: classification at any layer,
MTL support and model optimization to run on constrained
devices, as summarized in Table 2.
In the first dimension, we continue using L1 pack-

ets to perform the TC at any layer from our previous
work [7] since this approach has demonstrated competitive
performance compared to byte-based TC. Compared to
recent works such as [28], which employ DL techniques to
perform traffic characterization at flow level directly on the
spectrum, L1 packet-based TC still provides more flexibility
in classifying traffic types at any layer and granularity.
Concerning MTL, this is the first work introducing

a novel and flexible methodology to generate optimized
models for both STL and MTL architectures for TC using
L1 packets to the best of the authors’ knowledge and
going beyond our previous work [7]. Moreover, our resulting
MTL 1D-CNN model was trained with DTP, which also
addresses the challenge of balancing learning across multiple
tasks. Notice that although MTL has shown very promising
performance in terms of accuracy and inference time for
real-time deployment of byte-based TC systems [37], [38]
and helps to mitigate the resource-intensive nature of DNNs
[43], this approach is still not sufficient to support edge
deployments of spectrum-based TC with L1 packets. This
aspect triggers the integration of the third dimension in our
proposal.
In STL and MTL approaches for TC, most of the

architectures are not optimized to run on constrained devices,
except very recent state-of-the-art TC based on transformer
architectures with attention mechanisms [38] or DNN com-
pression [42] but with no results on their performance on
actual hardware. Our approach exploits recent advances
in DNN optimization to achieve such a goal. In addition
to being the first work on combining MTL and DNN
optimization techniques to allow TC using L1 packets, we
also differ from previous works since we provide extensive
experimental validation on different resource-constrained
platforms and benchmark the performance of the generated
MTL models in terms of memory, computing, inference time,
and energy efficiency on these platforms.

3070 VOLUME 5, 2024

TABLE 2. A comparison of the analyzed related work and how this work is positioned in the literature.

The proposed methodology, discussed in the following
sections, allows the generation of L1-based TC systems
that are resource-efficient and capable of functioning within

hardware limitations via customized design. This design
integrates expert knowledge, such as selecting the optimal
feature extraction layer based on input data, choosing

VOLUME 5, 2024 3071

GÓEZ et al.: RESOURCE-EFFICIENT SPECTRUM-BASED TC ON CONSTRAINED DEVICES

FIGURE 1. Methodology for designing spectrum-based TC systems capable of running on devices with limited resources.

FIGURE 2. Composition of Phase 1: a four-step process from input pre-processing to models ready for optimization.

between STL and MTL architectures, and optimizing for
specific hardware constraints and KPIs such as inference
time and energy efficiency.

III. A RESOURCE-EFFICIENT METHODOLOGY FOR
SPECTRUM-BASED TC
In this section, we will introduce a novel and well-defined
methodology to achieve a resource-efficient TC using L1
packets that can run on constrained devices. Figure 1 shows
the proposed two-phase methodology that combines MTL
and DNN optimization mechanisms tailored to a target
device. Let us start with a general description of each phase.

A. PHASE 1: PRELIMINARY DESIGN
In this phase of the proposed methodology, we intend
to identify if we can solve multiple tasks with STL
models via MTL or, if not possible, optimize each STL
model individually during the second phase. The first phase
is composed of five specific steps, as summarized in
Figure 2:

• Input pre-processing: Similar to [7], a sequence of IQ
samples is collected to create truncated L1 packets.
Other representations of the truncated packets, such as
Fast Fourier Transform (FFT) as raw floating points or
images, can also be used.

• Task definition and correlation analysis: Task correla-
tion is established among tasks using expert knowledge,
statistical analysis, and other methods using the training
dataset to understand how tasks are related and can
mutually benefit from sharing knowledge while training.

• STL model design: Baseline models on each task are
designed to measure the KPIs from the STL (KPIstl)
models, such as accuracy or F1-score, training or
inference time, and memory consumption. These values
will be used later as a reference to compare with the
results of the MTL model. Notice that if there are no
tasks with high correlation in the previous step, these
models are used as input in phase two.

• MTL model design: An MTL model will be created
if the task correlation step finds tasks with high
correlation. Performance evaluations measure the KPIs
from the MTL (KPImtl) model during training and
inference. These KPIs are expected to be the same
(or close to) as the KPIstl per task models for further
comparison.

• KPIs comparison: If the KPImtls are equal or close
to those of the individual tasks (KPIstl), we will
proceed with the second phase with the trained MTL
model. Otherwise, a re-design of the model will be
considered.

At the end of this phase, we will have either a set of STL
models or an MTL model for further optimization. We aim to
provide the designer enough flexibility to solve one or more
related tasks for TC using raw spectrum data. In the case
of an MTL model, it is important that the KPImtls, which
can be decomposed into KPIs per task, are the same or very
close to the ones of the STL models in a given �-tolerance.
If this is not the case, a re-design or a termination step is
followed.

3072 VOLUME 5, 2024

FIGURE 3. End-to-end TC system using spectrum data, which comprises four steps: 1) data collection, 2) L1 packets filtering/assembly, 3) zero padding or data truncation of
the time series, 4) Fine- or coarse-grained traffic classification. Steps 1 to 3 are examples of the input and pre-processing part of the first phase.

B. PHASE 2: OPTIMIZATION AND DEPLOYMENT
In the second phase, model optimization mechanisms are
applied to ensure that the final model can satisfy all the
constraints of the specific devices on which it will be
deployed and run. Depending on the output from the first
phase, i.e., multiple STL models vs. single MTL model, how
the model(s) will be deployed and executed for inference
will be defined.
This phase is composed of three main steps, as summa-

rized in Figure 2:
• Model optimization: Depending on the output of the
previous phase (STL vs. MTL model) and the target
device, different DNN model optimization mechanisms,
such as DNN pruning, down-sampling, quantization,
precision-reduction, layering, and feature-combining
techniques, can be applied. For example, precision
reduction techniques can be applied if the target device
does not support integer 8 or 16 quantization. In
addition, the number of hardware resources on the target
device will indicate how STL models can be executed
since very constrained devices will run a maximum of
one model at a time, while less constrained ones may
run more than one in parallel. In the case of an MTL
model, the architecture can run the inference in parallel.

• Inference on the target device: Once the model is
optimized and can run on the target device, performance
evaluations are carried out to obtain the model’s
KPIs from the optimized model (KPIopt). After the
optimization, some performance degradation may be
expected compared to the original model(s). However,
it should again fall in the �-tolerance zone compared
to the KPIstl or KPImtl. The value � will depend on
the task and the KPIs that the designer can trade-offs,
e.g., model size vs. inference time. At this point, the
resulting model(s) can run on the target device.

• Model run-time KPI assurance: This step is related to
constraints during run-time. Some tasks may be part of
near real-time decision-making processes (e.g., < 1s) or
slow ones (e.g., ≥ 1s). For example, if the arrival time of
packets is 1000 packets/sec, then exect per packet must
be less than maxexct =1 ms. Once the model fulfills the
run-time KPI, it can then be deployed in production. If
the model(s) can not run on the target device, then a re-
optimization (e.g., using other parameters, techniques,

or hardware), re-designing (smaller architecture), or exit
steps will follow.

As described above, the methodology provides a well-
defined step-by-step model design to create spectrum-based
TC systems targeting deployment on constrained devices.
While the set of steps is well-defined, some of them
allow enough flexibility to target different trade-offs between
learning and run-time KPIs.

IV. PHASE 1: PRELIMINARY DESIGN
In this and the next sections, we validate the proposed
methodology through an end-to-end design and experimen-
tation of an MTL model capable of performing the three
TC tasks evaluated in [7], along with an additional task,
on an NVIDIA Jetson TX2, an AI accelerator with power
consumption less than 15 Watts. For comparison, a Tesla
V100 can consume up to 300 Watts, and the GTX 1080 Ti
can consume up to 250 Watts at peak performance. We first
focus on Phase 1.

A. INPUT PRE-PROCESSING
As described in [7], any L1 packet can be obtained directly
from the spectrum using a technology-agnostic procedure,
as shown in Figure 3.
In general, the 4-step procedure can be summarized as

follows. The first step is data collection, where an algorithm
captures and pre-processes spectrum samples. It includes
spectrum sensing, normalization, and labeling of samples
based on the Radio Access Technology (RAT), noise, or
interference. Once the samples are collected, we assemble
and filter the L1 packets. This step involves assembling L1
packets from IQ samples collected in the first step, using
labels to filter and organize these samples. Techniques like
cross-correlation or ML approaches can be used to enhance
the robustness of packet detection. Other approaches based
on other representations, such as the FFT, can be used to
change the representation of the raw IQ samples to improve
the accuracy of the assembly.
Once the L1 packet is created and noise samples are

discarded, the packet is either padded or truncated. This
normalization improves the training and inference speed
of DL models, though it increases memory requirements.
The optimal length for L1 packets varies based on DL
architecture and the specific RAT. The final step is the

VOLUME 5, 2024 3073

GÓEZ et al.: RESOURCE-EFFICIENT SPECTRUM-BASED TC ON CONSTRAINED DEVICES

TABLE 3. Description of the proposed classification tasks to evaluate the spectrum-based TC approach.

classification task itself, where the DL model(s) classifies the
prepared L1 packets. This classification can be at different
layers, starting from broader distinctions (like separating
other Physical Layer (PHY) transmission or frame types at
L2) to more specific classifications at higher layers, such as
identifying the type of Application Layer (L7) traffic or the
originating app for the data.
Depending on this pre-processing, we can identify which

DNN architecture is more suitable for solving the TC tasks.
For example, raw IQ samples can be processed directly
using CNN and RNN, each with its own computational
cost. However, transforming the input data into images
representing L1 packets is unsuitable for 1D-CNN. As we
will see in the third step of this phase, we select 1D-CNN
instead of 2D-CNN as in [7] to reduce model size without
impacting accuracy.

B. TASK DEFINITION AND CORRELATION ANALYSIS
The dataset generated in [7] contains 802.11 standard-
compliant L1 waveforms for testing spectrum-level traffic
classification. The waveforms are caused by different 802.11
technologies (b, g, n), which result in further transmission
schemes such as Direct-Sequence Spread Spectrum (DSSS)
in 802.11b and Orthogonal Frequency Division Multiplexing
(OFDM) in 802.11g/n, different types of L2 frames (man-
agement, control, and data), and multiple Modulation and
Coding Scheme (MCS) according to the standard.
As described in [7, Sec. V.A], the payload carried by these

L1 packets (information at L2 and above) were generated
using real traces of L7 applications running on a mobile
device and connected to a secured 802.11 AP with Wi-
Fi Protected Access (WPA)-2 on channel 1 (2.4GHz) with
20 MHz of available bandwidth. Additionally, the dataset
was captured while several other wireless devices were
connected to the same AP or another APs in the same
band. However, they were not under management and could
be generating network traffic. This configuration offers a
straightforward deployment method for acquiring authentic
traffic influenced by transmissions from other wireless
devices sharing the same channel.
The generated dataset also encompasses a wide array

of variations in the 802.11n protocol stack, including L1
encrypted packets, MCS adaptation, L1 diversity (b, g, and/or
n to accommodate legacy compatibility of the AP), and L2
packet diversity. As a result, the provided dataset is more
realistic and complex than the one used in [29], which is

limited to High-level Data Link Control (HDLC), a simpler
L2 protocol whose unencrypted waveforms are modulated
only with Quadrature Phase Shift Keying (QPSK) at a unique
data rate of 1Mbps, with no other devices generating traffic.
The resulting dataset contains a single L1 packet per

sample, equivalent to the expected output of step two from
Figure 3, where each packet is a sequence of IQ samples.
From the original dataset, four different tasks are defined:
tasks 1 to 3, as in [7], in addition to a classification
task related to technology characterization (task 0). Table 3
summarizes the proposed traffic classification tasks based on
L1 packets. Each task can be defined as follows:
Task 0 - L1 technology characterization: In this coarse-

grained task, the TC algorithm uses L1 packets to determine
if the packet was transmitted using 802.11b, 802.11g, or
802.11n format.
Task 1 - L2 frame characterization: In this coarse-grained

task, the TC algorithm uses L1 packets to determine if the
transmitted packet is a Management, Control, or Data L2
frame in 802.11.
Task 2 - L7 Application characterization: In this coarse-

grained task, the TC algorithm uses L1 packets to determine
the type of application inside the transmitted packet (e.g.,
audio or video). As only L2 Data frames carry L7 application
data, then the algorithm should also discriminate packets that
do not carry data.
Task 3 - L7 Application identification: In this fine-grained

task, the TC algorithm discriminates between the actual
applications generating the L7 traffic.
Once the tasks are well-defined, examining their corre-

lation to exploit MTL is essential. Different approaches,
such as expert knowledge and statistical analysis, can be
used depending on the tasks. In our case, we perform a
statistical analysis based on class distributions as it is the
most straightforward approach based on the task definition.
Table 4 shows that the task 0 and task 1 labels are highly
correlated as there is a near one-to-one match between
labels 802.11b - Mgmt, 802.11g - Ctrl, and 802.11n -
Data. Furthermore, the last label correlation (802.11n -
Data) is useful for identifying the correlation between the
802.11n label for task 0, the Data label for task 1, and
the labels associated with applications in tasks 2 and 3,
as shown in Table 5. This analysis allows us to draw
an initial conclusion that the four tasks can benefit from
an MTL approach since classifying task 0 (or task 1,
respectively) with high accuracy will result in high accuracy

3074 VOLUME 5, 2024

TABLE 4. Sample distribution for L1 technology characterization (task 0) and L2
frame characterization (task 1).

TABLE 5. Sample distribution for L2 frame characterization (task 1), L7 application
characterization (task 2), and L7 application identification (task 3).

on task 1 (or task 0, respectively) and simultaneously may
improve the classification performance on tasks 2 and 3 since
learning tasks 0 and 1 with high accuracy will reduce the
misclassifications of L2 Data packets as it is acting as a
No-App label filter.

C. STL MODEL DESIGN
When targeting the tailor-made design of DNN architectures
for TC at the spectrum level, it is important to clearly
understand the input format so the hidden layers of the
models are selected to be suitable for the input representation
and use the lower number of parameters. For example, in [7]
and [29], 2D-CNN and RNN have been used to process
raw IQ samples. While the results demonstrate that 2D-
CNN outperforms RNN in accuracy and inference time,
the resulting CNN models were very large (around 3M
parameters per STL model).
While it is natural to consider 2D CNN the most efficient

means of processing IQ samples, as they can be treated as
one-dimensional data over two channels, caution is necessary
during their implementation. Let us describe how 1D and
2D convolutions are implemented in DNN.
1D Convolution: Let us s consider an input sequence

x[x1, x2, . . . , xn], where xi represents the i-th element of the
input and n is the length of the sequence. Suppose f =
[f1, f2, . . . , fm] is a filter (or kernel) of length m, with m ≤
n. The convolution operation involves sliding the filter f
over the input sequence x and computing the dot product
at each position. The output of this operation, known as
the feature map or convolved feature, is denoted as c =

[c1, c2, . . . , cn−m+1], where each element cj is calculated
using the formula:

cj =
m∑

k=1

fk · xj+k−1 (1)

In this equation, cj represents the dot product of the filter
f with a segment of the input sequence starting from position
j and covering m elements.
2D-CNN: Consider an input matrix X of size N×M, where

N and M are the dimensions of the input image or matrix.
Let F be a filter (or kernel) of size a× b, with a ≤ N and
b ≤ M. The convolution operation involves sliding the filter
F over the input matrix X and computing the dot product
at each position. The output, known as the feature map or
convolved feature, is a matrix C. If the stride is 1 and without
padding, the size of C will be (N − a+ 1) × (M− b+ 1) .
Each element Cij of the feature map is computed as follows:

Cij =
a∑

u=1

b∑

v=1

Fuv · Xi+u−1,j+v−1 (2)

In this formula, Cij is the result of the dot product of the
filter F with a corresponding sub-matrix of X, starting from
position (i, j) and covering an area of size a× b.

The structure of each kind of convolution is aligned to
their general purpose. While 2D-CNNs have been designed
to work on tasks such as image classification and object
recognition, 1D-CNN have been explored in tasks like
time-series analysis, audio processing, and natural language
processing, as it allows the network to extract and learn
features from sequential data.
But, why is this important? If we analyze the implementa-

tion7 of the 2D-CNN in [7], we can see that their filter size
is not aligned with the input data (height of size one and
width equal to the number of IQ samples). Instead, they are
squared matrices8 and use zero-padding to enlarge the input
to fit the filter size. The resulting large filters may explain
why these models require large filter sizes to perform well
since the padding might dilute the meaning of the input data.
This implementation detail, which may be seen as a

decision mistake, could have been avoided if the 1D-CNN
model had been selected initially since this architecture
expects 1D filters, which already constrain the filter size to
be aligned to the expected input data. As we will see more in
detail in Section VI, the impact of such a design decision is
around a 10x reduction in the number of trainable parameters
(see Table 8).
Once the STL models are created and trained, we perform

inference over a test dataset to measure the KPIs used to
perform the trade-off (e.g., model size vs. inference time).
In our case, all four tasks are for classification, so the
main expected KPIs are accuracy and F1-score to measure.

7https://github.com/miguelhdo/tc_spectrum/blob/main/code/python/
helpers/tr_models.py

8https://keras.io/api/layers/convolution_layers/convolution2d/

VOLUME 5, 2024 3075

GÓEZ et al.: RESOURCE-EFFICIENT SPECTRUM-BASED TC ON CONSTRAINED DEVICES

FIGURE 4. The 2D-Convolutional Layer proposed in [7] used up to 10x more parameters compares to a similar architecture with 1D convolutional layers.

These indicators will measure the learning performance of
the model. Similarly, the trainable parameters of the models,
such as the inference time and buffered memory (memory to
load a batch of samples at runtime), can be used as indicators
of the model’s resource usage and runtime efficiency. In
general, the learning KPIs will be a trade-off against resource
usage/runtime efficiency KPIs. This set of KPIs is called
KPIstl.

D. MTL MODEL DESIGN
Suppose we find several tasks highly correlated during the
task definition and correlation analysis step. In that case,
we will design an MTL architecture to reduce the resources
required to run them in parallel. Otherwise, we will proceed
to Phase 2 to optimize the STL models. In such cases,
running them sequentially is always possible, albeit at the
cost of an execution time that grows linearly with the number
of tasks.

1) MTL STRATEGY

In the literature, several strategies for MTL exist [10], which
can be grouped into two general ones [44]: Hard Parameter
Sharing (HPS) and Soft Parameter Sharing (SPS). In HPS,
the parameters of the convolutional layers are shared among
multiple tasks. This approach allows for the extraction of
features that are common to all associated tasks. The next
step is to define the dense layers for each task, learning the
unique details of each task. This parameter-swapping strategy
significantly reduces the risk of over-fitting. A relevant
aspect is its efficiency in terms of memory and calculation
since fewer parameters are used compared to completely
independent models for each task.

(Wc1, bc1), (Wc2, bc2), . . . , (WcM, bcM) (3)

In equation (3), we outline the architecture of the convolu-
tional layers within a neural network. Each term (WcM, bcM)

represents the set of weights and biases of the cM number of

convolutional layers, respectively. This structure is designed
to capture the input data’s hierarchical patterns, leveraging
the ability of convolutional layers to extract deep spatial or
temporal features through convolution.
On the other hand, dense layers can be mathematically

expressed as in equation (4) for the MTL model.
(
Wt1
d1, b

t1
d1

)
,
(
Wt2
d2, b

t2
d2

)
, . . . ,

(
WtK
dN, btKdN

)
(4)

where, (Wtk
dn

, btkdn) corresponds to the weights and biases of
the nth dense layer dedicated to the kth task, where n =
1, . . . ,N and k = 1, . . . ,K.

This approach enables the model to support the execution
of multiple tasks by initially employing shared layers to
extract features, followed by task-specific layers whose
weights are finely tuned for individual tasks. On the other
hand, in SPS, each task has its model with its parameters, but
these parameters are regularized, so they are similar between
different tasks. This is done by adding a penalty term to the
loss function Equation (5). As an example, if we consider
N tasks with parameters β1, β2, . . . , βN , one can represent
the loss function with the SPS method as follows.

L =
N∑

i=1

Li(βi) + φ

N−1∑

i=1

N∑

j=i+1

R
(
βi, βj

)
(5)

where L1,L2, . . . ,LN are the loss functions for each task,
R is a regularization function that penalizes the difference
between the parameters of the different tasks, and φ

is a hyper-parameter that controls the magnitude of this
regularization.
It can be noticed that the number of parameters used in

each approach is very different. While HPS shares physical
parameters among tasks, SPS loosely shares them via the
loss function. As our main target is to deploy and run
large spectrum-based TC models in parallel over constrained
devices, we adopt the HPS strategy. The high correlation
between the selected tasks also supports this decision.

3076 VOLUME 5, 2024

FIGURE 5. MTL architecture based on 1D-Convolutional Layer with Hard Parameter Sharing (HPS) and trained using Dynamic Task Prioritization (DTP) strategy.

2) MTL ARCHITECTURE

Once the MTL strategy is chosen, we can begin designing
the architecture. As depicted in Figure 5, the proposed
architecture will be based on a shared 1D Convolutional
layer (Conv1D) for feature extraction among multiple tasks,
followed by task-specific dense (also known as fully-
connected) layers. This design enables the model to learn
more specialized and unique features for each task. The
resulting MTL architecture comprises an input buffer with
a format of (N, 2, 3000), where N is the batch size, 2
represents the in-phase and quadrature parts of IQ, and 3000
is the L1 packet truncated/padded to achieve a fixed-length
input. The length of 3000 was selected based on the results
obtained in [7].
The shared layers consist of four Conv1D layers, each

followed by ReLU activation, batch normalization, max-
pooling, and dropout layers. Next, each selected TC task has
a sequence of dense layers, followed by ReLU activations
and dropout layers. Each sequence has a similar structure
with three linear layers, followed by ReLU activation, batch
normalization, and dropout layers. One optimization we
implemented here was to reduce the number of neurons on
the first two dense layers, a change that minimally impacts
the model’s accuracy while further reducing the model size.
For classification, a final dense layer has C neurons,

where C is the number of labels to classify, with a soft-max
activation function to produce the output for each task. It is
important to note that this MTL architecture will contain a
number of trainable parameters comparable to the largest 1D-
CNN STL model while being able to perform the inference
of multiple tasks simultaneously. This is because the number
of parameters in the dense layers across all tasks is smaller
than those in the shared layers, as shown later in Table 10.

3) MTL TRAINING

One of the challenges with MTL is how much tasks differ
while learning. Although tasks can be correlated, some
tasks may be more challenging. This challenge can be
addressed by balancing the learning across different tasks in
MTL [44]. Balance between tasks is an essential stage in

MTL implementations to ensure that no task dominates the
learning process at the expense of the others.
Techniques like Dynamic Weight Averaging (DWA) [45],

DTP [46], and Multiple Gradient Descent Algorithm
(MGDA) [47] have been recently proposed in the literature.
As presented in [44], DWA and DTP are techniques that
focus on adjusting the weights of each task’s loss based on
their current training dynamics, while MGDA, conversely,
looks for a joint gradient direction beneficial for all tasks.
This results in MGDA being computationally more complex
as it involves solving an optimization problem over the
gradient space. In contrast, DWA and DTP mainly involve
recalculating weights based on loss changes or predefined
criteria. In addition, DTP is more flexible than DWA since
it can accommodate various criteria for weight adjustment.
Although DWA and DTP still require careful manual tuning
of the initial hyperparameters, this is not a problem when the
number of tasks is small. Therefore, we decided to implement
DTP, given the extra flexibility and the limited number of
tasks to learn simultaneously.
Focusing on the DTP technique, it involves adjusting the

weight βi(t) of each task dynamically during training at each
time step t, often based on each task’s current performance or
learning pace. In other words, if the total loss L is a weighted
sum of individual task losses, then it can be expressed as:

L =
N∑

i=1

βi(t) · Li (6)

However, unlike DWA which is based on the change of
each task’s loss, βi(t) in DTP can be defined on different
criteria, such as task difficulty, rate of improvement, or
importance of the task. The calculation of the specific weight
of task i in iteration t is expressed as:

βi(t) = −(1 − ki(t))γi log ki(t) (7)

where βi(t) is the weight of task i and parameter ki(t) is
for measuring the ith task difficulty on a scale from 0 to 1.
γi is a parameter that adjusts the task’s weight according to

VOLUME 5, 2024 3077

GÓEZ et al.: RESOURCE-EFFICIENT SPECTRUM-BASED TC ON CONSTRAINED DEVICES

FIGURE 6. Phase 2: From model optimization to deployment.

its difficulty and log ki(t)) amplifies the differences between
tasks.
To select the hyper-parameters in DTP, we focus on

the learning complexity observed in tasks 2 and 3 during
the STL design step, which difficulty was reflected in the
achieved accuracy. This is translated into the following
hyperparameter selection: i) task difficulty ki was determined
based on task progress relative to TC accuracy, and ii) γi
was set to 1 for each task, which avoids introducing bias
into the individualized learning of the tasks. Although tasks
2 and 3 may benefit from it, we did not notice any further
improvement compared to ki. As a result, the final value
of β depends exclusively on improving accuracy during the
learning stage.
To finalize this step, we follow a process similar to the

STL design. Once the MTL model is created and trained,
we perform inference over a test dataset to measure the
same KPIs as in KPIstl. This set of measurements is called
KPImtl. Notice that although the loss functions of each task
in our MTL model are optimized jointly using DTP, we
can still measure them individually. Resource usage/runtime
efficiency KPIs are measured over the entire MTL. The
decision to proceed to Phase 2 will depend on how far
KPImtl diverges from KPIstl. The tolerance value 1 ≥ � ≥ 0
is used to balance them.

V. OPTIMIZATION AND DEPLOYMENT
Suppose we want to perform spectrum-based TC over
modern wireless communications. In that case, we need to
ensure that we can run these models as close as possible
to where the data is generated and optimized to run in
real-time over the limited computational resources these
platforms provide [48], [49]. In this context, several works
have shown the capabilities of several resource-constrained
AI acceleration platforms to run optimized DNNs that work
directly on spectrum data, such as AMC [15], [16], and TR
[17].
For spectrum-based TC, no previous work provides such

a benchmark on constrained devices. For this purpose, we

select the NVIDIA Jetson TX2 module as the target device
to deploy the optimized TC models. We also motivate our
choice as this module has also been incorporated as an
AI accelerator of state-of-the-art Software Defined Radios
(SDRs) such as the AIR-T.9 Based on this choice, Phase 2
is realized as follows.

A. MODEL OPTIMIZATION
The NVIDIA Jetson TX2 is an embedded computing
platform for AI applications. While its common use has
been in edge computing, recent approaches have seen this
device paired with SDR-based receivers [50]. The hardware
specifications are given in Table 6 and compared against
a high-end computing platform used in testbeds such as
GPULab.10 We implemented the models during Phase 1
on one of the three slave servers equipped with NVIDIA
GeForce GTX 1080 Ti GPU. In addition, the virtualized
instance of our server has 4 Central Processing Unit (CPU)
cores with 16GB of RAM. Table 6 describes both hardware
platforms in detail.
It is important to note that two main aspects will drive

the optimization phase depending on the selected platform.
The first aspect is the hardware capabilities. For example, a
Jetson TX2 module combines the quad-core ARM Cortex-
A57 processor, a dual-core NVIDIA Denver2 processor, and
a 256-core NVIDIA Pascal GPU in one single platform that
consumes only up to 15 Watts. Compared to a GTX 1080
Ti only, this reduces up to 94% energy consumption at peak
performance. Of course, there is a trade-off in the number
of CUDA cores, which limits its TOPS performance. While
a Jetson TX2 can achieve up to 1.33 TOPS, the GTX 1080
Ti can go up to 11.3 TOPS in FP32 precision, translating
into 90% higher performance than the GTX 1080 Ti.
The second aspect concerns the frameworks for optimizing

and deploying the models. For example, NVIDIA platforms
provide TensorRT11 tools, a high-performance DL inference

9https://deepwavedigital.com/hardware-products/sdr/
10https://doc.ilabt.imec.be/ilabt/gpulab/
11https://developer.nvidia.com/tensorrt-getting-started

3078 VOLUME 5, 2024

TABLE 6. Hardware specifications.

tool designed to complement training frameworks such as
TensorFlow, PyTorch, and MXNet. TensorRT focuses on effi-
ciently running pre-trained networks on NVIDIA hardware.
It includes an inference optimizer and runtime, offering low
latency and high throughput for applications [51], [52].
As indicated before, the optimization framework expects

a trained model. This model is traditionally provided in
an Open Neural Network Exchange (ONNX) format and
then is passed to an optimization step where different
techniques are used to optimize the model aligned with the
target device. Once the model is optimized, the resulting
model is known as the inference engine, i.e., the in-memory
representation of this trained and optimized model ready
for execution. The optimized model, serialized in a file-
like format, is also known as a plan within the context of
model optimization using TensorRT. Finally, the execution
workflow is constructed within TensorRT [53]. Figure 7
illustrates the workflow generated by these steps in the
TensorRT framework for our MTL design.
One fundamental aspect of embedded platforms such as

the NVIDIA Jetson TX2 compared to simple server-grade
architectures is the memory module shared between the CPU
and the GPU. This shared architecture allows the MTL
model to run and load by directly accessing data from
the shared memory, reducing data transfer costs typically
incurred when memory is not shared, typical in simple
server-grade architectures. In other words, this hardware
architecture compensates for the limited TOPS due to the
lower number of CUDA cores by reducing data transfer
latency.
Now, let us focus on the optimization techniques in

this step. DNN optimization techniques generally involve
multiple optimization steps targeting batch processing, layer
structure and grouping, and operations in the DNN model
for better performance on specific hardware. Among such
techniques, some of the most commonly used on different
frameworks are listed below.12

12https://docs.nvidia.com/deeplearning/tensorrt/archives/tensorrt-
803/best-practices/index.html

1) Layer Fusion: Combines multiple layers into a single
operation for improved computational efficiency.

2) Precision Calibration (Quantization): Adjusts compu-
tation precision (e.g., from FP32 to FP16 or INT8) to
balance performance and accuracy.

3) Kernel Auto-Tuning: Selects the most efficient
algorithms for operations based on the hardware
configuration.

4) Dynamic Tensor Memory: Optimizes memory allo-
cation for tensors, crucial for devices with limited
memory.

5) Weight and Activation Compression: Compresses
weights and activations to reduce model size and
memory requirements.

6) Graph Optimizations: Analyzes and optimizes the
execution graph to remove redundant operations.

7) Multi-Stream Execution: Enables concurrent execu-
tion of multiple inference streams to optimize GPU
resource utilization.

8) Integrated IO Memory: Reduces memory copies
between CPU and GPU for faster data transfer.

9) Asynchronous Data Transfer and Execution: Overlaps
computation with data transfers to improve throughput.

10) Pruning: Removes redundant or non-essential neurons
and connections from the network to reduce complex-
ity and improve efficiency.

11) Batch Fusion: Merges operations across multiple input
batches, enhancing execution efficiency and reducing
latency for batched inference tasks.

Certain optimizations may or may not be applicable
depending on the target hardware. For instance, the Jetson
TX2 does not support precision calibration at INT8 precision,
but it can leverage integrated IO memory due to the hard-
ware’s shared memory architecture. The model optimization
process can be configured manually; however, we allow
TensorRT to perform it automatically, considering the exten-
sive range of optimization parameters and the framework’s
options.
Depending on the input from Phase 1 (multiple STL

models vs. single MTL model), the outcome of this step is

VOLUME 5, 2024 3079

GÓEZ et al.: RESOURCE-EFFICIENT SPECTRUM-BASED TC ON CONSTRAINED DEVICES

FIGURE 7. MTL Development Cycle Using TensorRT for inference.

the model optimized and capable of running on the target
device. If carried optimization is insufficient to run on the
target device, the designer would need to manually change
the optimization parameters to achieve better compression
and performance or go back to Phase 1 to re-design the
original model, e.g., make it smaller or exit the process.

B. INFERENCE ON THE TARGET DEVICE AND RUNTIME
KPI ASSURANCE
The final two steps are crucial for benchmarking the
optimized model against the reference KPIs established
in Phase 1. Specifically, verifying that the model, when
executed on the target device, maintains learning and
resource usage/runtime efficiency capabilities comparable to
the original model after optimization is essential. The choice
of benchmarks depends on whether we evaluate STL or MTL
models. Accordingly, we will use either KPIstl or KPImtl.
The comparison at this stage will reveal the trade-off between
the original model(s) and the optimized one(s). The tolerance
value, denoted as �, will indicate the trade-off the designer
aims to achieve.
One key difference from the performance comparison in

Phase 1 is that some KPIs may significantly diverge from
the original model, particularly regarding runtime efficiency.
Various studies have demonstrated that optimization tech-
niques for model compression do not substantially impact
model performance in learning; the optimized model can
sometimes outperform the original. However, while improved
learning and resource usage are anticipated, runtime effi-
ciency largely depends on the hardware capabilities. As
seen in Table 6, there is a notable difference in hardware
specifications between the server-grade hardware and the
Jetson TX2. These disparities can result in inference times
that may be excessively long for the intended task.
Let us consider the inference time of the STL 2D-CNN

model, which addresses task 2 as proposed in [7]. According
to their findings, in Table 7, the 2D-CNN can classify an

TABLE 7. Average inference time per single L1 packet in task 2 from [7].

L1 packet containing 3000 IQ samples in just 0.15ms.
In this context, this duration is significantly shorter than
the maximum execution time maxexec of 7ms for video
applications, which is necessary to ensure TC on L1 packets
in real time. Notice also that although their RNN-GRU
model is still shorter than the maximum execution time,
their learning performance was very poor compared to the
STL 2D-CNN, and it does not provide enough flexibility
to include the pre-processing time of the packets (e.g.,
padding/truncation).
As a result, the final step involves verifying that the

deployed model operates quickly enough to support the
real-time execution of the TC tasks. For optimized STL
models, the sequential inference execution time must be
shorter than the maximum allowable execution time. If the
optimized models fail to achieve inference times below
this maximum threshold for the task, they may need to
be re-optimized or re-designed. Otherwise, the methodology
concludes successfully. On the other hand, if they meet this
criterion, the methodology is completed successfully, and the
models are ready for deployment in production.

VI. RESULTS AND DISCUSSION
In this section, we present the evaluation results of the
two phases. To complement the details about the model’s
implementations already discussed in previous sections, both
STL and MTL models were implemented using PyTorch
2.1.13 We use the Adam optimizer [54] with a learning rate

13https://pytorch.org/

3080 VOLUME 5, 2024

TABLE 8. Comparing accuracy and average inference time per sample across 2D
CNN and 1D CNN STL models from Figure 4 (Phase 1).

of 0.001, a batch of size 64 (except in the last evaluations),
and a cross-entropy loss function during 400 training epochs
with early stopping and model checkpoint (model with best
accuracy) callbacks.
The dataset used for training, validation, and testing was

balanced by equalizing the number of samples across classes,
with the class containing the fewest labels in task 3 (TuneIn)
serving as the benchmark (see Table 5, where TuneIn has
10229 samples). Subsequently, the resulting dataset, totaling
71.6K samples, was divided into three subsets: 65% for train-
ing (47027 samples), 20% for validation (16384 samples),
and 10% for testing (8192 samples). CUDA14 v12.2 was
installed on the server, while CUDA v10.2 and TensorRT
v8.0.1 ran on the Jetson TX2. Our baseline model will be
the 2D-CNN proposed in [7] and shown in Figure 4.

A. PHASE 1 STL AND MTL MODEL’S PERFORMANCE
One of the goals in Phase 1 is to develop models capable
of addressing spectrum-based TC tasks with the fewest
parameters before any advanced optimization. Let us set
� = 0.95 as the tolerance for the whole methodology. In
other words, we expect the optimized models to achieve
the baseline KPIstl with a maximum drop of 5%. Although
the selected tolerance is very low, it holds during the
methodology, as shown below.
As we explored in Section VI-C, a 1D-CNN is a more

apt choice than a 2D-CNN for TC tasks using L1 packets.
Despite our STL 1D-CNN having a similar architecture to the
2D-CNN, as depicted in Figure 4, it has significantly fewer
trainable parameters, as indicated in Table 8. In the context
of the three tasks evaluated in [7], the 1D-CNN achieves a
4x reduction in the number of the model’s parameters (3.2M
vs. 786K) compared to the 2D-CNN baseline. Furthermore,
this parameter reduction translates into an average 3.6x
improvement in inference time across all tasks (0.645ms vs.
0.179ms). Finally, we can see that the accuracy among the
three tasks remains almost equal, with a minor drop of 1.3%
(0.968 vs. 0.955) and 1.4% (0.909 vs. 0.896) in accuracy for

14https://developer.nvidia.com/cuda-toolkit

TABLE 9. Comparing accuracy of STL vs. MTL 1D-CNN models (Phase 1).

FIGURE 8. Comparison of per-task vs. aggregated accuracy of the 1D CNN MTL
during training (Phase 1).

tasks 2 and 3, respectively. For the rest of the methodology,
we will use the measured KPIs of the 1D-CNN as the KPIstl.
In the next step, we will develop the MTL model, utilizing

the correlation analysis presented in Section VI-B. We will
also include task 0 (the L1 packet TC task, as outlined
in Table 3), to increase the complexity of the problem and
showcase the full potential of our methodology. Figure 5
shows the trained MTL model, which uses the HPS and DTP
strategies introduced in Section IV-D3. Table 9 illustrates
how the MTL model performs with and without the DTP
task-balancing learning strategy.
Notably, applying the DTP strategy resulted in a 1.85%

increase in accuracy for task 3. This performance demon-
strates that DTP can automatically identify the weights
aligned with the task difficulty during the learning phase.
It can be observed that the 1D-CNN MTL model has
an accuracy difference of less than 0.5% for any task
compared to the 2D-CNN (task 1 - 0.994 vs. 1.00, task 2
- 0.973 vs. 0.968, task 3 - 0.9037 vs. 0.909). These results
will be part of the KPImtl.
To provide a complete picture of the MTL model’s

accuracy performance, Figure 8 presents the training accu-
racy of the 1D-CNN MTL model. Tasks 0 and 1, which
are the easiest and have the highest accuracy, peaked in
the initial epochs, while tasks 2 and 3 required more
time to converge. Nevertheless, the model demonstrates a
robust overall performance, as indicated by its high average

VOLUME 5, 2024 3081

GÓEZ et al.: RESOURCE-EFFICIENT SPECTRUM-BASED TC ON CONSTRAINED DEVICES

TABLE 10. STL vs. MTL memory requirements with a similar number of layers and neurons using a batch size of 64 samples (Phase 1).

TABLE 11. Comparison of inference time for STL vs. MTL models (Phase 1).

accuracy, represented by the orange line. Most models
typically reach their optimal performance around epoch 70.
In terms of resource usage and runtime efficiency, the

performance of the MTL model is given in Tables 10 and 11,
which compare the model sizes (parameter count and
memory size) and inference time with those of STL models.
Table 10 shows that the MTL model’s size (both in MiB
and number of parameters) is quite similar to the aggregated
size of the four STL models, being only about 3.5%
larger. However, model size plays only a minor role in
the model’s total memory and computational complexity.
While the MTL model requires 4x more storage for the
model parameters (3.14 MiB vs. 0.81 MiB), this represents
less than 2% of the total (buffered) memory requirements at
inference time (3.14 MiB vs. 189.2 MiB).
In total, the memory requirements for the MTL model are

only 1.3% larger than those for a single STL model, which is
a 4x reduction compared to the parallel (aggregated) execu-
tion of all the STL models. Another significant observation
is that the memory requirements for Conv1D layers are the
predominant factor for storage, accounting for more than
98% of the total memory requirements. Consequently, a 1D-
CNN MTL model with HPS exhibits sub-linear growth in
memory requirements compared to parallel deployments of
STL models, as the task-specific (dense) layers account for
less than 2% of the total memory.
If we move to inference time (average time per sample),

we can see that the MTL model is approximately 13% slower

than a single STL one (0.052ms vs. 0.045ms), as given in
Table 11. However, it provides a 3.4x improvement in the
total inference time compared to the sequential execution of
the four STL models (0.052ms vs. 0.18ms). These results
indicate that the MTL model is more compact in terms of
memory size and more efficient in inference time.
Progressing to Phase 2 requires validation to ensure that

the KPImtl remains within the specified � tolerance of
KPIstl. While the learning accuracy, memory requirements,
and inference time of the MTL model are within the
acceptable trade-off range compared to an STL model, it
is observed that the inference time of the MTL model has
decreased by 13%. However, it is important to consider
the inference time in the context of sequential execution of
all the STL models, as parallel execution would contradict
the hardware constraint assumptions for the target device in
Phase 2. As a result, the inference time of the MTL model
still falls within this tolerance range even in scenarios where
a low tolerance (e.g., � > 95%) is applied.
The inference time for both STL and MTL models will

complement the KPImtl and KPIstl metrics, respectively, and
it will be instrumental in Phase 2 for benchmarking the
performance of the optimized models on the target device.

B. PHASE 2 STL AND MTL MODEL’S PERFORMANCE
As presented in Section V-A, we use TensorRT to optimize
the resulting models from Phase 1 and deploy them on
the NVIDIA Jetson TX2. Table 12 shows the performance
evaluations of the optimized STL and MTL models in terms
of total GPU memory requirements (buffered memory) for
a batch of 64 L1 packets (3000 IQ samples), inference time,
and accuracy per task when we use FP16 and FP32 precision.
Notice that we did not explore lower precision reductions
(e.g., INT8 via quantization) since Jetson TX2 does not
support it.
For the optimized STL and MTL models using FP16, we

reduced total memory requirements by up to 50% concerning
the FP32 model’s version (70MiB vs. 140MiB), as expected.
Compared with the non-optimized versions (see Table 10),
the improvement is even larger (up to 13%) thanks to the
other optimization steps, e.g., layer fusion, that TensorRT

3082 VOLUME 5, 2024

TABLE 12. Performance benchmark of optimized STL and MTL models using FP16
and FP32 (Phase 2). Inference time is per sample.

applied. The resulting STL and MTL models reduce the
memory requirements by a factor of 2.65x compared to their
non-optimized version (186.72 vs. 70.37 and 189.2 vs. 70.37
MiB, respectively) and up to 10.6x compared to a parallel
execution of them.Moreover, the accuracy remains consistent
across both FP16 and FP32 models, indicating that the
reduced precision has not compromised the accuracy of these
tasks.
Regarding inference time, we can see that the optimized

MTL model running on the target device only increases
its inference time by 13% with respect to an optimized
STL using FP16 but outperforms it by a factor of 3.6x
when the STL models are executed sequentially. Notice
also that both STL and MTL models running on the target
devices have a drop in performance compared to the non-
optimized version running in server-grade hardware. This
drop is expected based on the hardware capabilities of the
server and the constrained device (see Table 6). However, if
we focus on the MTL model using FP16, we can see that the
MTL model outperformed a sequential execution of the STL
models running in a server by reducing its inference time by
a factor of 3.42x (0.052ms vs. 0.180ms).

Notice that although the same MTL model is around 63%
slower compared to a non-optimized version of a 1D-CNN
STL model running on a server (0.045ms vs. 0.119ms),
it is still an improvement compared to the inference time
of a 2D-CNN STL model (0.119ms vs. 0.15ms, from
Table 7). Moreover, according to [7, Secs. VI.A and VI.B],
its inference time per packet is much lower than maxexec,
which is (on average) 2ms for tasks 0 and 1, and 7ms for
tasks 2 and 3.

In summary, Figure 9 shows a dual-axis comparison of
average inference time in samples per ms and GPU memory
consumption(in MiB between the FP16 and FP32 precision
formats at various batch sizes. In general, a batch size of 64
provides the best trade-off between memory requirements, as
it is aligned to the target device and inference time, which is
below the maximum execution time for real-time processing.
Moving from 64 to 128 batch size minimizes inference time
from 0.119ms to 0.107ms but increases the memory in a 2x
factor, from 70 to 140MiB.

C. PHASE 2 MTL MODEL’S ADAPTABILITY AND ENERGY
EFFICIENCY ON DIFFERENT EDGE PLATFORMS
In this section, the energy consumption, calculated by using
Equation (8), and energy efficiency, measured in joules per
sample, of the resulting MTL models on the NVIDIA Jetson
TX2 are presented. The performance results are compared
with the well-known Raspberry Pi model 3B+ (RPI3B+)
edge computing platform, both with and without the low-
power Coral TPU USB Accelerator. Table 13 provides a
summary of the hardware capabilities for both platforms.
It is important to note that we had to recreate the MTL
model using a 2D-CNN architecture using TensorFlow 2.15
and configure them to emulate 1D ones. This adjustment
is necessary because the Coral TPU only supports mod-
els in TensorFlow Lite15,16 format for inference and is
incompatible with Conv1D layers. However, despite this
modification, the resulting MTL model maintains an equiv-
alent architecture and number of trainable parameters as the
original 1D-CNN implemented in PyTorch, ensuring a fair
comparison. Additionally, we employed quantization-aware
training17 with INT8 precision on the weights to compress
the model, enabling it to run efficiently on constrained
devices such as the RPI3B+. TensorFlow Lite served as the
inference engine for the INT8 quantized models.

E =
n∑

i=1

Pi · �ti (8)

where:

• Pi is the power at time i,
• �ti is the time interval at time i, and
• n is the total number of time intervals.

Table 14 presents the performance evaluations regarding
inference, energy consumption, and power consumption
across various edge platforms, processing units, and infer-
ence engines. It is important to note that while the previous
subsection focuses on the optimized MTL model using
TensorRT as the inference engine on the NVIDIA Jetson
TX2, the same model can also be deployed for inference
using PyTorch’s inference engine on both the Jetson and
RPI3B+ CPUs, albeit with reduced performance.

15https://www.tensorflow.org/lite
16https://coral.ai/docs/edgetpu/tflite-python/
17https://www.tensorflow.org/model_optimization

VOLUME 5, 2024 3083

GÓEZ et al.: RESOURCE-EFFICIENT SPECTRUM-BASED TC ON CONSTRAINED DEVICES

FIGURE 9. Comparison of inference time per sample and GPU memory usage as a function of batch size for FP16 and FP32 1D-CNN MTL models.

TABLE 13. Hardware specifications for Raspberry Pi 3 Model B+ and Coral TPU
USB Accelerator.

Interestingly, the INT8 quantized model utilizing the
TensorFlow Lite inference engine on the RPI3B+‘s CPU
outperforms, i.e., requires less energy, the model using the
PyTorch inference engine with FP32 on the Jetson’s CPU
(54.8 vs. 82.7 millijoules/Sample), despite the Jetson CPU
being superior to that of the RPI3B+. Furthermore, we can
see that the model optimized using TensorRT with FP16 and
executed on the Jetson’s GPU achieves a 56x improvement
in energy efficiency that is 0.97 millijoules/Sample vs. 54.8
millijoules/Sample compared to any of the models running
only on CPU.
When utilizing the Coral TPU accelerator with the

RPI3B+ to run the INT8 MTL models, we observe up
to a 4.5x improvement in the energy efficiency com-
pared to using only the CPU (11.9 millijoules/Sample vs.
54.8 millijoules/Sample). Interestingly, there were minor
differences in the performance between the Coral TPU
accelerator operating at standard (Coral TPU std) and
maximum (Coral TPU max) current draw. One of the
possible reasons for this discrepancy could be that the
RPI3B+ might not provide sufficient current to the TPU

when required, as minor variations were observed in both
measurements.
Nevertheless, it is worth noting that the model optimized

using TensorRT with FP16 and executed on the Jetson’s
GPU achieves a 12x improvement in energy efficiency (0.97
millijoules/Sample vs. 11.9 millijoules/Sample) compared to
any of the models running on the TPU. This is despite
the TPU being capable of performing more TOPS (up
to 4) compared to the Jetson (1.33). The reason for the
performance difference is that the TPU only supports batches
of size 1 during inference due to its limited memory capacity.
This results in additional overhead as data needs to be
constantly transferred between the RPI3B+ memory and the
TPU. In contrast, the Jetson has enough memory to support
larger batches and utilizes shared memory between the CPU
and GPU.
Complementing our previous point, Figure 10 illustrates

the energy consumption of the MTL model on the Jetson
TX2 across different batch sizes. It is evident that as
the batch size increases, energy consumption decreases
noticeably, indicating higher energy efficiency with larger
batches. However, beyond a batch size of 16, the reduction
in energy consumption becomes less pronounced, suggesting
diminishing returns in efficiency improvements, consistent
with the findings in Figure 9. This behavior can be attributed
to energy consumption being proportional to inference time,
which decreases sub-linearly with batches larger than 32
samples, as depicted in Figure 9.

Comparing the optimized MTL model with FP16 precision
to the model with FP32, the former demonstrates an
average reduction of 64% in energy consumption with batch
sizes ≤ 16 (e.g., at batch size 64, energy consumption
is 7.94 joules vs. 12.11 joules). Lastly, when comparing
the energy consumption of the same model with the

3084 VOLUME 5, 2024

TABLE 14. Performance comparison in terms of inference time, energy and power consumption, and energy efficiency of a Jetson TX2 and RPI3B+ with and without Coral TPU
AI accelerator.

FIGURE 10. Comparison of energy consumption as a function of batch size for the 1D-CNN MTL models with FP16, FP32, and INT8 precision.

INT8 model running on the Coral TPU with batch size
1, the FP16 model on the Jetson exhibits approximately
20% lower energy consumption (79.04 joules vs. 99.36
joules). In general, we observe that the RPI3B+ with the
TPU offers decent performance with lower power demands
compared to the Jetson TX2 (3.67 Watts vs. 8.85 Watts)
but exhibits lower energy efficiency (0.97 joules/sample vs.
11.9 joules/sample). This discrepancy can be attributed to
limitations such as the TPU supporting only batch sizes of
1 and the RPI3B+ having limited CPU capacity compared
to the Jetson TX2 (e.g., ARM Cortex-A53 vs. A57).
It is worth noting that the inference time of the RPI3B+

with the TPU (3.55ms) only meets the maxexec requirement
for tasks 2 and 3, which is 7ms according to [7, Secs. VI.A
and VI.B]. However, it will fail for tasks 0 and 1, which
require 2ms. In this scenario, Phase 1 can be initiated to
redesign the model or Phase 2 to apply other optimization
techniques such as pruning, or even consider replacing the

RPI3B+ with another edge platform, such as the newest
Raspberry Pi 5 featuring the Broadcom BCM2712 quad-core
Arm Cortex A76 processor at 2.4GHz.18

VII. CONCLUSION AND OPEN CHALLENGES
The paper introduces a novel methodology for design-
ing spectrum-based TC systems optimized for constrained
devices. This methodology integrates MTL with DNN
optimization techniques, addressing the resource-intensive
nature of previous state-of-the-art works. It provides both
STL and MTL models tailored for limited-resource envi-
ronments. Through extensive experimentation on an edge
hardware platform such as the NVIDIA Jetson TX2, the
study demonstrates that the designed MTL architecture,
which combines 1D-CNN with DTP and HPS strategies,
significantly enhances system efficiency.

18https://www.raspberrypi.com/products/raspberry-pi-5/

VOLUME 5, 2024 3085

GÓEZ et al.: RESOURCE-EFFICIENT SPECTRUM-BASED TC ON CONSTRAINED DEVICES

The application of DNN optimization methods, such as
precision-reduction and layer-fusion, tailored to the device’s
capabilities, leads to a reduction in memory requirements
by 2.65x times and improves execution time by 3.6x times
compared to sequential execution of a non-optimized version
of the STL models on a server-grade hardware platform.
This was achieved while maintaining a minimal impact on
accuracy (less than a 0.5% drop) with an energy efficiency
of 0.97 millijoules per sample at inference. Compared to
other edge platforms, such as the Raspberry Pi model 3B+
(RPI3B+) with the low-power AI accelerator Coral TPU, the
NVIDIA Jetson achieves a 12-fold improvement in energy
efficiency with no impact on accuracy.
While this work has successfully tackled several of the

open challenges outlined in previous works, it is important
to acknowledge that some persist, and new ones have
emerged. As part of future research efforts, addressing
these challenges is key to the development of resource-
efficient, high-performance, and trustworthy spectrum-based
TC systems.
Another important aspect to consider in future research is

the increasing prevalence of encryption in modern networks.
While the dataset used in this study included only L1 encryp-
tion, understanding how DL-based models can effectively
classify encrypted traffic is essential for developing robust
classification systems. This requires exploring innovative
techniques and architectures capable of handling encrypted
traffic patterns while maintaining high classification accu-
racy, similar to the research efforts in TC systems using
byte-based packet representation [37], [55].
Additionally, enhancing the interpretability and explain-

ability of these models is crucial for gaining insights into
the decision-making process and fostering trust in their
outcomes. This involves developing methodologies and tools
to elucidate how the models arrive at their classifications,
enabling users to understand and validate the reasoning
behind the model’s predictions. Potential frameworks for
exploration could be based on those proposed for byte-based
MTL TC [11] and AMC [56].

Addressing data privacy and security concerns while using
spectrum-based TCs to handle user-generated network traffic
presents significant challenges, primarily in balancing data
utility with privacy in a real-world context where data vol-
umes are vast. In byte-based TC systems, existing academic
works try to achieve that balance via data perturbation, which
is used to anonymize data while maintaining approximate
distribution characteristics of the original dataset [57].
However, this can reduce data utility, which is crucial for
classifier effectiveness. Restoring utility involves adjusting
perturbed data to reflect the original attributes’ order rela-
tionships, a process that requires complex manipulations to
maintain privacy without sacrificing the accuracy of the TC.
Alternatively, federated learning offers a decentralized

approach to training classifiers, enabling models to be trained
directly on users’ devices or local servers while preserving
data privacy and increasing utility [58], [59]. Aggregating

local updates from each device allows the model to learn
from diverse data sources without directly accessing raw
data while facilitating personalized recommendations or
predictions for individual users. Therefore, exploring similar
techniques in spectrum-based TCs is key to building trust
with users and stakeholders and is crucial for ethical data
handling.
Another important area for future research involves

applying the methodology to a comprehensive end-to-end
spectrum-based TC system for constrained devices. This
process may encompass steps such as IQ sample capturing,
packet assembly, and packet filtering, which potentially can
be DNN-based (e.g., TR as described in [7]). Such an
expansion would provide a more holistic understanding of the
system’s performance and applicability in real-world scenar-
ios. Finally, the proposed methodology can be enhanced by
integrating techniques such as neural architecture search [60]
to automate the design of the DL architecture in phase
one. However, evaluating the complexity of integrating such
techniques and their impact on accelerating the design and
development process has to be considered in future works.

REFERENCES
[1] K. Zia, A. Chiumento, and P. J. M. Havinga, “AI-enabled reliable QoS

in multi-rat wireless IoT networks: Prospects, challenges, and future
directions,” IEEE Open J. Commun. Soc., vol. 3, pp. 1906–1929, 2022.

[2] M. Z. Chowdhury, M. Shahjalal, S. Ahmed, and Y. M. Jang,
“6G wireless communication systems: Applications, requirements,
technologies, challenges, and research directions,” IEEE Open J.
Commun. Soc., vol. 1, pp. 957–975, 2020.

[3] F. Pacheco, E. Exposito, M. Gineste, C. Baudoin, and J. Aguilar,
“Towards the deployment of machine learning solutions in network
traffic classification: A systematic survey,” IEEE Commun. Surveys
Tuts., vol. 21, no. 2, pp. 1988–2014, 2nd Quart., 2019.

[4] A. Rago, G. Piro, G. Boggia, and P. Dini, “Multi-task learning at the
mobile edge: An effective way to combine traffic classification and
prediction,” IEEE Trans. Veh. Technol., vol. 69, no. 9, pp. 10362–
10374, Sep. 2020.

[5] G. Aceto, D. Ciuonzo, A. Montieri, and A. Pescapé, “Mobile encrypted
traffic classification using deep learning: Experimental evaluation,
lessons learned, and challenges,” IEEE Trans. Netw. Service Manag.,
vol. 16, no. 2, pp. 445–458, Jun. 2019.

[6] S. Rezaei and X. Liu, “Deep learning for encrypted traffic classifica-
tion: An overview,” IEEE Commun. Mag., vol. 57, no. 5, pp. 76–81,
May 2019.

[7] M. Camelo, P. Soto, and S. Latré, “A general approach for traffic
classification in wireless networks using deep learning,” IEEE Trans.
Netw. Service Manag., vol. 19, no. 4, pp. 5044–5063, Dec. 2022.

[8] M. H. Rahman, R. B. Mofidul, and Y. M. Jang, “Spectrum
based wireless radio traffic classification using hybrid deep neural
network,” in Proc. 13th Int. Conf. Ubiquitous Future Netw. (ICUFN),
2022, pp. 95–99.

[9] M. Camelo, T. D. Schepper, P. Soto, J. Marquez-Barja, J. Famaey,
and S. Latré, “Detection of traffic patterns in the radio spectrum for
cognitive wireless network management,” in Proc. IEEE Int. Conf.
Commun. (ICC), 2020, pp. 1–6.

[10] Y. Zhang and Q. Yang, “A survey on multi-task learning,” IEEE Trans.
Knowl. Data Eng., vol. 34, no. 12, pp. 5586–5609, Dec. 2022.

[11] A. Nascita, A. Montieri, G. Aceto, D. Ciuonzo, V. Persico, and
A. Pescapé, “Improving performance, reliability, and feasibility in
multimodal multitask traffic classification with XAI,” IEEE Trans.
Netw. Service Manag., vol. 20, no. 2, pp. 1267–1289, Jun. 2023.

[12] G. Aceto, D. Ciuonzo, A. Montieri, and A. Pescapé,
“DISTILLER: Encrypted traffic classification via multimodal
multitask deep learning,” J. Netw. Comput. Appl.,
vols. 183–184, Jun. 2021, Art. no. 102985. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1084804521000126

3086 VOLUME 5, 2024

[13] M. Kanakis, “Designing efficient deep neural networks: Topological
optimization, quantization and multi-task learning,” Ph.D. disser-
tation, Departement Informationstechnologie und Elektrotechnik,
Univ. Zürich, Zürich, Switzerland, 2023. [Online]. Available:
https://ee.ethz.ch/de/

[14] S. Arish, S. Sinha, and K. G. Smitha, “Optimization of convolutional
neural networks on resource constrained devices,” in Proc. IEEE
Comput. Soc. Annu. Symp. VLSI (ISVLSI), 2019, pp. 19–24.

[15] D. Góez, P. Soto, S. Latré, N. Gaviria, and M. Camelo, “A
methodology to design quantized deep neural networks for automatic
modulation recognition,” Algorithms, vol. 15, no. 12, p. 441, 2022.

[16] S. Kumar, R. Mahapatra, and A. Singh, “Automatic modulation
recognition: An FPGA implementation,” IEEE Commun. Lett., vol. 26,
no. 9, pp. 2062–2066, Sep. 2022.

[17] J. Fontaine, A. Shahid, B. Van Herbruggen, and E. De Poorter, “Impact
of embedded deep learning optimizations for inference in wireless
IoT use cases,” IEEE Internet Things Mag., vol. 5, no. 4, pp. 86–91,
Dec. 2022.

[18] M. O. Demir, G. K. Kurt, and M. Karaca, “An energy consumption
model for 802.11ac access points,” in Proc. 22nd Int. Conf. Softw.,
Telecommun. Comput. Netw. (SoftCOM), 2014, pp. 67–71.

[19] P. Silva, N. T. Almeida, and R. Campos, “A comprehensive study
on enterprise Wi-Fi access points power consumption,” IEEE Access,
vol. 7, pp. 96841–96867, 2019.

[20] M. Miozzo, Z. Ali, L. Giupponi, and P. Dini, “Distributed and
multi-task learning at the edge for energy efficient radio access
networks,” IEEE Access, vol. 9, pp. 12491–12505, 2021.

[21] A. Jagannath and J. Jagannath, “Multi-task learning approach for
modulation and wireless signal classification for 5G and beyond:
Edge deployment via model compression,” Phys. Commun., vol. 54,
Oct. 2022, Art. no. 101793.

[22] P. Wang, X. Chen, F. Ye, and Z. Sun, “A survey of techniques
for mobile service encrypted traffic classification using deep learn-
ing,” IEEE Access, vol. 7, pp. 54024–54033, 2019.

[23] T. Liang, J. Glossner, L. Wang, S. Shi, and X. Zhang, “Pruning
and quantization for deep neural network acceleration: A sur-
vey,” Neurocomputing, vol. 461, pp. 370–403, Oct. 2021. [Online].
Available: https://www.sciencedirect.com/science/article/pii/S092523
1221010894

[24] M. Hoyhtya, H. Sarvanko, M. Matinmikko, and A. Mammela,
“Autocorrelation-based traffic pattern classification for cognitive
radios,” in Proc. IEEE Veh. Technol. Conf. (VTC), 2011, pp. 1–5.

[25] E. Testi, E. Favarelli, and A. Giorgetti, “Machine learning for user
traffic classification in wireless systems,” in Proc. 26th Eur. Signal
Process. Conf. (EUSIPCO), 2018, pp. 2040–2044.

[26] C.-H. Liu, P. Pawelczak, and D. Cabric, “Primary user traffic
classification in dynamic spectrum access networks,” IEEE J. Sel.
Areas Commun., vol. 32, no. 11, pp. 2237–2251, Nov. 2014.

[27] T. De Schepper, M. Camelo, J. Famaey, and S. Latré, “Traffic
classification at the radio spectrum level using deep learning models
trained with synthetic data,” Int. J. Netw. Manag., vol. 30, no. 4, 2020,
Art. no. e2100.

[28] M. Girmay, V. Maglogiannis, D. Naudts, M. Aslam, A. Shahid, and
I. Moerman, “Technology recognition and traffic characterization for
wireless technologies in its band,” Veh. Commun., vol. 39, Feb. 2023,
Art. no. 100563. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S2214209622001103

[29] T. J. O’Shea, S. Hitefield, and J. Corgan, “End-to-end radio traffic
sequence recognition with recurrent neural networks,” in Proc. IEEE
Glob. Conf. Signal Inf. Process. (GlobalSIP), 2016, pp. 277–281.

[30] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Comput., vol. 9, no. 8, pp. 1735–1780, 1997. [Online]. Available:
https://doi.org/10.1162/neco.1997.9.8.1735

[31] F. A. Gers, J. Schmidhuber, and F. Cummins, “Learning to forget:
Continual prediction with LSTM,” in Proc. 9th Int. Conf. Artif. Neural
Netw. (ICANN), 1999, pp. 850–855.

[32] R. Pascanu, T. Mikolov, and Y. Bengio, “On the difficulty of training
recurrent neural networks,” in Proc. Int. Conf. Mach. Learn., 2013,
pp. 1310–1318.

[33] Z. C. Lipton, J. Berkowitz, and C. Elkan, “A critical review of recurrent
neural networks for sequence learning,” 2015, arXiv:1506.00019.

[34] S. Bai, J. Z. Kolter, and V. Koltun, “An empirical evaluation of generic
convolutional and recurrent networks for sequence modeling,” 2018,
arXiv:1803.01271.

[35] S. Rezaei and X. Liu, “Multitask learning for network traffic
classification,” in Proc. 29th Int. Conf. Comput. Commun. Netw.
(ICCCN), 2020, pp. 1–9.

[36] L. Liu, Y. Yu, Y. Wu, Z. Hui, J. Lin, and J. Hu, “Method for multi-task
learning fusion network traffic classification to address small sample
labels,” Sci. Rep., vol. 14, no. 1, p. 2518, 2024.

[37] W. Zheng, J. Zhong, Q. Zhang, and G. Zhao, “MTT: An efficient
model for encrypted network traffic classification using multi-
task transformer,” Appl. Intell., vol. 52, no. 9, pp. 10741–10756,
Jul. 2022.

[38] L. Yang, S. Guo, D. Liu, Y. Zeng, X. Jiao, and Y. Zhou,
“ConViTML: A convolutional vision transformer-based meta-learning
framework for real-time edge network traffic classification,” IEEE
Trans. Network Service Manag., early access, Mar. 29, 2024,
doi: 10.1109/TNSM.2024.3383218.

[39] W. Wei, H. Gu, W. Deng, Z. Xiao, and X. Ren, “ABL-TC: A
lightweight design for network traffic classification empowered by
deep learning,” Neurocomputing, vol. 489, pp. 333–344, Jun. 2022.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0925231222002673

[40] J. Cheng et al., “MATEC: A lightweight neural network for online
encrypted traffic classification,” Comput. Netw., vol. 199, Nov. 2021,
Art. no. 108472.

[41] M. Lu, B. Zhou, Z. Bu, K. Zhang, and Z. Ling, “Compressed network
in network models for traffic classification,” in Proc. IEEE Wireless
Commun. Netw. Conf. (WCNC), 2021, pp. 1–6.

[42] M. Lu, B. Zhou, and Z. Bu, “Two-stage distillation-aware compressed
models for traffic classification,” IEEE Internet Things J., vol. 10,
no. 16, pp. 14152–14166, Aug. 2023.

[43] R. Desislavov, F. Martínez-Plumed, and J. Hernández-Orallo, “Trends
in AI inference energy consumption: Beyond the performance-
vs-parameter laws of deep learning,” Sustain. Comput. Informat.
Syst., vol. 38, Apr. 2023, Art. no. 100857. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S2210537923000124

[44] S. Vandenhende, S. Georgoulis, W. Van Gansbeke, M. Proesmans,
D. Dai, and L. Van Gool, “Multi-task learning for dense prediction
tasks: A survey,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 44,
no. 7, pp. 3614–3633, Jul. 2022.

[45] S. Liu, E. Johns, and A. J. Davison, “End-to-end multi-task
learning with attention,” in Proc. IEEE/CVF Conf. Comput. Vis.
Pattern Recognit. (CVPR), 2019, pp. 1871–1880. [Online]. Available:
https://doi.ieeecomputersociety.org/10.1109/CVPR.2019.00197

[46] M. Guo, A. Haque, D.-A. Huang, S. Yeung, and L. Fei-Fei, “Dynamic
task prioritization for multitask learning,” in Proc. Eur. Conf. Comput.
Vis. (ECCV), 2018, pp. 270–287.

[47] O. Sener and V. Koltun, “Multi-task learning as multi-objective
optimization,” in Proc. 32nd Adv. Neural Inf. Process. Syst., 2018,
pp. 1–12.

[48] Z. Liu and D. Ding, “TensorRT acceleration based on deep learning
OFDM channel compensation,” J. Phys. Conf. Series,, vol. 2303, no. 1,
2022, Art. no. 012047.

[49] M. Blott et al., “Evaluation of optimized CNNs on heterogeneous
accelerators using a novel benchmarking approach,” IEEE Trans.
Comput., vol. 70, no. 10, pp. 1654–1669, Oct. 2021.

[50] Z. Liu, D. Ding, and Y. Fan, “Embedded hardware implementation
of RFNoC-based OFDM communication system,” in Proc. 2nd Int.
Conf. Artif. Intell., Autom., High-Perform. Comput. (AIAHPC), 2022,
pp. 954–960. [Online]. Available: https://doi.org/10.1117/12.2641335

[51] Precision—Quick Start Guide—Tensorrt Documentation, Nvidia
Softw. Co., Santa Clara, CA, USA, 2022, Accessed: Nov. 28, 2023.

[52] Y. Zhou and K. Yang. “Improved real-time deep learning
inference by exploiting Tensorrt.” 2023. [Online]. Available:
http://dx.doi.org/10.2139/ssrn.4529548

[53] E. Jeong, J. Kim, S. Tan, J. Lee, and S. Ha, “Deep learning inference
parallelization on heterogeneous processors with TensorRT,” IEEE
Embed. Syst. Lett., vol. 14, no. 1, pp. 15–18, Mar. 2022.

[54] D. P. Kingma and J. Ba, “Adam: A method for stochastic
optimization,” in Proc. Int. Conf. Learn. Represent. (ICLR), 2015,
pp. 1–15.

[55] J. Dai, X. Xu, H. Gao, X. Wang, and F. Xiao, “SHAPE: A
simultaneous header and payload encoding model for encrypted traffic
classification,” IEEE Trans. Netw. Service Manag., vol. 20, no. 2,
pp. 1993–2012, Jun. 2023.

VOLUME 5, 2024 3087

http://dx.doi.org/10.1109/TNSM.2024.3383218

GÓEZ et al.: RESOURCE-EFFICIENT SPECTRUM-BASED TC ON CONSTRAINED DEVICES

[56] L. J. Wong and S. McPherson, “Explainable neural network-based
modulation classification via concept bottleneck models,” in Proc.
IEEE 11th Annu. Comput. Commun. Workshop Conf. (CCWC), 2021,
pp. 0191–0196.

[57] Y. Lu, H. Tian, and J. Yu, “Privacy preservation for network traffic
classification,” in Proc. 20th Int. Conf. Parallel Distrib. Comput., Appl.
Technol. (PDCAT), 2019, pp. 84–89.

[58] C. L. Stergiou, K. E. Psannis, and B. B. Gupta, “InFeMo: Flexible
big data management through a federated cloud system,” ACM Trans.
Internet Technol., vol. 22, no. 2, pp. 1–22, Oct. 2021. [Online].
Available: https://doi.org/10.1145/3426972

[59] B. McMahan, E. Moore, D. Ramage, S. Hampson, and
B. A. y. Arcas, “Communication-efficient learning of deep
networks from decentralized data,” in Proc. 20th Int. Conf.
Artif. Intell. Stat., 2017, pp. 1273–1282. [Online]. Available:
https://proceedings.mlr.press/v54/mcmahan17a.html

[60] T. Elsken, J. H. Metzen, and F. Hutter, “Neural architecture search: A
survey,” J. Mach. Learn. Res., vol. 20, no. 1, pp. 1997–2017, 2019.

DAVID GÓEZ received the bachelor’s degree in
telecommunications engineering and the M.Sc.
degree in industrial automation and control from
Metropolitan Technological Institute, Colombia,
in 2011 and 2016, respectively. He is currently
pursuing the Ph.D. degree with the Department
of Computer Science, University of Antwerp in
association with IMEC. His main research focus
is the implementation of deep learning models on
resource-constrained devices intended for applica-
tions in 5G communications. Additionally, he has

accumulated experience as a researcher in wireless communications, with
special emphasis on software-defined radio.

ESRA AYCAN BEYAZIT received the M.Sc. degree
in computer engineering from the İzmir Institute
of Technology in 2008, and the Ph.D. degree in
telecommunications from the İzmir Institute of
Technology and the Conservatoire National des
Arts et Métiers in 2016 through the Coutelle
Ph.D. Program. She is a Senior Researcher
of Telecommunication with the IDLab Research
Group, University of Antwerp. She has both
academical and industrial experience of more than
six years. Her research interests are interference

management, limited feedback links, heterogeneous networks, and artificial
intelligence.

LUIS A. FLETSCHER received the B.S. degree
in electronic and telecommunications engineer-
ing from the Universidad del Cauca, Popayán,
Colombia, in 2001, the first M.Sc. degree in
telematics from the Universidad de Murcia, Spain,
in 2010, the second M.Sc. degree in telecommu-
nications from Universidad Pontificia Bolivariana,
Medellín, Colombia, in 2011, and the Ph.D. degree
(cum laude) in engineering (energy systems) from
the Universidad Nacional de Colombia (Medellín
Campus) in 2018. Since 2012, he has been with the

Electronic and Telecommunications Engineering Department, Universidad
de Antioquia, Medellín, as an Associate Professor. His main research
interests are energy efficiency of telecommunications systems, network
management, and mobile networks planning.

JUAN F. BOTERO received the Ph.D. degree
in telematics engineering from the Technical
University of Catalonia, Spain, in 2013. In
2013, he joined the GITA Lab Research Group,
Universidad de Antioquia, Colombia, where he is
an Associate Professor with the Electronics and
Telecommunications Engineering Department. His
main research interests include quality of service,
software-defined networks, NFV, cybersecurity,
network management, and resource allocation.

NATALIA GAVIRIA received the electronic engi-
neering degree from the University of Antioquia,
Colombia, in 1996, the master’s degree in elec-
trical engineering from the Universidad de los
Andes, Colombia, in 1999, and the Ph.D. degree
in electrical and computer engineering from the
University of Arizona, USA, in 2006. She is
an Associate Professor with the University of
Antioquia. She is an Active Member of the GITA
Group. She has worked on theory and traffic
modeling in wireless networks and on research
projects in telemedicine.

STEVEN LATRÉ received the M.Sc. degree in
computer science and the Ph.D. degree in com-
puter science engineering from Ghent University,
Belgium, in 2006 and 2011, respectively. He is
currently the Vice President R&D of Artificial
Intelligence with imec and a Professor with
the University of Antwerp, Belgium. He has
authored or coauthored over 200 papers published
in international journals/conferences. His research
expertise is on the intersection of machine learning
and communication networks. He is a recipient of

the IEEE COMSOC Award for the Best Ph.D. in Network and Service
Management in 2012, the IEEE NOMS Young Professional Award in 2014,
the IEEE COMSOC Young Professional Award in 2015, and the Laureate
of the Belgian Academy in 2019.

MIGUEL CAMELO received the bachelor’s degree
in electronic engineering from the University of
Ibague, Colombia, in 2006, the master’s degree
in systems and computer engineering from the
University of Los Andes, Colombia, in 2010, and
the Ph.D. degree in computer engineering from
the University of Girona, Spain, in 2014. He
is currently a Senior Researcher and leads the
artificial intelligence (AI) for networks research
track with the IDLab Research Group, University
of Antwerp—imec, Belgium. He has authored or

coauthored several papers in international conferences/journals. He has
also participated and been awarded in international challenges in applied
AI/ML in networks (e.g., DARPA SC2 and ITU AI/ML in 5G Challenge).
His research interests are in the field of optimization and control of
communication networks.

3088 VOLUME 5, 2024

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Helvetica-Condensed-Bold
 /Helvetica-LightOblique
 /HelveticaNeue-Bold
 /HelveticaNeue-BoldItalic
 /HelveticaNeue-Condensed
 /HelveticaNeue-CondensedObl
 /HelveticaNeue-Italic
 /HelveticaNeueLightcon-LightCond
 /HelveticaNeue-MediumCond
 /HelveticaNeue-MediumCondObl
 /HelveticaNeue-Roman
 /HelveticaNeue-ThinCond
 /Helvetica-Oblique
 /HelvetisADF-Bold
 /HelvetisADF-BoldItalic
 /HelvetisADFCd-Bold
 /HelvetisADFCd-BoldItalic
 /HelvetisADFCd-Italic
 /HelvetisADFCd-Regular
 /HelvetisADFEx-Bold
 /HelvetisADFEx-BoldItalic
 /HelvetisADFEx-Italic
 /HelvetisADFEx-Regular
 /HelvetisADF-Italic
 /HelvetisADF-Regular
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

