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ABSTRACT Geo-decentralized federated learning (FL) can empower fully distributed model training
for future large-scale 6G networks. Without the centralized parameter server, the peer-to-peer model
synchronization in geo-decentralized FL would incur excessive communication overhead. Some existing
studies optimized synchronization interval for communication efficiency, but may not be applicable
to latency-constrained geo-decentralized FL. This paper first proposes the synchronization interval
optimization for latency-constrained geo-decentralized FL. The problem is formulated to maximize
the model training accuracy within a time window under communication/computation constraints. We
mathematically derive the convergence bound by jointly considering data heterogeneity, network topology
and communication/computation resources. By minimizing the convergence bound, we optimize the
synchronization interval based on the approximated system consistency metric. Extensive experiments
on MNIST, Fashion-MNIST and CIFAR10 datasets validate the superiority of the proposed approach by
achieving up to 30% higher accuracy than the state-of-the-art benchmarks.

INDEX TERMS Federated learning, edge intelligence, latency-constrained, communication efficiency.

I. INTRODUCTION

BY ENABLING distributed model training across
multiple clients, federated learning (FL) is one of the

key technologies for 6G communication networks [1], [2],
[3], [4], [5], [6], [7]. There are various applications of
federated learning for communication networks, including
wireless resource optimization, network orchestration, and
network security [2], [8], [9], [10], [11]. However, traditional
FL typically requires the centralized (or semi-distributed)
parameter server for model synchronization [12], [13], which
may not be practical geo-decentralized and large-scale 6G
networks. Geo-decentralized FL is a promising paradigm
to empower the fully-distributed model training without
the parameter server [14], [15], [16]. Its key feature is the
scalability in general-topology learning networks, where the

edge servers only need to communicate with their one-hop
neighbors for global convergence.
As compared to its centralized/semi-distributed counter-

part, the model synchronization in geo-decentralized FL may
be inefficient (i.e., resulting in increasing communication
overhead and complicated convergence guarantee). Recent
studies [17], [18], [19] designed the dynamic adjustment of
synchronization intervals (i.e., the number of training epochs
between two consecutive synchronization operations) for
geo-decentralized FL. However, the existing approaches only
focus on minimizing the overall communication overhead till
model convergence, and may not be applicable to the latency-
constrained FL setting [20]. Latency-constrained FL setting
holds significant practical relevance for real-time learning
applications and resource-limited edge devices [20], [21],
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[22], [23], [24], [25], [26]. In this scenario, training must con-
clude within a designated time limit before recommencing.
This setting, emphasizing training time constraints, diverges
from the traditional emphasis on accuracy post-convergence,
thus requiring different synchronization optimization design.
The objective of latency-constrained geo-decentralized FL

(i.e., improving the training effectiveness within a time
window) is distinctively different from the traditional training
(for better convergence accuracy without deadline require-
ment). In the latency-constrained setting, there are only
some works for the synchronization interval optimization in
traditional FL [27], [28], but the design in geo-decentralized
FL has yet to be studied in the literature.
This paper first studies the synchronization interval

optimization for latency-constrained geo-decentralized FL.
The problem is to maximize the model training efficiency
(accuracy) of geo-decentralized FL within a time window
under the communication/computation constraints. We math-
ematically derive the convergence bound within a time
window by jointly considering data heterogeneity, network
topology, and communication/computation resources. The
derived convergence result reveals the relationship between
the synchronization interval and the achieved loss function
at the end of the time window. Then, we reformulate the
problem and obtain the optimal synchronization interval by
minimizing the upper bound of the loss function. To solve
the problem, the system consistency metric (measuring the
maximum model difference) is accurately approximated by
extending the Dijkstra algorithm for the shortest path in
graph theory.
The key contributions can be summarized as follows.

• We mathematically derive the convergence bound of
geo-decentralized FL within a time window. The bound
reveals the relationship of bounded loss function to
data heterogeneity, network topology, and communica-
tion/computation consumption.

• We reformulate the problem to minimize the bounded
loss function for adaptive synchronization optimization.
We propose accurately approximating the system con-
sistency metric (measuring the model difference) by
extending the Dijkstra algorithm.

• Extensive experiments on MNIST [29], Fashion MNIST
[30] ((i.e., FMNIST for brevity) and CIFAR10 [31]
datasets validate that the proposed approach can achieve
up to 30% higher accuracy than the state-of-the-art
benchmarks.

The rest of the article is organized as follows. Section II
provides the literature review on recent progress on syn-
chronization interval optimization in FL. Section III presents
the system model and formulates the optimization problem
for latency-constrained geo-decentralized FL. Section IV
derives the convergence bound of geo-decentralized FL and
analyzes its relationship to data heterogeneity and network
topology. Section V illustrates the proposed synchronization

adjustment algorithm. Section VI analyzes the experimental
results, followed by the conclusion in Section VII.

II. RELATED WORK
In its infancy stage, there are limited studies on synchro-
nization interval optimization for geo-decentralized FL. For
comprehensiveness, this section provides a literature review
on the recent progress in both the topics of traditional FL
and geo-decentralized FL.

A. TRADITIONAL FEDERATED LEARNING
Recently, latency-constrained (or resource-constrained) fed-
erated learning, in the context of a centralized parameter
server, has emerged as a prominent area of interest [23],
[24], [25], [26]. Various effective methodologies have been
developed to address challenges associated with unreli-
able and resource-limited wireless networks [23], diverse
heterogeneous devices [24], and the implementation of
adaptive model pruning or partial aggregation to enhance
communication and energy efficiency [25], [26]. In this
paper, we consider the latency-constrained geo-decentralized
federated learning, where the centralized parameter server is
not available in large-scale 6G networks.
Various studies have proposed different approaches to

optimize the synchronization interval of federated learning
(i.e., the parameter-server architecture). 1) By analyzing
the upper bound of convergence of loss function [27], the
synchronization interval is dynamically adjusted to make the
selected synchronization interval more conducive to conver-
gence. 2) Optimize the synchronization interval based on
heterogeneous information such as computing resources and
storage capacity of different devices [28], [33]. 3) The syn-
chronization interval is adjusted in lazy aggregation mode,
i.e., only performing synchronization when the gradient
update exceeds a predefined threshold (reducing unnecessary
synchronization overhead) [14], [32]. The threshold can
also be dynamically adjusted according to different data
distributions at the local devices/workers [34].

Given the distinct learning procedure, the existing
approaches designed for traditional FL [14], [27], [28], [32],
[33], [34] cannot be applied in geo-decentralized FL.

B. GEO-DECENTRALIZED FEDERATED LEARNING
Decentralized Stochastic Gradient Descent (DSGD) [35]
is the typical learning method for geo-decentralized FL.
As compared to traditional FL, geo-decentralized FL can
operate in a fully distributed manner. Without the centralized
parameter server, geo-decentralized FL suffers from increas-
ing communication overhead and complicated convergence
guarantee. Communication efficiency via synchronization
interval optimization is one of the research hotspots for geo-
decentralized FL [17], [18], [19].
The synchronization interval optimization for geo-

decentralized FL was initially studied in [17], [18], where the
authors highlighted the need for adaptively adjusting the syn-
chronization interval as the training epoch evolves. However,
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TABLE 1. Comparison of different methods of adjusting synchronization interval.

the synchronization intervals were adjusted in a heuristic
manner with meticulously-designed control (cannot scale to
the general learning settings) [17], [18]. To further design
a general method for synchronization interval optimization,
the authors in [19] formulated the problem of optimizing
synchronization intervals and topology for geo-decentralized
FL. In particular, without considering the physical-world link
connections, the synchronization/communication topology
(i.e., whether performing synchronization between any two
edge servers) is dynamically established to reduce data
heterogeneity.
However, these approaches in [17], [18], [19] were

designed for the learning without deadline, and not
applicable for the latency-constrained setting. For the
latency-constrained setting, there are only some studies for
the synchronization optimization in traditional FL [27], [28].
This paper is the first to study the synchronization
optimization for latency-constrained geo-decentralized FL.
The related works are summarized in Table 1.

III. SYSTEM MODEL AND PROBLEM STATEMENT
Fig. 1 shows an latency-constrained geo-decentralized FL
system, where N edge servers can collaborate to train a
global model by only communicating with their one-hop
neighbors. In the latency-constrained setting, the servers
periodically train the learning models within a time window
with duration Z. Let G = (N,E) denote the topology of
the geo-decentralized FL network. Here, N and E are the N
edge servers and the inter-node links between the servers,
respectively.
The key problem is to balance the communication

(synchronizing training results) and computation (model
training), which can also be called adaptive. Spending

too much time for model synchronization (e.g., at each
epoch) would exhaust the model training time and result
in the model non-convergence dilemma. As a result, the
synchronization interval τ must be meticulously designed to
achieve the best learning accuracy, especially in the latency-
constrained setting with stringent time window dead line.
(as shown in the right part of Fig. 1). Table 2 summarizes
the notations used in this paper.

A. GEO-DECENTRALIZED FEDERATED LEARNING
MODEL
In machine learning, each sample consists of two parts, i.e.,
(x, y), where x and y are the input and the ground-truth label,
respectively [36]. Each edge server i has its local model
training dataset (e.g., arriving data from the sensory devices
within the last time window), denoted by Di. Let |Di| be the
size of dataset Di. The local loss function of edge server i
based on its local model parameter wi, i.e., Fi(wi), is given by

Fi(wi) = 1

|Di|
∑

(x,y)∈Di

h(wi, x, y) (1)

where h(wi, x, y) is per-sample loss function with respect to
(x, y) [37]. The objective of FL is to minimize the global
loss function of the system, as given by

min
w∈Rd

F(w) := 1

N

N∑

i=1

Fi(wi), (2)

where F(w) is used to substitute F(w1,w2, . . . ,wN) for
brevity.
DSGD [35] is typically adopted to solve the FL

problem (2) in a fully distributed manner. It operates
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FIGURE 1. An latency-constrained geo-decentralized FL system, where N edge servers can collaborate to train a global model within a predefined time window with duration
Z . The synchronization interval must be meticulously optimized based on the data heterogeneity, network topology, as well as the time window duration.

TABLE 2. Summary of main notations.

by iteratively performing local model training and model
synchronization, as shown in the following.

1) Local model training. At iteration t, each edge server
i needs to randomly choose a local datum ξi which is
employed to select a mini-batch dataset from Di and

uses its current local variable wi(t− 1) to evaluate the
stochastic gradient ∇fi(wi(t−1), ξi). The local learning
model can be updated according to [35]

wi

(
t − 1

2

)
= wi(t − 1) − γ∇fi(wi(t − 1), ξi). (3)

2) Model synchronization. After finishing the local model
training, each edge server i exchanges the updated
model wi(t − 1

2 ) with its neighboring edge servers.
Upon receiving the model weights from one-hop
neighbors, the model of edge server i can be updated by

wi(t) =
∑

j∈�i

aijwj

(
t − 1

2

)
(4)

where aij represents the model synchronization weight
of edge server j at edge server i (which can be
set according to (6) in the following) and �i is
the set of one-hop neighbors of edge server i. Let
A = [aij] be the synchronization weight matrix. The
model synchronization of all the edge servers can be
written as

[w(t)] = A

[
w

(
t − 1

2

)]
, (5)

where [w] represents the vector of all the local models
formed by the vertical arrangement.

Synchronization Matrix Generation. For a connected
network, the synchronization matrix A can be set according
to Metropolis-Hastings algorithm [38]. Let di be the degree
(i.e., the number of connected links) of edge server i. The
synchronization weight aij in Eq. (4) can be given by

aij =

⎧
⎪⎨

⎪⎩

1
max{di,dj} , if j ∈ �i

0, if j /∈ �i

1 − ∑
j∈�i

aij. if i = j

(6)
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FIGURE 2. An illustrative example of model training and synchronization between any two adjacent servers i and j with (i, j) ∈ E .

Here, Eq. (6) can generate a doubly stochastic synchroniza-
tion matrix A, and can guarantee the network convergence
(as will be shown in Section IV).
Synchronization Interval. As stated above, the model syn-

chronization in Eq. (5) does not need to be conducted after
each training iteration t, but at a timescale of a predefined
synchronization interval τ . In other words, the model
synchronization only performs every τ training iteration. In
this paper, we aim to optimize the synchronization interval
τ for the latency-constrained geo-decentralized FL system.

B. SYNCHRONIZATION MODEL WITH TIME WINDOW
CONSTRAINT
Fig. 2 illustrates the process of local training and model
synchronization for two servers. Let T denote the total num-
ber of local model training iterations within the predefined
time window duration Z. The maximum number of training
iterations T depends on 1) the per-iteration training latency,
denoted by Li, 2) model synchronization time, denoted by
Y and 3) the synchronization interval τ . The definition and
analysis of the aforementioned notations are as follows.
1) Per-iteration Training Latency. Consider the hetero-

geneity of different edge servers. The latency of per-iteration
training of edge server i can be denoted by Li. The training
duration within one synchronization interval would be
maxi∈N{τ ∗Li} = τL, where L = maxi∈N Li is the maximum
per-iteration training delay of the straggler (depending on
the local computation capability). Assume that Li does not
change across different synchronization intervals. Summing
up the training delay of different intervals results in the
estimation of the overall training delay of T iterations,
i.e., TL.

2) Model Synchronization Time. This metric represents
the time consumed by all adjacent servers to complete the
process of model sending and receiving and calculating the
weighted average value. Let Bi,j denote the capacity of link
(i, j) [39], and M be the size of transmitted updated model
(depending on the number of neurons of the learning model
and the adopted quantization method). Here, the link capacity
Bi,j indicates the available communication resources of link
(i, j). We ignore the time it takes the server to calculate
the mean, so that the model synchronization time Y is also
the maximum of parameter transmission time over each link
(i, j), i.e.,

Y = max
(i,j)∈E

{
M

Bi,j

}
. (7)

3) Time Window Constraints. Given the training iteration
T and synchronization interval τ , the number of model
synchronization K can be given by K = �T

τ
�. In the latency-

constrained setting, the maximum training iteration T is
confined by the time window duration Z, satisfying

KY + TL =
⌊
T

τ

⌋
Y + TL ≤ Z. (8)

In other words, the overall time for local model training
and model synchronization cannot exceed the time window
duration. The rounding operation in Eq. (8) can be omitted
without loss of generality [27]. The maximum training
iteration T can be written as

Tmax = Z

L+ Y
τ

. (9)
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4) Synchronization Interval. This metric represents the
number of local training performed between each model
synchronization.

C. PROBLEM FORMULATION
In the latency-constrained setting, the objective is to min-
imize the loss function (i.e., the best training accuracy) at
the end of the time window, i.e., F(w(Tmax)). The problem
of interest is to optimize the synchronization interval τ to
minimize the loss function, as given by

min
τ

F
(
w(Tmax)

)

s.t. (9)

0 < τ ≤ Tmax, τ ∈ N
+. (10)

The synchronization period in the problem (10) must be a
positive integer and cannot exceed the maximum number of
iterations. We note that it is challenging to solve problem (10)
due to the lack of the relationship between the synchro-
nization interval τ and the final loss function F(w(Tmax)).
Given the complexity of learning models, the relationship is
complicated and non-trivial to be obtained. In the following,
we start by bounding the loss function F(w(Tmax))) and
establishing its relationship to τ in Section IV. Based on the
analyzing results, we can solve problem (10) to minimize the
bounded loss function, hence optimizing the synchronization
interval, in Section V.

IV. CONVERGENCE ANALYSIS
In this section, we establish a quantitative relationship
between the upper bound of the loss function and the
synchronization interval. Various factors, including data
heterogeneity, communication topology, and computing
resources, are revealed in the analysis. The upper bound
analysis provides the mathematical foundation for optimizing
the synchronization interval in Section V.

A. ASSUMPTIONS AND METRICS
To facilitate the proof, we first introduce the general
assumptions of loss functions, and present typical metrics
for measuring the connectivity of a specific graph.
1) Loss Function Assumptions. We make the following

assumptions for local loss functions {Fi(w)}Ni=1. We use ‖ · ‖
to denote the L2 norm.
Assumption 1 (Convexity):
Fi(w) − Fi(w′) ≤ ∇Fi(w)T(w− w′) for any w,w′.
Assumption 2 (ρ-Lipschitz):
‖Fi(w) − Fi(w′)‖ ≤ ρ‖w− w′‖ for any w,w′.
Assumption 3 (β-Smooth):
‖∇Fi(w) − ∇Fi(w′)‖ ≤ β‖w− w′‖ for any w,w′.
From [40], we know that when local dataset Di is

uniformly drawn (without replacement) from the overall data,
it comes to E(fi(w), ξi) = Fi(w), E(∇fi(w, ξi)) = ∇Fi(w),
for any 1 ≤ i ≤ N. Also, stochastic gradient descent can be
seen as an approximation to gradient descent [27], [40]. We
have fi(w, ξi) = Fi(w),∇fi(w, ξi) = ∇Fi(w).

TABLE 3. Three different communication topologies.

2) Topology Metrics. For convergence, the synchronization
matrix A in geo-decentralized FL system should be a
symmetric and doubly stochastic matrix [41], i.e.,

A = AT ,A1N = 1N . (11)

The synchronization matrix in (6) meets these conditions.
There are N eigenvalues of the matrix A. Let λi(A) denote the
i-th largest eigenvalue of A. According to Perron–Frobenius
theory, the absolute eigenvalues cannot exceed 1, i.e., 1 =
λ1(A) ≥ λ2(A) ≥ . . . ≥ λN(A) ≥ −1. In particular, the
second largest eigenvalue modulus of A can be given by [42]

α = max(|λ2(A)|, |λN(A)|). (12)

According to [42], α satisfies the following properties:

1) 0 ≤ α < 1,
2) α = ‖A− 1N1NT‖,
3) αx = ‖Ax − 1N1NT‖.
In graph theory, the second largest eigenvalue modulus

of the adjacency matrix, i.e., α is called the algebraic
connectivity of the graph. In general, if a graph has a small
algebraic connectivity value, the graph has a high connection
density. Conversely, if the algebraic connectivity value is
large, the graph is sparse.
Table 3 shows the algebraic connectivity of three typical

topologies. We can see that the connection densities α of
the tree, ring and grid topologies 0.93, 0.87, and 0.80,
respectively, i.e., α decreases as the topology becomes
denser. We will show in Theorem 2 that the topology metric
α also influences the convergence bound.
3) Systematic Heterogeneity Metrics. We proceed to intro-

duce the metrics for measuring the differences of local
models in the system, which relate to the data heterogeneity
at different edge servers.
Definition 1 (System Consistency [43], [44], [45]): The

difference between the local model of edge server i and
the averaged network model w̄(t) = 1

N

∑N
i=1 wi(t), can be

given by

Ci(t) = ‖wi(t) − w̄(t)‖. (13)

The overall system consistency metric is C(t) =
1
N

∑N
i=1 Ci(t).

VOLUME 5, 2024 2691



CHEN et al.: TOPOLOGY-DRIVEN SYNCHRONIZATION INTERVAL OPTIMIZATION

FIGURE 3. Outline of the convergence analysis process.

Definition 2 (Gradient Divergence [46]): For any w, the
local gradient divergence of edge server i, denoted by ϕi,
can be given by

∥∥∥∥∥∥
∇Fi(w) − 1

N

N∑

j=1

∇Fj(w)

∥∥∥∥∥∥
≤ ϕi. (14)

The global gradient divergence is the average of local
divergence, i.e., ϕ = 1

N

∑N
i=1 ϕi.

B. CONVERGENCE ANALYSIS
In this section, we will mathematically prove the upper
bound of the loss function F(w). Let w̄(t) = 1

N

∑N
i=1 wi(t)

denote the averaged model parameter at local model training
iteration t. Note that w̄(t) is not available in geo-decentralized
FL without centralized synchronization. Nevertheless, w̄(t)
can help find the performance gap to the centralized
counterpart (whose convergence bound has been widely
known [47]), hence establishing the convergence bound.
To capture the centralized counterpart, we introduce an

auxiliary variable sk(t). The auxiliary variable characterizes
the model parameter for centralized training between the k-th
and (k+1)-th model synchronizations, i.e., t ∈ [kτ, (k+1)τ ].
The variable is updated via gradient descent, i.e.,

sk(t + 1) = sk(t) − γ∇F
(
sk(t)

)
. (15)

Here, we assume the availability of the global loss function
in Eq. (15) to approximate the centralized ML. Fig. 3 shows
an illustrative example for the evolution of s and the outline
of using s to build up the convergence proof. In particular, we
set sk(kτ) = w̄(kτ) after the k-th synchronization. Note that
sk(kτ) and sk−1(kτ) are not equal, because centralized train-
ing converges faster than decentralized training. The value of
w̄(kτ) will not change during model synchronization. As in
the notation of auxiliary variable s, [ · ]k denote the variable
[·] is between the k-th and (k+1)-th model synchronizations.
As shown in Fig. 3, there are two steps for the convergence
analysis of latency-constrained geo-decentralized FL.
Step 1: Bound the gap to the auxiliary variable s

(Theorem 1). We first find the upper bound of the

gap between F(w̄(kτ)) and F(sk−1(kτ)) for any k:
‖F(sk−1(kτ)) − F(w̄(kτ))‖.
Step 2: Integrate the gap to centralized ML. (Theorem 2).

This is to establish the final convergence results of the
proposed approach.
Theorem 1: The gap (in terms of loss functions) between

the averaged network model w̄ and the auxiliary one s can
be bounded. For any k > 0 and τ > 0, we have

∥∥∥F(w̄(kτ)) − F
(
sk−1(kτ)

)∥∥∥ ≤ ρ�(τ) (16)

where

�(τ) =
(
Ck−1((k − 1)τ ) + ϕ

β

)(
(γβ + 1)τ − 1

) − ϕγ τ.

(17)

Proof: Please refer to Appendix-A.
Based on Theorem 1, we can proceed to establish the

convergence bound of geo-decentralized FL.
Theorem 2: When ∃ε > 0 satisfied F(sk−1(kτ)) −

F(w∗) ≥ ε for all k and F(w̄(T)) − F(w∗) ≥ ε, we can
choose a suitable learning rate γ ≤ 1

β
to get the convergence

upper bound of Algorithm 2 after T iterations, i.e.,

F(w̄(T)) − F
(
w∗) ≤ 1

T
(

γ
2

− ρ�(τ)

τε2

) , (18)

where  = maxk‖w̄(kτ)−w∗‖. When γ
2

− ρ�(τ)

τε2 > 0, the
value of F(w̄(T)) − F(w∗) diminishes (decreases to 0) as
iteration T increases, i.e., the convergence property of geo-
decentralized FL. We also have

F
(
wf

)
− F

(
w∗) ≤ 

γT
+ ρ�(τ) +

√
 2

γ 2T2
+ 2ρ�(τ)

γ τ
.

(19)

Proof: Please refer to Appendix-C.

C. ANALYSIS OF CONVERGENCE BOUND
Theorem 2 shows the convergence bound of geo-
decentralized FL given synchronization interval τ . In the
following, we analyze the relationship between the bounded
loss function and various factors in the latency-constrained
geo-decentralized system.
Lemma 1: For any k, we have:

Ck(kτ) ≤ P(α) := αγ τNρ

1 − α
+ α‖[w(0)]‖ (20)

where [w(0)] is the matrix of initial model parameter
permutations for all edge servers.
Proof: Please refer to Appendix-B.
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In Lemma 1 we find the upper bound of Ck(kτ) for any
k. By substituting Eq. (20) into Eq. (19), we find the upper
bound of F(w̄(T)) − F(w∗):

F
(
wf

)
− F

(
w∗)

≤ 

γ T
+ ρ

⎛

⎝P( α ) +
ϕ

β

⎞

⎠M − ϕ γ τ

+

√√√√√√√√√
 2

γ 2 T
2

+
2ρ

⎛

⎝P( α ) +
ϕ

β

⎞

⎠M − ϕ γ τ)

γ τ
.

(21)

(M = (γβ + 1)τ − 1)

T is related to the communication/computing resources

ϕ is related to the data heterogeneity

P( α ) is related to the communication topology

We can analyze the relationship between the con-
vergence upper bound and various factors including
communication/computing resources, data heterogeneity, and
communication topology.
1) Relationship to Topology Metric α. In Eq. (21), P(α)

is the upper bound of system consistency metric Ck(kτ).
In other words, geo-decentralized FL can achieve better
convergence as α decreases (see P(α)). As stated in
Section IV-A, a small value of α indicate a graph with dense
connections.
2) Relationship to Data Heterogeneity (measured by gra-

dient divergence ϕ). ϕ in Eq. (21) is primarily associated
with the heterogeneity of data distribution. Large values of ϕ

indicates increasingly heterogeneous data distribution, also
resulting in longer convergence time.
3) Relationship to Communication and Computing

Resources (per-iteration training time L and model synchro-
nization time Y). From Eq. (9), the maximum number of
training iterations Tmax is determined by model synchroniza-
tion time Y and maximum per-iteration training latency L.
Tmax determines the convergence in Eq. (21).

V. DESIGN OF ADAPTIVE SYNCHRONIZATION INTERVAL
OPTIMIZATION FOR LATENCY-CONSTRAINED
GEO-DECENTRALIZED FL
In this section, we solve problem (10) to optimize the syn-
chronization interval for latency-constrained geo-dentralized
FL. Due to the intractability of the accurate loss function,
we aim to minimize the convergence bound, i.e., the right-
hand-side (RHS) of Eq. (19). By substituting the expression
of Tmax in Eq. (9) into the bound, problem (10) can be
reformulated as

min
τ

H(τ ) =  Lτ+Y
Zτ

γ
+ ρ�(τ)

+
√√√√

(
 Lτ+Y

Zτ

γ

)2

+ 2ρ�(τ)

γ τ

s.t. 0 < τ ≤ Tmax, τ ∈ N
+. (22)

Let τ ∗ be the optimal synchronization interval, as given by

τ ∗ = argminτ∈{1,2,3,...,}H(τ ). (23)

However, H(τ ) is still hard-to-solve, since some system
parameters (e.g., the system consistency Ck−1((k−1)τ )) are
not available in geo-decentralized FL. In the following, we
first design the estimation method of system parameters and
then present the proposed adaptive interval control algorithm.

A. ESTIMATION OF SYSTEM CONSISTENCY
To estimate the system consistency metric Ck(kτ) for any
k, we need to calculate the difference between the model
parameter of each edge server wik(kτ) and the average of
the model parameter of all edge servers w̄k(kτ). However,
obtaining the average value of all edge server model param-
eters is impractical in a decentralized system. Otherwise, the
edge server collecting all the model information can directly
perform the FedAvg algorithm.
In the following, we refer to the triangular inequality to

establish an efficient estimation method based on the shortest
path in graph theory. We have reformulate the expression of
Ck(kτ), i.e.,

Ck(kτ)

= 1

N

N∑

i=1

∥∥∥wik(kτ) − w̄k(kτ)

∥∥∥

= 1

N

N∑

i=1

∥∥∥wik(kτ) − w̄k−1(kτ)

∥∥∥

(From Lemma 2 in Appendix-A)

= 1

N

N∑

i=1

∥∥∥∥∥∥
wi
k(kτ) − 1

N

N∑

j=1

wj
k−1(kτ)

∥∥∥∥∥∥

= 1

N

N∑

i=1

∥∥∥∥∥∥
1

N

N∑

j=1

(
wi
k(kτ) − wj

k−1(kτ)
)
∥∥∥∥∥∥

≤ 1

N

N∑

i=1

N∑

j=1

1

N

∥∥∥wik(kτ) − wj
k−1(kτ)

∥∥∥. (24)

Note that the model gap between two adjacent edge
servers i and j, denoted by c(i,j), can be obtained at
the servers according to ‖wik(kτ) − wjk−1(kτ)‖. Consider
c(i,j) as the weight over edge (i, j). The calculation of
the weight difference of non-adjacent nodes becomes
the shortest-path problem in graph theory. Let P =
(s, t, 1), (s, t, 2), . . . , (s, t,m) be the shortest path of two
servers s and t of m hops. The estimation can be given by
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FIGURE 4. Interactions between the coordination node and edge servers.∥∥∥wsk(kτ) − wt
k(kτ)

∥∥∥

≤
∥∥∥wsk(kτ) − wk−1

s,t,1(kτ)

+wk−1
s,t,1(kτ), . . . − ws,t,m

k−1(kτ)

+ws,t,mk−1(kτ) − wt
k(kτ)

∥∥∥

≤
∥∥∥wsk(kτ) − ws,t,1

k−1(kτ)

∥∥∥ + · · ·
+
∥∥∥wk−1

s,t,m(kτ) − wt
k(kτ)

∥∥∥. (25)

The estimation of the model difference of any two edge
servers in Eq. (25) directly follows the Dijkstra algorithm.
Given the model difference, we can find the estimated system
consistency Ck(kτ) based on Eq. (24).

B. ESTIMATION OF OTHER PARAMETERS
The calculation of H(τ ) also needs the estimation of
other parameters, including the gradient divergence ϕ, the
smoothness parameter β, and the Lipschitz parameter ρ. As
shown in Fig. 4, these parameters can be approximated by
locally evaluating the corresponding local parameters at each
edge server and being averaged at the coordination node.
The local approximation of the parameters at each server i
is shown in the following.
1) Gradient Divergence. Each edge server uses the local

gradient divergence, denoted by ϕ̂i, to approximate the global
divergence ϕ. ϕ̂i can be locally evaluated at the edge servers
without any additional signaling, i.e.,

ϕ̂i =
∥∥∥∥∥∥
∇fi(wi) −

∑

j∈�i

aij∇fj
(
wj

)
∥∥∥∥∥∥
. (26)

2) Smoothness parameter. The local smoothness parame-
ter, denoted by βi, can be computed as

β̂i = ‖∇f (wi(t1)) − ∇f (wi(t2))‖
‖wi(t1) − wi(t2)‖ , (27)

where t1 and t2 are two adjacent synchronization time.
3) Lipschitz parameter. Similarly, the local Lipschitz

parameter, denoted by ρi, can be given by

ρ̂i = ‖f (wi(t1)) − f (wi(t2))‖
‖wi(t1) − wi(t2)‖ . (28)

C. ADAPTIVE SYNCHRONIZATION INTERVAL CONTROL
ALGORITHM
This section details the algorithm of finding the optimal
intervals. As specified by (22), the metric of optimal
intervals is to minimize the upper bound of the loss function
H(τ ) according to the convergence result. As illustrated in
Section V-A/V-B, the solver (i.e., coordination node) can
approximate the parameters for calculating H(τ ) according to
Eqs. (24)–(28). Then, the approximated expression of H(τ ),
denoted by Ĥ(τ ), is given by

Ĥ(τ ) =  Lτ+Y
Zτ

γ
+ ρ̂�̂(τ )

+
√√√√

(
 Lτ+Y

Zτ

γ

)2

+ 2ρ̂�̂(τ)

γ τ
(29a)

where

�̂(τ ) =
(
Ĉk−1((k − 1)τ ) + ϕ̂

β̂

)(
(γ β̂ + 1)τ − 1

)

−ϕ̂γ τ. (29b)

By applying the approximation of (29), problem (22)
becomes an integer programming problem, which is hard
to find a closed-form expression. To this end, we adopt
the Particle Swarm Optimization (PSO) algorithm [48] to
find the optimal synchronization interval within the possible
values of 1 to τmax, where τmax = �Z−Y

L �, with the
expression of τmax derived from solving the constraints in
problem (22).

The process of PSO to find τ ∗ operates in an iterative
manner. First, we randomly initialize 10 candidate values
of τi, i = {1, 2, . . . , 10}, i.e., particles. Let pid be the best
location (i.e., synchronization interval) of particle τi with the
minimum objective Ĥ(τ ) in Eq. (29), and pgd be the global
optimal value for all the particles.
During each iteration, we update the particles according

to

vk+1
i = w ∗ vki + c1 ∗ rand() ∗

(
pid − τ ki

)

+c2 ∗ rand() ∗
(
pgd − τ ki

)

τ k+1
i = τ ki + vk+1

i (30)

where τ ki and vki denote the location and velocity of particle i
at the k-th iteration. rand() is the random number generation
function. The details can be found in [48]. To account for the
integral feature, we also enforce the quantization operation
to vki . The iteration process terminates when pgd remains the
same for 10 consecutive iterations.
Fig. 4 shows the basic implementation of the proposed

approach. In particular, the edge servers would report these
locally evaluated local parameters to the coordination node.
The coordination node can take the average to approximate
H(τ ) and adaptively control the synchronization interval.
Note that there are only limited parameters (a few bits to
represent the real numbers, e.g., 32-bit floating numbers),
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which are required to be transmitted and can be implemented
in the bandwidth-critical decentralized setting.
We also extend the algorithm to optimize the synchroniza-

tion interval in an latency-constrained setting. In particular,
instead of using the fixed τ , we readjust τ at each time of
model synchronization based on current system parameters
and the remaining time window. It is also worth noting
that the communication interval needs to be recalculated
based on the latest estimated parameters after each model
synchronization. This ensures the algorithm’s adaptability
to various changes in the system. The detailed steps at
the coordination node and edge servers are summarized in
Algorithms 1 and 2.

VI. EXPERIMENTAL AND RESULT
This section evaluates the performance of our proposed algo-
rithm in different cases against the benchmark algorithms.
In the following, we first introduce the experimental settings
and then discuss the results.

A. EXPERIMENT SETTINGS
1) Datasets and Models. The experiments were conducted
using the open-source datasets MNIST [29], Fashion MNIST
(i.e., FMNIST for brevity) [30] and CIFAR10 [31]. We
trained the MNIST and FMNIST dataset with a two-layer
convolutional layer CNN [29] network and the CIFAR10
dataset with a ResNet [49] network.
2) Parameters and Environment. We configured 10 edge

servers in different topologies (including ring, tree, grid,
etc.). The learning rate is 0.1. According to [27], the time
window for MNIST and FMNIST was 15 seconds and the
time window for CIFAR10 was 40 seconds. Communication
bandwidth of all links is 1 MB/s. Computation time is
determined through actual measurements and communication
time is estimated by Eq. (7).

The value of  := maxk‖w̄(kτ) − w∗‖ cannot be known
before training to the convergence, and must be estimated
for the synchronization adjustment. We note that the model
gap to the optimal values takes the maximum value at slot
t = 0 We approximate  := maxk‖w̄(kτ)−w∗‖ as the value
of ‖2w̄(0)‖ is close to  . We set the correction factor λ 1.8
for MNIST, 2 for FMNIST and 9 for CIFAR10, which is
designed to compensate the estimation errors. Please refer
to Appendix VII-D for the explanations on correction factor
selection.
3) Data Distribution. The dataset is distributed across

edge servers using the Dirichlet distribution [50] to sim-
ulate datasets that are non-independent and non-uniformly
distributed (Non-IID). The dispersion values ζ are set to
0.1, 0.2, and 0.3. A higher ζ value implies increasingly
independent and uniform distribution.
4) Baseline. For performance evaluation, we also conduct

the existing approaches of DSGD [35], DFedAvgM [17], and
DFedAvgM-advance to serve as the benchmarks.

• DSGD [35], which is the most widely adopted approach
to solve the geo-decentralized FL problem. The edge

Algorithm 1 Procedure at the Coordination Node
1: Input: Time window Z, maximum τ value τmax,

correction factor λ;
2: Output: wf

3: Initialize τ ∗ = 1, t∗ = 0, t = 0, T = 0 and w(0);
4: repeat
5: t0 = t;
6: t = t + τ ∗;
7: if t0 > 0 then
8: Receive Li, Yi, ϕ̂i, ρ̂i, β̂i, fi(wi(t0)) and all c(i,j)

from each edge server i;
9: Compute F(w(t0));

10: if t == 1 then
11: set F∗ = F(w(t0))
12: end if
13: if F(w(t0)) < F∗ then
14: t∗ = t;
15: end if
16: if STOP flag is set then
17: Send t∗ to all edge servers.
18: break;
19: end if
20: Set L = max{Li}, Y = max{Yi};
21: Estimate ρ̂ = 1

N

∑N
i=1 ρ̂i;

22: Estimate β̂ = 1
N

∑N
i=1 β̂i;

23: Estimate ϕ̂ = ∑N
i=1 ϕ̂i;

24: Estimate Ĉ according to (24) and (25);
25: Use the PSO algorithm to find the optimal τ̃ ∗;
26: Adjust τ ∗ = λ ∗ τ̃ ∗;
27: T = T + Lτ + Y;
28: if T + L(τ + 1) + 2Y ≥ Z then
29: Set STOP flag;
30: end if
31: end if
32: until STOP flag is set
33: Send τ ∗, t∗, to all edge servers.
34: Receive fi(wi(t0)) from each edge server i;
35: Compute F(w(t0));
36: if F(w(t0)) < F∗ then
37: t∗ = t;
38: end if
39: Send t∗, to all edge servers.

servers perform the model synchronization after each
training round. Please refer to Section III-A for the
details.

• DFedAvgM [17], which enables the synchronization
interval design in DSGD [35]. The synchronization
interval is fixed over the training time, and is set at the
interval of each five training rounds according to [17].

• DFedAvgM-enhanced, which is the enhanced version
of DFedAvgM [17]. In particular, the synchronization
interval is set to the optimum by enumerating all the
possible values. Note that the synchronization interval
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Algorithm 2 Procedure at Edge Server i
1: Output: wi(t∗)
2: Initialize t = 0, wi(0), t∗ = 0;
3: repeat
4: Receive new τ ∗, t∗ from coordination node;
5: Save wi(t∗);
6: t0 = t;
7: for μ = 1, 2, ..., τ ∗ do
8: t = t + 1;
9: wi(t) = wi(t − 1) − γ∇fi(wi(t − 1));
10: end for
11: Estimate β̂i = ‖∇f (wi(t0))−∇f (wi(t))‖

‖wi(t0)−wi(t)‖ ;

12: Estimate ρ̂i = ‖f (wi(t0))−f (wi(t))‖‖wi(t0)−wi(t)‖
13: Receive wj(t), ∇fj(wj(t)) from adjacent edge servers

and send wi(t), ∇fi(wi(t)) to adjacent edge servers.
14: Compute new wi(t) = ∑

j aijwj(t);
15: Estimate ϕ̂i = ‖∇fi(wi(t)) − ∑

j∈�i
aij∇fj(wj(t))‖.

16: Compute ci,j = ‖wi(t) − wj(t)‖ for every j ∈ �i;
17: Send ϕ̂i, Li, Yi, β̂i, ρ̂i, fi(wi(t0)) and all ci,j to

Coordination node;
18: until STOP flag is set
19: Receive t∗ from aggregator;
20: Save wi(t∗);

must be adjusted before/during the training process (not
training for multiple times and selecting the optimal
value). In other words, this approach is not practical
and is only used for comparison purposes.

For brevity, we use “Proposed” to represent our approach.

B. RESULT DISCUSSION
In this section, we first showcase the effectiveness of our
algorithm by evaluating its performance across different
topologies and data distributions. Next, we examine the
adaptability of our algorithm during the training process
by presenting its temporal evolution within a time window.
Finally, we demonstrate the performance of our algorithm in
diverse network scenarios, providing evidence of its ability
to adapt to varying network conditions.

1) PERFORMANCE IN DIFFERENT TOPOLOGIES AND
DATA DISTRIBUTIONS

Fig. 5 displays the Top-1 test accuracy of our algorithm
and the DFedAvgM [17] algorithm in a ring topology,
considering different fixed values of τ as the time win-
dow cutoff. It is evident that our algorithm consistently
outperforms the DFedAvgM [17] algorithm across almost
all values of τ . This superiority arises from our algo-
rithm’s adaptive adjustments to the synchronization interval,
tailored to the specific training circumstances. We care-
fully select the optimized synchronization interval at each
step.
In Table 4, we present a summary of the results

obtained for various topologies and data distributions.

The table includes the difference in Top-1 test accuracy
between our algorithm, the DSGD [35] algorithm, and the
DFedAvgM [17] (τ = 5) algorithm in each case. Our algo-
rithm exhibits significantly better performance compared to
these two algorithms. On the MNIST dataset, our algorithm
achieves a 38.65% higher test accuracy than DSGD [35] and
a 13.3% higher accuracy than DFedAvgM [17] (τ = 5). In
the case of FMNIST dataset, the accuracy achieved by our
algorithm is 24.76% and 6.23% higher than DSGD [35] and
DFedAvgM [17] (τ = 5), respectively. On the CIFAR10
dataset, our algorithm demonstrates a 26.76% improve-
ment over DSGD [35] and a 16.23% improvement over
DFedAvgM [17] (τ = 5).
Furthermore, as the connection density in the commu-

nication topology increases, the performance improvement
of our algorithm becomes more pronounced. This
is because denser communication topologies facilitate
increased communication between servers during each
synchronization, leading to enhanced system consistency.
Consequently, a larger communication interval is required.
Our algorithm can adaptively select a larger communi-
cation interval to accommodate this need, whereas the
DSGD [35] and DFedAvgM [17] algorithms lack this
adaptive adjustment, resulting in better performance for our
algorithm.

2) PERFORMANCE IN LATENCY-CONSTRAINED SETTING

Fig. 6 depicts the evolution of test accuracy within a
limited time window for our algorithm and three other
baselines. The test model is obtained by averaging the
models from all edge servers. It is important to note that
this testing method is not employed during actual training
and is solely used for monitoring the algorithm’s execution
without impacting the overall training process. In many
decentralized federated learning algorithms, such as those
proposed in [51], [52], [53], the models from all servers are
averaged at the end of the algorithm to produce the final
output result. Consequently, during testing, we utilize the
test results obtained from the average model as experimental
observations, a process that does not affect model training.
Additionally, this approach allows us to observe the training
effect of the model when the training is stopped at any
time.
From the figure, it can be observed that our algorithm

closely approximates the results of DFedAvgM-advance and
outperforms the other two algorithms. DFedAvgM-advance
requires iterating through all τ values within a specified
range to select the optimal case based on the results. The
effectiveness of our algorithm is evident as it achieves results
comparable to or even surpassing DFedAvgM-advance,
outperforming the other two algorithms.
In Fig. 7, we present the changes over time in our

adaptively adjusted τ value and the system consistency
metric C(t) in the ring topology. A correlation can be
observed between the changing trend of τ and C(t). Initially,
when all edge servers share the same model, the value
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FIGURE 5. Top-1 test accuracy under different values of τ in the ring topology.

TABLE 4. The performance gap between our algorithm, DSGD algorithm, and DFedAvgM (τ = 5) algorithm in various scenarios. In each cell, The number on the left and the
number on the right represents the improvement of the Top-1 test accuracy rate of our algorithm compared with the DSGD algorithm and DFedAvgM algorithm, respectively. For
example, the number “16.96/8.1” in the first cell indicates that the accuracy of our algorithm is 16.96% higher than that of the DSGD algorithm and 8.1% higher than that of the
DFedAvgM algorithm.

of C(t) is small. This encourages larger adjustments to τ .
Conversely, a larger τ implies less communication, resulting
in a larger C(t) value, which limits further increases in
τ . Simultaneously, as the training progresses, we aim to
minimize disparities in the system, leading to a gradual

decrease in τ . Therefore, we conclude that the system
consistency metric C(t) plays a crucial role. This observation
aligns with the convergence analysis results and demonstrates
the adaptability of our algorithm throughout the training
process.
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FIGURE 6. The Top-1 test accuracy of our algorithm and the benchmark algorithms changes over time within the time window in the ring topology.

FIGURE 7. The adaptive selection of τ of the proposed algorithm over the training
time.

3) EFFECTIVENESS OF STRIKING THE BALANCE
BETWEEN THE COMMUNICATION AND COMPUTATION

The outcomes presented in Table 4 were obtained using
a bandwidth of 1MB/s. When the bandwidth is reduced
to 0.5MB/s, our algorithm achieves a test accuracy that
is 38.22% and 20.04% higher than DSGD [35] and
DFedAvgM [17], respectively. Conversely, when the band-
width is increased to 2MB/s, our algorithm exhibits a test

FIGURE 8. Performance in different network conditions. The average
synchronization interval under different bandwidths and topologies. The darker the
color, the larger the mean synchronization interval.

accuracy improvement of 23.49% and 7.25% compared
to DSGD [35] and DFedAvgM [17], respectively. These
results clearly demonstrate the superior performance of our
algorithm across different topologies and bandwidths, thanks
to its adaptive adjustment of the synchronization interval.
To further illustrate the adaptability of our algorithm

under various network scenarios (considering bandwidth
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and topology), we present the results of the average τ in
Fig. 8. As previously mentioned, our algorithm consistently
outperforms both DSGD and DFedAvgM algorithms in
these scenarios. We modify the communication topology and
adjust the bandwidth setting for each link, using ζ = 0.1 as a
representative case. We compare the average synchronization
intervals throughout the training process across five distinct
topologies (tree, ring, grid, links5, and links7) and three
bandwidth options (0.5 MB/s, 1 MB/s, and 2 MB/s). The
figure clearly demonstrates that as the bandwidth decreases
and the connection density in the communication topology
increases, the average τ value also increases.

Based on the convergence analysis, a higher connection
density in the communication topology indicates stronger
system consistency, allowing for longer synchronization
intervals. Conversely, as the system bandwidth decreases,
communication consumption increases, necessitating an
adjustment in the synchronization interval to maintain an
appropriate communication frequency. This validates the
adaptability of our algorithm, showcasing its ability to strike
a balance between communication and computation.

VII. CONCLUSION
This paper first studied the synchronization interval
optimization for latency-constrained geo-decentralized FL.
The objective is to optimize the model accuracy within a
time window. We mathematically derive the convergence
bound to reveal its relationship with network topology, data
heterogeneity, and communication/computation resources,
facilitating the design of the proposed interval optimization
approach. Experimental results validate the effectiveness of
the proposed approach under different topologies, datasets,
data distributions and communication/computation capabili-
ties and demonstrate the adaptability of our algorithm during
the training process and across various network scenarios.

APPENDIX
A. PROOF OF THEOREM 1
Before proving the Theorem 1, let’s introduce a lemma.
Lemma 2: We use w̄(kτ) to represent the average of the

edge server models before the kth global average and use
w̄(kτ)+to represent the average of the edge server models
before the kth global average. We have:

w̄(kτ) = w̄(kτ)+.

This lemma tells us that the mean of all edge server models
does not change because the models are synchronized.
Proof:

w̄(kτ)+ = 1

N

N∑

i=1

wi(kτ)+

= 1

N
1N

T[w(kτ)+
]

From equation (5) we know:
[
w(kτ)+

] = A[w(kτ)].

So we can change the equation:

w̄(kτ)+ = 1

N
1N

TA[w(kτ)]

= 1

N
1N

T [w(kτ)]

= w̄(kτ)

A is a doubly stochastic matrix, so we have 1NT

A = 1NT .
Then we can begin the proof of Theorem 1.

‖w̄(kτ) − s(kτ)‖

=
∥∥∥∥∥

1

N

N∑

i=1

(
wk−1
i (kτ) − sk−1(kτ)

)∥∥∥∥∥

≤ 1

N

N∑

i=1

∥∥∥
(
wk−1
i (kτ) − sk−1(kτ)

)∥∥∥ (31)

For any i, we have:
∥∥∥wk−1

i (kτ) − sk−1(kτ)

∥∥∥

=
∥∥∥
(
wk−1
i (kτ − 1) − γ∇fi

(
wk−1
i (kτ − 1)

))

−
(
sk−1(kτ − 1) − γ∇F

(
sk−1(kτ − 1)

)))∥∥∥

=
∥∥∥
(
wk−1
i (kτ − 1) − sk−1(kτ − 1)

)
− γ

(
∇fi

(
wk−1
i (kτ − 1)

)

−∇fi
(
sk−1(kτ − 1)

))
− γ

(
∇F

(
sk−1(kτ − 1)

)

−∇fi
(
sk−1(kτ − 1)

))∥∥∥

≤
∥∥∥
(
wk−1
i (kτ − 1) − sk−1(kτ − 1)

)∥∥∥

+
∥∥∥γ

(
∇fi(wk−1

i (kτ − 1)) − ∇fi
(
sk−1(kτ − 1)

))∥∥∥

+
∥∥∥γ

(
∇F

(
sk−1(kτ − 1)

)
− ∇fi

(
sk−1(kτ − 1)

))∥∥∥

≤
∥∥∥
(
wk−1
i (kτ − 1) − sk−1(kτ − 1)

)∥∥∥

+γβi

∥∥∥
(
wk−1
i (kτ − 1) − sk−1(kτ − 1)

)∥∥∥ + γϕi

≤ (γβi + 1)

∥∥∥
(
wk−1
i (kτ − 1) − sk−1(kτ − 1)

)∥∥∥ + γϕi

In a similar way, we can get that
∥∥∥wk−1

i (kτ − 1) − sk−1(kτ − 1)

∥∥∥

≤ (γβi + 1)

∥∥∥wk−1
i (kτ − 2) − sk−1(kτ − 2)

∥∥∥ + γ ϕi.

After τ times iterating we have:
∥∥∥wk−1

i (kτ) − sk−1(kτ)

∥∥∥

≤
(∥∥∥wk−1

i ((k − 1)τ ) − sk−1((k − 1)τ )

∥∥∥ + ϕi

βi

)

(
(γβi + 1)τ − 1

) − ϕiγ τ

≤
(∥∥∥wk−1

i ((k − 1)τ ) − w̄((k − 1)τ )
)∥∥∥ + ϕi

βi
)

(
(γβi + 1)τ − 1

) − ϕiγ τ

≤
(
Ck−1
i ((k − 1)τ ) + ϕi

βi

)(
(γβi + 1)τ − 1

) − ϕiγ τ (32)
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We can substitute Eq. (32) into Eq. (31) to get the following
result:∥∥∥w̄(kτ) − sk−1(kτ)

∥∥∥

≤
(
Ck−1((k − 1)τ ) + ϕ

β

)(
(γβ + 1)τ − 1

) − ϕγ τ. (33)

B. PROOF OF LEMMA 1
Then we need to bound Ck−1((k − 1)τ ). We use wki (t) to
denote wi at iteration t between the k-th synchronization and
the (k + 1)-th synchronization

Ck(kτ) = 1

N

N∑

i=1

Cki (kτ)

= 1

N

N∑

i=1

∥∥∥wki (kτ) − w̄(kτ)

∥∥∥.

We first bound ‖[wki (kτ)] − [w̄(kτ)]‖:
∥∥∥
[
wki (kτ)

]
− [w̄(kτ)]

∥∥∥

=
∥∥∥∥A

[
wk−1
i (kτ)

]
− 1

N
1N1N

T
[
wk−1
i ((k)τ )

]∥∥∥∥

=
∥∥∥∥

(
A− 1

N
1N1N

T
)[
wk−1
i (kτ)

]∥∥∥∥

=
∥∥∥∥

(
A− 1

N
1N1N

T
)([

wk−1
i (kτ − 1)

]

−γ
[
∇fi

(
wk−1
i (kτ − 1)

)])∥∥∥

=
∥∥∥∥

(
A− 1

N
1N1N

T
)([

wk−1
i ((k − 1)τ )

]

−
τ−1∑

j=0

γ
[
∇fi

(
wk−1
i ((k − 1)τ + j)

)]
∥∥∥∥∥∥

=
∥∥∥∥

(
A− 1

N
1N1N

T
)(
A
[
wk−2
i ((k − 1)τ )

]

−
τ−1∑

j=0

γ
[
∇fi

(
wk−2
i ((k − 1)τ + j)

)]
∥∥∥∥∥∥

=
∥∥∥∥

(
A2 − 1

N
1N1N

T
)[
wk−2
i ((k − 1)τ )

]

−
τ−1∑

j=0

γ

(
A− 1

N
1N1N

T
)[

∇fi
(
wk−2
i ((k − 1)τ + j)

)]
∥∥∥∥∥∥
.

We can use the same method to iterate again:
∥∥∥
[
wki (kτ)

]
− [w̄(kτ)]

∥∥∥

=
∥∥∥∥

(
A3 − 1

N
1N1N

T
)[
wk−3
i ((k − 2)τ )

]

−
τ−1∑

j=0

γ

(
A2 − 1

N
1N1N

T
)[

∇fi
(
wk−3
i ((k − 2)τ + j)

)]

−
τ−1∑

j=0

γ

(
A− 1

N
1N1N

T
)[

∇fi
(
wk−2
i ((k − 1)τ + j)

)]
∥∥∥∥∥∥

After k times iterations we have:∥∥∥wki (kτ)+ − sk(kτ)

∥∥∥

=
∥∥∥∥

(
Ak − 1

N
1N1N

T
)[
w0
i (τ )

]

−
k−1∑

p=1

τ−1∑

j=0

γ

(
Ap − 1

N
1N1N

T
)[

∇fi
(
wk−p−1
i ((k − p)τ + j)

)]
∥∥∥∥∥∥

=
∥∥∥∥

(
Ak − 1

N
1N1N

T
)

[wi(0)]

−
k∑

p=1

τ−1∑

j=0

γ

(
Ap − 1

N
1N1N

T
)[

∇fi(wk−p−1
i ((k − p)τ + j))

]
∥∥∥∥∥∥

≤
∥∥∥∥

(
Ak − 1

N
1N1N

T
)∥∥∥∥‖[wi(0)]‖

+
k∑

p=1

τ−1∑

j=0

γ

∥∥∥∥A
p − 1

N
1N1N

T
∥∥∥∥
∥∥∥
[
∇fi(wk−p−1

i ((k − p)τ + j))
]∥∥∥

≤ αk‖[wi(0)]‖ +
k−1∑

p=1

τ−1∑

j=0

γαp
∥∥∥
[
∇fi(wk−p−1

i ((k − p)τ + j))
]∥∥∥

From Assumption IV-A) we know that the function Fi(w) is
ρ-Lipschitz. So it can be deduced that for any i

‖∇Fi(w)‖ ≤ ρ.

Then we can bound ‖[∇fi(wk−p−1
i ((k − p)τ + j))]‖:

‖[∇Fi(wi)]‖ ≤
N∑

i=1

‖∇Fi(wi)‖ ≤ Nρ

Finally, we have

Ck(kτ) =
∥∥∥
[
wki (kτ)

]
− [w̄(kτ)]

∥∥∥

≤ αk‖[wi(0)]‖ +
k∑

p=1

τγ αpNρ

≤ α‖[wi(0)]‖ + ατNργ

1 − α
.

C. PROOF OF THEOREM 2
This part of the proof we refer to [27], some of the following
steps are a repetition of [27].
For the convenience of proof, we make a definition.

νk(t) = F
(
sk(t)

)
− F

(
w∗).

According to [47, Th. 3.14], for any finite t and k we always
have

νk(t) > 0. (34)

Lemma 3: When γ ≤ 1
β
, for any k, and t ∈ [kτ, (k+1)τ ),

we have
∥∥∥sk(t + 1) − w∗

∥∥∥
2 ≤

∥∥∥sk(t) − w∗
∥∥∥

2

Proof: The loss function F is β-smooth and νk(t) > 0, so
we have

0 < νk(t) ≤ ∇F
(
sk(t)

)T(
sk(t) − w∗) −

∥∥∇F(sk(t))∥∥2

2β
. (35)
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Therefore,
∥∥∥sk(t + 1) − w∗

∥∥∥
2

=
∥∥∥sk(t) − γ∇F

(
sk(t)

)
− w∗

∥∥∥
2

=
∥∥∥sk(t) − w∗

∥∥∥
2 − 2γ∇F

(
sk(t)

)T(
sk(t) − w∗)

+γ 2
∥∥∥∇F

(
sk(t)

)∥∥∥
2

<

∥∥∥sk(t) − w∗
∥∥∥

2 − γ

∥∥∇F(sk(t))∥∥2

β
+ γ 2

∥∥∥∇F
(
sk(t)

)∥∥∥
2

(From Eq. (35))

=
∥∥∥sk(t) − w∗

∥∥∥
2 − γ

(
1

β
− γ

)∥∥∥∇F
(
sk(t)

)∥∥∥
2
.

If γ ≤ 1
β
, we can obtain
∥∥∥sk(t + 1) − w∗

∥∥∥
2 ≤

∥∥∥sk(t) − w∗
∥∥∥

2
.

Lemma 4: For any k, when γ ≤ 1
β
and t ∈ [kτ, (k+1)τ ),

we have

F
(
sk(t + 1)

)
− F

(
sk(t)

)
≤ −γ

(
1 − βγ

2

)∥∥∥∇F
(
sk(t)

)∥∥∥
2

(36)

Proof: Because the function F(·) is β-smooth, from
[47, Lemma 3.4], we have

F(x) ≤ F(y) + ∇F(y)T(x− y) + β

2
‖x− y‖2

for arbitrary x and y. Thus,

F
(
sk(t + 1)

)
− F

(
sk(t)

)

≤ ∇F
(
sk(t)

)T(
sk(t + 1) − sk(t)

)

+β

2

∥∥∥sk(t + 1) − sk(t)
∥∥∥

2

≤ − γ∇F
(
sk(t)

)T∇F
(
sk(t)

)
+ βγ 2

2

∥∥∥∇F
(
sk(t)

)∥∥∥
2

≤ − γ

(
1 − βγ

2

)∥∥∥∇F
(
sk(t)

)∥∥∥
2
.

Lemma 5: For any k, when γ ≤ 1
β
and t ∈ [kτ, (k+1)τ ),

we have
1

νk(t + 1)
− 1

νk(t)
≥ 1


γ

(
1 − βγ

2

)
(37)

where 1


= mink 1
‖sk((k−1)τ )−w∗‖2

Proof: Substituting the definition of νk into (36) can get

νk(t + 1) − νk(t) ≤ − γ

(
1 − βγ

2

)∥∥∥∇F
(
sk(t)

)∥∥∥
2
.

Equivalently,

νk(t + 1) ≤ νk(t) − γ

(
1 − βγ

2

)∥∥∥∇F
(
sk(t)

)∥∥∥
2
. (38)

Then we have

νk(t) = F
(
sk(t)

)
− F

(
w∗) ≤ ∇F

(
sk(t)

)T(
sk(t) − w∗)

≤
∥∥∥∇F

(
sk(t)

)∥∥∥
∥∥∥sk(t) − w∗

∥∥∥.

Hence,

νk(t)∥∥sk(t) − w∗∥∥ ≤
∥∥∥∇F

(
sk(t)

)∥∥∥. (39)

In Lemma 3, we have proven that for any k, ‖sk (t +
1) − w∗‖2 ≤ ‖sk(t) − w∗‖2 when t ∈ [kτ, (k + 1)τ ].
Hence, ‖sk(kτ) − w∗‖ ≥ ‖sk(t) − w∗‖. Then we define
 = maxk ‖sk(kτ) − w∗‖2, and have − 1


≥ −1

‖sk(kτ) −w∗‖2 ≥
−1

‖sk(t) −w∗‖2 . Using this inequality relationship and combin-
ing (39) and (38), we get

νk(t + 1) ≤ νk(t) −
γ
(

1 − βγ
2

)
νk(t)2

∥∥sk(t) − w∗∥∥2

≤ νk(t) − 1


γ

(
1 − βγ

2

)
νk(t)2.

As νk(t + 1)νk(t) > 0 according to (34), dividing both
sides by νk(t + 1)νk(t), we obtain

1

νk(t)
≤ 1

νk(t + 1)
−

γ
(

1 − βγ
2

)
νk(t)

νk(t + 1)
.

From (34) and (38) it can be obtained that 0 < νk(t+1) ≤
νk(t), so we have νk(t)

νk(t+1)
≥ 1. Hence,

1

νk(t + 1)
− 1

νk(t)
≥

γ
(

1 − βγ
2

)
νk(t)

νk(t + 1)
≥ 1


γ

(
1 − βγ

2

)
.

From Lemma 5, for any t ∈ [kτ, (k + 1)τ ] we have

1

νk((k + 1)τ )
− 1

νk(kτ)

=
(k+1)τ−1∑

t=kτ

(
1

νk(t + 1)
− 1

νk(t)

)

≥ τ
1


γ

(
1 − βγ

2

)
.

We sum up all the values of k = 0, 1, 2, . . . ,K− 1 to get

K−1∑

k=0

(
1

νk((k + 1)τ )
− 1

νk(kτ)

)
≥

K−1∑

k=0

τ
1


γ

(
1 − βγ

2

)

= Kτ
1


γ

(
1 − βγ

2

)
.

The left-hand side of this equation can be split as

1

νK−1(T)
− 1

ν0(0)
−

K−2∑

k=0

(
1

νk+1((k + 1)τ )
− 1

νk((k + 1)τ )

)

≥ T
1


γ

(
1 − βγ

2

)
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which is equivalent to

1

νK−1(T)
− 1

ν0(0)

≥ T
1


γ

(
1 − βγ

2

)
+

K−2∑

k=0

(
1

νk+1((k + 1)τ )
− 1

νk((k + 1)τ )

)
. (40)

For any k, we have

1

νk+1((k + 1)τ )
− 1

νk((k + 1)τ )

= νk((k + 1)τ ) − νk+1((k + 1)τ )

νk((k + 1)τ )νk+1((k + 1)τ )

= F
(
sk((k + 1)τ )

) − F
(
sk+1((k + 1)τ )

)

νk((k + 1)τ )νk+1((k + 1)τ )

= F
(
sk((k + 1)τ )

) − F(w̄((k + 1)τ ))

νk((k + 1)τ )νk+1((k + 1)τ )

≥ −ρ�(τ)

νk((k + 1)τ )νk+1((k + 1)τ )
. (41)

From Lemma 4 we know that F(sk(t)) ≥ F(sk(t + 1))

for any t ∈ [kτ, (k + 1)τ ). So we can obtain νk(kτ) =
F(sk(t)) − F(w∗) ≥ F(sk((k + 1)τ )) − F(w∗) ≥ ε for all k
(we have assumed that F(sk((k+ 1)τ )) − F(w∗) ≥ ε). Then
we have

νk(kτ)νk+1(kτ) ≥ ε2

−1

νk(kτ)νk+1(kτ)
≥ − 1

ε2
. (42)

Combining (42) with (41), the RHS of (40) have

K−1∑

k=0

(
1

νk+1(kτ)
− 1

νk(kτ)

)
≥ −K ρ�(τ)

ε2
. (43)

From (43) and (40), we have

1

νk(T)
− 1

ν0(0)
≥ T

1


γ

(
1 − βγ

2

)
− K

ρ�(τ)

ε2
. (44)

We also assumed that F(w̄(T)) − F(w∗) ≥ ε. So we have

−1

(F(w̄(T)) − F(w∗))νk(T)
≥ − 1

ε2
. (45)

1

F(w̄(T)) − F(w∗)
− 1

νk(T)

≥ −
(
νk(T) − F(w∗)

) − F(w̄(T))

ε2

= F(w̄(T)) − F(sk(T)

ε2

≥ −ρ�(τ)

ε2
. (46)

From (44) and (40), we can obtain

1

F(w̄(T)) − F(w∗)
− 1

ν0(0)

≥ T
1


γ

(
1 − βγ

2

)
− K

ρ�(τ)

ε2

= T
1


γ

(
1 − βγ

2

)
− T

ρ�(τ)

τε2

= T

(
1


γ

(
1 − βγ

2

)
− ρ�(τ)

τε2

)
.

We note that

1

F(w̄(T)) − F(w∗)

≥ 1

F(w̄(T)) − F(w∗)
− 1

ν0(0)

≥ T

(
1


γ

(
1 − βγ

2

)
− ρ�(τ)

τε2

)
> 0

where the last inequality is because we assumed that 1


γ (1−
βγ
2 ) − ρ�(τ)

τε2 > 0. Taking the reciprocal of the above
inequality yields

F(w̄(T)) − F(w∗) ≤ 1

T
(

1


γ
(

1 − βγ
2

)
− ρ�(τ)

τε2

)

≤ 1

T(
γ

2
− ρ�(τ)

τε2 )
(γβ ≤ 1)

So here we have finished our proof of Eq. (18).
We set

ε0 = 1

T(
γ

2
− ρ�(τ)

τε0
2 )

. (47)

Solving for ε0, we obtain

ε0 =
√

1

4γ 2ϕ2T2
+ ρh(τ )

γ ϕτ
+ 1

2γ ϕT
(48)

By setting the value of ε in this way, all the preconditions
in Theorem 2 can be satisfied. Now we have

F(w̄(T)) − F(w∗) ≤ 1

T
(
γϕ − ρh(τ )

τε2

) <
1

T

(
γϕ − ρh(τ )

τε2
0

) = ε0.

Therefore, there does not exist ε > ε0 that satisfy both
F(w̄(T)) − F(w∗) ≥ ε and F(sk−1kτ) − F(w∗) ≥ ε. This
means that either 1) ∃k such that F(sk−1(kτ)) −F(w∗) ≤ ε0
or 2) F(w̄(T)) − F(w∗) ≤ ε0. It follows that

min

{
min

k=0,1,...,K
F
(
sk−1(kτ)

)
;F(w̄(T))

}
− F

(
w∗) ≤ ε0.

(49)

In Theorem 1 we get F(w̄(kτ)) ≤ F(sk−1(kτ)) + ρh(τ ) for
any k. Combining with (48) and (VII-C), we get

min
k=1,2,...,K

F(w̄(kτ)) − F
(
w∗)

≤
√

1

4γ 2ϕ2T2
+ ρh(τ )

γ ϕτ
+ 1

2γ ϕT
+ ρh(τ ).

Here we obtain Eq. (19).
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FIGURE 9. The top-1 accuracy when selecting different values of correction factors
on MNIST, FMNIST, and CIFAR10 datasets.

D. SELECTION OF CORRECTION FACTOR
The performance analysis in Section IV is to find the upper
bound of the loss function, where various inequalities are
introduced to find and prove the bound. The bound is
necessary for the tractability of the formulated problem.
However, there is always a gap between the bound and
actual values due to the use of inequalities. To achieve
better performance, we experimentally check and select the
correction factors and find that the optimal correction factors
are nearly the same given a specific dataset, making it

practical to implement the correction factor. The experimen-
tal results on assessing the correction factor on MNIST,
FMNIST, and CIFAR10 datasets are plotted in Fig. 9, where
each data point is the average of the results from seven
random seeds. We emphasize the highest achieved accuracy
in each curve in Fig. 9. Notably, the optimal correction factor
remains consistent irrespective of different topologies and
data distributions. The optimal correction factors for MNIST,
FMNIST and CIFAR10 datasets are λ = 1.8, 2 and 9,
respectively. The use of correction factor can increase about
5% accuracy of the proposed approach on average.
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