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ABSTRACT In this paper, we propose a robust resource allocation framework for an intelligent reflecting
surface (IRS)-assisted multiple-input single-output (MISO) non-orthogonal multiple access (NOMA)
system. In particular, a long-term robust sum-rate maximization problem is considered. The impacts of
imperfect channel estimation on both the transmitter and the receiver are taken into account with an
outage-constrained robust design approach. More specifically, the statistical error model is used to model
the unbounded channel uncertainty in the system. However, the joint robust resource allocation problem
is a mixed-integer optimization problem, which cannot be solved directly using conventional optimization
algorithms. A correlation-based user pairing algorithm is proposed to group the users into clusters.
Furthermore, the resource allocation problem with clustered users is reformulated as a reinforcement
learning environment. Subsequently, a twin-delayed deep deterministic policy gradient (TD3) agent is
developed to solve the outage-constrained robust resource allocation problem. Extensive simulation results
are provided to demonstrate the superior performance of the developed TD3 agent over existing algorithms
in the literature.

INDEX TERMS IRS-assisted MISO-NOMA systems, robust resource allocation techniques, deep rein-
forcement learning, imperfect CSI.

I. INTRODUCTION

NON-ORTHOGONAL multiple access (NOMA) has
been proposed as one of the promising multiple access

(MA) techniques for next-generation wireless networks. By
utilizing the superposition coding (SC) at the transmitter
and the successive interference cancellation (SIC) at the
receiver, NOMA offers better spectral and energy effi-
ciencies as well as user-fairness compared to conventional
orthogonal multiple access (OMA) techniques [1], [2]. This
enables NOMA as a promising MA candidate to realize
massive connectivity in 6G and beyond by efficiently
allocating scarce radio resources. Instead of multiplexing
users in time or frequency, NOMA utilizes the power
domain multiplexing to multiplex users. Therefore, NOMA
systems generally require more efficient and accurate power
allocation algorithms to mitigate the interference levels and

enable smooth practical implementations of the SIC at the
receiver.
Multiple antenna communications with their additional

degrees of freedom have proven to be an effective
interference-mitigation technique. Hence, multiple antenna
NOMA systems have been studied extensively and demon-
strated significant performance gains over OMA-based
multiple antenna systems due to their combined spectral effi-
ciency and interference-suppression capabilities [3], [4], [5].
In [6], Hanif et al. proposed an iterative algorithm for
a multiple-input single-output (MISO)-NOMA system with
the sum-rate maximization objective. The authors in [7]
proposed a semidefinite relaxation (SDR)-based approach for
the optimal beamforming design problem in MISO-NOMA
systems with the transmit power minimization objective. In
addition, the authors in [8] proposed a sequential convex
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optimization solution for MISO-NOMA systems with the
aim of maximizing global energy efficiency.
More recently, intelligent reflecting surface (IRS)-assisted

multiple antenna systems have received significant attention
from both industry and academia, thanks to the additional
link reliability they introduce to the conventional wire-
less communication systems [9]. In IRS-assisted systems,
the phase shifts of the passive IRS elements can be
programmed to steer the incoming signal to the desired
direction, hence, increasing the channel strength between
the transmitter and the receiver(s). The IRS-assisted MISO-
NOMA system model has been subject to extensive studies
recently to reap the combined benefits of the NOMA,
multiple antennas, and IRS techniques. In particular, the
work in [10] considered the multi-cluster beamforming and
IRS phase shifts design for the transmit power minimization
objective, while the energy efficiency objective was con-
sidered in [11]. Xie et al. proposed a solution for the
max-min fairness system objective. However, combining
such sophisticated techniques often leads to tractability
problems. Hence, model-based approaches break down the
joint-design optimization problem into several subproblems,
then, each problem is solved separately in an iterative
manner. However, the downside of such approaches is
that the overall computational complexity of the proposed
solution is often prohibitively high, which severely limits
their practical utility, especially for latency-sensitive future
wireless networks [12], [13], [14], [15].
Machine learning-based methods have proved to be

a viable alternative to model-based solutions for highly
complex resource allocation problems in wireless commu-
nication systems. The deep learning framework has been
applied to channel tracking and estimation, and beamforming
design [16], [17], [18], [19]. However, since supervised
deep learning requires labelled data for training, it can only
be applied to problems solved a priori, which restricts the
deep learning-based algorithms to problems that are already
solved, albeit not on a large scale. Deep reinforcement
learning (DRL) -which combines deep learning and rein-
forcement learning (RL) into a single framework- addresses
the shortcomings of deep learning as an optimization tool. In
RL, an active agent learns how to solve the problem through
trial and error without any human supervision, and therefore,
does not require labels for training and learning [20].

Recently, DRL has been applied to a wide variety of
problems in the wireless communications domain. The
work in [21] proposed a deep deterministic policy gradient
(DDPG)-based design to maximize the sum-rate in cognitive-
radio NOMA systems. Meng et al. also applied DDPG
to solve the downlink dynamic power control problem
for maximizing the system sum-rate. The application of
the DRL framework has also been extended to IRS-aided
NOMA systems. The work in [22] adopted the zero-
forcing beamforming (ZFBF) technique while utilizing a
deep Q-network (DQN) agent for optimizing phase shifts
of the IRS elements. Xie et al. used DDPG to jointly

optimize the beamforming vectors and IRS phase shifts
for the sum-rate maximization problem [23]. The work
in [24] proposed a multi-agent DRL-based design that jointly
optimizes the subcarrier assignment, power allocation, and
IRS phase shifts in NOMA-assisted semi-grant-free systems,
while the resource allocation problem for NOMA-unmanned
aerial vehicle system was considered in [25].
However, there are still practical issues facing the afore-

mentioned works. First, all of these works assume perfect
channel state information (CSI) at the base station (BS)
which is extremely challenging in practice. Furthermore, the
imperfect CSI at the transmitter and the receiver have severe
implications in NOMA systems since the receivers utilize
SIC to unlock the additional gains of NOMA. In addition,
providing some guarantees of performance under channel
uncertainties leads to a more complicated optimization
problem that is more challenging to solve in a reasonable
time, especially for latency-sensitive applications. Therefore,
the performance of DRL-based methods for clustered IRS-
assisted MISO-NOMA systems with imperfect CSI and SIC
remains an open issue. The second challenge is that most
of the literature focuses on a simplified version of the
system objective. The work in [22] while considering a
cluster-based IRS-assisted MISO-NOMA system, does not
take into account cluster power allocation nor the quality-
of-service requirements in the proposed design, both of
which have a significant impact on the agent selection and
the problem environment design. Furthermore, the DQN
agent utilized to solve the problem cannot be applied to
problems with large continuous action spaces as DQN is
restricted to discrete action space problems. The work in [24]
uses a DQN agent to solve the discrete channel-assignment
problem, while a DDPG agent is utilized to solve the power
allocation problem. However, since the BS and the user
equipment units (UEs) are assumed to be equipped with
a single antenna, no beamforming design is considered.
Additionally, while the work in [26] considered a DRL-
based approach to solve the sum-rate maximization problem
through joint active and passive beamforming design, the
number of SIC operations required by the strongest UE
grows linearly with the number of UEs in the systems,
leading to a practically unscalable and highly complex
receiver.
Motivated by the impractical assumptions and the lack

of a unified and scalable framework in the DRL literature,
we propose a DRL-based joint design framework to solve
an outage-constrained robust resource allocation problem
in an IRS-assisted MISO-NOMA system. In particular, a
correlation-based user-pairing algorithm is developed to limit
the number of UEs in each cluster leading to a more scalable
implementation of SIC-based receivers. Then, the NOMA
principle is applied in each cluster to increase the spectral
efficiency of the system. Moreover, the proposed DRL-
based design jointly optimizes the clusters and UEs power
allocation, and IRS phase shifts, while taking into account the
outage-constrained QoS requirements. The ergodic sum-rate
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FIGURE 1. Cluster-based IRS-assisted Downlink MISO-NOMA system.

maximization is used as the objective function for the
considered system. In addition, the statistical error model is
used to describe the channel uncertainty which leads to an
outage-constrained robust design. Furthermore, the proposed
DRL-based design has much lower deployment computa-
tional complexity compared to the conventional optimization
methods in the literature while still achieving competitive
performance. To the best of the authors’ knowledge, this
is the first work that proposes a framework for clustering
and actor-critic-based resource allocation in IRS-assisted
MISO-NOMA systems. The contributions of this work are
summarized as follows:
• By assuming a blocked direct path between the BS and
the UEs due to obstacles, the BS communicates with the
UEs through the IRS. In addition, the statistical error
model is to used express the channel uncertainty in the
system. However, the formulated robust design problem
with the ergodic sum-rate maximization objective is a
mixed-integer optimization problem which is challeng-
ing to solve. The user-pairing problem is isolated and
solved first to reduce the complexity of the problem.
Then, the zero-forcing (ZF) principle is adopted to
design the beamforming vectors.

• The robust resource allocation problem is still non-
convex due to the coupled optimization variables.
Therefore, the problem is reformulated into an RL
environment. Then, a twin-delayed deep deterministic
policy gradient (TD3)-based algorithm is developed
to solve the reformulated joint resource allocation
problem.

• By providing the complexity analysis for the proposed
DRL-agent’s architecture, we show that the deployment
computational complexity of the proposed algorithm
is much less than existing conventional optimization
algorithms, which makes the DRL-based design more
attractive for latency-stringent applications in future
wireless networks.

• The competitive performance of the proposed algorithm
is illustrated through extensive simulation results for
both fixed and dynamic-channel scenarios. Furthermore,
the results show the TD3-based design outperforms
existing conventional and other DRL-based benchmark
schemes in the literature.

A. ORGANIZATION
The rest of the paper is organized as follows. Section II
presents the system and channel uncertainty models. The
joint robust design problem is formulated in Section III.
In addition, the user-clustering algorithm is also developed.
In Section IV, the problem is reformulated into an RL
environment and a TD3-based algorithm is developed to
solve the reformulated problem. The simulation results are
presented in Section V. Finally, Section VI concludes this
work.

B. NOTATION
Bold lowercase and uppercase letters are used to represent
vectors and matrices, respectively, while standard normal
letters denote scalar quantities. Y† and yH denote the
pseudoinverse of the matrix Y and the hermitian transpose
of the vector y, respectively. |.| and ||.|| refer to the absolute
value and the Euclidean norm of a vector, respectively.
||.||2 and ||.||F represent the L2 and the Frobenius norms,
respectively. Card(y) denotes the cardinality of the vector
y. C and R refer to the sets of complex and real numbers,
respectively. E represents the expectation operator.

II. SYSTEM AND CHANNEL UNCERTAINTY MODELS
We consider a downlink transmission of an IRS-assisted
MISO-NOMA system in which the BS is equipped with
N transmit antenna and serves 2K single antenna UEs
as shown in Figure 1. To increase the system capacity,
the UEs are paired into C = {1, . . . ,C} clusters, and the
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NOMA principle is applied in each cluster to mitigate the
impact of intra-cluster interference and increase the overall
spectral efficiency. Furthermore, to reduce the number of
SIC operations carried out by each receiver, we limit the
number of UEs in each cluster to 2 [27], [28]. Since the
additional gains of NOMA require distinctively different
channel conditions, the UEs are divided into two sets, namely
the stronger UEs set S , and the weaker UEs set W . We use
UEc,s and UEc,w to denote the stronger and the weaker UE
with the better and the worse channel condition in the c-th
cluster, respectively. The IRS consists of M passive elements
which are controlled by the BS through a feedback link [29].
In addition, we assume that the direct links between the BS
and the UEs are blocked due to obstacles, and therefore, the
BS communicates with the UEs only through the IRS link.
Hence, the received signal at UEc,i can be expressed as

yc,i = gHc,i�G
C∑

c=1

wcxc + zc,i,∀i ∈ {S,W}, c ∈ C, (1)

where gc,i ∈ C
Mx1 represents the channel between UEc,i

and the IRS, G ∈ C
MxN denotes the channel between the

BS and the IRS, and � = diag(v1, . . . , vM) ∈ C
MxM is the

diagonal IRS phase shifts matrix, and vm = ζmejθm . In this
paper, we assume an ideal reflection at the IRS elements, i.e.,
|vm|2 = 1,m = 1, . . . ,M. wc ∈ C

Nx1 is the beamforming
vector for cluster c, while xc = √αc,ssc,s + √αc,wsc,w is
the superposition coded signal transmitted by the BS to the
UEs in the c-th cluster. In addition, sc,s and sc,w are the
normalized information symbols for the stronger and weaker
UEs in the c-th cluster, respectively. The αc,s and αc,w are
the power allocation coefficients for the stronger and the
weaker UEs in the c-th cluster, respectively. The zc,i is the
additive white Gaussian noise with zero mean and variance
σ 2
c,i. The received signal at UEc,i can be expressed in a more

compact form as

yc,i = hc,i
C∑

c=1

wcxc + zc,i,∀i ∈ {S,W}, c ∈ C, (2)

where hc,i = vHQc,i ∈ C
1xN is the final channel vector,

v = vec(�) ∈ C
Mx1, and Qc,i = diag(gHc,i)G ∈ C

MxN is the
cascaded channel for UEc,i. To unlock the additional gains
of NOMA, the receivers need to perform one or more SIC
operations. Therefore, designing a decoding order is crucial
in NOMA systems. Since the number of UEs is limited
to two per cluster in this paper, and given that ||hs,i||2 �
||hw,i||2, we assume a fixed decoding order in which the
stronger UE carries out a single SIC operation to eliminate
the weaker UE’s signal, then proceeds to decode its own
signal. Hence, the total number of SIC operations required
in the system is equal to C. Therefore, non-SIC receivers can
be admitted to the considered system if they have moderate
to weaker channel conditions. Note that in general, however,
the process of designing optimal decoding order in NOMA
systems is non-trivial [7], [13].

A. CHANNEL UNCERTAINTY MODEL
Due to the random nature of the wireless transmis-
sions, uncertainties in the wireless channel estimation are
inevitable. Furthermore, with the introduction of the IRS,
accurate channel estimation becomes even more challenging
due to the passive elements in the IRS [30], [31]. Channel
estimation and quantization errors are two of the main
contributors to the imperfect channel estimation in wireless
communication systems [14], [32]. However, the two are
often modelled differently with the quantization errors
considered to belong to a norm-bounded region, while
channel estimation errors are modelled statistically using
unbounded error models [31], [33]. On the other hand,
multiple antenna communication systems make use of the
beamforming principle to enhance the system performance
by exploiting the CSI at the transmitter. However, to achieve
the optimal beamforming gains, perfect CSI is required at
the transmitter. Unfortunately, having perfect CSI at the
transmitter is extremely challenging to obtain in practical
settings due to the aforementioned channel uncertainties.
Therefore, robust design algorithms that take into account
channel imperfections are more suitable for studying and
analysing the system performance under practical conditions.
In this paper, we assume that the channel uncertainties are
the result of the imperfect channel estimation. Note that
in NOMA systems, channel imperfections at the receiver
lead to SIC degradation which is also taken into account.
In particular, this paper aims to propose a robust resource
allocation strategy that takes into account the imperfect CSI
in the system.
The statistical error model has been extensively used

to describe distortions in the acquired channel due to
thermal noise, estimation errors, and insufficient pilot sam-
ples [34], [35], [36]. If the channel statistics are not known,
the least square estimator is typically used to estimate the
channel coefficients at the receiver. Alternatively, when
the channel statistics are available, the linear minimum
mean square error estimator is normally used to exploit
the additional information and obtain more accurate channel
estimates. Therefore, if the noise is assumed to be an additive
and white Gaussian process, then, it is straightforward to
interpret that the difference between the estimated and actual
channels can be expressed statistically [37], [38]. Therefore,
the following error model is considered for the cascaded
channel [31]:

Qc,i = Q̂c,i +�Qc,i, ∀i ∈ {S,W}, c ∈ C, (3)

where Q̂c,i is the estimated channel known at the BS,
while �Qc,i is an additive, unknown, and unbounded error.
The unknown errors are drawn from a circularly symmetric
complex Gaussian distribution and are expressed as �qc,i ∼
CN (0,�), where �qc,i = vec(�Qc,i), and � ∈ C

MNxMN

is the positive semidefinite error covariance matrix for the
cascaded channel. In addition, the variance of the unknown
term is a function of the estimated cascaded channel and is
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expressed as

β2
c,i = λ2

∥∥q̂c,i
∥∥2

2, ∀i ∈ {S,W}, c ∈ C, (4)

where q̂c,i = vec(Q̂c,i) ∈ C
MNx1, and λ ∈ (0, 1] relates

to the uncertainty of the CSI estimate [31]. Therefore, the
unbounded error is related to the system parameters through
the size of the cascaded channel matrix and the estimation
quality. Based on these assumptions, the next section defines
the signal-to-interference-plus-noise ratio (SINR) and the
corresponding achievable rates.

B. SINR AND ACHIEVABLE RATES
SINR is one of the most widely used metrics for measuring
the performance of wireless communication systems. For the
considered cluster-based design, the SINR of the stronger
UE in the c-th cluster can be defined as

γc,s =
∣∣hc,swc

∣∣2
Pcαc,s

∣∣(vH�Qc,s
)
wc

∣∣2
Pcαc,w +∑C

k=1
k �=c

∣∣hc,swk
∣∣2
Pk + σ 2

c,s

,

∀s ∈ {S}, c ∈ C, (5)

where Pc is the allocated power for the c-th cluster. The term
|(vH�Qc,s)wc|2Pcαc,w represents the SIC residual and is the
result of the imperfect channel estimation at the receiver
side, while

∑C
k=1
k �=c
|hHc,swk|2Pk is the inter-cluster interference

experienced at UEs,c, and σ 2
c,s is the noise power. Similarly,

the SINR of the weaker UE in the c-th cluster when decoding
its own signal is defined as

γ c,wc,w =
∣∣hc,wwc

∣∣2
Pcαc,w

∣∣hc,wwc
∣∣2
Pcαc,s +∑C

k=1
k �=c

∣∣hc,wwk
∣∣2
Pk + σ 2

c,w

,

∀w ∈ {W}, c ∈ C. (6)

Note that since UEc,w does not carry out any SIC operations,
it experiences both intra-cluster and inter-cluster interference.
Furthermore, the SINR of UEc,s for decoding UEc,w’s signal
can be expressed as

γ c,sc,w =
∣∣hc,swc

∣∣2
Pcαc,w

∣∣hc,swc
∣∣2
Pcαc,s +∑C

k=1
k �=c

∣∣hc,swk
∣∣2
Pk + σ 2

c,s

,

c ∈ C. (7)

Therefore, the achieved SINR of UEc,w is defined as

γc,w =
(
1+ min(γ c,sc,w, γ

c,w
c,w

))

c ∈ C. (8)

The achievable rates of both stronger and weaker UEs in
the c-th cluster can be expressed as

Rc,s = log2
(
1+ γc,s

)
,

Rc,w = log2
(
1+ γc,w

)
,∀s ∈ {S},w ∈ {W}, c ∈ C. (9)

In the next section, the problem formulation of the robust
design for the considered system is provided with details.

III. PROBLEM FORMULATION
The aim of this work is to propose a joint robust design
framework for a long-term performance-based resource
allocation in IRS-assisted MISO-NOMA systems. In partic-
ular, we consider the objective of maximizing the ergodic
system sum-rate under channel uncertainties while taking
into account the dynamics of the system over multiple
time-slots [3], [21], [39]. Therefore, the long-term outage-
constrained joint robust design problem with the sum-rate
maximization objective can be formulated as

max
wc,v,Pc,αc,i,bs,w

E

{ ∞∑

t=1

δt−1
C∑

c=1

[
Rtc,s + Rtc,w

]
bts,w

}
(10a)

pi � Pr
{
γc,i ≥ 2R

min
c,i − 1

}
≥ ,∀i ∈ {S,W}, c ∈ C,

(10b)

||wc||22= 1, c ∈ C, (10c)
C∑

c=1

Pc≤ Pmax, c ∈ C, (10d)

αtc,s + αtc,w= 1, c ∈ C, s ∈ S,w ∈W (10e)
C∑

c=1

bts,w≤ 1, b ∈ {0, 1}, c ∈ C, (10f)

|vm|2 = 1, 0 ≤ θm ≤ 2π,m = 1, . . . ,M, (10g)

where E is the expectation operator, δt−1 is the discount
factor which is explained in the problem reformulation
section,  ∈ (0, 1] is the non-outage probability that the
resource allocation strategy satisfies the quality-of-service
(QoS) constraint for each UE, and bts,w ∈ {0, 1} is the
binary UE pairing coefficient. The outage constraint in (10b)
guarantees that the QoS requirements of the UEs are achieved
with probability , while the constraint in (10c) ensures
normalized power for all the beamforming vectors. The
constraints in (10d) and (10e) represent the maximum
available transmit power for all clusters and the UEs power
allocation coefficients within each cluster, respectively. The
pairing constraint in (10f) guarantees that each stronger UE
is only paired with a single weaker UE and vice versa.
Finally, the constraints in (10g) guarantee a unit modulus
and a feasible phase shift for the IRS elements.
The joint design problem in (10) is a mixed-integer

optimization problem and is known to be NP-hard [40].
Note that even without considering the binary con-
straint, the problem in (10a) is still non-convex and
NP-hard [6], [41], [42], and therefore, cannot be solved
directly using conventional optimization methods. The for-
mulated optimization problem is non-trivial and challenging
to solve efficiently for the following reasons:

• The objective function is not jointly convex in terms of
the optimization variables.

• The expectation operator prevents defining a closed-
form expression for the objective function in (10a) since
approximation methods cannot be directly applied.
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• The outage constraints in (10b) do not admit closed-
form solutions [34].

• The UE pairing variable in (10f) is restricted to a binary
set, resulting in a mixed-integer optimization problem.

To reduce the complexity of the proposed solution, the user
clustering subproblem is tackled first. Then, the rest of the
variables are optimized to maximize the system sum-rate.

A. USER PAIRING
UE pairing is considered one of the enabling tech-
niques in multi-user NOMA systems for future wireless
networks [27], [28], [43]. In addition, it has been shown that
pairing a stronger UE with a weaker UE leads to enhanced
overall performance in NOMA systems [44], [45]. Hence,
there are two design criteria for UE pairs selection that
directly affect the system sum-rate performance in NOMA
networks, correlation and channel-gain difference between
the paired UEs in a cluster [22], [46]. Since each cluster is
served with a single beam, a higher UE correlation within the
cluster translates to a lower level of intra-cluster interference
experienced by the weaker UE, while sufficient channel-gain
difference ensures smooth SIC operation at the stronger UE.
However, since the IRS phase shifts are designed at the BS,
the phase shifts could be tuned to adjust the channel-gain
differences after the cluster design. Therefore, the proposed
algorithm is solely based on the initial correlation between
the UEs.
The basic premise of the proposed successive UE pairing

algorithm (SUPA) is to pair each UE in S with a single UE
from W to form a cluster, assuming that there are 2K UEs
in total. Furthermore, since the IRS phase shift values have
a direct impact on the channel coefficients, the UE pairing
is carried out with a fixed IRS vector, i.e., the initial phase
shift values stay constant during the pairing process. To this
end, we define the correlation coefficient between two UEs
in the system as [46]

εi,j =
∥∥∥ĥi.ĥj

∥∥∥
2∥∥∥ĥi

∥∥∥
2

∥∥∥ĥj
∥∥∥

2

,∀i ∈ S,∀j ∈W, (11)

where ĥk, k ∈ {i, j}, is the estimated final channel for UEk
and is known at the BS. Algorithm 1 provides the key steps
for the proposed UE pairing design. Therefore, executing
Algorithm 1 will eliminate the binary constraint in (10f).
The next section presents the robust resource allocation
framework for a given UE pairing configuration.

IV. RL FRAMEWORK FOR ROBUST RESOURCE
ALLOCATION
With given UE pairs using Algorithm 1, the remaining
resource allocation problem is expressed as

max
wc,v,Pc,αc,i

E

{ ∞∑

t=1

δt−1
C∑

c=1

[
Rtc,s + Rtc,w

]
}

(12a)

s.t.(10b), (10c), (10d), (10e), (10g). (12b)

Algorithm 1 Successive User Pairing Algorithm
1: Initialise: UEs sets S ,W , initial IRS vector vinit, and

UE clusters c ∈ C
2: Calculate the final estimated channels at the BS using

ĥc,i = vHinitQc,i,∀c ∈ C,∀i ∈ S,W
3: Sort all UEi,∀i ∈ S , according to their channel norms

such that ||ĥ1||2 ≥ ||ĥ2||2 ≥ . . . ≥ ||ĥK ||2
4: for i = 1 : K, i ∈ S do
5: for j = 1 : K, j ∈W do
6: Calculate the correlation coefficient between UEi

and UEj according to (11)
7: end for
8: Find j′ = argmax(Corri,j),∀j ∈W
9: Assign UEi andUEj′ to cluster c(i)

10: Set ĥj′ ← 0, j′ ∈W
11: end for
12: Output: {UE1,s,UE1,w}, . . . , {UEC,s,UEC,w}

Unfortunately, the optimization problem in (12a) is still
non-convex and there is no standard approach to solve
it efficiently. To further simplify the problem, the ZFBF
is utilized to tackle the beamforming design constraint
in (10c) [47].

A. THE ZERO-FORCING BEAMFORMING
The ZFBF is a low-complexity technique in which the
channel knowledge at the transmitter is exploited to design
the beamforming vectors. More importantly, under the
perfect CSI assumption, the ZFBF provides a closed-form
solution to the beamforming design problem with a rea-
sonable trade-off between complexity and performance [48].
In addition, the ZFBF has been extensively used in the
literature as one of the beamforming designs for sum-rate
maximization [46], [48], [49]. The basic principle behind
the ZFBF is to design a beamforming vector wk that
achieves zero interference to all other UEi, k �= i. This is
formalized as

hi
||hi||2wk =

{
1 if k = i

0 if k �= i.
(13)

However, since we consider a multi-cluster NOMA system,
the ZFBF vector can only be designed based on a single
channel for each cluster, not both. Hence, in this paper,
the ZFBF vectors are designed based on the stronger UE’s
channel in each cluster to reduce the inter-cluster interference
in the system. Furthermore, since the perfect CSI is not
available at the BS for the considered robust design, the
true channels are replaced with their estimated counterparts.
Therefore, there will be an interference leakage as a result
of the imperfect beamforming design based on the estimated
channel. Thereby, the expression in (13) can written as

ĥi

||ĥi||2
wk =

{
1 if k = i

> 0 if k �= i.
(14)
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Note that the fact that ĥi
||ĥi||2 wk > 0, for k �= i, is unavoidable

due to the imperfect CSI available at the BS. Furthermore,
this leakage term is the source of the inter-cluster interference
experienced by the stronger UEs in each cluster. Hence, we
define W = [w1, . . . ,wC] as the matrix that contains the
ZFBF vectors for all clusters, and Ĥ = [ĥT1,s, . . . , ĥ

T
C,s]

T as
the estimated channel matrix that contains the stronger UEs’
channel vectors, where ĥc,s is a row vector. Then, the ZFBF
matrix is calculated as follows [46]:

W =
(
Ĥ

)†
, (15)

where (Ĥ)† = ĤH(ĤĤH)−1 is Pseudo-inverse of the stronger
UEs estimated channel matrix Ĥ.

Therefore, in this work, the robust resource allocation
is realized through the accurate and joint optimization of
the IRS phase shifts, cluster and UE power allocation as
explained in the next section.

B. PROBLEM REFORMULATION
By tackling the UE pairing and beamforming design prob-
lems, the robust resource allocation problem is reduced to
the following optimization problem

max
v,Pc,αc,i

E

{ ∞∑

t=1

δt−1
C∑

c=1

[
Rtc,s + Rtc,w

]
}

(16a)

s.t.(10b), (10d), (10e), (10g). (16b)

Unfortunately, the problem is still non-convex due to the
coupled optimization variables and the outage constraint
and hence, cannot be optimized jointly using conventional
optimization algorithms. Therefore, in order to develop a
joint robust design, the problem in (16a) is reformulated into
a reinforcement learning environment.
It is well-known that optimizing a system objective under

uncertainty or stochastic environment can be modelled as a
Markov decision process (MDP) [50]. The RL framework
is one of the most effective methods to solve the control
problem in MDPs, especially in model-free systems where
the transition probability between the states is unknown [51].
The RL framework consists of two entities, the agent which
is the active entity that takes actions, and the environment
which encloses everything else except the agent. At time-
step t, given a state st, the agent takes an action at. Based
on the action taken by the agent, the environment provides
the next state st+1, and the reward rt which can either
be positive or negative, depending on the utility of the
taken action. Therefore, through trial and error, the agent
aims to maximize its reward by forming an optimal policy
π∗(s, a) that maps any state to the best action that yields
the highest reward. Hence, the RL framework transforms the
optimization problem into a series of sequential decision-
making steps in which the optimization variables are updated
to maximize some utility function.
To reformulate the robust design problem into an RL

environment, the state, action and reward entities must be
clearly defined.

• The action space at: Since the value of the objective
is a function of the optimization variables, they are
intuitively selected as the actions space of the RL
environment. In particular, the actions space vector at
time-step t is expressed as

at = [
Pt1, . . . ,P

t
C, α

t
1,w, . . . , α

t
C,w, v

t]T. (17)

Note that since αtc,s = 1−αtc,w,∀c ∈ C, only the power
allocation coefficients for the weaker UEs are included
in the actions vector. Furthermore, since we will be
using a deep neural network (DNN) architecture that is
only compatible with real numbers, complex vectors are
represented using real values in this paper. In particular,
and without the loss of generality, since v ∈ C

Mx1,
then, v ∈ R

2Mx1, where Re{v} ∈ R
Mx1 and Im{v} ∈

R
Mx1 are the real and the imaginary parts of the IRS

vector v, respectively [19]. Therefore, we can write at ∈
R
(2K+2M)x1 as a vector with only real values.

• The state space st: To ensure that the state space of the
environment includes the necessary information from
the original robust design problem, we include the
previous action as part of the state vector. Furthermore,
since the correlation coefficient between the paired
UEs is affected by the IRS phase shifts as highlighted
by (12), the correlation coefficients vector is also
included in the state space. Additionally, the channel
gain between each UE pair is included in the state
vector. The channel gain difference defined as the dB
ratio between the two channels is used and can be
expressed as

ρi,j = 10 log10

(
||ĥi||2
||ĥj||2

)
,∀i ∈ S, j ∈W . (18)

Finally, to help the agent evaluate itself during training,
the achieved rates of the previous time-step are also
taken into account as part of the state space, Therefore,
the state space is expressed as

st =
[
at−1, εt−1

1 , . . . , εt−1
C , ρt−1

1 , . . . , ρt−1
C ,

Rt−1
1,s , . . . ,R

t−1
C,w

]T
, (19)

where st ∈ R
(6K+2M)x1. Furthermore, when training

for the dynamic-channels environment, the variances of
the estimated channels are also included as part of the
state space. Therefore, the state vector for the dynamic-
channels case is expressed as

stdyn =
[
β2

1,s, . . . , β
2
C,w, a

t−1, εt−1
1 , . . . , εt−1

C ,

ρt−1
1 , . . . , ρt−1

C ,Rt−1
1,s , . . . ,R

t−1
C,w

]T
, (20)

where st ∈ R
(8K+2M)x1. Note that since the variance of

the estimated channel is closely related to the estimation
error according to (4), including this information in the
state space helps the agent in forming a more robust
policy under the dynamic-channels environment.
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• The reward function rt: Defining an appropriate reward
function is crucial in the RL framework as it is the
only feedback that indicates the utility of the actions
taken by the agent at any time-step t during training. In
addition, since the objective in the original robust design
problem (10a) is to maximize the long-term system
sum-rate, the system sum-rate at time-step t is selected
as the reward. In addition, the sum of the correlation
coefficients and the channel gain ratios are added to the
system sum-rate to incentivise the agent to increase the
correlation and the channel gain difference between the
stronger and the weaker UEs in each cluster. Therefore,
the reward function is expressed as

rt =
C∑

c=1

(
Rtc,s + Rtc,w

)+
C∑

c=1

εtc +
C∑

c=1

ρtc, c ∈ C. (21)

Furthermore, to discourage the agent from taking
actions that do not satisfy the QoS constraints, the
following reward function is used to punish the agent:

rt =
2K∑

k=1

min
(
Rtk − Rmink , 0

)
, (22)

where rt < 0 always hold in (22). Therefore, after
each action taken by the agent, the environment uses
the positive reward function in (21) in case the action
satisfies the QoS constraints, otherwise, the environment
uses the negative reward function in (22). The details of
how the reward function is utilized by the agent during
training are discussed in the agent’s architecture section.

Since RL agents in general cannot directly solve optimization
problems, scaling and normalization of the actions space is
often required to ensure that the actions taken by the agent
are within the feasible region of the optimization variables.
Therefore, to guarantee that the cluster power allocation
strategy selected by the agent at time-step t adheres to the
maximum power constraint in (10d), the feasible cluster
power vector is expressed

P̄t = Pmax∑C
c=1 P

t
c

Pt, (23)

where Pt = [Pt1, . . . ,P
t
C]T is the cluster power allocation

vector generated by the agent and P̄t = [P̄t1, . . . , P̄
t
C]T is the

scaled clusters power allocation vector. Similarly, to ensure
the unit modulus for each IRS element, the feasible value is
expressed as

v̄tm =
vtm∣∣vtm

∣∣ ,m = 1, . . . ,M. (24)

Note that the angle θm can be directly mapped to the
feasible region. Therefore, the IRS vector recovery process
involves obtaining the 2M elements from the “real-only”
actions vector, and then reorganizing them into a single
complex-valued vector, i.e., v ∈ C

M×1. Additionally, after
normalization, the optimized IRS vector can be directly
applied to calculate the final UE channels.

C. THE ROBUST TD3-BASED ALGORITHM
The RL agents like the Q-learning and the state-action-
reward-state-action (SARSA) are called tabular methods
because they use tables to keep track of the Q-values for
each state-action pair [52], [53]. However, since these agents
are only capable of handling discrete state and action spaces,
their practical utility is severely limited as most practical
problems have continuous state and action spaces.
Actor-critic agents which are state-of-the-art in DRL can

handle continuous action and state spaces, and therefore,
eliminate the tabular requirement which restricted the earlier
RL agents. Consequently, actor-critic DRL agents have been
applied to a much wider set of problems in the wireless
communications domain [20].
In this paper, the proposed robust resource allocation

framework is developed based on the TD3 agent [54].
The TD3 agent is an off-policy actor-critic DRL agent
which optimizes a deterministic policy. To address the
policy break issue in the baseline DDPG agent [55], the
TD3 agent uses two critics instead of one, among other
enhancements. Furthermore, since off-policy agents are more
sample efficient than their on-policy counterparts, thanks to
the replay buffer B which is used to save and reuse past
training samples. This translates to faster learning during
training. Finally, unlike stochastic agents, the TD3 optimizes
a deterministic policy which is easier to implement.
The TD3 agent consists of two main parts: the actor or

the policy DNN and the critic DNN. As the name implies,
the actor DNN denoted μ is the one responsible for taking
actions. The input to the actor’s DNN is the state vector.
Therefore, for a trained TD3 agent, the actor’s DNN can be
expressed mathematically as

μ(s) = a∗, (25)

where s is an arbitrary state vector and a∗ is the optimal
actions vector. However, since the actor network is initialized
randomly at the beginning of the training, the actor DNN
cannot evaluate itself. Hence, the critic DNN is used to
assess the performance of the actor’s network during the
training phase. The critic DNNs φi, i = 1, 2, are responsible
for criticizing the actions taken by the policy network μ. In
particular, the critic DNNs predict how good/bad the action
taken by the agent is through the Q-value. Hence, each critic
DNN takes in the current action which is generated by the
actor network and the current state as inputs and generates
a corresponding Q-value which is then passed to the actor’s
DNN. Therefore, the mathematical expression for the critic
DNNs is expressed as

φi(s, a) = Q∗, i = 1, 2. (26)

where Q∗ is the optimal Q-value for the state-action pair.
Note that (26) highlights the importance of the critic DNNs.
Therefore, training the critic DNNs is discussed next.
Similar to the DQN and the DDPG agents, the TD3 agent

uses target networks to generate the training targets. Target
networks are delayed copies of the actor’s and the critics’
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DNNs. Furthermore, the TD3 agent also utilizes a replay
buffer which stores past experiences to further stabilise the
learning process. μ′ and φ′i, i = 1, 2, represent the actor’s and
the critics’ target networks. To elaborate, the training starts
by sampling a batch of experiences L from the replay buffer.
However, we focus on the process of a single experience for
the sake of simplicity. A single experience {st, at, rt, st+1},
also called a tuple, is randomly sampled from the replay
buffer. Then, the target for the selected tuple is calculated
as follows:

ζ
(
rt, st

) = rt + δ min
i=1,2

φ′i
(
st+1, μ′

(
st+1

))
, i = 1, 2, (27)

where δ ∈ (0, 1] is the discount factor that determines the
current value of future rewards. Therefore, selecting a smaller
δ value implies that the agent is myopic, i.e., only cares
about short-term reward. On the other hand, selecting a δ
value that is closer to 1 means that the agent is interested
in maximizing its long-term reward. Note that according
to (27), both the actor’s target and critics’ target networks are
used to calculate ζ(rt, st). After obtaining the target using
the minimum Q-value, both critics are trained by minimizing
their respective mean squared error (MSE) objectives. This
is expressed as [54]

L(φi,B) = E{st,at,rt,st+1}∼B
[(
Q

(
st, at;φi

)− ζ (rt, st))2
]
,

i = 1, 2. (28)

where the expectation operator indicates that this operation
is performed over a batch of samples as the MSE objective
implies. After training the critics using (28), the minimum Q-
values for the state-action pairs generated by the critic DNNs
are used to train the actor’s DNN. In particular, the actor
network adjusts its parameters to maximize the Q-values.
Hence, the actor’s maximization objective is expressed
as [55]

max
ψ

E
st∼B

[Qφ(s, μ(s))
]
, (29)

where ψ is the actor’s DNN parameters, and φ is the critic’s
DNN that generates the minimum Q-value prediction. Note
that, unlike DPPG, the TD3 agent does not update the policy
in each time-step which further stabilises learning. The target
networks are then partially updated as follows:

φ′i = κφi + (1− κ)φ′i, i = 1, 2,

ψ ′ = κψ + (1− κ)ψ ′, (30)

where 0 < κ ≤ 1 is the smoothing factor for the
target networks. Hence, κ is one of the most important
hyperparameters that have a significant impact on the
convergence of the TD3 agent. Another important aspect for
DRL agents is exploration. Since the TD3 agent optimizes
a deterministic policy, it has no means of exploring other
actions. Furthermore, since the agent is initialized randomly,
the initial policy is equivalent to that of a random process.
Therefore, to address this issue, random noise samples are

FIGURE 2. The actor-critic interactions in the proposed TD3 agent.

added to the actions taken by the agent which serve as an
exploration strategy. A Gaussian random process N is often
used as a source for the noise samples added to the agent’s
actions. Therefore, the clipped TD3 action is expressed as

at = clip
(
μ

(
st
)+ n, ahigh, alow

)
, (31)

where n ∼ N (0, σ ′I) is the noise vector obtained from a
normally distributed process with zero mean and standard
deviation σ ′.
So far, we have discussed the problem reformulation into

an RL environment and explained the inner workings of the
TD3 agent. Hence, the developed TD3-based algorithm for
robust resource allocation is explained in Algorithm 2.

To show how the proposed algorithm is implemented after
training, Figure 3 illustrates the integration of the trained
TD3 model into the BS of the considered IRS-assisted
MISO-NOMA system.
Note that unlike conventional optimization algorithms,

we do not explicitly consider the outage probability during
the training and learning stage in the TD3-based robust
design, however, it is included implicitly through the random
errors as explained in Algorithm 2. The first motivation
for the proposed approach is that since the TD3 agent is
initialized with a random policy, basing the reward function
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Algorithm 2 TD3-Based Robust Resource Allocation
1: Initialise: agent’s hyperparameters μ, φ1, φ2,D,N , b,

and the IRS vector vinit
2: Set φ′i ← φi, i = 1, 2, and μ′ ← μ

3: while episode ≤ Episodes do
4: Obtain the estimated channels for all UEs, ĥk, k =

1, . . . , 2K
5: Execute algorithm 1 to obtain the UE pairs.
6: Calculate the ZFBF matrix W according to (15)
7: Obtain the channel error samples �Q1, . . . ,�Q2K

according to (3)
8: while step ≤ Steps do
9: Get the actions vector at by evaluating the actor’s

DNN using the current state according to (31)
10: Extract v̄t,P̄t according to (23) and (24)
11: Add the random channel error terms according to

(3) to create the final true channels
12: Evaluate the SINR equations for all UEs according

to (5) and (8) using the true channels
13: Calculate the achieved rates for all UEs according

to (9)
14: if Rtk ≥ Rmink , k = 1, . . . , 2K: then
15: Use the reward function in (21)
16: else
17: Use the reward function in (22)
18: end if
19: Obtain the next st+1; save the the tuple

{st, at, rt, st+1} to D
20: Sample a batch of L experiences randomly from D
21: Calculate the targets for the sampled experiences

according to (27)
22: Train the two critics using (28)
23: if update_policy == True: then
24: Train the actor network using (29)
25: end if
26: Update the target networks using (30)
27: step = step+ 1
28: Set st = st+1

29: end while
30: episode = episode+ 1
31: end while
32: Output: [w1, . . . ,wC, v̄∗, P̄∗, α∗1,s, . . . , α∗C,w]

on the non-outage probability leads to extremely sparse
reward in the initial training steps which eventually leads
to divergence. The other motivation is that by basing the
reward function on the true achieved rates, the agent always
aims for a non-outage probability of 1, which leads to an
inherently robust policy. Therefore, the implications of the
outage constraints are included implicitly in Algorithm 2.
Hence, the non-outage probability of the agent’s policy is
hyperparameterized in the proposed design. Consequently,
the robustness of the agent’s policy is a function of the
hyperparameters of the TD3 agent.

Note that even though the agent is rewarded by the
achieved true sum-rates, this does not imply that the agent
has access to the true channels. In particular, since the reward
is determined by the environment in the RL framework and
the UEs are part of the environment, the true channels are
still unknown to the agent.

D. COMPLEXITY ANALYSIS
In this section, we provide the computational complexity
for the developed TD3-based algorithm. In particular, since
DRL agents are only trained once, we assume that the
offline training complexity can be afforded [19]. Hence, we
focus on analysing the online or inference complexity during
deployment.
The big O notation is one of the most widely adopted

methods that provides an upper bound for the worst-case
run-time for a given algorithm with respect to its parameters.
Since the trained actor’s network is the one that is used
to carry out the inference, the deployment complexity of
the proposed agent is based on the feed-forward pass
through the actor’s DNN. In addition, since DNN models
are vector-friendly, the worst-case run-time is expressed as a
combination of matrix-vector multiplication. Assuming that
the actor’s network has I hidden layers, with each consisting
of � neurons, then it is straightforward to conclude that there
are I + 1 matrix-vector multiplications in the feed-forward
pass. In addition, the hidden and output layers require one
activation each using an activation function. Therefore, the
computational-complexity is written as O(T(� ·Card(st)+
I · �2 + Card(at) · � + I · � + Card(at) + CN2)), where
Card(st) = 8K + 2M for the dynamic-channels case as
highlighted by (20), Card(at) = 2K + 2M, the term
CN2,C ≥ N, represents the complexity for calculating the
pseudoinverse in (15), while the terms I · � and Card(at)
refer to the element-wise activation operations for the hidden
and output layers, respectively. Note that since the actions
vector is part of the state vector, and assuming that � �
Card(st), and �� CN2, then, the worst-case run-time for
the actor’s DNN is reduced to ≈ O(�2), which implies
that the complexity of the algorithm becomes completely
dependent on the number of neurons in the hidden layers.
Such a case is particularly useful for problems with relatively
small state spaces. The term T is specific to the proposed
algorithm since we consider the previous action as part of
the state vector. Therefore, the actor network is evaluated T
times to guarantee competitive performance. Nevertheless, a
small T value is often adopted to minimize the latency of
the algorithm. Moreover, to keep the latency of the proposed
algorithm to a minimum, T = 2 is used in the simulation
results section unless stated otherwise.
In order to compare the analytical complexity of

the proposed TD3-based algorithm to existing convex
optimization algorithms, we briefly review three widely
adopted conventional optimization approaches for solving
the static version of the considered optimization problem.
In [10], a SOCP-ADMM-based algorithm was developed
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FIGURE 3. The implementation of the proposed algorithm within the BS of the considered IRS-assisted MISO-NOMA system.

to iteratively solve the transmit power minimization
problem. The derived algorithm has a worst-case com-
plexity of O(K1.5M3 + K4.5N3). In addition, the non-IRS
and non-clustered MISO-NOMA beamforming design was
considered for the system sum-rate maximization objective
in [6]. The proposed iterative algorithm solves a SOCP
optimization problem with a worst-case complexity of
O((2K)7) per iteration. For IRS-aided MISO systems,
the work in [42] proposed a semidefinite programming
(SDP) solution for the relaxed IRS optimization subproblem,
while utilizing a closed-form solution based on the max-
imal ratio combining (MRT) for the beamforming design
subproblem. The SDP’s worst-case complexity is O(M6),
while the optimal power allocation subproblem is still
non-trivial.
While both algorithms provide solid performance and

interesting results, it is obvious that they do not scale well in
practical scenarios, let alone latency-sensitive applications.
Furthermore, the aforementioned algorithms are derived
under the assumption that the global CSI is available system-
wide, and therefore, cannot be directly extended to the
robust design case. On the other hand, the proposed TD3-
based algorithm can be utilized to generate competitive and
robust joint solutions while keeping the complexity to a
minimum. Note that in this paper, we assume that the SUPA
is executed in the higher layers which are more latency-
tolerant compared to the physical layer. Nevertheless, it is
straightforward to conclude that the worst-case run-time for
the SUPA is O(K2).

FIGURE 4. Actor’s DNN architecture.

V. TRAINING, SIMULATION AND NUMERICAL RESULTS
In this section, we provide the details of the TD3 agent’s
structure, hyperparameters and training. In addition, the
system parameters and the simulation results for both the
fixed and the dynamic-channel cases are presented.

A. AGENT STRUCTURE AND HYPERPARAMETERS
The developed TD3 agent consists of one actor and two
critic networks. Note that the two critic networks are
identical in terms of the architecture, however, they are
initialized randomly. The DNN structures for both the actor
and the critic networks are illustrated in Figures 4 and 5,
respectively. For the actor’s DNN, the rectified linear unit
(ReLU) activation function f (x) = max(0, x), is used to
activate the fully connected hidden layers. In addition, the
Tanh function f (y) = ey−e−y

ey+e−y , is utilized to activate the output
layer. Furthermore, the scaling layer maps the values of
the actions vector to the appropriate levels. Similarly, the
ReLU function is also used to activate the hidden layers
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FIGURE 5. Critic’s DNN architecture.

TABLE 1. Hyperparameters of the TD3 agent.

of the critic’s DNNs. However, since each critic network
takes in both the state and the actions separately, it needs
a concatenation layer to merge these two inputs. Note that,
unlike the actor’s DNN, the critic’s network outputs a scalar
Q-value which indicates the quality of the state-action pair.
Furthermore, a relatively high δ value is selected to drive
the agent towards developing a long-term robust policy. In
terms of DNNs optimization, the Adam optimizer is utilized
for both the actor and the critic networks [56]. Note the
number of neurons in each hidden layer is identical for both
DNNs. Table 1 lists the TD3 agent’s hyperparameters and
the training parameters used in this paper.
Since the number of neurons is the dominant factor that

determines the learning capability of a DNN with a fixed
number of layers, and consequently, the developed TD3
agent [57], we use two different neuron values for each
channel case. In particular, for the fixed-channels case, we
generate one set of simulation results for a TD3 agent
configured with 128 neurons in each hidden layer, and
another set for the same agent configured with 256 neurons
in each hidden layer. Similarly, the same process is replicated
for the dynamic-channels case with 256 and 512 neurons for
each set of simulation results.

B. SYSTEM PARAMETERS
We consider a downlink transmission for a clustered and
IRS-assisted MISO-NOMA system that is identical to the one
illustrated in Figure 1. In addition, the channel between the

TABLE 2. Summary of system parameters.

BS and the IRS is assumed to have both a line-of-sight (LoS)
and non-LoS components, and therefore, modelled using the
Rician fading coefficients. In particular, the BS-IRS link is
expressed as

G = 1√
dιb→irs
irs

(√
L

1+ LGLoS +
√

1

1+ LGnLoS

)
, (32)

where dirs = 50 m is the distance between the BS and the
IRS and is assumed to be fixed throughout the simulation.
ιb→irs refers to the path-loss exponent representing the large-
scale fading between the BS and the IRS, and L = 1 is the
Rician factor. On the other hand, the channel between the
IRS and the UEs is assumed to experience Rayleigh fading
and is expressed as

gk = g̃√
dιirs→u
k

, k = 1, . . . , 2K, (33)

where dk is the distance between the IRS and UEk, ιb→irs

is the path-loss exponent between the IRS and UEk, and
g̃ ∼ CN (0, 1). Furthermore, we assume that the UEs are
located between [50−100] m away from the BS. Table 2 lists
all the system parameters used to generate the simulation
results.
To compare the performance of the proposed algorithm

to existing algorithms in the literature, we use the following
benchmark schemes:

• Baseline 1: a DDPG agent which has been one of the
most widely adopted DRL agents in the literature. This
benchmark scheme is included to provide a baseline for
convergence and policy robustness testing.

• Baseline 2: a convex optimization-based scheme which
represents the conventional optimization approach
where the IRS optimization subproblem is solved using
SDP [42], then, the non-robust ZFBF with fixed power
allocation is used for the beamforming design.

• Baseline 3: a random algorithm which has an almost
negligible complexity is used to benchmark the quality
of the policy derived by the proposed agent. In this
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FIGURE 6. Convergence of the proposed TD3 agent for the fixed-channels case.

benchmark, all of the design variables are randomly
selected.

C. FIXED-CHANNELS CASE
To evaluate the performance of the proposed algorithm
against channel errors, we first consider the case where
the channels are fixed throughout the training process.
However, a new set of errors is introduced in each training
episode. Furthermore, the UEs are assumed to be uniformly
distributed in the fixed-channels case.
The convergence plot is a useful measure that indicates the

quality of the derived policy by the agent. Figure 6 illustrates
the convergence of the TD3 and DDPG agents. With two
clusters (i.e., C = 2), both agents are able to develop a highly
rewarding policy after a few training episodes. However,
when the number of users in the system increases, both
agents require more training episodes to start forming a high-
reward policy.
In the two extreme cases, however, the average reward

sustained by the TD3 agent is significantly higher than that
for the baseline DDPG agent. Moreover, the TD3-256 shows
more stable and consistent convergence compared to both

FIGURE 7. The average system sum-rates for the fixed-channels case with various
number of UEs.

TD3-128 and DDPG. In order the show the implications of
converging to a higher reward policy, the achieved system
sum-rates for the trained TD3 agent are shown in Figure 7.
The rates provided represent the average system sum-rate
over 1000 testing episodes.

The TD3 agent outperforms the benchmark schemes for
both C = 2 and C = 3 scenarios. In particular, the TD3-128
agent achieves the highest average sum-rate of approximately
18.5Bit/s/Hz, when C = 3, with 4.5Bit/s/Hz gap compared
to the DDPG agent. Additionally, the TD3 agents trade-
off higher system sum-rate performance when C = 4 for
improved robustness as explained next.
Note that Figure 7 only shows partial information about

the agent’s performance. To gain a better insight, Figure 7 is
interpreted in the context of the outage performance of the
agent illustrated by Figures 9 and 10. However, since the
outage performance of the agent is related to the weakest
UE’s achieved rate, Figure 8 depicts the achieved rates
probability density function (PDF) for the weakest UEs in
the system.
Based on the weakest UE rate for each setting, we can

infer that the TD3 agent has formed an outage-aware policy
which results in the least outage across the three different
system settings. Note that since the PDFs in Figure 8 are
for the weakest UEs in each category, this represents the
worst-case performance of the agent.
To assess the outage performance of the proposed agent

against the relative channel estimation quality λ, Figure 9
shows the robustness of the agent’s policy against different
values for λ. The Figure shows that for all system parameters,
the TD3 agent has a worst-case non-outage probability of
88% for the TD3 agents when C = 4 at λ = 0.01, compared
to DDPG’s worst-case of 77% at the same λ value. On the
other hand, the best-case performance is sustained when C =
2, where the TD3 agent achieves a non-outage probability
of 100%, outperforming the DDPG’s best-case performance
by a margin of 5%. In all cases, the TD3 agents’ policies
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FIGURE 8. The PDFs for the weakest UE’s achieved rate in the system.

FIGURE 9. The average outage probability versus the estimation quality factor λ.

perform well in terms of generalization over larger λ values
than the one used for training. In particular, the higher
number of neurons in the TD3-256 agent pays off in terms of
the non-outage probability at λ = 0.01 where it achieves 98%
and 88% scores for the three and four clusters, respectively.
This suggests that the agent’s derived policy is robust against
variations in the estimation error factor. Another practical
benchmark for measuring the agent’s policy robustness is the
outage performance against target rates. Figure 10 illustrates
the non-outage probability versus different target rates. The
agent’s performance generally follows the same pattern as in
Figure 9, where the best-case outage performance is achieved
when C = 2 with 100% non-outage probability at the
training target rate of 1Bit/s/Hz which is around 7% better
than that for the DDPG agent. As for the more challenging
case when C = 4, the TD3 agent still outperforms the DDPG
agent with a 6% performance gap. In addition, the TD3
agent’s policy is able to sustain a 25% increase in the target
rate while still achieving a non-outage probability of 97% on
average, which proves that the agent has developed a solid
robust policy.
Another important observation is the impact of the number

of neurons on the outage probability of the TD3 agent. The
simulation results suggest that the TD3-256 outperforms the
TD3-128 in the more challenging cases with a higher number

FIGURE 10. The average outage probability versus the target rate Rmin
k .

of UEs. This further proves our claim that since the outage
constraint is hyperparameterized in the proposed robust
design, it is impacted by the selected learning parameters of
the TD3 agent.

D. DYNAMIC-CHANNELS CASE
The fixed-channels case is useful for rigorous analysis of
the agent’s developed policy as the channels are considered
static. In practice, however, the channel is frequently chang-
ing especially when the UEs are moving. Therefore, we
extend the developed algorithm to the dynamic-channels case
in this subsection. Unlike the fixed-channels case, the users
are assumed to be randomly distributed within the cell radius
to make the design more practical. In this case, new channels
are introduced in each new training episode. Furthermore,
the channels are assumed to be quasi-static, i.e., the channels
remain constant during each training episode and change
afterwards. Moreover, 24 different channel sets are used for
training. The aim of the dynamic-channels case is to train
the agent to develop a comprehensive robust policy that can
be generalized to never-seen-before channels. Hence, after
training the agent once, it could be deployed to any channel
condition afterwards.
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FIGURE 11. Convergence of the TD3 agent for the dynamic-channels case, C = 2.

FIGURE 12. The average system sum-rates for the dynamic-channels case, C = 2.

Figure 11 illustrates the superior performance of the TD3
agent over the DDPG baseline in developing a highly
rewarding policy.
In order to generate statistically meaningful results, a set

of 100 channels and 10 error samples per channel are used
for testing to generate the average performance results.
The average system sum-rates achieved by the proposed

agent are shown in Figure 12.
The average sum-rates figure shows that baseline 1

achieves the highest rate, which is explained by the worse
outage performance illustrated in Figure 13. The two figures
suggest that there is a trade-off between achieving a higher
system sum-rate and a higher non-outage probability. The
TD3 agents, for example, achieve an average sum-rate of
around 8.5Bit/s/Hz with an average outage probability of
24% at the 0.3Bit/s/Hz target rate. On the other hand, the
DDPG agent has an average outage probability of around
35% at the same target rate. In addition, the average outage
performance gap between the TD3 agent and the SDP-ZFBF
baseline widens significantly as the target rate increases. This

FIGURE 13. The average outage probability of the TD3 agent versus the target rate
for the dynamic-channels case, C = 2.

FIGURE 14. The PDFs for the weakest UE’s achieved rate in the system, C = 2.

clearly shows that the TD3 agent has developed a robust
policy that is capable of withstanding the channel uncertainty
for different channel conditions.
Furthermore, the PDFs of the average rate achieved by

the weakest UE in the system are illustrated in Figure 14.
The PDFs figure shows that the TD3 agents achieve the

highest mean of around 0.6Bit/s/Hz, outperforming the other
benchmark schemes.
Overall, the TD3 agent outperforms all benchmark algo-

rithms in terms of outage performance. In particular, the
TD3 agent shows more adaptive and robust behaviour by
trading off higher sum-rates for better outage performance
when it is challenging to maximize both. This shows that
the proposed TD3-based algorithm is capable of converging
to adaptive policies that suit the problem requirements.

VI. CONCLUSION
The resource allocation problem for an IRS-assisted MISO-
NOMA system was considered in this paper. In particular,
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by taking the imperfect channel estimation at the BS
and the UEs into account, the outage-constrained robust
design with an ergodic sum-rate maximization objective
was formulated. A correlation-based UE clustering algorithm
was proposed to pair the UEs into clusters. Then, the
challenging robust design problem was reformulated into an
RL environment since it cannot be solved directly using
conventional optimization techniques. Subsequently, a DRL-
based framework was developed to solve the reformulated
problem using the TD3 agent. The simulation results
demonstrated that the TD3 agent outperforms conventional
and other DRL algorithms in terms of generating robust
resource allocation strategies for the considered system
model under different system parameters. In addition, the
performance of the developed TD3-based algorithm in the
dynamic-channels case showed that the proposed framework
can be implemented in practical scenarios. Furthermore, the
competitive performance achieved by the proposed TD3-
based algorithm has a much lower computational complexity
compared to conventional optimization algorithms, making
it a more sensible option for latency-stringent applications.
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