
Received 31 March 2024; accepted 11 April 2024. Date of publication 17 April 2024; date of current version 3 May 2024.

Digital Object Identifier 10.1109/OJCOMS.2024.3390591

ECP: Error-Aware, Cost-Effective and Proactive
Network Slicing Framework

AMR E. ABOELENEEN 1 (Member, IEEE), ALAA A. ABDELLATIF 2 (Member, IEEE),
AIMAN M. ERBAD 1 (Senior Member, IEEE), AND AMR M. SALEM 2 (Senior Member, IEEE)

1College of Science and Engineering, Hamad Bin Khalifa University, Doha, Qatar

2College of Engineering, Qatar University, Doha, Qatar

CORRESPONDING AUTHOR: A. E. ABOELENEEN (e-mail: a.aboeleneen@ieee.org)

This work was supported in part by the NPRP-Standard (NPRP-S) Thirteen (13th) Cycle under Grant NPRP13S-0205-200265.
The work of Amr E. Aboeleneen was supported by the GSRA through the Qatar National Research

Fund (a Member of Qatar Foundation) under Grant GSRA9-L-1-0518-22022.
Open Access funding provided by the Qatar National Library.

ABSTRACT Recent advancements in Software Defined Networks (SDN), Open Radio Access Network
(O-RAN), and 5G technology have significantly expanded the capabilities of wireless networks, extending
beyond mere data transmission. This progression has led to the emergence of Virtual Networks (VN) and
Network Slicing, enabling industries to enhance their services and applications by establishing virtual
networks that utilize shared physical infrastructure. Many works in the literature have considered optimizing
the allocation of on-demand slices, assuming the absolute availability of resources and their accurate
load. However, accurately allocating future network slices remains challenging due to the error in load
prediction, diverse Key Performance Indicators (KPIs), resource price variations, and the potential for over-
or under-provisioning. This study presents a two-phase intelligent approach to address these challenges.
The framework proactively predicts different slice loads while considering prediction errors in optimizing
future slices with varied KPIs in a cost-efficient manner. Specifically, our method utilizes historical load
data per service and employs AI-based forecasts for service load prediction. Subsequently, it employs a
Deep Reinforcement Learning (DRL) agent on O-RAN’s virtual Control Unit (vCU) and virtual Distributed
unit (vDU) to correct errors in prediction and optimize the cost of slice allocation based on service
KPI requirements, ultimately pre-allocating future network slices at reduced costs. Through experimental
validation against various baselines and state-of-the-art solutions, we demonstrate the efficacy of our
proposed solution, achieving a notable reduction (37-51%) in the average cost of allocated slices while
inquiring about (1.5-7%) of additional resources compared to the state-of-the-art.

INDEX TERMS Reinforcement learning, network slicing, load prediction, smart health, error-correction.

I. INTRODUCTION

OVER the past two decades, wireless technology has
become the dominant force in networking. The devel-

opment of new-generation networks, like 5G and 6G, aimed
at meeting the growing demands for communication and
computation capabilities in various industries and sectors [1].
These networks have opened up new possibilities for
applications with strict requirements, such as Ultra Reliable
Low Latency Communication (URLLC), Massive Machine
Type Communication (MMTC), and Enhanced Mobile
Broadband Communication (eMBBC). The requirements

for these applications/services vary and may include a
focus on low latency, high reliability, low cost, minimal
energy consumption or higher data rates. These varying
performance requirements are defined by a set of Key
Performance Indicators (KPIs) that need to be met for
different services [2].

To meet the KPIs for diverse services, there is an
increasing need for timely, efficient, and flexible decision-
making in managing network infrastructure and available
resources, as well as determining the best traffic routing.
In order to improve network management, we no longer

c© 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.

For more information, see https://creativecommons.org/licenses/by/4.0/

VOLUME 5, 2024 2567

HTTPS://ORCID.ORG/0000-0003-4957-6804
HTTPS://ORCID.ORG/0000-0002-3887-2520
HTTPS://ORCID.ORG/0000-0001-7565-5253
HTTPS://ORCID.ORG/0000-0002-1583-7503

ABOELENEEN et al.: ECP

perceive networks as mere collections of hardware (i.e.,
Devices and cables). Instead, the concept of Software-
Defined Networking (SDN) [3] was introduced to replace
complex network devices with software running on commod-
ity machines. SDN gained popularity with the introduction
of Network Function Virtualization (NFV) [4], where SDN
provides centralized control and facilitates easy configuration
updates, while NFV emulates network functions such as rout-
ing and firewalls. Furthermore, Open Radio Access Network
(O-RAN) promotes flexible interfaces and structured decom-
position of RAN elements (e.g., Central unit (CU) and Radio
intelligent Controller (RIC)), allowing efficient resource
allocation and enhanced network programmability [5].
Today, various services request their needs as a graph

of Virtual Network Functions (VNFs), specifying the nec-
essary network functions and data routing between VNFs.
To accommodate this, Network Slicing [6] was proposed
to support multiple services with varying demands and
requirements, such as latency and reliability. These slices are
characterized by mutual isolation and can be independently
controlled, managed, and created based on the varying
demands of different services, effectively transforming a
physical network into a set of virtual network slices.
However, designing accurate network slices for diverse

services is a complex problem, since it involves allocating
both computational and network resources while considering
diverse KPIs, which turns the problem to be an NP-
hard problem [7]. This calls for proposing many heuristic
approaches that reserve fixed network slices for different
services, which results in over- or under-provisioning of
resources. Additionally, most of the current work relies on
optimizing slices through various techniques or heuristics
that lack support for different KPIs or assume the availability
of on-demand resources, as in the collaboration between
AT&T (as tenant) with Microsoft Azure (as the provider) [8],
and others like Verizon and Amazon Web Services [9].
Moreover, it was previously demonstrated in [10] that prior
resource acquisition using predictions will help reduce the
tenant’s overall costs than on-demand resource acquisition.
In contrast to prior studies outlined in Section II, which

were limited to conventional traffic load forecasting for
network slicing, static non-adaptive network slicing, solely
resource-optimized slicing without routing (predicting opti-
mized resources only e.g., [11]), and fixed resource pricing
frameworks, this paper employs Artificial Intelligence (AI)
techniques on multiple levels to devise a precise, economical,
and adaptive network slicing strategy to provision the
requirements of various services’ future loads proactively.
In the first phase of the framework, our solution begins
by collecting per-service historical load records along with
AI-based forecasted resource and KPI requirements of each
slice. Then, in the second phase, an error-correcting and slice
optimization Deep Reinforcement Learning (DRL) agent is
deployed, which learns the prediction error distribution and
services KPI requirements. After that, the agent intelligently
pre-allocates various future network slices with a lower

pricing, aiming to minimize the cost of creating end-to-
end network slices for each service while adhering to KPI
constraints to ensure quality of service (QoS).
Thus, in this paper, our contributions can be summarised

as follows:
1) We first formulate the problem of network slicing as an

optimization problem to minimize the cost of different
slices through optimal routing and resource assignment
given different KPIs and constraints. Then, we present
a two-phase AI-based framework which is named
Error-aware, Cost-effective, and Proactive Network
Slicing Framework (ECP). ECP proactively provisions
minimal-cost future network slices with a high degree
of accuracy. Indeed, ECP proactively creates network
slices in advance at a minimal cost, ensuring these
slices are closely in sync with what would be con-
sidered optimal (assuming full knowledge of future
loads and optimized using convex programming). The
effectiveness of this alignment is evaluated based on
three critical aspects: 1) the overall cost efficiency of
the slices, 2) the precision in estimating and reserving
the necessary resources, and 3) the extent to which the
slices meet predefined KPIs. The proposed framework
takes into account the dynamic changes in network
demand and pricing for each service, addresses future
resource scarcity by allocating resources in advance,
and considers various services’ KPIs.

2) In the first phase of ECP, we develop a deep predictive
model that forecasts hourly per-service load for two
example healthcare services: Remote Surgery (RS)
and Remote Monitoring (RM). This predictive model
aims to provide accurate load predictions for these
specific services. In the second phase, we intro-
duce an error-correcting Deep Reinforcement Learning
(DRL) model. This DRL model leverages the per-
service hourly predicted load and prediction errors
to create dynamic, cost-efficient, KPI-supported, and
pre-allocated network slices. Notably, our DRL model
has a unique capability: it learns from errors gener-
ated by the predictive model, enabling it to correct
inaccuracies and optimize load predictions effectively.
To identify the best-performing models for ECP, we
conducted an extensive evaluation encompassing both
the predictive and DRL phases. This comprehensive
evaluation involved exploring multiple alternatives
and conducting thorough comparisons against various
benchmarks and baselines. Our goal was to assess the
performance of these models in terms of total cost,
the number of reserved resources, and adaptability to
network changes.

3) Given that ECP can accurately estimate and allocate
various network slices in advance, we have introduced
the concept of dynamic resource pricing. This approach
allows our system to take advantage of lower resource
prices as the allocation moves further away from the
utilization phase. However, a tradeoff is involved: as

2568 VOLUME 5, 2024

we prioritize cost reduction, we may sacrifice some
accuracy in our resource estimation, a tradeoff we aim
to optimize.

4) Finally, we propose four variants of ECP, each incor-
porating a different technique to enhance prediction
accuracy for precise optimization of network slices.
These variants are then compared to the state-of-the-
art approach and various baselines, with performance
evaluated in terms of total cost, the number of reserved
resources, and adaptability to network changes.

Finally, we remark that the proposed framework can benefit
tenants (e.g., Hospitals) and network service providers (i.e.,
Telecom or cloud providers who provide physical or virtual
resources to tenants). Indeed, tenants can benefit from leasing
optimized slices in advance at discounted prices. Meanwhile,
service providers will be able to plan ahead more efficiently,
reduce the need for on-demand resources, and support a
bigger number of tenants.
Following this introduction section, the rest of the paper

is organized as follows: In Section II, we introduce a
literature review. Section III covers our proposed system
model and the problem formulation. Section IV discusses
our proposed solution, whereas Section V presents the
performance evaluation of our framework and discussion.
Finally, Section VI concludes this paper.

II. LITERATURE REVIEW
In this section, we discuss the related work regarding load
prediction, dynamic pricing, network slicing allocation and
optimization.
Over the past years, predicting patient load in healthcare

entities has been a fundamental area of research in the
medical field. For instance, accurately forecasting the daily
number of surgeries in healthcare entities is crucial for
optimizing staffing, room allocation, and other hospital-
based resources. However, it’s worth noting that inaccurate
predictions, as observed in scenarios like patient counts
and surgery volumes, can substantially escalate a hospital’s
overall operational costs [12]. Thus, many techniques have
been adopted in the literature to tackle this prediction
problem, using simple statistical models, such as the auto-
regressive integrated moving average (ARIMA) and seasonal
ARIMA (SARIMA) models. For example, ARIMA and
SARIMA were used in [13] to know the surgical volume,
while they were used in [14] to forecast the daily in-
patients. Moreover, due to the non-linearity nature of the
forecasting dataset, machine and deep learning models, such
as Recurrent Neural Network (RNN) and its improved
version Long Short Term Memory (LSTM), were also used in
many works such as [15] for emergency patients prediction.

Similarly, in networks, forecasting the volume of users
manifests under load or traffic estimation. It is also defined
formally as the prediction of inbound and outbound traffic at
different levels of the network (e.g., Devices and links). The
importance of such predictions is that they form the basis
of different anomalies and security discovery techniques in

networks [16]; they also help the satisfaction of service
level agreement (SLA) [17]. In [18], the authors used
reinforcement learning to predict the end-to-end real-time
network traffic under a dynamically changing environment.
Like medical load forecasting, predictive deep learning
models (e.g., LSTM) have outperformed statistical models
in network load prediction in different scenarios [19], [20].
A recent study by [21] used LSTM and Random Forest to
predict network slicing KPIs compliance but did not address
automated resource fine-tuning for varying resource needs,
which we address. Additionally, many of the literature works,
e.g., [22], [23] focused only on optimizing the resources
without the inclusion of the routing in their optimization,
which we have incorporated.
Building upon the works above, this paper leverages traffic

prediction to learn the daily network needs in order to
optimize and design pre-provisioned, cost-effective network
slices.
In addition to traffic forecasting, many works have focused

on the VNF placement problem, which includes finding the
location of VNFs and the number of computational resources
allocated for any service. For instance, the authors in [24]
showed how the placement problem could be modelled as
an assignment problem that even a relaxed version of it is
considered an NP-hard problem. Hence, a near-optimal solu-
tion is presented. Other works (e.g., [25] and [26]) focused
on the connection between the placement of VNFs and the
associated traffic. Moreover, some related works focused on
predicting the network load to ease the challenge of VNF
placement, such as [27] and [28]. While the latter focused
on identifying the resources based on a forecasting process,
the former used the demand’s Spatio-temporal variation to
reserve the least resources per VNF. In [29], the authors
showed the effect of running multiple VNFs on a single
node, which can cause a high amount of interference; thus,
they created a mechanism to quantify the VNF interference
and proposed a way to lazily migrate VNFs from one node
to another which helped increasing the overall throughput.
On the contrary, different works focused on improving the
end-to-end delay and throughput. For instance, [30] focused
on VNF placement and routing using network slicing while
leveraging graph theory and accounting for different KPIs,
showing near-optimal performance. Our work requires no
restrictions on VNF placement as we utilize the current
existing VNFs to build optimal slices.
While most of the above literature did not focus

on using artificial intelligence (AI) to optimize a con-
siderable number of network slices, other works have.
This includes [28], which employed a Reinforcement
Learning (RL) technique to forecast traffic volume, result-
ing in almost perfect placement of VNFs with the least
expense. Additionally, [31] demonstrated an intelligent traffic
management method to make QoS provisioning possi-
ble in SDN settings based on multimedia. The authors
suggested an RL approach that chooses the best rout-
ing algorithm from a selection of centralized routing

VOLUME 5, 2024 2569

ABOELENEEN et al.: ECP

algorithms to optimize network return and enhance QoS
provisioning.
Although many studies in the literature have explored fixed

cost models for end-to-end resource provisioning and slicing
admission control [32], [33], only a few have investigated the
impact of dynamic pricing and how it relates to the timing
of resource provisioning on the overall cost. A very recent
work [34] was the first to illustrate a dynamic pricing scheme
based on a ride-hailing pricing model for the admission
of different slice requests. Indeed, that paper aimed to
maximize the long-term profit (from the network company’s
point of view) by optimally accepting or declining different
network slicing requests using RL. The paper, however,
assumes that the service requester already gives the optimal
number of resources for a network slice. On the other hand,
our work does not assume that information is beforehand;
thus, we create the optimal resource allocation for the
services.
Moreover, it is essential to mention that many different

resource providers have adopted computational resources
dynamic prices, such as Amazon’s AWS [35] and Huawei.
However, network dynamic pricing was not introduced. We
argue that the dynamic price of network resources (e.g.,
Bandwidth) is essential since a network slice would only
function as expected if both computational and network
resource requirements are fulfilled. This need is amplified
when using network slices for medical services (e.g., Remote
surgeries) where latency is critical and thus, reserving
and guaranteeing part or all needed resources is essential.
Therefore, there is a need to involve a changing price for
the network resources like computational resources. It is also
worth noting that very recent work by [36] showed another
direction of dynamic pricing by engaging the network
operators and their usage into a competitive resource pricing
game through the usage of game theory and multi-agent
reinforcement learning to provide competitive pricing for
slicing users.
In light of the above work, our project creates an AI-

powered framework for predicting the network demand for
different services and customizing optimal network slicing
accordingly. Additionally, we incorporate a dynamic pricing
model to estimate the cost of the futuristic resources and
a prediction error estimation model to account for load
prediction errors. To our knowledge, this is the first work
to consider load prediction with end-to-end network slice
optimization considering dynamic pricing and the prediction
error.

III. SYSTEM MODEL AND PROBLEM FORMULATION
In this section, we present the proposed system
model. First, we introduce terminologies such as Virtual
Network Function (VNF), service, and the considered
Key performance indicators (KPIs). Then, we present
the problem formulation, combining different aspects
altogether.

FIGURE 1. Considered System model, framing the solution in the Open RAN
architecture.

A. SYSTEM MODEL
Figure 1 shows the considered model that is framed within
the O-RAN 5G architecture. Our solution operates within the
O-RAN architecture’s service management and orchestration
(SMO) layer. It takes input from various services/flows,
including per-service KPI, actual and AI-predicted historical
loads, available CPU resources, and the network’s current
state, which is provided by the edge computing platform.
Then, utilizing the O-RAN intelligent controllers (RIC), we
deploy a DRL agent to perform tasks on the virtual Control
Unit (vCU) and virtual Distributed Unit (vDU). These tasks
include configuring vBS functions, enabling per-service VNF
routing, and collaborating with the NFV virtual infrastructure
manager (VIM) to configure cloud-based CPU resources
schedulers along the routing node according to the O-RAN
specification. Without losing generality, we will focus on
healthcare services as an example without limiting the kind
of services our system can consider. Indeed, our focus will be
on two different healthcare services, namely Remote Surgery
(RS) and Remote Monitoring (RM) [37]. In what follows,
we will explain different model details in our system.

1) SERVICE GRAPH AND VNF

To support the work of various services (such as remote
monitoring), each service should be assigned a unique
network slice to meet its tight QoS demands. Each service
requires a sequential series of VNFs connected in a graph
with a particular order (i.e., Service Function Chaining
(SFC)) [30]. A VNF may run on single or multiple nodes of
different capabilities (i.e., Different resource amounts). As
seen in Figure 2a, VNFs may represent a variety of functions
such as event filtering and feature extraction [38].
Each service has specific goals to achieve, and its

performance can be measured by meeting the associated
KPIs. It is also important to mention that according to the
service, some KPIs may be prioritized over others depending

2570 VOLUME 5, 2024

FIGURE 2. (a) The service graph for different medical applications, each block
represents a VNF. (b) The Corresponding physical graph where the VNFs are running.

on the service being provided. For example, in a remote
surgery service where a patient is being treated remotely, the
latency/delay KPI is prioritized over the cost KPI. On the
other hand, telemonitoring may care more about cost KPI
than latency as the monitoring is done over long periods. We
also note that not all KPIs must be fulfilled per service [39].
Additionally, it’s assumed that intermediary processing nodes
will either reduce the data with a factor ε or keep it as it
is. In other words, the data is not increased from one node
to another.

2) COMPUTING AND NETWORK RESOURCES

By focusing on the vRAN CU/DU segment depicted in
Figure 1, we observe the virtual graph alongside its cor-
responding physical graph illustrated in Figure 2(b). These
graphs showcase the entirety of processing and commu-
nication resources available across different levels within
the system. In Figure 2(b), the graph’s vertices represent
the different cloud’s Extreme Edge Devices [40] (hereafter,
referred to as nodes), while the edges indicate the connection
between two nodes. Because network nodes u ∈ U differ in
their computing resources (e.g., CPU and Memory), the max
amount of resources of type k in node u is defined as au(k).
Moreover, a node possesses a processing delay, defined as
Du. Similarly, an edge corresponds to a specific link y ∈ Y ,
with a transmission delay Dy.

Additionally, a collection of interconnected nodes and
links, forming a complete route from start to finish, is
denoted as a path g ∈ G. The designation of a specific path
chosen by a service s is termed the service flow f ∈ F .
In our system, we define multiple services. Each service
has only one choice of end-to-end path, (i.e., one flow per
service), therefore the system has multiple flows.
Moreover, each link y has a physical bandwidth limit Wy,

hence, we define the link capacity constraint across all flows
as in Eq. (1), with rf ,y reflecting the data amount of a service

TABLE 1. Table of notations.

flow f passing through y.
∑

f∈F
rf ,y ≤ Wy, ∀ y ∈ Y (1)

VOLUME 5, 2024 2571

ABOELENEEN et al.: ECP

TABLE 2. Table of acronyms.

Similarly, the total reservation of resources of type k from
all flows at a particular node u, denoted as rk,f ,u is bounded
by the node’s maximum capacity au(k), therefore Eq. (2):

∑

f∈F
rk,f ,u ≤ au(k), ∀ u ∈ U (2)

3) KEY PERFORMANCE INDICATORS

Various KPIs can assist the requirements and performance of
different services. Our system considers two service KPIs:
end-to-end delay and end-to-end reliability.
For each service path, the delay is divided into two

components: network delay and computation delay. While
the network delay is caused by data transmission across
multiple network links, the computation delay is generated
by the computing edge nodes running different VNFs and
processing every flow. As defined in Eq. (3), the sum of all
edge/link delays Dy along a certain path g defines the total
network delay of a service flow dn(f , g).

dn(f , g) =
∑

y∈g
Dy,f (3)

Here Dy,f is defined as Dy,f = (
B(y,f)
rf ,y

+ θy). Where B(y,f)
rf ,y

represents the transmission delay for the data of flow f
passing through link y and θy signifies the channel access
delay that could occur during the data flow.
Moreover, in terms of processing latency, the VNF

instances are modelled as queuing models of type M/M/1-PS
under the processing paradigm in [30], which simulates how
a multi-threaded program operates inside a virtual machine.
We also note that different processing models can also be
incorporated into our system. Thus, the processing latency
per node Du for a flow f , denoted as Du,f is defined in
Eq. (4):

Du,f = εf ,u
1

rk,f ,u − rcpu(u) εf ,uB(f , u)
(4)

Such that εf ,u depicts the percentage of data that will be
processed at a VNF v hosted on u and εf ,uB(f , u) is the
processed traffic at node u. Ideally, εf ,u will equal 1 where
no compression or data extraction is done to the flow data.
During our simulations, εf ,u was set to 1 as the VNF
operations included did not perform any data compression
to the different flows. rk,f ,u is the number of processing
resources in u per flow f and rcpu(u) is the rate at which
the CPU can execute instructions at node u. Summing all
edge nodes’ processing delay Du,f within a path g gives us
dp(f , g):

dp(f , g) =
∑

u∈g
Du,f (5)

It is worth mentioning that the allocated computing
resources play a more prominent role in Eq. (5) than any
network and storage resources. Thus, the allocated CPU
provides an extra degree of flexibility to the trade-off
between cost and performance. A high number of CPUs
will reduce processing time but will increase costs, unlike
other resource types (e.g., Storage space), where additional
quantities would not affect the delay. Thus, the total delay
per flow df ,T can be calculated as the summation of both
network and computational delay df ,T = dn(f , g) + dp(f , g)
and therefore each flow should abide by its end-to-end delay
constraint DT,f which is given by Eq. (6):

df ,T ≤ DT,f (6)

4) RELIABILITY

To ensure high-quality network slices, it is crucial to consider
the reliability of the intermediary nodes and links that
connect the VNFs. Since network slices typically consist of
multiple VNFs hosted on different nodes, the failure or drop
in performance of any of these intermediary nodes or links
can negatively impact the overall performance of the network
slice. Therefore, it is essential to consider reliability as one
of the key metrics when designing and deploying network
slices.
To simulate a realistic state of links and network nodes,

each node u and link y respectively have reliability param-
eters ηu(t) and ηy(t), which indicate the node’s or link’s

2572 VOLUME 5, 2024

ability to operate successfully at time t. When calculating the
reliability of a single path g, which is a group of nodes and
links, we need to consider the reliability of each intermediary
node u and link y. Therefore, the reliability of a path is
calculated as the multiplication of the individual reliability
of each node and link along that path. The resultant of
the multiplication should abide by the system’s reliability
threshold RT,f , which ensures that the overall reliability of
the network slice meets the required standard as seen in
Eq. (7):

∏

u∈g

∏

y∈g
ηu(t) · ηy(t) ≥ RT,f (7)

B. PROBLEM FORMULATION
Our network slicing system’s ultimate purpose is to provide
complete and optimal in-advance network slices that fulfil
the KPIs required by various services given their estimated
network load (from the predictive phase, as will be men-
tioned later) with minimal cost. This functionality utilizes
the intelligence of an intelligent DRL-based framework
installed on the O-RAN’s RIC that can estimate the service
loads and reserve network slices for multiple services (i.e.,
both computation and network resources). The major steps
required by our system can be summarised as follows:

• Collecting the different required KPIs from multiple
services (e.g., Delay).

• Estimate the load for different services (based on the
predictive models from the first phase).

• Reserve the end-to-end path with the required services’
virtual network and computational (which can be
reserved from a gateway cloud provider) resources.

Since the main goal is to optimize the cost of all reserved
slices, it is essential to note the different costs. Estimating
the total per-slice cost can be presented as the summation
of two different costs cu(t, k) and cy(t) where cu(t, k) is the
price per unit resource k at node u (processing cost) at a
particular time t. cy(t) is the fee for transferring data unit
per time unit on a link y (network cost) at time t.

Following the model described in [34], cu(t, k) and cy(t)
values can be defined as in Eq. (8):

cu(t, k) = τ · dρ · cu(k)
cy(t) = τ · dρ · cy (8)

Where τ is the urgency of the resource and is calculated as
the logarithm (base 2) of the number of days until reserving
the resources Nd (i.e., τ = 1

log2(Nd)
). dρ represents the

duration for reserving the resources. We simulate a real
scenario and consider varying reservation times for each slice
based on the service requirements. For example, a service
like remote surgery only operates for five hours daily, so
the service duration is limited to 5 hours. It is important to
note that Nd has a maximum fixed value of 8 to prevent
excessive reductions in resource prices when users reserve
resources in advance.

Now that we have explained the related KPIs and the
primary goal of our optimization problem (cost minimization
of slices), we explain the problem formulation in the
following. Whenever our system receives the estimated loads
from the predictive model (Explained in: Section IV-A) along
with each service KPI requirements, it starts solving the
following problem P allocating the necessary path and virtual
computing resources along the path as follows:

P: min
Sf ,g,au(f ,k)

(C) (9)

s.t.

Sf ,g
[
dn(f , g) + dp(f , g)

] ≤ DT,f ,

∀f ∈ F ,∀g ∈ G (10)∏

u∈g,y∈g
ηu(t)ηy(t) ≥ Sf ,g · RT,f ,∀f ∈ F (11)

∑

f∈F
of ,g,y · rf ,y ≤ Wy, ∀y ∈ Y, (12)

B(f , u, u+ 1) = εf ,u · B(f , u− 1, u),

∀u ∈ U ,∀f ∈ F , (13)∑

y∈g
of ,g,y = Ng · Sf ,g, ∀f ∈ F ,∀g ∈ G, (14)

∑

g∈G
Sf ,g = 1, ∀f ∈ F , (15)

∑

f∈F
rk,f ,u ≤ au(k), ∀ u ∈ U , (16)

of ,g,y ∈ {0, 1}, ∀g ∈ G, ∀f ∈ F ,∀y ∈ Y, (17)

Sf ,g ∈ {0, 1}, ∀g ∈ G ∀f ∈ F (18)

where the cost objective C is defined as,

C =
∑

f

∑

g

Sf ,g ·
[
∑

u

∑

k

cu(t, k)au(f , k)

+
∑

(y∈Y)

cy(t)B(f , y)

⎤

⎦

Our optimization problem P aims to allocate the necessary
resources per service flow and traffic route to reduce the
overall cost while satisfying different KPIs for all different
services. Problem P contains two different decision variables,
namely Sf ,g and au(f , k). While the former represents a
binary selection of a path g for a flow f (i.e., the end-to-end
path with all links along that path), the latter illustrates the
number of computational resources per each node’s VNF
along that path. The cost function, C, shows these decision
variables’ impact on the system’s overall cost.
A set of constraints has been defined to guarantee the

satisfaction of all different KPIs. Firstly, constraints (10)
and (11) guarantee the satisfaction of delay and reliability,
respectively. Secondly, constraints (12), (16) and (13) ensure
that maximum physical link bandwidth, max computing
resources per node and flow conservation are not violated.
Thirdly, constraints (14) and (15) together dictate the

VOLUME 5, 2024 2573

ABOELENEEN et al.: ECP

FIGURE 3. The proposed solution ECP consists of two phases illustrated on the two rows of the graph.

selection of all links (Ng indicates the number of links of a
path) along the selected path g and only choosing a single
path per flow apiece. Finally, the constraints (17) indicate
the binary choice of all links along the chosen path and (18)
narrows the choice of only one path per flow.

IV. THE PROPOSED SOLUTION (ECP)
In this section, we will discuss the design of our Error-aware,
Cost-effective and Proactive Network Slicing Framework
(ECP), as illustrated in Figure 3. Our system consists of two
main phases. The first phase estimates future load, while
the second phase allocates minimized-cost network slices
according to the estimated load and respecting different KPIs
as presented in P.

A. PREDICTIVE MODEL (PHASE 1)
To have accurate network slicing per service, each service
network’s demand must be precisely known. Thus, we opt to
accurately forecast the number of daily inpatients and assess
different techniques as statistical, machine and deep learning
techniques.
To test our predictive pipeline, we adopt a sample dataset.

The dataset has been collected from [14]. It illustrates the
number of daily inpatients for a large hospital in China for
about 39 weeks. We adopted and modified the dataset to fit
our use, as will be described next.
After acquiring the data, several steps were done to pre-

process and fit the data to our needs, which will be discussed
next.
Firstly, the dataset shape has been modified to account

for different types of techniques/models but with the same
amount of records in each (35 weeks of data for training and
four weeks for testing). For example, we have used a window
size of 1-7 days for the statistical and machine learning
models to forecast future loads. A similar technique has

been used with deep learning models by using the dataset’s
sequential characteristics.
Secondly, we perform three sets of predictive models to

seek the best model from all of them for predicting the
daily load to be used in the next phase (Load optimization,
Section IV-B). The sets of models used can be summarized
as follows:

• The first set of the predictive model is the window-based
statistical and simple machine learning models. This
set includes Random Forest regressor [41], Extra Tree
regressor [42], ARIMA [43], SARIMA-NARNN [14],
and Long short term memory (LSTM)-based model
(only 3-day window-based model) [44].

• The second set of models consists of deep single-
step sliding-window-based LSTM models, each with a
different window size ranging from 1 to 5 days. These
models produce a single upcoming value from a sliding
window of N values. This set of models is widely used
in literature (e.g., [45]) and was selected to evaluate the
performance of various sliding window sizes N in the
given scenario.

• The third set envisions the set of Deep multi-step
forecasting LSTM models, which takes N values to
predict M values in the future. In this case, we test
models with varying prediction horizons ϑ (e.g., 7-ϑ ,
and 21-ϑ) or changing input size ζ (e.g., ζ -7 and ζ -14)
where every configuration is of the form (ζ − ϑ). For
example, the (7-1) configuration would represent an
input of seven days of values to predict the next value.
The (35-7) model would indicate the input of 35 days
to forecast seven values of the upcoming seven days.
This model set was chosen as it is widely used in the
literature.

The performance comparison of these models will be
presented in Section V.

2574 VOLUME 5, 2024

Thirdly, after estimating the number of daily inpatients
from the aforementioned models, we performed the follow-
ing steps to get the number of hourly patients prepared for
the next phase:
1) Using the predicted daily number of inpatients, we

assumed a percentage of the daily inpatients to be
used in the two healthcare services. For example, in
our case, this percentage was set to 15%, divided into
10% and 5% for remote monitoring and remote surgery
services, respectively.

2) According to a local hospital working schedule, each
service’s daily number of patients has been further
divided into hourly inpatients (i.e., The 5% of inpa-
tients for remote surgery was divided by the number
of daily hours specialized for surgery). In our case, we
had 5 hours of daily surgery and 12 hours of remote
monitoring.

3) For each projected number of patients per service, the
total expected data amount per hour was estimated
as the multiplication of the predicted number of
patients by each service required bandwidth. For
remote surgery, we assumed transmission of a high-
definition video of 5 Mbps [46], whereas, for remote
monitoring, we assume light traffic of 0.5 Mbps.

B. NETWORK SLICE CREATION AND OPTIMIZATION
(PHASE 2)
After obtaining the predicted hourly network demand per
service from the previous phase, this phase is focused on
allocating a minimal-cost and adequate network slices for
different services, which includes the optimal allocation of
communication and computational resources for the different
considered services while taking into consideration the
different constraints to be respected (As in Eq. (9)) and the
nature of the resources price fluctuation. We also consider
and correct the prediction error from the previous phase.
Since network demand constantly changes, we opt to use

a dynamic optimization approach. Because of its ability to
adapt to different service requirements and manage highly
complex environments, with low complexity [47], [48], Deep
Reinforcement Learning (DRL) was used as the primary
method of optimizing network slices. In our case, DRL was
used to ensure the optimal choice of paths and resources
while the state of the network might be unstable (e.g., When
some network links fail). DRL was also used to learn and
rectify the errors from our prediction phase.
Unlike predictive machine learning areas, which focus on

predicting a value or a class, DRL is a subtype of machine
learning which focuses on intelligently interacting in an
environment for optimal behaviour. Moreover, DRL does
not use a training dataset to train the model. Instead, it
generates similar data by interacting with the environment
and getting rewards or penalties that illustrate the action’s
goodness performed by the agent.
Because learning in an environment with many states is

complex, DRL models the learning process as a Markov

Decision Process (MDP). An MDP consists of the 5-element
tuple, which is (S , A, T , R, γ) where the agent is constantly
monitoring the state S of an environment and performing an
action A to obtain a reward R that has been discounted by γ

plus the new state S ′. When an action is performed, a state is
changed with probability T . After successfully training the
agent for many episodes, it will be able to successfully map
states to actions that result in the largest cumulative reward,
referred to as a policy π , with the assistance of a learning
algorithm. But before using DRL to solve our problem, we
must first convert it to MDP, in which we will describe the
environment, actions, and rewards.

1) STATE

To properly represent various states of our
system/environment, the state space included three different
elements. The first element is the set of the reliability of
all links used in the physical graph {rly : ∀y ∈ Y}, this will
be useful as it will indicate any problems with intermediary
nodes, which might disable some end-to-end paths. The
second element of the system state is the set of the predicted
number of patients per service {σs : ∀s ∈ S}. This information
is essential for the decision-making process in the system, as
it gives the agent an idea of the amount of resources that need
to be allocated per service. Additionally, the state includes a
counter that tracks the current weekday dcurr and hour hcurr,
allowing the system to take into account the current time
and adjust its operations accordingly. Altogether, forming
the state space per timestep St as in (19):

St = ({
rly : ∀y ∈ Y

}
, {σs : ∀s ∈ S}, dcurr, hcurr

)
(19)

2) ACTION

Prior to any action, an exhaustive list of all possible paths
is given to the DRL agent. Then, at each timestep (in our
case, an hour), the DRL assigns paths to services based
on the path encoding variable pl. For instance, assuming
we have only two services, a value of pl = 3 indicates
[0, 3], which assigns the first and fourth paths for the first
and second services, respectively. This representation of path
selection was used to reduce the number of variables in the
action space. Moreover, the agent will allocate the necessary
intermediary processing resources along each selected path
g∗ per service flow f . Thus, the action space is represented
as in (20):

At = (
pl,

{
rk,f ,u : ∀u ∈ g∗,∀f ∈ F

})
(20)

3) REWARD

We reiterate that our agent undergoes training to choose
the optimal slice for each service ahead of time. This slice
comprises both the paths and the allocation of resources
along those paths. During training, the agent ensures adher-
ence to all previously discussed KPIs, utilizing knowledge
of the environment’s state. Importantly, this training occurs
without access to the actual load data for any of the
services. Therefore, our training entails providing the system

VOLUME 5, 2024 2575

ABOELENEEN et al.: ECP

with load predictions and improving its decision-making
through an accurate rewarding function. Within our reward
function, we evaluate the agent’s performance on how well
its combination of paths and resources fulfils the KPIs of
the true load while simultaneously minimizing the total cost,
relying solely on predicted load data.
Accordingly, the goal of the reward function is twofold:

first, it directs the agent into reserving slices that adhere
to various KPIs according to the actual demand while only
knowing the predicted demand. Indeed, the agent only sees
the predicted demand (see {σs : ∀s ∈ S} in St) and is
penalized based on the actual demand {σ ∗

s : ∀s ∈ S} that is
available only at training phase. This will enable the agent
to understand the error distribution within the forecast model
over the prediction period.
Second, out of all slices that adhere to the KPIs, it instructs

the agent to find the least-cost set of slices for the set of
services.
In light of the above, we have created the reward function

rt, which is divided into two parts: The first is punishing
the agent for violating certain KPIs constraints for the actual
demand data, defined in the first and second rows of rt as
c1 and c2. Indeed, if the agent’s action does not comply
with each service’s KPI (e.g., Delay D or reliability R), the
difference between the required (subscript req) and attained
(subscript att) KPI multiplied by a scaling factor (e.g., α)

will be given as a penalty. For example, in delay KPI, the
penalty is the difference between the required delay Dreq

and the attained delay Datt multiplied by a scaling factor α.
Finally, if the agent finds the optimal configuration per

all slices that minimizes the total cost and abides by all
constraints for the actual load, it will be rewarded, as seen
in the last row of rt.
Thus, (21) represents the reward function:

rt =

⎧
⎪⎨

⎪⎩

−β�
(
Ratt,Rreq

)
if Ratt < Rreq (c1)

−α�
(
Datt,Dreq

)
if Datt > Dreq (c2)

(1, . . . , 0) 	→ C[Cmin,Cmax], if ¬(c1, c2) ∀f ∈ F

(21)

Furthermore, we acknowledge that the minimum total
cost of reserving multiple network slices is subject to
change over time, given the hourly variations in demand
leading to different hourly optimal configurations and costs.
Hence, we have chosen to retain the lowest prices per load
configurations obtained by the agent each hour, denoted
as Cmin. For example, suppose we have two services with
hourly load requirements of 1500 Mbps and 2000 Mbps,
respectively, and the agent found a minimum price of slices
to be 150 USD. In this load configuration, our Cmin would
be saved as Cmin[1500, 2000] = 150 USD. After that, the
agent will be rewarded a value between (1 and 0) on how
close its current configuration’s total cost C is to the same
configuration’s best cost Cmin among all hourly loads. We
also note that Cmin is constantly updated if a new least cost
is found. This will direct the agent to always converge on
finding a lower-cost set of slices. Moreover, if the agent

TABLE 3. Simulation parameters.

violates any of the given constraints for any of the services,
it will not receive the positive reward, hence the condition
if ¬(c1, c2).

4) DRL ALGORITHM

Among different Deep Reinforcement Learning (DRL) algo-
rithms, we chose to address our network slicing allocation
problem by leveraging an efficient Deep Reinforcement
Learning (DRL) method, specifically the Proximal Policy
Optimization (PPO) algorithm [49]. PPO provides three
different features, making it the most suitable DRL algorithm
in our scenario. First, it inherits the ability of fast training
from A2C by getting multiple trajectories from different
parallel agents at once. This helps accelerate the training
and convergence to the highest reward policy. Second, PPO
adopts the trust-region policy update, which indicates that
whenever an agent learns a new policy, the new policy
will not be completely different from the current policy;
this reduces the agent’s divergence during the training.
Moreover, having a trust region will enable finding a fine-
tuned number of resources needed for intermediary nodes,
consequently reducing total network slicing costs. Third,
PPO supports high-dimensional actions, which supports the
scalability needed when scaling up our problem.

C. ECP ALGORITHM
Combining both phases, the full details of the ECP can be
seen in Algorithm 1. In lines 1 and 2, our algorithm starts
by initializing the inputs of the two phases of the system.
For example, from the predictive phase, these inputs include
the actual and predicted hourly load forecasts for different
services {σs : ∀s ∈ S}. From the network slicing optimization
phase, the maximum number of training episodes Emax,
PPO’s buffer size Bsize, the max number of simulation hours

2576 VOLUME 5, 2024

Algorithm 1 ECP
1: Input: Episode counter Ecounter, Max num. of Episodes
Emax, buffer size Bsize, allocation map M, simulation
hours per day hcount, different services hourly forecast
{σs : ∀s ∈ S} and actual loads.

{
σ ∗
s : ∀s ∈ S

}
.

2: Init PPO’s Actor & Critiq NN θπ0 and buffer B.
3: while Ecounter < Emax do
4: Reinitialize ENV.
5: for each dcurr ∈ dcount do
6: for each hcurr ∈ hcount do
7: Form the per-timestep environment state St using

dcurr, hcurr and the hourly forecast of all services
{σs : ∀s ∈ S} (using any prediction model or
variants).

8: Feed the environment state to the agent.
9: Select at tuple per service as in (20).
10: Save chosen path’s links and their intermediary

nodes in M.
11: if

∑
f∈F rf ,y > Wy, ∀y ∈ Y then

12: Split link bandwidth equally among demand-
ing services sharing y & update M.

13: end if
14: if

∑
f∈F au(f , k) > au(k), ∀u ∈ U then

15: Split node resources proportionally among
demanding services sharing u & update M.

16: end if
17: Using M, apply action at from (20) and transfer

data.
18: Calculate reward rt+1 using (21).
19: Save trajectory (st, at, rt+1, st+1) in B.
20: end for
21: end for
22: for m mini-batch in B do
23: Compute rewards-to-Go R̂t.
24: Compute the advantage estimate ˆAπk

t .
25: Update Actor & Critiq NN
26: end for
27: Ecounter += 1
28: end while

per episode hcount, PPO’s actor and critique neural network
(NN) weights are added in addition to other utilities such as
allocation map M, which records the links bandwidths and
the number of resources held by each of the services across
all links and nodes.
After ECP initialization, the training phase starts, and

it’s categorized into data collection (lines 4-20) and PPO’s
learning stages (lines 21-25). Data collection starts by
iterating over a specific number of training hours per episode
(e.g., 12 hours from 8 AM to 8 PM); these hours represent
a timestep where there is a load for a set of services S
which we need to optimize. Thus, we iterate over each hour
h, and with the help of our predictive models, we get the
hourly load forecast for all services {σs : ∀s ∈ S} along

with actual hourly loads and other variables forming the
environment state (19). Presented by this environment state,
our PPO agent samples an action at (as in (20)) using the
actor’s policy neural network, which includes the choice of
an end-to-end path and number of reserved nodes’ resources
per that path for each of the services. This information is
stored in M.

Next, at is checked to not to violate any network or
computational constraints and rectify any error. For instance,
the first test (lines 10-12) checks if the agent has a link y
that is allocated by multiple services with a total requesting
bandwidth bigger than its limit Wy; in that case, the link’s
bandwidth is divided equally among the requesting services
and the record is updated in M. The second test (lines 13-15)
checks if the summation of allocated resources across each
node is higher than its limit; if so, then the resources of
the competing services will be divided proportionally among
the demanding services (i.e., More resources are given to the
service with higher demand) and M is updated. After at is
checked and M is updated, the agent performs the allocation,
the reward is calculated as in (21), and the trajectory is saved
in the buffer B.

After the data collection finishes, the PPO learning stage
starts (lines 21-25), where a mini-batch m is sampled from
the buffer, and three main steps follow. The first is computing
the reward-to-Go R̂t per each trajectory in m. Next is
computing the advantage estimate ˆAπk

t that identifies how an
action is better than others in a given state and accordingly
updates PPO main policy (actor’s NN) and value-function
(critique NN) networks.
Considering the two phases within the ECP algorithm, we

assess its testing computational complexity by identifying the
maximum complexity between these phases. First, the initial
phase leverages Long Short-Term Memory (LSTM) for
prediction, entailing a computational complexity expressed
as O(T · lN · l). Here, T represents the sequence length,
with experimental values ranging from 1 to 5. Additionally,
l denotes the number of LSTM layers, which is set to 2
in our case, and lN signifies the number of neurons per
layer, set to 32 in our specific configuration. Secondly,
in the second phase of testing, we employ the Proximal
Policy Optimization (PPO) algorithm, where the inference
complexity aligns with that of a typical neural network,
characterized by O(D · X). In this context, D represents
the data dimension, encompassing 5 state variables. The
complexity of the forward pass is defined by X, involving 2
layers, each containing 64 neurons. As a result, the overall
computational complexity of the ECP algorithm remains
constant.

V. PERFORMANCE EVALUATION & DISCUSSION
In this section, we evaluate the performance of our proposed
solution. First, we explain the environmental setup and
then assess the system by testing each Phase individually,
followed by a test of the entire system.

VOLUME 5, 2024 2577

ABOELENEEN et al.: ECP

FIGURE 4. The prediction performance of Sets 1, 2 and 3 in predicting the next seven days’ load. (a) shows the prediction of classical machine learning algorithms (b) shows
the effect of different window sizes of the LSTM model on the prediction. (c) shows that changing input length affects the prediction output.

A. ENVIRONMENT SETUP
To create a realistic environment, we assumed the presence
of two healthcare services: remote monitoring and remote
surgery. The RL will be trained in allocating the necessary
hourly resources for the entire week for both services. Each
service has a unique delay KPI: 8 milliseconds for remote
surgery and 10 milliseconds for remote monitoring as in [50].
Furthermore, we have set a maximum required reliability
of 0.999, which signifies that each service must ensure the
highest level of reliability to prevent service failure. These
values were chosen to emulate real-world scenarios.
The second row of Figure 3 shows the simulated scenario

with the chosen values of nodes and links. We assume the
existence of two layers of nodes (e.g., Nodes A & B are
at layer 1). The nodes run the same VNF among the same
layer, and each layer simulates different distributed VNF
(e.g., One layer can represent AI-based data filtering VNF
service). We also note that our model is applicable to any
type of VNF. Additionally, each layer includes two nodes,
each with a different capability. Two of the four nodes are
assumed to be weaker nodes, while the others are assumed
to be more robust nodes with more resources; this was
done to simulate the real world, where different options for
processing nodes might exist, for example, weaker nodes
are cheaper but in many cases would not have the sufficient
number of processing for the needed task. Similarly, we
assume the existence of different bandwidth links with the
trade-off of price and bandwidth (e.g., Strong links have
higher bandwidth but are costly). Further, since we assume
the capability of provisioning network slices ahead of time,
the cost per computational resource and transfer of gigabytes
of data for the on-demand and saving (ahead of time) options
are also considered. Computational node costs were based
on Huawei reserved instance costs with 2 and 4 CPUs for
one hour of use.

B. EVALUATING PREDICTIVE MODEL
After training the different sets of models (mentioned in
Section IV-A), we evaluated their performance using the
determination coefficient R2 for the first simple models and

FIGURE 5. MAPE of different prediction input sizes and horizons, indicated by (ζ -ϑ).
the graph shows how the prediction error % increases whenever the prediction
horizon increases (7-1 to 7-7) and how increasing input sizes (7-7 to 35-7) can slightly
improve the accuracy.

Root Mean Square Error (RMSE) for the second and third
sets of models, as both were time-series models. The testing
prediction was made to predict the load of the last seven
days of the dataset.
Starting with Set 1, we present and visualize the results of

various models versus the ground truth in Figure 4 (a). The
findings indicate that the LSTM-based model had the highest
accuracy compared to other statistical, machine learning, and
fused models [14], with the highest R2 coefficient. As a
result, we evaluated variations of the LSTM model to find
the best prediction model for facilitating the training of RL in
the next Phase. In Figure 4 (b), the different variations of the
window-based LSTM are presented with an optimal window
size of 3. The performance of the models in Set 3 can also be
seen in Figure 4 (c), where the prediction performance was
the worst among all the models. Additionally, we calculated
the Mean Absolute Percentage Error (MAPE) for predicting
different ϑ with a fixed input of 7 days of readings (e.g.,
The performance of 7-1, 7-2, . . . , 7-7). The MAPEs of
all the models can be seen in Figure 5, which shows how

2578 VOLUME 5, 2024

FIGURE 6. Exp 1: Convergence behaviour of our RL-based solution (a) cost convergence, (b) shows reward convergence, and (c) shows the delay error satisfaction
convergence.

the prediction error % increases as the prediction horizon
increases. This prediction error will be used in a later variant
of our solution.

C. EVALUATING DRL-BASED NETWORK SLICING
This section aims to evaluate our DRL-based network slicing
(second phase only) against other baselines. The input
of this Phase is the predicted load (from the first Phase
Section IV-A) along with the actual load, which is taken
as a guideline for the agent action, not included in the
environment state. On the other hand, the output is the list
of minimal-cost hourly network slices for seven days of
the services that will abide by different KPIs. The created
slices are then reserved by each service operator ahead of
time.
To test the second Phase of our approach, it was necessary

to obtain predictions of network traffic demand from one
of the prediction models developed in the first Phase. We
used the 7-7 predictive model from Set 3, which takes seven
previous inputs to generate seven predicted loads. While this
model was not the best performing in prediction accuracy, we
chose it also to showcase the ability of deep reinforcement
learning (DRL) to correct inaccuracies in the prediction
model if given access to ground truth data. Secondly, the
output of the predictive model, along with the actual load,
was provided to our DRL, which will work on (1) reserving
the minimal cost network slice via choosing the best paths
and resources along these paths for two services (RS and
RM). Moreover, given the actual load of the predicted values
(as a constraint), the RL will also work on correcting the
prediction values by reserving the needed computational and
network resources that abide by the real constraint, only
seeing the predicted load as a guideline. This works by
adapting to the prediction error distribution seen during the
training period.
In this Phase, the list of conducted experiments can be

summarised as follows:
• In the first experiment, we assess the agent’s learning
by viewing the convergence of the total cost for the
selected network slices per the prediction duration for.

• In the second experiment, we compare our RL-slicing
against the optimal (CVX-based optimizer) and
maximum-fixed demand with saving prices and on-
demand pricing schemes.

• In the third experiment, we evaluate the adaptability
when the number of network service patients suddenly
increases twice (simulating a pandemic or an emer-
gency). The exploratory nature of RL will help avoid
problems when the network changes unexpectedly.
This shows that in situations where the load increases
unexpectedly, RL could still adapt to the environmental
changes by increasing the number of resources or
choosing a different path that satisfies the demand.

1) FIRST EXPERIMENT

After training the agent for about 20 thousand training
episodes, we can see that our network-slicing solution learns
the minimal-cost network slicing for the hourly demand of
a whole week as in Figure 6 (a). The figure shows the
aggregated cost of 17 network slices per day for two services
(12 for RM, 5 for RS) and the total costs for reserving the
total number of slices per week. Moreover, in Figure 6 (b),
we show the reward convergence, which illustrates how the
RL satisfied all the constraints and optimized the total cost.
Finally, Figure 6 (c) is one of the most critical graphs, which
shows how our solution was able to correct the prediction
error resulting from the low-accuracy model (of phase 1) by
following the error distribution between the ground truth and
predicted values. It is important to mention that we do not
always assume the existence of ground truth; in such cases,
we will only follow certain solution prediction variants (e.g.,
prediction + some error), as discussed in the next section.

2) SECOND EXPERIMENT

To determine the effectiveness of our RL-based method for
allocating the least expensive hourly slices, we compare
it to two baselines. The first is the on-demand optimal
(CVX-based) baseline, inspired by [51], which assumes
a perfect knowledge of the demand. This method works
by convexifying the problem via enumerating the list of

VOLUME 5, 2024 2579

ABOELENEEN et al.: ECP

FIGURE 7. The figure demonstrates the effectiveness of our RL-based solution
compared to the optimal and fixed-demand baselines under two pricing schemes
(on-demand and savings).

paths. Then, for each path, it runs a convex optimizer that
chooses the cost resources per the nodes along the paths
that satisfy the constraints and saves the solution with its
cost in a candidate set. Then, the least cost combination of
the candidate set is chosen to be the solution. The second
baseline is a maximum-based strategy that assigns the least-
cost fixed slice based on the highest hourly demand observed
in the past. Additionally, to highlight the effect of dynamic
pricing on each solution, we compare two pricing schemes:
on-demand and savings, which refer to the cost of reserving
resources on-demand and in advance. The results displayed
in Figure 7 reveal that the performance of RL and the
optimal solution were very similar in allocating the optimal
hourly load over a six-day period in both pricing criteria.
In some instances, RL resulted in lower prices than the
optimal solution. This could be due to the better refinement
of resources that RL can achieve compared to the CVX-based
solution. Moreover, as seen in the same figure, the fixed-
demand policy can result in high hourly costs compared to
other solutions.

3) THIRD EXPERIMENT

The illustration in Figures 8 demonstrates the flexibility of
the RL solution. The experiment involved waiting for the
agent to reach a stable state and then doubling the number
of patients for both services. The outcome shows that the
RL agent can adjust to the changed demand by allocating
additional resources and attaining stability after roughly 500
iterations. Figures 8(a) and 8(b) depict the re-stabilization in
terms of cost and reward, respectively.

D. EVALUATING ECP PERFORMANCE
In this section, we assess the overall system’s performance,
incorporating both predictive and RL-based slicing elements.
Unlike the evaluations performed in the prior section, which
leveraged actual load data to steer the RL toward precise
resource allocation, this assessment assumes that no accurate
load information is obtainable and that all predictions are

FIGURE 8. Experiment 2: The Adaptability of the ECP (Phase 2) in Response to a
Sudden Increase in Service Demand. Fig.(a) illustrates the cost re-convergence, while
Fig.(b) shows the reward re-convergence.

focused on forecasting future weeks for which information
is yet to be available.
Resource allocation depends on daily inpatient projections.

Matching or surpassing these projections ensures sufficient
resources for slices, while projecting fewer patients can lead
to unmet KPIs and performance degradation. Hence, to better
estimate the real load, we have designed multiple variants of
our solution, which works on modifying the predicted value
from our predictive model and then optimizing the resources
using the second Phase. The first and second variants modify
the predicted model by adding and subtracting a constant
average error percentage from the predicted value. The
constant error used in this case was the maximum prediction
error given to the DRL agent. The third variant, namely
“Predicted + Dynamic Error”, incorporates the weekday
error % distribution learned by the RL during the training of
the agent in Phase (ii) (see Section V-C). i.e., the difference
between the actual and predicted load of many weekly
weekdays. Averaging that error in addition to the model’s
prediction gives us the fourth variant (Predicted + Avg.
Dynamic Error).
To better understand the system’s performance, we test

our system with the aforementioned variants for the duration
of 4 sequential weeks. We have chosen the best-performing
model among the different models tested in phase 1, the
LSTM window-based model of 3 days. In Figures 9, we can
see the estimations of the different variants for predicting
the daily inpatients against the actual load (herein called
Original). After getting the weekly load estimations per
different variants, we train our DRL-based cost-optimization
on it. The total weekly cost convergence of the different

2580 VOLUME 5, 2024

FIGURE 9. The load estimation of different ECP variants vs. the original load.

FIGURE 10. The convergence of various ECP variants over four weeks.

ECP variants for the first two weeks (first two out of 4
testing weeks) can be seen in Figures 10. We note here
that total cost converging on a same or lower cost value
than the original demand from different variants does not
indicate reserving the actual loads’ slices with lower or same
cost; it only shows that whatever estimated load has been
successfully optimized by RL.
To accurately assess the cost of the different solutions,

it is crucial to allocate the necessary resources on-demand,
which was achieved by adding additional computational
resources to the pre-allocated path of the affected service
until all the services are satisfied. We then analyze the cost
of each solution by calculating the average cost reduction
percentage between the cost of each solution. Each test was
repeated three times per week to obtain reliable performance
measurements, and the average result is presented. The
results in Figures 11 demonstrate that the different variants
of our system had a significant cost advantage over reserving
the slices on-demand with the variants predicted + constant
and dynamic error on the lead. On average, the cost
advantage was 37-51%, which is similar to the cost of
accurately allocating the slices ahead of time, as shown
by the Ground Truth. This remarkable performance is due
to the accurate load estimation achieved by combining our
predictive model with the error estimation methods. This
approach formed an upper bound on the load that triggered
our system to reserve almost all resources ahead of time,
thereby reducing the cost.

FIGURE 11. The convergence of various ECP variants over a period of four weeks.

An interesting observation from the same graph is that
when the number of patients is vastly underestimated,
the cost of rectifying the selected network slices can
be higher than on-demand resource allocation. This is
because a significant underestimation can result in choosing
an inefficient path, demanding a significant amount of
resources to correct. In contrast, on-demand allocation can
deterministically choose the best route with fewer resources.
Additionally, we compare the average number of resources

used by the different variants to the optimal number of
resources used in the On-Demand solution. Figures 11(b)
reveals that the different variants of our system require a
greater number of resources, primarily due to overestimation
in prediction. However, this increased resource usage is
offset by the lower cost of pre-reserving the slices. Our
observations also show that greatly underestimating the load

VOLUME 5, 2024 2581

ABOELENEEN et al.: ECP

FIGURE 12. Increasing the maximum delay threshold for our two services, as
shown on the x-axis, decreases the total cost.

FIGURE 13. Scalability test with multiple edge nodes and varying number of
services.

can result in a significantly higher resource reservation than
on-demand allocation.
In Figures 12, we complement ECP’s cost analysis by

showing the tradeoff of choosing relaxed delay thresholds
on the total cost for the two adopted services using an
instance of pricing scheme (e.g., On-demand pricing). The
figure shows that the more stringent the requirement, the
more expenditure. Finally, to show the scalability of ECP, we
incorporate a more significant scenario consisting of more
edge nodes and multiple requesting services. Specifically,
we considered three edge nodes per level and various slices
with different KPIs. Results shown in Figures 13 shows how
the system handled the services with ease and increasing
cost due to the saturation of links.

VI. CONCLUSION AND FUTURE WORK
In this paper, we introduced ECP, an artificial intelligence
framework that predicts network demand and pre-allocates
optimized network slices for various services with reduced
costs. The solution consists of two phases. The first phase
involves forecasting the daily demand, while the second
phase uses DRL to dynamically optimize the various network
slices while taking into account the various KPI constraints,
prediction errors, and the dynamic pricing of resources. To

accurately evaluate the system, we conducted a series of
tests to validate each solution phase. This included testing
multiple models for Phase 1 and evaluating convergence,
effectiveness vs. optimal, adaptability, and correction for
Phase 2. Since there is always uncertainty about future
load, we introduced four different variants to enhance the
predictive models. With the addition of our optimization
reinforcement learning, we compared their performance
against the state of the art. Our results showed that our
system had a superior ability to allocate lower-cost future
slices, with an average improvement of 37-51% compared to
the state of the art, using only 1.5-7% additional resources.
In forthcoming endeavours, we aim to extend our framework
by enhancing its scalability through the implementation of
distributed Multi-Agent Reinforcement Learning (MARL) in
routing and resource allocation. Using the MARL approach,
each network slice will be managed by a dedicated agent
tasked with predicting the service’s load and optimizing its
operations altogether, thus enhancing the overall scalability.

REFERENCES
[1] J. Ordonez-Lucena, P. Ameigeiras, D. Lopez, J. J. Ramos-Munoz,

J. Lorca, and J. Folgueira, “Network slicing for 5G with SDN/NFV:
Concepts, architectures, and challenges,” IEEE Commun. Mag.,
vol. 55, no. 5, pp. 80–87, May 2017.

[2] S. Kukliński and L. Tomaszewski, “Key performance indicators for
5G network slicing,” in Proc. IEEE Conf. Netw. Softw. (NetSoft), 2019,
pp. 464–471.

[3] D. Kreutz, F. M. Ramos, P. E. Veríssimo, C. E. Rothenberg,
S. Azodolmolky, and S. Uhlig, “Software-defined networking: A
comprehensive survey,” Proc. IEEE, vol. 103, no. 1, pp. 14–76,
Jan. 2015.

[4] N. M. K. Chowdhury and R. Boutaba, “A survey of network
virtualization,” Comput. Netw., vol. 54, no. 5, pp. 862–876, 2010.

[5] M. Polese, L. Bonati, S. D’oro, S. Basagni, and T. Melodia,
“Understanding O-RAN: Architecture, interfaces, algorithms, security,
and research challenges,” IEEE Commun. Surveys Tuts., vol. 25, no. 2,
pp. 1376–1411, 2nd Quart., 2023.

[6] P. Rost et al., “Network slicing to enable scalability and flexibility in
5G mobile networks,” IEEE Commun. Mag., vol. 55, no. 5, pp. 72–79,
May 2017.

[7] H. Feng, J. Llorca, A. M. Tulino, D. Raz, and A. F. Molisch,
“Approximation algorithms for the NFV service distribution problem,”
in Proc. INFOCOM IEEE Conf. Comput. Commun., 2017, pp. 1–9.

[8] (Microsoft Azure, Redmond, WA, USA). Improving the Cloud for
Telcos: Updates of Microsoft’s Acquisition of AT&T’s Network Cloud,
Mar. 2023. Accessed: Mar. 19, 2023. [Online]. Available: https://azure.
microsoft.com/en-us/blog/improving-the-cloud-for-telcos-updates-of-
microsoft-s-acquisition-of-att-s-network-cloud

[9] “Verizon evolves its 5G network—And accelerates its speed and
reach—Powered by AWS.” Amazon Web services. Nov. 2022.
Accessed: Mar. 19, 2023. [Online]. Available: https://aws.amazon.
com/blogs/industries/verizon-evolves-its-5g-network-and-accelerates-
its-speed-and-reach-powered-by-aws

[10] R. Hu, J. Jiang, G. Liu, and L. Wang, “Efficient resources
provisioning based on load forecasting in cloud,” Sci. World J.,
vol. 2014, Feb. 2014, Art. no. 321231. [Online]. Available: https://
www.hindawi.com/journals/tswj/2014/321231/

[11] D. Bega, M. Gramaglia, M. Fiore, A. Banchs, and X. Costa-Perez,
“DeepCog: Cognitive network management in sliced 5G networks with
deep learning,” in Proc. INFOCOM IEEE Conf. Comput. Commun.,
2019, pp. 280–288.

[12] G. Luo, S. He, B. L. Stone, F. L. Nkoy, and M. D. Johnson,
“Developing a model to predict hospital encounters for asthma in
asthmatic patients: Secondary analysis,” JMIR Med. Inform., vol. 8,
no. 1, 2020, Art. no. e16080.

[13] N. Zinouri, K. M. Taaffe, and D. M. Neyens, “Modelling and
forecasting daily surgical case volume using time series analysis,”
Health Syst., vol. 7, no. 2, pp. 111–119, 2018.

2582 VOLUME 5, 2024

[14] L. Zhou, P. Zhao, D. Wu, C. Cheng, and H. Huang, “Time series
model for forecasting the number of new admission inpatients,” BMC
Med. Inform. Decis. Mak., vol. 18, no. 1, pp. 1–11, 2018.

[15] F. Kadri, M. Baraoui, and I. Nouaouri, “An LSTM-based deep learning
approach with application to predicting hospital emergency department
admissions,” in Proc. Int. Conf. Ind. Eng. Syst. Manag. (IESM), 2019,
pp. 1–6.

[16] J. Ren, D. Zhang, S. He, Y. Zhang, and T. Li, “A survey on end-
edge-cloud orchestrated network computing paradigms: Transparent
computing, mobile edge computing, fog computing, and cloudlet,”
ACM Comput. Surv., vol. 52, no. 6, pp. 1–36, 2019.

[17] A. R. Abdellah, O. A. K. Mahmood, A. Paramonov, and
A. Koucheryavy, “IoT traffic prediction using multi-step ahead
prediction with neural network,” in Proc. 11th Int. Congr. Ultra
Modern Telecommun. Control Syst. Workshops (ICUMT), 2019,
pp. 1–4.

[18] L. Nie et al., “A reinforcement learning-based network traf-
fic prediction mechanism in Intelligent Internet of Things,”
IEEE Trans. Ind. Informat., vol. 17, no. 3, pp. 2169–2180,
Mar. 2021.

[19] N. Ramakrishnan and T. Soni, “Network traffic prediction using
recurrent neural networks,” in Proc. 17th IEEE Int. Conf. Mach. Learn.
Appl. (ICMLA), 2018, pp. 187–193.

[20] A. Azzouni and G. Pujolle, “A long short-term memory recurrent
neural network framework for network traffic matrix prediction,” 2017,
arXiv:1705.05690.

[21] J. S. Camargo, E. Coronado, B. Gómez, D. Rincón, and S. Siddiqui,
“Design of AI-based resource forecasting methods for network
slicing,” in Proc. Int. Wireless Commun. Mobile Comput. (IWCMC),
2022, pp. 1064–1069.

[22] C.-N. Nhu and M. Park, “Dynamic network slice scaling assisted by
attention-based prediction in 5G core network,” IEEE Access, vol. 10,
pp. 72955–72972, 2022.

[23] J. Zhou, W. Zhao, and S. Chen, “Dynamic network slice scal-
ing assisted by prediction in 5g network,” IEEE Access, vol. 8,
pp. 133700–133712, 2020.

[24] R. Cohen, L. Lewin-Eytan, J. S. Naor, and D. Raz, “Near optimal
placement of virtual network functions,” in Proc. IEEE Conf. Comput.
Commun. (INFOCOM), 2015, pp. 1346–1354.

[25] K. Poularakis, J. Llorca, A. M. Tulino, I. Taylor, and L. Tassiulas,
“Joint service placement and request routing in multi-cell mobile
edge computing networks,” in Proc. INFOCOM IEEE Conf. Comput.
Commun., 2019, pp. 10–18.

[26] S. Agarwal, F. Malandrino, C. F. Chiasserini, and S. De, “VNF
placement and resource allocation for the support of vertical services
in 5G networks,” IEEE/ACM Trans. Netw., vol. 27, no. 1, pp. 433–446,
Feb. 2019.

[27] M. Bouet and V. Conan, “Mobile edge computing resources
optimization: A geo-clustering approach,” IEEE Trans. Netw. Service
Manag., vol. 15, no. 2, pp. 787–796, Jun. 2018.

[28] V. Sciancalepore, F. Z. Yousaf, and X. Costa-Perez, “z-TORCH:
An automated NFV orchestration and monitoring solution,” IEEE
Trans. Netw. Service Manag., vol. 15, no. 4, pp. 1292–1306,
Dec. 2018.

[29] Q. Zhang, F. Liu, and C. Zeng, “Online adaptive interference-aware
VNF deployment and migration for 5G network slice,” IEEE/ACM
Trans. Netw., vol. 29, no. 5, pp. 2115–2128, Oct. 2021.

[30] J. Martin-Pérez, F. Malandrino, C.-F. Chiasserini, and C. J. Bernardos,
“OKpi: All-KPI network slicing through efficient resource alloca-
tion,” in Proc. INFOCOM IEEE Conf. Comput. Commun., 2020,
pp. 804–813.

[31] A. Al-Jawad, I.-S. Comşa, P. Shah, O. Gemikonakli, and R. Trestian,
“An innovative reinforcement learning-based framework for quality
of service provisioning over multimedia-based SDN environments,”
IEEE Trans. Broadcast., vol. 67, no. 4, pp. 851–867, Dec. 2021.

[32] N. Van Huynh, D. T. Hoang, D. N. Nguyen, and E. Dutkiewicz,
“Optimal and fast real-time resource slicing with deep dueling neural
networks,” IEEE J. Sel. Areas Commun., vol. 37, no. 6, pp. 1455–1470,
Jun. 2019.

[33] H. Esmat and B. Lorenzo, “Deep reinforcement learning based
dynamic edge/fog network slicing,” in Proc. IEEE Global Commun.
Conf. GLOBECOM, 2020, pp. 1–6.

[34] V. C. Ferreira, H. Esmat, B. Lorenzo, S. Kundu, and F. M. G. Felipe,
“Reinforcement learning based multi-attribute slice admission control
for next-generation networks in a dynamic pricing environment,” in
Proc. IEEE 95th Veh. Technol. Conf. (VTC), 2022, pp. 1–5.

[35] “Amazon EC2-secure and resizable compute capacity.” Amazon Web
services. Feb. 2023. Accessed: Feb. 2, 2023. [Online]. Available:
https://aws.amazon.com/ec2/pricing

[36] G. Sun, G. O. Boateng, L. Luo, H. Chen, D. A. Mensah, and G. Liu,
“Competitive pricing for resource trading in sliced mobile networks:
A multi-agent reinforcement learning approach,” IEEE Trans. Mobile
Comput., vol. 23, no. 5, pp. 3830–3845, May 2024.

[37] A. A. Abdellatif, A. Mohamed, C. F. Chiasserini, A. Erbad,
and M. Guizani, “Edge computing for energy-efficient smart
health systems: Data and application-specific approaches,” in
Energy Efficiency of Medical Devices and Healthcare Applications.
Amsterdam, The Netherlands: Elsevier, 2020, pp. 53–67.

[38] K. Kamran, E. Yeh, and Q. Ma, “Deco: Joint computation, caching
and forwarding in data-centric computing networks,” in Proc. 20th
ACM Int. Symp. Mobile Ad Hoc Netw. Comput., 2019, pp. 111–120.

[39] T. Norp, “5G requirements and key performance indicators,” J. ICT
Stand., vol. 6, nos. 1–2, pp. 15–30, 2018.

[40] M. S. Allahham, A. Mohamed, A. Erbad, and H. Hassanein, “On
the modeling of reliability in extreme edge computing systems,” in
Proc. 5th Int. Conf. Commun., Signal Process., Appl. (ICCSPA), 2022,
pp. 1–6.

[41] M. R. Segal, Machine Learning Benchmarks and Random Forest
Regression, eScholarship, Oakland, CA, USA, 2004.

[42] Y. Choi, “Tree-structured regression for a loglinear model with an
extra-Poisson variation,” Ph.D. dissertation, Dept. Math. Statist., State
Univ. New York, Stony Brook, NY, USA, 2002.

[43] S. L. Ho and M. Xie, “The use of ARIMA models for reliability
forecasting and analysis,” Comput. Ind. Eng., vol. 35, nos. 1–2,
pp. 213–216, 1998.

[44] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Comput., vol. 9, no. 8, pp. 1735–1780, 1997.

[45] F. Haouari, E. Baccour, A. Erbad, A. Mohamed, and M. Guizani,
“Transcoding resources forecasting and reservation for crowdsourced
live streaming,” in Proc. IEEE Global Commun. Conf. (GLOBECOM),
2019, pp. 1–7.

[46] R. Gerardo, P. Lele, K. Sundaram, and T. Ponsky, “Surgical telemen-
toring: Feasibility, applicability, and how to,” J. Surg. Oncol., vol. 124,
no. 2, pp. 241–245, 2021.

[47] K. Gai and M. Qiu, “Optimal resource allocation using
reinforcement learning for IoT content-centric services,” Appl.
Soft Comput., vol. 70, pp. 12–21, Sep. 2018. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1568494618302540

[48] A. A. Abdellatif, N. Mhaisen, Z. Chkirbene, A. Mohamed, A. Erbad,
and M. Guizani, “Reinforcement learning for intelligent healthcare
systems: A comprehensive survey,” 2021, arXiv:2108.04087.

[49] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” 2017, arXiv:1707.06347.

[50] A. A. Abdellatif, A. Abo-Eleneen, A. Mohamed, A. Erbad,
N. V. Navkar, and M. Guizani, “Intelligent-slicing: An AI-assisted
network slicing framework for 5G-and-beyond networks,” IEEE Trans.
Netw. Serv. Manag., vol. 20, no. 2, pp. 1024–1039, May 2023.

[51] A. A. Abdellatif, A. Mohamed, A. Erbad, and M. Guizani, “Dynamic
network slicing and resource allocation for 5G-and-beyond networks,”
in Proc. IEEE Wireless Commun. Netw. Conf. (WCNC), 2022,
pp. 262–267.

AMR E. ABOELENEEN (Member, IEEE) received
the B.Sc. and M.S. degrees in computer science
and engineering from Qatar University in 2018
and 2021, respectively. He is currently pursu-
ing the Ph.D. degree with Hamad Bin Khalifa
University. He brings over two years of experience
as a Research Assistant with Qatar University.
His passion lies in applying innovative artificial
intelligence methods to enhance networks and
the Internet of Things in health-related scenarios,
alongside utilizing AI for health-related imaging.

He has authored and coauthored a publication record of over nine research
papers, He also has both won and participated in various local AI
competitions. Additionally, he was the recipient of the Graduate Student
Research Award from the Qatar National Research Fund.

VOLUME 5, 2024 2583

ABOELENEEN et al.: ECP

ALAA A. ABDELLATIF (Member, IEEE) received
the B.Sc. and M.Sc. degrees (Hons.) in electronics
and electrical communications engineering from
Cairo University in 2009 and 2012, respectively,
and the Ph.D. degree from the Politecnico di
Torino in 2018. He is currently a Postdoctoral
Researcher and a Part-Time Lecturer with Qatar
University. He also worked as a Senior Research
Assistant and a Research Assistant with Qatar
University from 2013 to 2015, and with Cairo
University from 2009 to 2012, respectively. He

has authored or coauthored over 55 refereed journal, magazine, and
conference papers in reputable international journals and conferences. He
has served as a technical reviewer for many international journals and
magazines. His research interests include edge computing, network security,
blockchain, machine learning and resources optimization for next-generation
wireless networks, smart-health, IoT applications, and vehicular networks.
He was the recipient of the Graduate Student Research Award from
Qatar National Research Fund, and the Best Paper Award from Wireless
Telecommunications Symposium 2018 in USA, in addition to the Quality
Award from the Politecnico di Torino in 2018.

AIMAN M. ERBAD (Senior Member, IEEE)
received the B.Sc. degree in computer engineering
from the University of Washington, Seattle, in
2004, the Master of Computer Science degree
in embedded systems and robotics from the
University of Essex, U.K., in 2005, and the Ph.D.
degree in Computer Science from the University
of British Columbia, Canada, in 2012. He is an
Associate Professor and ICT Division Head with
the College of Science and Engineering, Hamad
Bin Khalifa University. He published more than

160 papers in reputable international conferences and journals. His research
interests span cloud computing, quantum networks, edge intelligence,
Internet of Things, and private and secure networks. He received the 2020
Best Research Paper Award from Computer Communications, the IWCMC
2019 Best Paper Award, and the IEEE CCWC 2017 Best Paper Award.
He is the General Chair for ISNCC 2023. He also served as the Program
Chair of IWCMC 2022 and IWCMC 2019, as the Publicity Chair of ACM
MoVid 2015, as the Local Arrangement Chair of NOSSDAV 2011, and
as a Technical Program Committee Member in various IEEE and ACM
international conferences (GlobeCom, ICC, NOSSDAV, MMSys, ACMMM,
IC2E, and ICNC). He is a Senior Member of ACM.

AMR M. SALEM (Senior Member, IEEE) received
the M.S. and Ph.D. degrees in electrical and com-
puter engineering from the University of British
Columbia, Vancouver, Canada, in 2001 and 2006,
respectively. He has worked as an Advisory IT
Specialist with IBM Innovation Centre, Vancouver,
from 1998 to 2007, taking a leadership role in
systems development for vertical industries. He
is currently a Professor and the Head of the
Department of Computer Science and Engineering,
Qatar University. He has over 25 years of experi-

ence in wireless networking research and industrial systems development.
He has authored or co-authored over 300 refereed journal and conference
papers, textbooks, and book chapters in reputable international journals
and conferences and holds six international patents. His research interests
include pervasive AI and edge computing for IoT applications, and open
RAN performance optimization and security. He holds three awards from
IBM Canada for his achievements and leadership, and four best paper
awards from IEEE conferences.

2584 VOLUME 5, 2024

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Helvetica-Condensed-Bold
 /Helvetica-LightOblique
 /HelveticaNeue-Bold
 /HelveticaNeue-BoldItalic
 /HelveticaNeue-Condensed
 /HelveticaNeue-CondensedObl
 /HelveticaNeue-Italic
 /HelveticaNeueLightcon-LightCond
 /HelveticaNeue-MediumCond
 /HelveticaNeue-MediumCondObl
 /HelveticaNeue-Roman
 /HelveticaNeue-ThinCond
 /Helvetica-Oblique
 /HelvetisADF-Bold
 /HelvetisADF-BoldItalic
 /HelvetisADFCd-Bold
 /HelvetisADFCd-BoldItalic
 /HelvetisADFCd-Italic
 /HelvetisADFCd-Regular
 /HelvetisADFEx-Bold
 /HelvetisADFEx-BoldItalic
 /HelvetisADFEx-Italic
 /HelvetisADFEx-Regular
 /HelvetisADF-Italic
 /HelvetisADF-Regular
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

