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ABSTRACT Around 2020, 5G began its commercialization journey, and discussions about the next-
generation networks (such as 6G) emerged. Researchers predict that 6G networks will have higher
bandwidth, coverage, reliability, energy efficiency, and lower latency, and will be an integrated “human-
centric” network system powered by artificial intelligence (AI). This 6G network will lead to many
real-time automated decisions, ranging from network resource allocation to collision avoidance for self-
driving cars. However, there is a risk of losing control over decision-making due to the high-speed,
data-intensive AI decision-making that may go beyond designers’ and users’ comprehension. To mitigate
this risk, explainable AI (XAI) methods can be used to enhance the transparency of the black-box AI
decision-making process. This paper surveys the application of XAI towards the upcoming 6G age,
including 6G technologies (such as intelligent radio and zero-touch network management) and 6G use
cases (such as industry 5.0). Additionally, the paper summarizes the lessons learned from recent attempts
and outlines important research challenges in applying XAI for 6G use cases soon.

INDEX TERMS B5G, 6G, AI, XAI, explainability.

I. INTRODUCTION

THE MOBILE network has been drastically revolution-
ized in the last few decades. The first-generation mobile

network (1G) was introduced in the 1980s, allowing calls to
be made from a mobile location instead of a fixed one. The
second generation (2G) changed the signal transmitted from
analog to digital. It enabled services such as Short Messaging
Service (SMS) so that both callers and receivers did not
have to be “online” at the same time. The third-generation
(3G) mobile network increased the data rate to the level of
Mbps, which accelerated access to essential Internet services

such as Web browsing. The fourth-generation (4G) integrated
with all-IP packet switching networks to provide data rates
of up to 1 Gbps, enabling mobile users to access data-
intensive services such as TikTok video sharing. The ongoing
fifth-generation mobile network (5G) technology supports
services such as Enhanced Mobile Broadband (eMBB),
Ultra-Reliable Low Latency Communications (URLLC),
and Massive Machine-Type Communications (mMTC). 5G
enables the Internet of Things (IoT) by increasing device
density by 100x with much higher data rates (10x) and
latency that is 10x less than 4G.
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TABLE 1. Summary of important acronyms.

5G networks are being commercialized and deployed
worldwide. Many organizations have started planning beyond
5G (B5G) to develop the next generation of wireless
cellular networks (6G). While B5G and 6G are often used
interchangeably in the literature [1], [2], [3], this paper
adopts the term 6G for simplicity. Please also note that
since there is yet no wide consensus on the definition of
6G, the term “6G” used in our paper refers more generally
to the future networks where “human-centric” AI is widely
applied. 6G will further extend the connection coverage by
achieving space-air-ground-sea integrated networks [4] to
facilitate the Internet of Everything (IoE). Additionally, it
will support more data-intensive applications such as full-
sensory digital reality. The super reliable and low latency
that 6G provides can be well-suited for mission-critical

scenarios such as autonomous driving and smart health
care.
Given that 5G has a highly softwarized network infras-

tructure thanks to the software-defined network (SDN) and
the network function virtualization (NFV). Building on top
of this 5G feature, fully automated network management
will be feasible with the power of Artificial Intelligence
(AI) in the 6G era to increase the efficiency of network
maintenance. More 6G features can be found in various
sources such as [5], [6], [7], [8], [9]. Additionally, as
first pointed out in [6], we agree that the design of
6G will be “human-centric” rather than “machine-centric”.
Unlike previous network generations that mainly focused
on improving network performance technically, 6G will
prioritize implementing a fully automated network powered
by AI, such as an intent-based network or intelligent radio.
This will satisfy humans’ needs without violating personal
privacy (e.g., intelligent health and wearable). As a result,
for a given time interval, there will be an excessively higher
number of AI decisions automatically made due to the high-
performance 6G network compared with 5G. The number
of incorrect AI decisions is also increasing, which leads to
a high risk of the overall AI-based 6G systems. Therefore,
such a black-box intelligent 6G system requires promising
technologies such as eXplainable AI (XAI) to enhance trust
between humans and the network. The role of AI and
XAI towards 6G will be discussed further in the following
paragraphs.

A. ROLE OF AI FOR 6G
AI will be critical in realizing 6G networks and their
applications. There are several ways in which AI can be used
in 6G. One of the common ways is through prescriptive,
predictive, diagnostic, and descriptive analytics. Prescriptive
analytics can be used for making decisions or predictions
related to edge AI such as cache placement, AI model
migration, dynamically scaling network slices and adapting
its service function chains, and optimal automatic allocation
of resources (e.g., spectrum, cloud, and backhaul).
AI-based predictive analytics help to predict the future

from the acquired data in real-time for events like resource
availability, preference, user behavior, user locations, and
traffic patterns, then proactively change the network.
Proactive actions can fine-tune the resource allocation,
deployment of proactive security solutions, pre-migration of
edge services, and edge AI models.
Diagnostic analytics is concerned with detecting faults

in the network, thus detecting network anomalies, service
impairments, network faults, and the root causes of these
network faults, which ultimately helps enhance network
security and reliability. Due to the high scalability of the 6G
network in terms of users, devices, and services, AI-enabled
automatic services are essential for 6G.
Descriptive analytics heavily rely on historical data [10] to

enhance the service provider’s and network operator’s situa-
tional awareness. The applications include user perspectives,
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FIGURE 1. An illustration of the role of AI in 5G and 6G Networks. While the focus of
AI for 5G will be application-driven, the use of AI in 6G will be aimed at improving the
design of all aspects of the network. This includes reliable data sensing, efficient
network management, and applications like connected autonomous vehicles.

channel conditions, traffic profiles, network performance,
and so on. Furthermore, handling, generating, and processing
large volumes of data in real-time and in a collaborative way
is yet another complicated task that requires scalable AI.
AI will play a vital role in controlling and orchestrating the
6G network. For instance, novel 6G network controlling and
orchestrating concepts of Intent-Based Networking (IBN)
as well as Zero Touch Service and Network Management
(ZSM) are primarily dependent on AI technologies [11].
Novel concepts such as Open RAN or O-RAN will define
the development of RAN (Radio Access Network) for future
6G networks. AI is heavily utilized to realize the critical
features in O-RAN, such as RAN Intelligent Controller (RIC)
frameworks [12].

Figure 1 illustrates the role of AI in 5G and 6G networks.
AI will be lightly used in some of the 5G applications.
However, AI will be integrated into the E2E (End-to-End)
processes in 6G networks.

B. ROLE OF XAI FOR AI-POWERED 6G
XAI is a promising set of technologies that increases the
AI black-box models’ transparency to explain why certain
decisions are made. Especially the high-stakes ones that are
made for 6G stakeholders, such as service providers, end-
users, and legal auditors. XAI is the key to implementing
the “human-centric” AI-powered 6G network.
Fig. 2 shows that AI is integrated into all four layers of

the AI-powered 6G network architecture that is proposed
in [13]. The first layer, known as the intelligent sensing layer,
is responsible for gathering data through various sensors,
such as phones, watches, drones, or vehicles, in different
scenarios, such as space, sea, road, sky, or factory. AI
technology can facilitate massive data collection to be a real-
time, robust, and scalable process. For instance, this could be
done by smartly utilizing the scarce spectrum resources and
automatically reporting unreliable data events such as broken
sensors. XAI can ensure that the whole process works as

expected by providing additional information regarding the
AI black-box model. For example, legal auditors may use
XAI to check for any privacy violations in the AI training
data. Specifically, if the AI decision (e.g., financial credit
scoring) is highly biased on a few features that are private
personal information such as race, gender, or nationality [14].

The second layer of the AI-powered 6G architecture
is the data mining layer. Due to the broad coverage of
6G networks, a massive amount of data will be collected
from the intelligent sensing layer with a stringent latency
requirement. Therefore, the objective of the data mining
layer is to perform automatic feature engineering tasks, such
as dimension reduction techniques, so that only the most
relevant part of the data will be kept for the follow-up
processing in the layer of intelligent control. This third
layer will utilize the filtered data for making decisions
such as resource allocations and network management to
ensure a certain level of system performance that meets
the application requirement. For both the data mining and
intelligent control layers, XAI is particularly helpful for
service providers to diagnose the root cause of incorrect
decisions by AI systems. The top layer of the 6G architecture
is the smart application layer, which interacts with the end-
users who are not technical experts in various scenarios.
For example, in the autonomous driving use case, when the
AI system suggests turning right, XAI will provide more
user-friendly information explaining that the right turn will
save five minutes of journey time but can have more curvy
roads ahead. Instead of executing decisions straight away,
XAI will enhance the trust between stakeholders and the AI-
powered 6G networks for prescriptive, predictive, diagnostic,
and descriptive analytics.

C. MOTIVATION
Recent research shows the great potential of XAI for
computer visions such as medical imaging [15]. However,
the challenges when deploying such systems on a large
scale (e.g., upcoming 6G systems) remain unclear. The
consequences of XAI malfunctioning in some 6G use
cases could be significant. Malfunctions may have various
causes, including biased spectrum resource allocation [16],
inappropriate data collection [17], AI model attack [18],
and others. With 6G being deeply coupled with AI in a
“full-stack” manner, there is a need for more comprehensive
surveys that explore the potential of XAI in implementing
AI-enabled human-centric 6G networks.
The Defense Advanced Research Projects Agency

(DARPA) launched its XAI program in 2017 [19], which
drew the attention of many researchers. Das and Rad [20]
compared and analyzed commonly used XAI techniques
in terms of their algorithmic mechanisms, taxonomies, and
successful applications. Their paper proposed several promis-
ing future directions and challenges for XAI. However,
existing XAI surveys lack a thorough exploration of the
significant potential of XAI in realizing a “human-centric”
6G network. Saad et al. [7] has broadly described the vision
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FIGURE 2. An illustration of the benefits (i.e., question-and-answer interactions) of introducing XAI to three typical stakeholders (i.e., end-users, legal auditors, and service
providers) across all four layers [13] of AI-powered 6G network. 6G technical aspects discussed in Section IV are illustrated in the intelligent control layer, while some typical 6G
use cases discussed in Section V are illustrated at the smart application layer. XAI is built on top of AI so can be deployed on any of these four layers according to specific
scenarios and stakeholders.

of 6G, which is far beyond utilizing more spectrum by
including more technological trends and driving applications.
Morocho-Cayamcela et al. [21] focus on the applications of
AI at each main aspect in implementing B5G/6G, ranging
from wireless communications to e-health. It also mentioned
the trade-off between interpretability and AI algorithms’
accuracy but did not extend the discussion on XAI to enhance
trust in using 6G cellular systems. Porambage et al. [22]
review the recent progress of 6G in security and privacy
areas. These areas will likely have many high-stakes deci-
sions by AI systems. However, their contribution lacks
discussion of the importance and challenges of XAI for
managing the risk of such high-stakes decisions.
In their paper, Guo [16] discussed the potential of

XAI in the key enabling technologies, like radio resource
management, for 6G at the physical layer and the MAC
layer. They also proposed some initial plans for measuring
the level of explainability, later formalized as the quality
of trust (QoT) in [23] to the users of 6G networks,
especially for deep-learning based 6G autonomy. Their paper
lacked broader discussions on 6G, especially about the
new use cases and the technical aspects that need XAI
to uncover the myth of the decision-making process. As
mentioned in earlier subsections, there is a high neces-
sity of introducing XAI into AI-powered 6G. Therefore,
a comprehensive survey of the state-of-the-art XAI and
its potential in building the future 6G networks with a
holistic view will be helpful to guide the researchers and
practitioners.
Table 2 provides a concise summary comparing important

related survey papers. The gap in existing surveys is high-
lighted, which is the lack of comprehensive analysis of XAI

for developing a trustworthy, responsible, and transparent
AI-powered 6G network.

D. OUR CONTRIBUTIONS
This paper makes significant contributions, summarized as
follows:

• Bridging the gap between XAI and 6G. Many existing
XAI surveys, such as [20], [24], [25], focus on pure
AI applications like natural language processing (NLP)
and computer vision (CV). The discussions of XAI to
6G, which is the enabling infrastructure of future AI
applications, are unfortunately missing. Similarly, many
recent surveys in 6G [7], [21], [22] attempt to cover
all possible enabling technologies and applications
extensively, without a particular focus on interactions
between human and 6G networks, where XAI can play
an important role. This survey paper bridges this gap
by comprehensively overviewing both XAI and 6G and
their connections.

• A comprehensive survey of XAI to all key aspects of
6G. In comparison to previous surveys that briefly
mentioned XAI’s impact on 6G [16], [23], this paper
broadens the scope of 6G areas where XAI can
contribute. Specifically, this paper goes beyond the
smart radio resource management at the physical and
MAC layers. Every key 6G technical aspect (e.g.,
network automation, security, and privacy) and 6G use
cases (e.g., industry 5.0, Smart Grid 4.0, Metaverse,
and Holographic communication) are examined to
investigate how XAI can help in enhancing the trans-
parency and trustworthiness of all 6G stakeholders. The
relevant legal frameworks and research projects are
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TABLE 2. Summary of important surveys on XAI and 6G.

FIGURE 3. Structure and relationships between the sections of the paper.

also reviewed. Moreover, this paper discusses several
implementation challenges and possible solutions in
applying XAI to 6G.

E. PAPER OUTLINE
The organization of this paper, as shown in Fig. 3, is
described as follows. The introduction section outlines the
motivation and the overall contribution of this paper, which
is followed by the second section that briefly introduces

AI and XAI covering their history, technology evolution,
popular algorithms, applications, and their trend in 6G
areas. Section IV, for each of the six main technical
aspects of 6G, namely: intelligent radio, trust and security,
privacy, resource management, edge network, and network
automation, introduces its motivations, technical require-
ments, and challenges, and discuss how XAI can improve the
level of its trustworthiness. Similarly, Section V discusses
each of the six typical 6G use cases, with a particular
emphasis on how XAI can help in advancing some of
their technical limitations in the 6G age. To demonstrate
the importance of our work in the convergence of XAI
and 6G, Section III lists several legal frameworks, and
ongoing important research projects worldwide about 6G
and XAI. Same as many other new technologies, XAI also
has its limitations, which are discussed in Section VI, along
with its corresponding challenges in the future. Section VII
summarises the learned lessons and future research directions
for Sections II and IV–VI. Finally, the paper concludes in
Section VIII.

II. BACKGROUND
This section provides an essential overview of XAI’s
background, crucial for understanding its potential in 6G.
We discuss the motivation of XAI, concepts relevant to
XAI, the taxonomy of XAI algorithms, XAI stakeholders in
6G, and a brief case study on applying XAI to an existing
AI-assisted 6G application such as collision avoidance for
CAVs.
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A. MOTIVATIONS OF XAI
The use of AI algorithms has become increasingly popular.
However, one of the main problems with these models,
especially the most accurate ones, is that they are considered
black-box models. This is because their high internal
complexity is difficult to understand. As a result, there
is a recent interest in XAI to develop new methods to
illustrate how ML models work. XAI will also encourage
users to adapt to and trust ML, incorporating it into their
work [19], [25].
The relationship between XAI and AI is described as

follows: AI can be an independent technology, but XAI
cannot exist without AI as it is designed to explain the
decisions made by AI. Normally, AI does not always need
XAI as not all decisions need to be inspected for debugging
systems or legal purposes. However, when explanations are
highly required (e.g., high-stake decisions in autonomous
driving), XAI can be integrated with all major stages of AI
models including data collection (e.g., feature engineering),
model training (e.g., a self-explanatory model such as
decision tree), and model deployment (e.g., post-hoc XAI
model such as LIME). XAI can provide various types
of explanations such as text, visuals, rules, linear model
weights, feature importance, etc. Developers will collaborate
closely with stakeholders to determine the explanation type
that makes the most sense for given AI decisions.

B. TYPICAL XAI ALGORITHMS
We briefly introduce some typical XAI algorithms and
taxonomies here that are most commonly seen in the
literature for 6G or B5G research. We refer survey papers
in [20], [24], [25] for more comprehensive studies on XAI
methods.

1) MODEL-AGNOSTIC VS MODEL-SPECIFIC

There are two main types of XAI methods: model-agnostic
and model-specific. Model-agnostic methods do not consider
the internal components of the model, such as its weight
and structure parameters, and can therefore be applied to
any black-box approach. In contrast, model-specific methods
are defined using parameters of the individual model, such
as interpreting weights of linear regression or using inferred
rules from a decision tree that would be specific to the trained
model [26]. There are some advantages of model-agnostic
methods [27] such as greater flexibility for developers to
choose any ML model for generating interpretation which
is different from the actual black-box model that generates
decisions.

2) LOCAL VS GLOBAL

Based on the scope of explanations, provided methods can be
classified into two classes: local and global methods. Local
interpretable methods use a single outcome, or particular
prediction or classification results of the model [28] to
generate explanations. On the other hand, global methods use
the entire inferential ability of the model or overall model

behavior [29] to generate explanations. In the local inter-
pretable methods, only specific features and characteristics
are essential. For the global methods, feature importance can
be used to explain the general behavior of the model.

3) SURROGATE VS VISUAL AID

A way to explain how a black-box model works is by using
an interpretable approximate model. This model replaces
the black-box model and helps explain how decisions are
made. The interpretable approximate model is known as a
surrogate model. It’s trained to make predictions similar to
the black-box model. Later, it’s used to provide explanations
that interpret the decisions made by the black-box model. A
black-box model can be a deep neural network (DNN), while
decision trees or linear models are examples of interpretable
models that can be used as surrogates.
Besides surrogate models, visual explanations aid in

generating explanations in a more presentable way showing
the inner workings of many model-agnostic. The visual aids
can be graphs, scatter plots, heat maps, and so on. For
example, ELI5 [30] is a Python library that provides tools to
understand machine learning models through visualization
and interpretation of their predictions. It supports various ML
frameworks and offers functions to explain models and their
decisions with weights, highlighting the features contributing
to the prediction. In addition, Partial Dependence Plot
(PDP) [31] shows the effect of a single or two features on the
predicted outcome of a machine learning model, averaged
over the joint values of the other features. PDPs help to
visualize the relationship between the target response and
the features of interest

4) PRE-MODEL, IN-MODEL VS POST-MODEL
STRATEGIES

XAI can be applied throughout the entire developmental
pipeline of the model. The goal of pre-modeling explain-
ability is to describe the dataset to gain better insights into
the dataset used to build a model. The main objectives of
the pre-model are to perform data summarization, dataset
description, perform explainable feature engineering, and
conduct exploratory data analysis. Google Facets1 is an
example of pre-model explanations that enable the learning
of patterns from large amounts of data.
In contrast, the goal of in-model explainability is to

develop inherently explainable models instead of generating
black-box models. Methodologically, there are different
strategies or ways to construct in-model explanations. The
most straightforward approach is to adopt an inherently
explainable model, such as linear models, decision trees,
and rule sets. However, some efforts are needed to generate
explanations using these methods, like picking important
features. Other approaches are proposed beyond inherently
explainable models, such as hybrid models, joint prediction
and explanation, and explainability through architectural
adjustments.

1https://pair-code.github.io/facets/
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In the hybrid approach, complex black-box methods are
coupled with inherently explainable models to devise a
high-performance and explainable model, such as combining
a deeply hidden layer of neural network with a KNN
model [32]. Also, the model can be trained to provide a
prediction and the corresponding explanation jointly [33].
The idea here is to produce a training dataset, where
the decision is supplemented with the user’s rationale
for the decision. Lastly, explanations through architec-
ture adjustments focus on deep network architecture to
enhance explainability, such as pushing higher layer filters
to represent an object part, as opposed to a mixture of
patterns [34]. These approaches within the model have two
main shortcomings. Firstly, they assume the availability of
explanations in the training dataset, which is often not the
case. Secondly, explanations generated by these methods are
not necessarily reflective of how model predictions were
made, but rather what humans would like to see as an
explanation.
The post-model explainability method extracts explana-

tions that are inherently not explainable to describe a
pre-developed model. These popular post-hoc XAI methods
generally operate over four key characteristics: the target,
what is to be explained concerning the model; the drivers,
what is causing the decision to be explained; the explanation
family, how an explanation is going to be presented to a
user; and the estimator, the computational process generating
the explanation [25].

• LIME is a popular model-agnostic XAI strategy [28].
It is a post-hoc algorithm that aims to explain a
prediction made by a model. LIME does this by
identifying the input features that drive the prediction,
assigning importance scores to each feature, and esti-
mating these scores through local perturbations of the
input.
To explain a prediction, LIME creates a surrogate model
in the local area. This model is a linear interpretable
model that approximates the behavior of the original
model in the vicinity of the prediction. By using a
local approximation, LIME can work with all types of
data, including text, tabular data, images, and graphs.
Additionally, it can be used with black-box models,
making it a versatile and widely applicable tool in the
field of explainable AI.

• SHAP calculates feature importance using Shapley
values [35], [36] whereas LIME estimates the behavior
of a complex model by using a family of interpretable
models. Shapley’s values are based on cooperative game
theory and estimate marginal contribution. Therefore,
SHAP generally performs better than LIME. Another
advantage of SHAP is that it can explain the global
behavior of a model, rather than just a single instance.
In general, SHAP is model agnostic. There are also
model-specific versions of SHAP to speed up the
performance. For example, TreeSHAP is designed for
decision trees [37] and Deep SHAP [36] for DNN.

In contrast to LIME, SHAP takes a more comprehensive
approach by calculating feature importance globally
for the entire model. This provides a broader perspec-
tive on how features affect the model’s predictions.
Additionally, SHAP values adhere to the consistency
property, ensuring that the sum of Shapley values
and the baseline align with the model’s prediction.
Finally, as evaluating all possible permutations can be
computationally costly, there are many approaches like
Fast Shapley Value Approximations [38] aiming to
reduce this computational load.

• Layerwise Relevance Propagation (LRP) [39] is an algo-
rithm designed to explain a DNN with an assumption
that a classifier can be decomposed into different layers,
making it a model-specific method. LRP is designed
with the intuition that certain layers of inputs are
relevant for the prediction. Activation scores of each
neuron are considered through back-pass to identify
significant neurons and learn about the input data. LRP
is particularly useful for image data, as it highlights
meaningful pixels that enable a certain prediction.
LRP provides detailed insights into neural network
decision-making, in contrast to LIME and SHAP, which
mainly address global or local feature importance.
Nevertheless, LRP’s deep network analysis can intro-
duce complexity and computational demands.

• Grad-CAM (Gradient-weighted Class Activation
Mapping) method was developed in 2017 by
Selvaraju et al. [40]. It has gained wide popularity and
is used in various fields, especially for images. This
method helps create visual explanations for different
types of Convolutional Neural Networks (CNNs).
Grad-CAM algorithm takes the input image and gen-
erates a copy of that image but with the relevant
pixels highlighted in bright colors like red or yellow.
The less relevant areas/pixels are shown with softer
colors or are left unchanged. Unlike LRP, which
computes the values for the whole network, Grad-
CAM only computes the gradients emanating from the
CNN’s last layer, rendering it adaptable to various
CNN architectures [40]. This method helps to figure
out what goes wrong in image recognition or why
a computer program seems to make random choices.
These visual explanations empower users to build trust
and confidence in the model’s outputs.

• Counterfactual is another algorithm that is available for
both model-agnostics [41] and model-specific [42] vari-
ants. Counterfactual builds on explaining the prediction
of the predictor algorithm by finding the slightest
change in the input feature values causing the change
in the original prediction. For instance, if changing the
BMI of the person has flipped the original prediction
from illness to being healthy, then using the BMI
value is an indicative explanation for correlating with
the original prediction. This leads to counterfactual
explanations that are easier for humans to understand.
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However, there may be multiple possible explanations,
making it challenging to determine which is suitable -
the simplest or the most complex (i.e., the combination
of several features).

• Bayesian Networks (BN) are a well-known class of
probabilistic models [43]. BNs are based on directed
acyclic graphs that compute random variables (nodes)
and their relationships (edges) to predict the probability
of certain events related to those variables [43]. BNs
use Bayesian inference (causality) to estimate such
likelihood. Each node of the graph has a probability
distribution P(Xi|Parent(Xi)) which represents the con-
ditional probability concerning the parent of that node.
The main advantage of BNs is that the graph and the
relationships between the variables are interpretable.
The predicting reasoning is computed by following the
direction of the edges in the graph and the distributions
can be visualized. Therefore, BNs are a handy tool
for understanding probability distributions, knowledge
discovery, and detecting anomalies.

• Permutation Feature Importance (PI) [44] measures the
increase in a model’s prediction error after we permute
the feature’s values, which breaks the relationship
between the feature and the true outcome. This method
helps in understanding the influence of each feature on
the model’s predictions. It differs from LIME as it does
not provide local explanations for individual predictions
but offers a global view of feature importance by
assessing the impact of feature scrambling on model
accuracy. Unlike SHAP, it does not rely on time-
consuming game-theoretic approaches.

C. TYPES OF EXPLANATIONS BY XAI FOR 6G
Feature importance is one of the most commonly seen types
of explanation generated by XAI. It ranks the input data
features according to their corresponding contributions to
the final output. For example, [45] uses LIME and SHAP
to identify the failure in microwave networks from the set
of features of link characteristics, G.828 metrics, and power
values. Decision tree-based AI models also provide rules as
an explanation, as long as the rules are not too complex for
stakeholders to understand. For example, a 6-layer decision
tree was used for enhancing trust management in network
intrusion detection systems.
Saliency maps are well-known explanations for computer

vision tasks. They highlight parts of images that lead to the
AI output. Saliency maps have great potential in analysing
time-series network data such as anomaly detection by
highlighting only the key interval that contributes to the
prediction results the most. Counterfactual explanations can
also be used in facilitating the root cause analysis of future
6G networks by telling the network engineer the minimum
possible changes in the values of a certain set of features
that could flip the AI algorithm prediction from “unhealthy
service” to “healthy service”.

TABLE 3. XAI requirements for key stakeholders in 6G.

D. XAI STAKEHOLDERS IN 6G
Nearly every sector requires automated algorithmic decision-
making, and this demand is evolving into supplementing
decisions with explanations generated by the XAI model.
With the upcoming 6G making Internet bandwidth faster
and available to almost every other device, the demand
for AI will be enhanced by XAI within the ecosys-
tem. However, the question remains: who requires XAI,
and what level of explanation is deemed reasonable?
Also, it is important to note that different stakeholders
have different expectations from the explanations [46],
and based on the user requirement of XAI [47], stake-
holders’ demands can be classified broadly into three
categories.

• The demand will be useful for service providers to help
them identify problems or bugs within the system that
produce a decision and improve the performance by
troubleshooting the decision-making process. Service
providers can be system designers, data scien-
tists, AI/XAI researchers, software developers/testers,
etc.

• The demand of the end-users, who would be interested
in understanding the decision for usage and appli-
cation [48] purpose. For the end-user, the interface
of explanations is essential, which should explain the
decision in the form of a story that the end-user can
easily understand [49]. End-users can be businesses,
non-technical people, consumers of technology, and
policymakers.

• The demand of the legal auditors, who would be
interested in auditing legal compliance of auto-
mated decision-making algorithm. Here, the legal
auditors would look for confirmation that ensures
compliance, such as no racial discrimination or
gender bias while approving loan applications.
These stakeholders can be auditors and other legal
professionals.

We summarised the XAI requirements for different 6G
stakeholders in Table 3.

VOLUME 5, 2024 2497



WANG et al.: XAI FOR 6G USE CASES: TECHNICAL ASPECTS AND RESEARCH CHALLENGES

FIGURE 4. An illustration of deploying XAI on 6G using the case study of CAV
Collision-Free Lane-Changing.

E. DEPLOYING XAI ON 6G: A CASE STUDY FOR CAV
COLLISION-FREE LANE-CHANGING
This subsection presents a case study of deploying XAI
solutions on existing AI-enabled 6G applications, focusing
on CAV collision-free lane-changing.

1) XAI FOR AI-BASED 6G USE CASE

The emergence of CAVs has brought forth a paradigm shift
in automotive technology, requiring sophisticated algorithmic
frameworks for safe and efficient operation. Central to this
technological revolution is the implementation of collision-
free lane-changing mechanisms, which are underpinned by
four critical steps: perception, prediction, planning, and exe-
cution. At the core of these steps lies the integration of XAI,
which is a pivotal advancement ensuring transparency and
understandability in AI-driven decision-making processes.
XAI plays an indispensable role in each phase, as shown
in Fig. 4 beginning with perception, where it clarifies the
interpretation of sensor data, thus enhancing the reliability
of the vehicle’s environmental awareness. In the prediction
phase, XAI demystifies the vehicle’s anticipatory capabilities
regarding the actions of nearby entities, crucial for accurate
maneuver planning. The planning stage benefits significantly
from XAI by elucidating the rationale behind chosen paths
and timings, ensuring safety and regulatory adherence.
Lastly, during execution, XAI’s insights into control system
dynamics are instrumental in fine-tuning vehicular responses
for optimal maneuver execution. These integrations not only
fortify the autonomous system’s decision-making acuity but
also instill a greater level of trust and accessibility for both
developers and end-users.

2) XAI FOR AI-BASED 6G INFRASTRUCTURE

XAI’s significance extends beyond the operational mechanics
of CAVs, playing a vital role in the development of future
6G networks, which are poised to be the backbone of
next-generation vehicular technologies. XAI contributes to
the enhancement of 6G networks in several critical areas:
network optimization, resource allocation, cybersecurity,
regulatory compliance, and user trust, as shown in Fig. 4.
In network optimization, XAI helps in understanding and
improving the AI algorithms responsible for managing

network performance, catering specifically to the demanding
requirements of CAVs. This is crucial to ensure that the
network can support the high bandwidth and low latency
needs essential for real-time vehicular communication.
Regarding resource allocation, XAI ensures transparency in
how network resources are distributed, particularly prioritiz-
ing the needs of CAVs for safety-critical functions. In the
realm of cybersecurity, XAI plays a pivotal role in identify-
ing and explaining network anomalies. This is a key factor
in safeguarding against cyber threats that could compromise
the integrity of autonomous driving systems. Regulatory
compliance is another area where XAI proves valuable.
XAI offers insights necessary for demonstrating that the
network aligns with stringent safety and reliability standards
required for CAV operations. Lastly, XAI builds user trust by
making AI operations within the network understandable and
accountable, a critical aspect for gaining public acceptance
and confidence in these advanced vehicular technologies.

3) SECURING SUCCESSFUL XAI DEPLOYMENT FOR 6G

The successful implementation of XAI in the context of 6G
networks supporting CAVs involves a comprehensive and
iterative approach. The first step involves a thorough analysis
and understanding of AI applications within the autonomous
vehicle framework. This analysis should cover the entire
spectrum from perception to execution. Doing so enables
the identification of specific requirements and challenges
that the 6G infrastructure must address to support these
applications effectively. Next, the focus should shift towards
the development and enhancement of the 6G network
infrastructure, ensuring that it is robust enough to handle
the demands of CAVs while maintaining transparency and
explainability in its operations. The key to success in this
endeavor lies in continuously gathering and incorporat-
ing feedback from various stakeholders, including network
operators, vehicle manufacturers, regulatory bodies, and end-
users. This feedback loop is critical for identifying potential
areas of improvement in both AI applications and network
performance, thereby making the AI-based 6G networks
more robust, trustworthy, and aligned with the evolving needs
of CAVs.
Furthermore, stakeholder feedback aids in navigating the

complex landscape of regulatory compliance, cybersecurity
threats, and user trust challenges, ensuring that the network
remains not only technologically advanced but also socially
acceptable and secure. Lastly, the synergy between XAI
and 6G networks, fueled by active stakeholder engagement,
paves the way for creating an ecosystem where CAVs
operate with unprecedented efficiency, safety, and reliability,
marking a significant milestone in the journey towards fully
autonomous transportation systems.

III. LEGAL FRAMEWORKS AND RESEARCH PROJECTS
ON XAI FOR 6G
This section presents the important legal frameworks and
research projects related to the 6G XAI.
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A. LEGAL FRAMEWORK FOR EXPLAINABILITY
As explained in Section II, XAI is important for auditors to
evolve a legal framework to protect consumer rights under
technology usage. Currently, there is no unified law that
protects consumer rights for XAI technology. Nevertheless,
different regions have started reacting to the evolution of
AI and XAI. As we advance towards 6G and XAI, it
is anticipated that internationally approved regulations will
emerge. For now, we list the adoption of legal frameworks
emanating from different regions of the world concerning
user privacy and rights to ensure fairness.

• EU/EEA: The GDPR [50] is a regulation in EU law on
data protection and privacy in the European Union (EU)
and the European Economic Area (EEA) and came into
effect on 25 May 2018. The GDPR law sets obligations
for businesses and grants rights to citizens. Under
GDPR, businesses require data protection compliance
to ensure data protection concerning users and privacy.
Failure to comply can cost up to 20 million euros or
4% of their global revenue. Under GDPR compliance,
users have the “right to explanation” in algorithmic
decision-making [48], primarily AI systems. In addition,
the regulation protects the fair usage of data collection,
processing, and application, while maintaining an up-
to-date and accurate reflection of data. Finally, it
allows users to demand a copy of their data from the
business. This regulation comes closest to realizing and
facilitating XAI goals of transparency and explanation.

• USA: The U.S. has taken a different approach to data
protection. Instead of having a general data protection
regulation, the U.S. implements sector-specific privacy
and data protection policies that work with state
laws to protect American citizens’ interests. Some of
the key sectors are healthcare under HIPAA [51],
finance sector and consumer rights under GLBA [52],
federal agencies under FISMA [53], and protection
of Controlled Unclassified Information in non-federal
information systems and organizations under NIST 800-
171 [54]. Overall, the U.S. is concerned with data
integrity as a commercial asset. In contrast, GDPR gives
more to an individual instead of looking at it from
the interest of businesses. However, this diversity of
legal framework will benefit the adoption of XAI in full
spectrum in the 6G world. With this diversity, businesses
will communicate with each other through devices and
with individuals who would be end-users.

• Rest of the world: Ethics, consent, user privacy, law, and
transparency are now part of global values. Nearly all
countries are bringing forward policies and regulations
to ensure their understanding of it to ensure governance,
including data-driven decision-making. China developed
a new personal data law (PIPL) [55] which came into
effect in Nov 2021, drawing its inspiration from GDPR.
PIPL tightens how technology giants use data and
move private data overseas, with violations resulting in
fines up to 5% of the annual revenue of the previous

year or CNY50 million. Similarly, PIPL’s articles
mention automated decision-making related to finance,
health, credit status, and more under fair usage and
transparency concerning user rights, similar to GDPR.
Russia adopted in 2006 a law concerning personal data
under Russian Federal Law No. 152-FZ. Even though
the law protects individual rights to a certain degree, it is
not as comprehensive as the GDPR. Perhaps a revision
or expansion of the law can be expected under changing
technology and algorithmic decision-making to uphold
the spirit of privacy and user protection. Brazil’s Lei
Geral de Proteçao de Dados (LGPD) [56], Australia’s
Privacy Amendment (Notifiable Data Breaches) [57],
Japan’s Act on Protection of Personal Information [58]
are steps in similar directions as to those discussed in
2016 for GDPR, which came into effect in 2018.

B. ONGOING REPUTABLE RESEARCH PROJECTS FOR
6G USING XAI
1) EUROPEAN UNION (EU) FUNDED PROJECTS

Due to the popularity of XAI topics, several funding
organizations have offered funding for XAI-related topics.
European Union (EU) is one of such leading funding
organizations that has funded several projects in XAI.
Horizon H2020 (H2020) is one of the biggest funding

programs supported by the EU. H2020 is a seven-year
funding program that operated from 2014 to 2020 and offered
an estimated 80 billion of funding [59]. Under direct H2020
funding, several XAI-related projects were funded, as listed
below.

• AI4EU: A European AI On Demand Platform and
Ecosystem (2019-2021) [60].

• FeatureCloud (2019-2024) [61].
• XMANAI: Explainable Manufacturing Artificial
Intelligence (2020-2024) [62].

• DEEPCUBE: Explainable AI Pipelines for Big
Copernicus Data (2021-2023) [63].

• SPATIAL: Security and Privacy Accountable
Technology Innovations, Algorithms, and Machine
Learning (2021-2024) [64].

• STAR: Safe and Trusted Human Centric Artificial
Intelligence in Future Manufacturing Lines (2021-
2023) [65].

• Confidential 6G: Confidential Computing and Privacy-
preserving Technologies for 6G (2023-2025) [66].

• Rigourous: secuRe desIGn and deplOyment of
trUsthwoRthy cOntinUum computing 6G Services
(2023-2025) [66].

• DAWN4IoE: Data Aware Wireless Networks for Internet
of Everything (2017-2022) [67].

• Hexa-X-II: European level 6G Flagship project (2023-
2025) [68].

The AI4EU [60] project is building Europe’s first
AI on-demand platform, which will be used to dis-
seminate AI resources developed by other EU-funded
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projects. The AI4EU project focuses on XAI and the
other interconnected AI domains, such as Collaborative
AI, Physical AI, Integrative AI, and Verifiable AI. The
FeatureCloud project [61] is focusing on designing secure
and trusted medical health systems to reduce the impact of
cybercrimes and fuel cross-border collaborative data-mining
efforts. To realize this objective, the FeatureCloud project
integrates XAI with blockchain and federated learning
techniques. The XMANAI project [62] is focusing on the
use of XAI for manufacturing to increase trust in AI-based
manufacturing processes.
Moreover, the practical utilization of XAI is demon-

strated by XMANAI projects in four industrial plants. The
DEEPCUBE project [63] is focusing on utilizing XAI
Pipelines for extensive data analysis. Primarily, it analyses
the Copernicus data, which is collected by the European
Union’s Copernicus Space Programme [69]. The SPATIAL
project [64] is focusing on the development of accountable,
resilient, and trustworthy AI-based security and privacy
solutions for future networks and ICT systems. Thus, the
SPATIAL project focuses on using XAI to ensure the security
and privacy of 5G and 6G networks. Several B5G and 6G
use cases, such as healthcare and IoT services are considered
in this project. The STAR [65] project is studying the use
of XAI techniques to increase the transparency of AI-based
manufacturing processes and also to improve the user trust
level in AI systems.
In addition, H2020 has an element called Marie

Skłodowska-Curie actions (MSCAs) [70] which offers grants
for all stages of researchers’ careers. Under the H2020
MSCA funding, there are two projects for training Early-
stage researchers (ESRs) in the domain of XAI applications.

• NL4XAI: Interactive Natural Language Technology for
Explainable Artificial Intelligence [71]

• GECKO: Building greener and more sustainable soci-
eties by filling the Knowledge gap in social science and
engineering to enable responsible artificial intelligence
co-creation [72]

The NL4XAI [71] project focuses on developing self-
explanatory XAI systems by utilizing natural language
generation and processing, argumentation technology, and
interactive technology. The GECKO [72] project is exploring
the development of interpretable XAI models to mitigate
unintentionally harmful and poorly designed AI models.

2) UNITED STATE GOVERNMENT FUNDED PROJECTS

Defense Advanced Research Projects Agency (DARPA)
Information Innovation Office (I2O) in the United States
has started a funding program called Explainable Artificial
Intelligence (XAI) [73]. Under this program, DARPA has
funded several projects focusing on different aspects of XAI:

• Driving-X: Study the use of XAI for self-driving
vehicles.

• Rollouts: Use XAI to establish comfortable human-
robot interaction.

• StarCraft: Design a self-explaining AI model to play
video games.

• Learning and Communicating Explainable
Representations for Analytics and Autonomy: Design
an XAI framework for multi-model analytics and
autonomy by recognition, reasoning, and planning
domains.

• COGLE: Design a system to provide explanations of
the learned performance capabilities of an autonomous
system.

• Explainable AI for Assisting Data Scientists: Study the
effectiveness of the XAI system in debugging common
ML models.

• DARE: Use XAI to improve the accuracy of deep learn-
ing models to enable multiple modes of explanation.

• EQUAS: Develop a new Explainable QUestion
Answering System (EQUAS) based on pedagogical and
argumentation theories.

• Model Explanation by Optimal Selection of Teaching
Examples: Analyze the Explanation-by-Examples
system to improve the user understanding of black-box
ML models.

3) OTHER PROJECTS

In 2017, The Ministry of Science and ICT (MSICT) in
South Korea funded the XAI Center [74] which focuses
on the research and development of XAI technologies. The
XAI center has supported several research activities which
are mainly focused on the medical and financial sectors.
In 2019, Europe-based Christ-Era organization funded 12
XAI projects under “Explainable Machine Learning-based
Artificial Intelligence”2 funding call. Some of these projects
focus on B5G and 6G applications such as digital medicine,
robotics, and predictive maintenance.
Although many global-level research activities are being

initiated, many of these activities have 6G, 6G technologies,
and 6G applications as minor focus. They are still mainly
focusing on B5G developments. Table 4 highlights the
relevance of these research projects to different aspects of
6G networks.

IV. XAI FOR 6G TECHNICAL ASPECTS
In this section, we discuss the following primary tech-
nical aspects of 6G networks: intelligent radio, security,
privacy, resource management, edge networks, and network
automation. For each technical aspect, we first introduce the
background and motivation of its importance in 6G. Then,
besides technical requirements, the prospective challenges
of the development of regular AI/ML algorithms in wire-
less networks are analyzed. Finally, we explain how XAI
can build trust between humans and AI-enabled machines
based on the capability of supporting human-understandable
explanations.

2https://www.chistera.eu/projects-call-2019
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TABLE 4. Important research projects on XAI and their relevance to 6G.

Notably, for all the subsections “how XAI can help” in
this and the subsequent Section V is discussed, consid-
ering that not many XAI solutions are built specifically
for 6G networks in the existing literature, we have
additionally incorporated our analysis on the current AI
solutions for the mobile networks and then accordingly
share our opinions on how XAI can improve (as well as
the potential issues) these solutions (i.e., often for only
one layer, as shown in Fig. 2) shortly. We hope this
section offers guidance for applying XAI to the future
fully AI-powered 6G networks across all layers shown in
Fig. 2.

A. INTELLIGENT RADIO
1) INTRODUCTION

The intelligent radio at the intersection of AI and cognitive
radio has recently attracted significant attention in solving
spectrum problems, including access, monitoring, and man-
agement. The rise of modern communication systems with
5G, B5G, and 6G has extended radio services to various
industrial domains, exposing several challenging issues and
complicated problems in wireless communications. It is
feasible to use AI algorithms with automatic learning
models to effectively handle channel modeling, intelligent
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spectrum access, physical layer design, and other network
management issues in wireless communications [13], [76].
The emergence of ML, especially DL in the era of big
data, has enabled the revealing of essential and unexplored
radio characteristics and boosted the progress of wireless and
networking technologies with new architectures and novel
analysis of pyramid structures.
Over the last decade, we have witnessed the evolution of

the traditional black-box base station towards a virtualized
next-generation node base (gNB) with the capacity of a
functional split, that promotes a new paradigm of Open Radio
Access Networks (O-RAN) specialized by disaggregated,
virtualized and software-based components, connected over
open, programmable, and standardized interfaces with full
interoperability across different vendors. In 6G, the AI/ML
workflow for intelligent radio is identified by O-RAN
with Non-Realtime RAN Intelligent Controller (Non-RT
RIC) [77], which should consist of several steps: data
collection and processing, training, validation and publishing,
development, AI/ML execution and interface, and model
maintenance. xApp, as a microservice that is responsible to
supervise and manage radio resources through standardized
interfaces and service models, is usually designed to control
O-RAN slicing policies with real-time responses, in which
different AI/ML solutions can be exploited using different
key performance measurements, depending on target tasks
in the physical layer [78].

2) REQUIREMENTS AND CHALLENGES

Extremely high data rates and low latency of mas-
sive machine-type wireless communications are realized
as the key requirements of 6G. It can be achieved
with an advanced-designed physical layer, wherein sev-
eral fundamental signal processing and analyzing tasks
(e.g., source coding, modulation, orthogonal frequency-
division multiplexing (OFDM) modulation, and multi-input
multi-output (MIMO) precoding [79]) are powered by AI
algorithms [8]. These tasks are typically deployed by the
appropriate modules, which follow a forward procedure at
the transmitter and an inverse procedure at the receiver.
Previously, numerous intelligent radio signal processing
approaches were studied with traditional ML algorithms,
where expert knowledge of concerning domains is needed to
fine-tune radio features and learning models. Being superior
to conventional ML, DL has been recently applied to the
intelligent radio area to improve performance significantly
thanks to its great ability to deal with large, noisy, and
confusing raw datasets of radio signals [80]. For example,
the accuracy of automatic modulation classification in 5G
was improved with CNN architectures while keeping a
reasonable complexity [81], [82]. Although DL can extract
underlying features from raw radio signals at multi-scale
representations to learn complex discrimination patterns,
often represents black-box models, lacking interpretability
and explainability [83]. Therefore, gaining insight into
the rationale behind an AI model’s predictions is crucial

for aiding network engineers and communication system
designers in enhancing system performance and sustainably
managing operational risks.
Although it is difficult to find the distinctions in the 6G

architecture compared to its predecessor, 5G, it is imperative
to focus on certain considerations within the physical layer.
Specifically, the integration of AI/ML algorithms should
be regarded as essential components facilitating intelligent
beamforming, cognitive intelligence-based autonomous radio
resource management, intelligent channel coding and mod-
ulation, channel estimation, as well as intelligent multiple
access and spectrum sharing. Moreover, for future RANs
with flexibility, massive interconnectivity, and spectral effi-
ciency, xApps with AI/ML-enabled non-RT RIC should be
carried out at the intelligent control layer to optimize radio
resource utilization and minimize traffic congestion [84]. A
fully user-centric network architecture with ML-driven layers
can leverage distributed AI with RAN decisions made by end
terminals automatically with no centralized controllers [85],
thus enhancing learning efficiency and reducing computing
cost if compared with centralized AI.

3) HOW XAI CAN HELP

Despite being superior to traditional ML algorithms (e.g.,
decision trees, random forest, KNN, ANN, SVM) in terms
of accuracy when dealing with large, messy, and confusing
practical datasets, DL has a black-box nature that exposes
a lack of explainability. For instance, Tunze et al. [86]
proposed an advanced automatic modulation classification
method with CNN architectures to generally improve accu-
racy and reduce complexity, however, the method failed to
explain why some modulations present better performance
than others with the same channel condition and how to
predict when the DL model will crash under different
practical channel conditions.
In this context, XAI such as LIME, SHAP, and LRP can

help 6G stakeholders (e.g., service providers) understand the
relations between input data quality and learning efficiency.
These tools aid in addressing challenges like imbalance
and overfitting, while also enabling the identification of
biases within the training and testing datasets. To provide
inherent explainability for DL-based modulation, the concept
bottleneck model in [87] which comprised a regression
network to infer several potential concepts and a classifi-
cation network to predict the target modulation based on
the set of concepts, enables XAI stakeholders to interrogate
the classification decisions and address the out-of-training-
set problem (i.e., some classes are not seen during training).
In [16], Guo pointed out the weak transparency of DL
compared with traditional ML for radio resource allocation
in the physical layer and MAC layer and then recommended
some trustworthy AI techniques to improve explainability.
For instance, a case study-based deep feature visualization
XAI technique allows the manipulation of key features to
optimize a deep model along with different network traffic
and channel conditions. Besides, hypothesis testing and

2502 VOLUME 5, 2024



FIGURE 5. An example of XAI for intelligent radio: XAI can explain abnormal
phenomena in wireless networks to end-users by ordinary explanation and to system
engineers through specialized analysis.

didactic statements with human-machine interfaces are bene-
ficial for elucidating the model learning and decision-making
processes, where they play the role of human-like reasoning
modules in an XAI integration framework as shown in
Fig. 5. For channel modeling with DL, Lee [88] proposed
a model-agnostic metamodeling method that can interpret
any data-driven channel model into a more understandable
form with many transparent mathematical expressions via a
symbolic representation technique.Bayesian models are also
utilized in [89] to ensure a high explainability of a robust DL
based channel estimation for cell-edge users under inter-cell
interference.
To achieve intelligent radio in 6G, several new RAN

architectures like O-RAN, cloud RAN, virtual RAN, and
massive RAN have cooperatively operated and connected
in a dense radio environment. XAI will improve the
connectivity between mobile users and base stations relying
on a set of trustworthy wireless evaluations with dynamic
cell selection, intelligent beamforming, channel estimation,
adaptive coding and decoding, and automatic modulation
recognition. This optimization enhances the efficiency of
limited radio spectrum utilization while maintaining a high
data transmission rate. Indeed, XAI can help to identify
the outliers of radio signal data for training AI models;
determine inefficient performing layers and modules in
deep neural network architectures for modulation classi-
fication and channel estimation; point out which data,
model configuration, and training option induce the failure
and performance degradation of AI models for intelligent
beamforming; and provide additional evaluation metrics to
consolidate the AI decision of cell selection in 6G networks.
XAI is also realized as the key to the next evolution of
xApps to dApps [90] which enables real-time inference and
control in O-RAN by cooperatively learning AI models in
a distributed manner using locally collected data at RAN
nodes. Moreover, XAI can become a sustainable solution to
mitigate the difference in hardware configuration and soft-
ware performance caused by network vendors and operators

having different service level agreements, especially, in
open network architectures like O-RAN featured by the
incorporation of multi-vendor elements, the interoperability
and compatibility should be in place. Despite having great
potential to revolutionize intelligent radio in 6G with the
interpretability and explainability of black-box models, XAI
may increase the system’s complexity (e.g., where XAI is
deployed as an attached module to assist the primary AI
model in offering intuitive explanations).

B. TRUST AND SECURITY
1) INTRODUCTION

Since complex 6G networks may contain several heteroge-
neous dense sub-networks via intelligent connections with
cloud-based infrastructures, they will expose some trust and
security problems at multiple network connection levels.
6G communication systems should automatically detect

proactive threats with intelligent risk mitigation and self-
sustaining operations. AI-based trust and security become
promising solutions to identify and quickly respond to
potential threats automatically [91]. Besides some new
threats, 6G networks must cope with existing security
issues [92] in previous-generation networks, e.g., SDN,
multi-access edge computing (MEC), and NFV. A distributed
network that relies on the expansion of device-to-device
communication with mesh networks and multi-connectivity
is vulnerable and sensitive to the attacks of malicious parties.
A hierarchical security protocol can be suitable for wide-area
network security and sub-network communication security.
Multiple radio units can be attacked over user and control
plan microservices at the edge in coexistence scenarios
of centralized RAN and distributed core functions. In the
perspective of AI-enabled 6G to achieve full automation,
ML systems may become the target of several data-based
and model-based security threats [93], such as data injection,
data manipulation, model evasion, and model modification.

2) REQUIREMENTS AND CHALLENGES

To guarantee high-quality services, the latency cri-
teria of security mechanisms should be taken into
consideration in enhanced ultra-reliable, low-latency com-
munications (eURLLC) [22]. Some specialized 6G services
with data plane, such as game streaming and remote
surgery/telesurgery, require a reliable security solution that
can not only effectively defend against cyberattacks but also
perform AI/ML-based security analysis promptly with ultra-
low latency, to guarantee a certain level of user experience.
Moreover, high reliability will demand several extraordinary
security solutions to maintain the availability of service oper-
ations effectively. High-speed data transmission can reveal
certain security issues related to traffic processing security
issues, e.g., traffic analysis, AI/ML-related processing flow,
and pervasive encryption. These existing issues can be partly
handled with distributed security solutions, where raw data
and information should be processed locally and on the
fly, in decentralized systems, or even in partitioned parts
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of a network. Distributed ledger technology (with some
distinctive features such as transparency, redundancy, and
security) and ultra-massive machine type communication
(umMTC) can be applied to satisfy security requirements.
However, implementing and integrating AI/ML algorithms
for resource-constrained devices are still challenging besides
the multi-threat analysis of big datasets. Some other issues
that may arise from AI-driven security solutions are the
responsibility for mistakes made by AI, the scalability
and feasibility of AI models in diversified storage and
computing infrastructures, and the vulnerability of AI models
in distributed systems [94]. For example, the process of
uploading local parameter sets from edge devices to a
federated center and broadcasting an updated global model
to devices can become susceptible to poisoning attacks.

3) HOW XAI CAN HELP

Regarding AI security technologies, transparency in verifying
how securely AI systems operate against adversarial machine
learning (AML – an attack intentionally fools the AI model
by entering deceptive data to make network system unstable,
malfunctioning, or unavailable) should be ensured to protect
subscribers and mobile communication systems from AML.
Besides being created in a reliable system, it is necessary to
check whether the AI models operating in user equipment
(UE), RAN, and core have been maliciously modified by
a malicious attack. O-RAN with an intelligent controller
can execute self-healing or recovery procedures if any
malicious or abnormal event is detected in AI models. Many
recent methods have exploited some advanced ML and DL
algorithms to deal with different cybersecurity problems
in ORAN and virtualized RAN (vRANs) [93]: poisonous
attacks by tampering with the Internet of Everything (IoE)
data for training with malicious samples, evasion attacks by
injecting disorders and outliers to testing data to circumvent
the learned model, API-based attacks to pilfer prediction
outcomes, infrastructure physical attacks and communi-
cation tampering by interfering communication-computing
connections and shutting AI systems down [95]. However,
most existing ML/DL-powered security mechanisms cannot
explain their final decisions (e.g., how a system achieves
threat detection more precisely than attack classification) and
response actions (e.g., how an action accordingly responds
on time to protect networks from cyberattacks) [96], and
consequently cause uncertainty to 6G stakeholders.
XAI presents great potential for improving cybersecurity

in 6G IoT networks (i.e., effectively preventing wire-
less connections, sensory data, intelligent controllers, and
applications from different common attacks like poisoning
attacks, evasion attacks, physical layer attacks, and model
inversion attacks.), ensuring the extreme reliability of IoT-
based latency-sensitive services (e.g., industrial automation,
emergency response, and remote surgery), and enhancing
the trustworthiness of AI-aided security solutions (i.e., AI
models have the capability of interpretability and explain-
ability). In [97], Zolanvari et al. introduced transparency

relying upon statistical theory (TRUST), a model-agnostic
XAI concept that acts as a surrogate explainer to offer
multi-level interpretability without sacrificing performance
or imposing any restrictions, for cybersecurity in Industrial
IoT. By determining the AI’s behavior representatives
and reasoning on the highest class probability, TRUST
provisions transparency of the final decisions made by
the AI model. For attack classification, TRUST provides
explanations comprehensively for new random samples while
presenting high accuracy of over 98% and outperforms
LIME in terms of speed and explainability. In [98], an
explainable multi-modal hierarchical model (MMHAM) for
phishing website detection was proposed to overcome the
limited interpretability of deep models. MMHAM leverages a
novel shared dictionary learning approach and a hierarchical
attention mechanism to align deep representations of fraud
cues and facilitate systematic interpretability at different
levels, respectively. Although MMHAM can help XAI
stakeholders detect phishing websites and proactively react
to preventive actions based on explainable insights, it is
unable to interpret complicated objects like phishing patterns.
In [99], LIME and saliency map XAI methods were applied
to interpret AI models developed to detect and classify
fingerprinting attacks, in which the most dominant features
extracted from raw data are discovered as two post-hoc
XAI methods to explain leakage sources in cyber threat
intelligence systems. Relying on comprehensive benchmarks
with the remove and retrain metric, the two XAI techniques
are proficient and compatible with different AI models,
including random forest and neural networks. This work also
concludes that LIME consumes much more computations
than the saliency map in calculating the weights of CNN
models. XAI has the potential to offer valuable insights
to stakeholders and administrators in trust and security
matters. This includes identifying critical features vulnerable
to cyberattacks, ranking important features in different AI
models against diversified attacks, enhancing detection speed
by skipping hidden layers in deep networks, optimizing
network configuration and AI training setup for the highest
cyberattack classification, and illustrating the relationship
between predictive variables and dependent variables in
various attack scenarios and system conditions.

C. PRIVACY
1) INTRODUCTION

Data leakage can violate users’ privacy, which can be
prevented through comprehensive privacy-preserving algo-
rithms. When the number of end devices progressively
increases with high data variety, transmitting data over
wireless networks, storing data in storage infrastructures, and
processing data in computing infrastructures are burdensome
with the inserted privacy protection mechanisms [100]. The
potential increase in the number of wireless connections
in 6G is estimated to be up to 1,000 times greater than
that in 5G [101]. Therefore, ensuring high data privacy
without service performance degradation is challenging (i.e.,
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obtaining a good trade-off between the enhancement of
data privacy and the preservation of service performance
in terms of accuracy and processing speed). Moreover, the
massive amount of data serving the learning process of
statistical AL/ML models will expose a significant challenge
for user privacy, which has attracted much more attention
from various industrial and academic communities.

2) REQUIREMENTS AND CHALLENGES

With the increasing number of smart devices that enable the
effortless collection of massive sensitive data, the data pri-
vacy concerns in 6G would be significant due to challenges
associated with data transparency [1]. Running intelligent
applications on mobile devices and at the edge of the network
can become the vulnerable target of privacy attacks. Many
problematic privacy concerns will be more severe in the era
of big data with 5V features, including volume, velocity,
variety, veracity, and value. Adding privacy protection mech-
anisms will increase communication and computational costs
and may not ensure the high quality of 6G-based applications
and services unless addressed. Therefore, privacy protec-
tion mechanisms should be designed to be cost-efficient
besides detecting potential privacy threats automatically and
effectively [7]. Addressing privacy concerns is a significant
challenge due to the diversity of applications and services.
First, easier data acquisition and accessibility can cause
regulatory difficulties with data storage, permission, and uti-
lization. Second is the development and integration of AI/ML
algorithms into advanced privacy protection mechanisms,
which may provoke overloading on resource-constrained
devices. Finally, it is noteworthy to balance between the
high accuracy of services and the robust protection of user
privacy, especially from the perspective of data ownership,
access authorization, and other regulations.

3) HOW XAI CAN HELP

Several AI algorithms, including ML and DL, have been
applied for privacy protection, wherein privacy threats
and attacks are automatically detected and classified to
subsequently select the most appropriate privacy-defense
mechanism. In [102], a regular ML framework with feature
extraction and multi-class classification was developed to
detect and assess the privacy risks of mobile phone applica-
tions. Despite achieving high classification accuracy of over
90%, some classifiers like SVM and Naïve Bayes presented
poor interpretative capabilities, hindering the ability to
understand AI decisions and provide meaningful insights
for assessment. In [103], a privacy-preserving data mining
framework was proposed to identify malicious adversaries
that attempt to collect sensitive user data on edge computing
platforms. An ensemble learning algorithm using random
decision trees was employed to enhance data leakage
detection accuracy. However, the insights needed for service
providers to plan effective data protection and recovery
solutions based on the level of data fragmentation were not
considered.

FIGURE 6. An example of XAI for data privacy: XAI-based data analytics can provide
specialized analysis and professional explanations to cloud-based service providers
regarding undesirable issues of data privacy from end-users.

It is observed that the trustworthiness of AI-aided privacy
protection methods is questionable. In this context, some
XAI algorithms like LIME and SHAP can contribute as
the post-doc models to interpret AI models and expound
their decisions by giving a set of explanations representing
the impact of each user feature or each data attribute
to the final prediction for every single input sample.
Furthermore, XAI helps to rank different encryption methods
to hide sensitive data, identify which data needs to be
shuffled or masked to disassociate its original attributes, and
measure the correlations between privacy metrics and data
leakage probabilities. Remarkably, some XAI algorithms
and methods are beneficial to explainability enhancement of
black-box-based privacy models, for example, Deep Learning
Important Features (DeepLIFT) finds neurons and weights
that significantly affect the final decisions made by DL-
aided malicious adversaries detection models, LRP with a
set of purposely designed output-oriented propagation rules
measures the positive and negative impacts of each layer
in DL-based threat detection and classification models, and
ProfWeight [104] transfers knowledge from a trained data
privacy protection model to other data recovery models and
from a data leakage detection model to other secure data
storage and integrity models.
Compared with traditional private data release methods

that add noise to the original data to improve privacy,
several ML and DL algorithms have recently been exploited
to generate synthetic fake datasets with little accuracy
degradation [105]. Xu et al. [106] proposed GANobfuscator,
a differentially generative adversarial network (GAN), to
mitigate sensitive information leakage. GANobfuscator can
obtain differential privacy by adding specialized noise to the
original dataset and adopting gradient pruning techniques
during the learning stage. Based on the comprehensive
evaluations with different datasets and network architectures,
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the artificial data generated by GANobfuscator can guarantee
the privacy of the original one without information loss.
In [107], the synthetic data of electronic health records were
generated by a conditional GAN framework to protect sensi-
tive patient information from privacy attacks by adversaries.
This GAN framework can prevent patient reidentifiability
from statistical measurements of the similarity between the
whole dataset and the data of individual patients. Although
GAN-based methods are beneficial to privacy protection
when generating artificial data to dupe adversaries, they
restrain the interpretability and explainability (e.g., reasoning
the classification output given by the discriminator to enrich
corrective feedback to the generator in a GAN framework).
In [108], Nagisetty et al. developed an XAI-guided gradient
descent method, denoted XAI-GAN, which can assess the
discriminator’s decision to explain the feedback passing to
the generator in a standard GAN. In particular, XAI-GAN
was built as an in-model agnostic explainer to work with
different XAI algorithms, such as LIME, DeepSHAP, and
saliency maps. Based on the extensive experimental results
on different datasets, some key points were concluded:
(i) XAI-GAN is better than standard GANs in terms
of generated sample quality, (ii) XAI-GAN outperforms
standard GANs in terms of classification accuracy when
training with the same amount of data, and (iii) XAI-GAN
handles the trade-off between data efficiency and training
time more effectively than standard GANs.

D. RESOURCE MANAGEMENT
1) INTRODUCTION

Resource management is challenging because of the inherent
scarcity of radio resources in wireless communications. It
then becomes more difficult in advanced and complicated
networks like 6G, wherein the number of smart devices
increases rapidly and are involved in different IoT networks
(such as cellular IoT, cognitive IoT, and mobile IoT).
The overall system performance of a wireless network
certainly depends on how it monitors and manages hyper-
dimensional resources (e.g., time slots, frequency bands,
modulation types, and orthogonal codes) effectively. Besides,
the incorporation of wireless channel variations and traffic
load attributes in the network design phase impacts connec-
tivity among users having diverse quality-of-service (QoS)
requirements. In the context of which new IoT applications
demand high data rates, low latency, efficient spectral
utilization, and the expansion of personalized IoT services,
the problems of resource monitoring and management are
crucial [109]. In the last decades, AI/ML algorithms and
DL architectures have been widely used to tackle several
challenging resource allocation and management issues in
6G-related areas [110]. Concretely, they have contributed to
many aspects including massive channel access, power allo-
cation, and interference management, user association and
hand-off management, energy management, ultra-reliable
and low-latency communication, and heterogeneous QoS.
Traditional mechanisms cannot optimize the non-convex

problem of resource allocation and are time-consuming to
manage resources in a crowded and complicated network.
This drawback motivated the discovery of several data-driven
ML-based resource allocation and management solutions,
in which the high learning capability of AI/ML models
is beneficial to the dynamic nature of 6G-enabled IoT
networks [111].

2) REQUIREMENTS AND CHALLENGES

Cellular IoT networks in 6G are specialized with extremely
high data rates and solid connectivity between heterogeneous
devices/users and access points/base stations. The diverse
requirements of various IoT services and applications can
be met by carefully selecting various network parameters
(e.g., channel state information and traffic characteristics)
and communication parameters (e.g., angle of arrival and
modulation types). These parameters are now remarkably
identified by ML and DL in terms of high estimation
accuracy and a good ability to deal with big raw data. Some
smart devices demand autonomous access to the available
spectrum and adaptive tuning of transmission power to
mitigate interference and save energy [112]. Some relative
system parameters, such as the position and velocity of
high-mobility users, propagation conditions, and interference
patterns, should be considered when designing an effective
ML-based resource allocation solution. Notably, several
traditional optimization schemes cannot deal with diversified
contexts for integration and cannot respond to varying
environments. In numerous IoT applications, ubiquitous and
heterogeneous devices have diversified QoS requirements
and randomly varying access to network resources, demand-
ing upgrading traditional ML algorithms with RL to fully
adapt to the diversity of network requirements and the
variation of network conditions [113]. Additionally, the
high computational complexity of heuristics-based resource
allocation schemes should be considered to be implemented
on resource-constrained devices. Compared with 5G, the
explosion of new smart terminals in 6G along with a variety
of applications in vertical industry markets is pushing mobile
network operators (MNOs) to deal with more complex
scenarios and deliver more diverse services. So far, the
dynamic and diverse demands of 6G users through real-
time micro-management of multiple resources, including
communication, computing, and storage should be taken
into consideration completely. XAI can be deployed and
integrated into customized network slicing procedures at
MEC servers, wherein the E2E slice consists of sev-
eral interconnected NFVs from RAN, transport, and core
networks, to handle reliably incoming differentiated resource
requests from a group of users and reasonably address the
demand changes in resource requirements of an individual
user.

3) HOW XAI CAN HELP

In the last decades, many ML/DL-based solutions have been
introduced for different resource management tasks in 5G
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RAN, transport, and core networks, through NFV to decouple
software and hardware by virtualizing network functions,
including scheduling and duty cycling, resource allocation,
power allocation, interference management, resource discov-
ery, cell selection, and mobility estimation. However, the
majority of these models lack interpretability and explain-
ability, which hinders the establishment of trust among
network operators and end-users.
In 6G, resource management methods should be more

reliable and trustworthy with the help of XAI besides
ensuring high performance. Specifically, for the network
operators, XAI will improve the efficiency of computation
offloading, resource allocation, and resource manage-
ment in a variety of communication networks (including
5G-mmWave communication, O-RAN, long-distance and
high-mobility communications (LDHMC), extremely low-
power communications (ELPC), and vehicle-to-everything
communication) [114] and ensure the primary trained AI
models are robust and well-performed with diverse wire-
less scenarios having various environment agents (e.g.,
wireless impairments, mobility, and available computing
resource). For the end-users, the detailed parameters or
explanations of XAI will optimize traffic allocation and
minimize the energy consumption of intelligent resource-
constrained edge devices, thus enhancing the trust of
end-users while offering a high QoS and QoE [115].
Nascita et al. [116] introduced MIMETIC-ENHANCED, a
multimodal DL-based mobile traffic classification framework
for RAN and transport networks (e.g., V2X - vehicle-to-
everything network), in which a general XAI module was
deployed to be familiar with different methods, such as
additive feature attribution and Deep SHAP. The XAI module
in MIMETIC-ENHANCED can typically identify which
set of inputs presents the highest confidence probability
associated with the model’s output. Especially, Deep SHAP
allows the classification framework to produce the local
explanations based on quantifying the importance value of
each input and the global explanations by aggregating the
importance values of inputs belonging to each modality.
MIMETIC-ENHANCED was experimentally evaluated in
terms of trustworthiness (how much XAI stakeholders can
trust an estimated confidence entity) and interpretability (the
intrinsic reasoning that allows XAI to operate properly).
For Internet traffic classification, Callegari et al. [117]
built a collection of fuzzy rule-based classifiers using a
multi-objective evolutionary learning scheme, in which each
classifier plays the role of the XAI classification model
and its trade-off between the classification accuracy and the
explainability level is optimized individually. Accordingly,
based on the input data attributes and the complexity of the
problem, XAI stakeholders can select the most appropriate
model to achieve a comfortable performance while aptly
providing understandable explanations over linguistic IF-
THEN rules.
MEC in 6G has seen notable improvements, utilizing

ML and DL algorithms to optimize computation offloading.

This has resulted in more efficient energy consumption for
user equipment. An energy-efficient offloading scheme is
proposed in [118] by exploiting the advancements of deep
networks to improve the accuracy of multi-component binary
classification under various network and user attributes, such
as the amount of transmission data, delay, network condition,
computational load, etc.
In [119], Baek and Kaddoum deployed a deep recurrent

Q-network (DRQN) to cope with a joint request offloading
and resource allocation control for heterogeneous services
in multifog networks. Compared with deep Q-network
and deep convolutional Q-network, DRQN can handle the
partial observability problem more effectively thanks to
its nodes in recurrent layers to hold internal states and
aggregate observations. Many advanced DL-based offloading
and resource allocation methods have low transparency and
poor explainability which may lead to some risky operation
failures and difficulties in fixing or updating deep models. In
this context, some XAI candidates (e.g., LIME, LRP, SHAP,
and saliency map) can be applied to interpret deep networks
(e.g., RL, RNN, and CNN) with the input of time series
data [120], which help XAI stakeholders identify which are
the most important attributes for different users to optimize
offloading computation or minimize energy consumption. By
providing insightful analysis and extra relevant information,
XAI may tutor stakeholders and system resource managers
to comprehend black-box models, such as identifying the
least correlative layers in a deep neural network for removal
without performance degradation of resource allocation and
utilization, determining a set of configurable parameters
(e.g., learning rate and regulation factor) in the training
stage to achieve a better learning convergence, governing the
relationship between accuracy and complexity of resource
allocation models to obtain the overall system resource
optimization, and pointing out the underlying correlations
between global features and local attributes of different
architectures to select the most appropriate deep networks.

E. EDGE AI
1) INTRODUCTION

Edge AI is one of the essential components missing in the
existing 5G communication networks. Edge AI is a frame-
work that focuses on integrating mobile edge computing,
communication networks, and AI seamlessly [121] and is
considered to be one of the most critical enabling technolo-
gies for the futuristic 6G cellular networks [122]. Recently,
many researchers have been working to make the 6G cellular
network a fully autonomous and highly intelligent system.
Edge AI plays a vital role in realizing human-like intelligence
in all the aspects of 6G network systems to improve
the quality of experience of the users [123]. AI-enabled
decentralized mobile edge servers are deployed at a massive
scale for performing processing and decision-making near
service requests and data generation. This makes edge AI
a vital component, providing accelerated and ubiquitous
integration of AI into future 6G networks [124].
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2) REQUIREMENTS AND CHALLENGES

Several resources, such as data coordination, model training,
caching, and computing, are required to execute AI models
in 6G networks [125]. One essential requirement for edge
AI in 6G networks is the automatic creation of labels from
the massive amount of raw data generated by the wireless
devices in the 6G cellular networks. Distributed AI, which
performs the computation jointly at the cloud data centers
with the distributed edge servers, is one of the key require-
ments for edge AI. Another essential requirement of edge
AI in 6G is personalized AI, through which the decision-
making of AI algorithms can be improved by understanding
the preferences of the human users [126]. Security is also
a crucial requirement for edge infrastructure. Some security
threats for edge infrastructure include resource or service
manipulation, denial of service attacks, man-in-the-middle
attacks, and privacy leakage. AI/ML algorithms can play
a significant role in monitoring and predicting security
attacks [127], [128]. However, edge AI can vastly improve
automation and lower the dependency on human intelligence
of 6G cellular networks. In some critical situations, humans
have to be involved in decision-making. However, humans
may not understand the reason for the predictions of edge
AI-based 6G applications, making it very difficult to make
confident decisions. One of the key goals of edge AI is
self-evolution and self-adaptation so that human efforts can
be reduced when processing data and making decisions.
Furthermore, the development of the model by dynamically
adapting it to unknown events based on the environment
and the features of the data is another key goal of edge AI.
However, due to the black-box nature of some AI algorithms,
it will be challenging to evaluate/audit the effectiveness of
AI models for the challenges mentioned earlier. To address
these challenges, XAI can be used at the edge of AI in
the intelligent control layer so that the 6G will be self-
evolutionary and self-adaptive making it fully autonomous
and the decisions taken by the AI models can be audited
easily by humans.

3) HOW XAI CAN HELP

The lack of explainability can be a severe setback
for edge-intelligence-enabled communication networks for
some applications, such as vehicle-to-vehicle communica-
tions, that require real-time decision-making for preventing
crashes, providing driver assistance, and enhancing traffic
management. Due to this lack of explainability for edge-
intelligence-enabled communication, humans find it difficult
to pinpoint the actual origin of problems in catastrophic
scenarios. Some factors like human intuition, channel mea-
surements, and theoretical analysis have played a crucial role
in the designing of wireless standards and cellular networks.
This approach made the domain experts go with either
computer simulations or theoretical analysis for validating
the building blocks of communication systems. AI models
are expected to provide justifications or explainability for
cellular networks [129].

FIGURE 7. An illustration of XAI for edge-assisted 6G: more justified decisions
improve the resource allocation between cloud, edge, and sensors.

The base stations integrated with edge intelligence will
be granted precise, robust, and high-speed AI algorithms
through AI-enabled 6G that will ensure safety-critical mass
autonomy for the sub-network settings. The cellular networks
are virtually split based on the many services they offer
through network slicing. Future AI-enabled 6G network
slicing will be allocated based on several human-centric
requirements, such as ethics and safety at the sub-network
level. XAI can help in explaining the behaviors of mass
control systems in terms of the overall policy and also
for individual instances, integrated with system performance
that can lead to trustworthy supervision of 6G-based
services [23].

XAI can play a massive role in guaranteeing the
performance of edge AI-enabled 6G networks where several
network components are integrated for different require-
ments through justifiable results. Verification, validation, and
auditing of decisions at the edge to address the challenges
mentioned above will become simple due to the justification
of the decisions from XAI algorithms. Also, humans may
have to be involved in some stage of decision-making
in mission-critical edges AI-enabled 6G applications like
drone-assisted telesurgery systems, smart grid, and border
surveillance. In those situations, the job of humans becomes
simple as they can easily understand the reasons for the
decisions/predictions of the AI algorithms at the edge as
depicted in Fig. 7, thus enabling the humans to make better
decisions.
The predominant 6G applications, especially involving XR

may use AI incorporating Switched Service Networks that
can automatically endure high Key Performance Indicators
thereby seamlessly managing resources, functions, and
network control. The use of AI would enable multi-sensory
XR applications to automatically provide energy services to
the users to send and develop 3D radio environment maps.
The AI-based 6G functions would be complemented by
“collective network intelligence” wherein the network intel-
ligence, in association with AI algorithms, would run on the
edge devices ensuring distributed autonomy and integration
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of related services [130]. The adoption of XAI would justify
the relevance of the energy services being disseminated
to the users in the development of 3D radio environment
maps. It would ensure that the most appropriate services
are disseminated, being mapped accurately with the specific
user requirements. In [131], XAI is proposed to be used by
the authors to make the healthcare professionals understand
the findings of the DL algorithms to control COVID-19-like
pandemics using edge-enabled 5G and beyond networks. The
proposed XAI-based solution will ensure that the findings
of the ML-based algorithms are justified, which will help
the ethical acceptance of the deep neural network model to
combat the pandemic situations by healthcare professionals.
In this context, some of the XAI frameworks such as LRP,

SHAP, and LIME can be applied to edge AI empowered
6G to interpret the decisions of AI algorithms that can help
the stakeholders do not have stringent performance require-
ments in terms of storage, latency, etc., for autonomous
maintenance of the futuristic cellular networks. However, to
fully realize the potential of integrating XAI with edge AI
empowered 6G, several issues such as a reduced performance
of the AI algorithms (to make them more explainable, the
complexity of the algorithms may have to be compromised,
which may reduce the performance of the AI algorithms),
lack of metrics to measure the performance of the XAI
algorithms, have to be addressed.

F. NETWORK AUTOMATION AND ZSM
1) INTRODUCTION

New business models will be unlocked using technolo-
gies like SDN, MEC, network slicing, and NFV in 5G
and beyond cellular networks [132], [133]. The increase
in flexibility, cost efficiency, and performance, along with
inter-domain cooperation and agility, results in a massive
increase in complexity in the management and operation
of 5G and beyond networks. Hence, the solutions provided
by conventional methods may be inefficient in network and
service management. Thus, it is inevitable for management
operations through closed-loop automation. Management
automation through self-managing capabilities will improve
the efficiency and flexibility of delivering services and
reduce operating expenses [134]. Zero Touch Network and
Service Management (ZSM) was established by ETSI to
achieve self-managing capabilities. ZSM reference architec-
ture aims to specify an E2E service and network management
services that are fully automated, without the intervention
of humans [11], [135].

2) REQUIREMENTS AND CHALLENGES

AI/ML and Big Data analytics are key enablers for 100%
automation in cellular networks. AI algorithms can learn
from the vast amount of data generated in the 6G cellular
network. They can play a vital role in the self-management
of the network (self-configuration, self-protecting, self-
optimization, and self-healing), resulting in reduced human
errors, accelerated time-to-value, and lower operational costs.

AI/ML algorithms can be applied to raw data, filter the
important events from the large volume of events, identifi-
cation of problems in the network, and then send the most
vital information to the upper layers [136]. However, the
successful integration of AI/ML techniques in ZSM for full
automation depends on the interpretability and transparency
of the AI/ML models to ensure transparency, reliability,
trustworthiness, and accountability in AI-enabled ZSM [2].
The type of ML algorithms used and the input data used
to train them, which enable the ML algorithms to arrive
at the decisions, need to be understood to provide reliable
decisions on any automated tasks in ZSM related to deliv-
ery, deployment, configuration, assurance, and optimization.
The end-user finds it challenging to explain the approach
followed by the ML algorithms to arrive at the results due
to the increased complexity of the used ML algorithms. This
situation is especially faced by users, particularly when a
series of updated models are applied to analyze the large
volumes of data generated. To address these issues, XAI
has to be embedded with the intelligent control layer of
6G architecture, so that the 6G cellular networks are fully
automated and the decisions taken by the 6G network based
on AI algorithms can be better understood by the network
operators.

3) HOW XAI CAN HELP

Emerging networks are becoming more dynamic and com-
plex with each passing day. Hence, data management
in contemporary cellular networks is more complex. The
traditional approach of data management in cellular networks
involves the extraction of information/data generated from
measurements/logs and individual events, and then assem-
bling or correlating them together, later creating a summary
event that humans can use to make decisions. Due to
the huge quantity of data generated, simple correlation
techniques for data management don’t work in the current
scenario. Hence, AI/ML algorithms have a huge role to
play in managing present-day cellular networks. However,
as more sophisticated ML algorithms are applied, end-
users find it challenging to explain the approach used by
the ML algorithms, especially in scenarios where multiple
updated models are employed over time. With its ability
to provide justification and interpretability, XAI has vast
potential to address the challenges mentioned above in
integrating AI with ZSM. To facilitate XAI for ZSM, the
authors in [137] have proposed to add a dictionary that acts
as a repository to capture the AI models used in the system.
The authors proposed the usage of factor graphs or directed
acyclic graphs to represent the taxonomy of AI models.
To add the input/output variables and attributes of specific
AI/ML algorithms used, the authors also proposed using
the algorithm instance repository. In this way, the resulting
events can be labeled. The analysts can use this metadata to
do reverse engineering and come up with an explanation of
the results.
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For example, holographic telepresence, a typical 6G
application in video conferencing, can project full-motion 3D
images in real time. In the case of healthcare, holographic
telepresence has immense importance in trauma care and
surgeries enabling patients and clinicians to communicate
across geographically distributed locations. The need for
such technology has been experienced at its peak during the
COVID-19 pandemic, which required high-paced care and
rendering of specialized services to the patients. The dissem-
ination of such applications is dependent on large bandwidth
network communication and related services which would
transmit clear holographic transmission using smart devices.
The holographic projections are pre-programmed and the
necessary projection requires significant manual interven-
tions for efficient resource allocation and communication
among the stakeholders [138]. The implementation of ZSM
will automate resource allocation and ensure seamless data
transfer of holographic communications. ZSM involvement
includes collecting full-motion 3D images from the source,
which are then analyzed to trigger necessary actions for the
executor or consumer of the analytics function. Thus, the
intent of the service consumer gets fulfilled autonomously,
rendering the required services and resources in 6G. The
use of XAI ensures justification for the identification of
appropriate managed resources and rendering the most suit-
able services seamlessly to the stakeholders in a holographic
telepresence environment.
Stakeholders can use XAI algorithms such as PIRL as

legal auditors and can trace back the automated decisions
taken by ZSM to automate several network management
services in 5G and beyond networks. Specifically, network
administrators can better understand the details regarding
network maintenance, implementation of upgrades, and
monitoring of attached network devices. In this way, network
operators can seamlessly execute performance management,
configuration management, and fault management. However,
as the decisions taken by ZSM may be critical and may affect
the network bandwidth and resource allocation, performance
degradation of ML algorithms due to the integration of XAI
poses a challenge that has to be addressed.

G. OTHER TECHNICAL ASPECTS
Providing end-to-end virtual networks that cater to the
diverse and customized needs of heterogeneous applications
is one of the key technical requirements in 6G, that can be
realized by network slicing (NS). Managing resources and
functions in NS is a challenging and crucial task, where
efficient decisions are required at all levels of the network
in real-time. Hence, AI can play a vital role in automating
the decision-making for these key tasks in NS [139]. As
these decisions involve complex management of resources
that have financial and service quality, making the human-
in-the-loop understand the rationale behind these decisions
is of paramount importance. Integrating XAI algorithms into
6G improves the credibility and accountability of resource
allocation in NS [140].

V. XAI FOR 6G USE CASES
Most visionary 6G applications need the support of AI
and intelligent automation to realize their full capability.
This section overviews comprehensively the potentials of
XAI for such typical 6G use cases [7], [8], [13], [21],
[141] including intelligent health and wearable, industry 5.0,
collaborative robots, digital twin, CAVs and UAVs, smart
grid 2.0, holographic telepresence, metaverse and smart
governance in 6G. Specifically, for each use case, it first
introduces the motivation, which explains why this use case
is important and required urgently. Then, it analyzes the
enabling technologies required, which normally include the
6G communications technologies and AI algorithms. We
also introduce some important existing work in the literature
under each use case. Last but not least, we explain why XAI
can enhance trust between humans and machines in each
specific 6G use case and potential issues due to XAI. The
XAI requirements of these 6G use cases are summarised in
Table 5.

A. INTELLIGENT HEALTH AND WEARABLE, BODY AREA
NETWORKS
1) MOTIVATION

The advancement of 6G is expected to drive an inno-
vative development of eHealth systems and improve the
performance of medical and healthcare services with
advanced AI/ML algorithms [142]. The upcoming 6G com-
munication can provide eHealth applications and services
with ultra-high data rates and ultra-low latency for a huge
number of connected devices. In this context, an eHealth
system is capable of real-time monitoring and tracking,
recording health information, and storing eHealth records in
cloud-based computing infrastructures. Furthermore, it can
exchange medical records and health reports and provide
a remote diagnosis by connecting different health service
providers in a network [143], [144]. Nowadays, eHealth
solutions enabled by 6G can be extended to various sce-
narios, such as hospitals, sports, homes, and pharmacies,
in which the QoS for all eHealth applications and services
should be ensured in indoor and outdoor environments. More
importantly, 6G-enabled Internet of Medical Things (IoMT)
networks promisingly provide precise medical services by
applying AI/ML algorithms to process healthcare and med-
ical data besides very high-quality connectivity [145].

2) REQUIREMENTS

As the healthcare data acquired by various multimodal
sources has a large volume, high velocity, and diversified
variety, exploiting ML algorithms and DL architectures
to develop data-driven solutions has been attracting much
more attention from healthcare and medical communities
via academic research and industrial products. An AI-
aided eHealth system should process different data types
(e.g., sequential versus high-dimensional data and structured
versus unstructured data) and deliver high-quality services
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with exceptional accuracy (e.g., image-based cancer detec-
tion and recognition) and very low latency (e.g., online
surgery via video streaming) [146]. In several healthcare and
wellness services, raw sensory data collected from wearable
devices usually have noise and outliers. Therefore, AI-based
solutions should learn complicated patterns from messy
datasets effectively. Compared with data in other sectors,
healthcare, and medical data are more sensitive to security
and privacy, hence ML-based solutions can be studied to
automatically detect privacy threats and protect data from
cyberattacks in distributed cloud-based systems. Recently,
federated learning (FL) was introduced to overcome such
kinds of data security and privacy by sharing the information
of trained local models instead of the raw data from edge
users [147]. Due to the diversity of healthcare data, including
sensory data, electronic medical reports, and medical images,
collected by different healthcare centers with heterogeneous
formats, 6G should specifically regulate data acquisition,
storage, and data interoperability in the data mining and
analytics layer of 6G-enabled IoMT networks, besides data
privacy to prevent the sensitive patient information from
cyberattacks. Moreover, from the perspective of AI-aided
intelligent healthcare services, a hybrid architecture, i.e., a
combination of centralized architecture and decentralized
architecture, should be deliberated for distributed learning
with a centralized training decentralized execution strategy.

3) EXISTING AI SOLUTIONS

The last few years have witnessed ubiquitous utilization
of ML algorithms and DL architectures for a variety of
healthcare and medical applications [148], such as physi-
cal activity recognition with time-series sensory data and
diabetic retinopathy recognition with multimodal images.
The authors in [149] proposed an intermediate fusion
framework for human activity recognition using sensory
data of wearable devices, in which the deep local features
extracted by a deep convolutional network were combined
with descriptive statistic features to improve the recognition
rate. Subsequently, the fused feature vectors were passed
into an SVM classifier to predict activities. A comprehensive
diabetic retinopathy recognition method [150] leveraged DL
technology with CNN architectures to learn the amalgama-
tion between fundus images and wide-field swept-source
optical coherence tomography angiography. In this method,
a twofold feature augmentation mechanism was advanced
to enrich the generalization capacity of the feature level
and prevent CNN from the vanishing gradient problem.
In another work [151], a two-stage learning model with
CNN architecture was presented in a lung nodule detection
method to overcome the heterogeneity of lung nodules and
the complex pattern of the noisy tomography image dataset.
The proposed deep model not only improved the accuracy
of early lung cancer detection but also facilitated small-
scale datasets with a random mask-based data augmentation
scheme. Recently, ML and DL have been applied for many
other healthcare and medical applications using different

data types, such as sleep analysis with electroencephalog-
raphy signals collected by wearable in-ear devices [152]
and retinopathy risk progression monitoring with electronic
medical records [153].

4) HOW XAI CAN HELP

XAI becomes a promising solution for AI models used in the
healthcare sector with many benefits such as transparency
improvement of AI-based illness diagnosis [154], AI-based
drug trial result tracking [155], and model augmentation
for health monitoring [156]. Moreover, XAI provides clear
explanations on the importance of health parameters such
as patient count, patient ages, gender, pre-conditions, and
environments to healthcare stakeholders such as drug devel-
opers, doctors, health center, etc. [157]. For personalized
healthcare in clinical practice, XAI can offer the most
appropriate feature set of an intelligent model based on
relevant explanations. In [158], an XAI processing pipeline,
namely feature selection and classification for improving
XAI (SCI-XAI), was developed to automatically select
feature engineering as well as classification techniques to
achieve the best performance of different fundamental tasks,
such as detection and classification. SCI-XAI is bench-
marked by a fidelity-to-interpretable ratio that measures
how much of the model’s interpretability is sacrificed for
performance. In [159], Schoonderwoerd et al. proposed
a human-centered XAI approach, denoted DoReMi, to
generate explanations for clinical decision support systems.
Remarkably, this approach can provide explanations with
multiple levels of interpretability and understandability for
different XAI stakeholders, including service providers and
end-users (e.g., clinicians and patients).
In [160], four model-agnostic XAI techniques (including

LIME, SHAP, Anchors, and inTrees) were applied to
explain the results derived from an XGBoost classifier
for ultrasound image analysis in the application of high-
risk asymptomatic carotid plaques prediction. The local
explanations generated by different XAI techniques are
compared and then synthesized to offer global explanations
that can explain the operation specification of the entire
model. Four XAI techniques were evaluated using different
explainability metrics (including clarity, parsimony, com-
pleteness, and soundness) in local explanation generation and
global explanation synthesis. As a result, model designers
conceive the advantages and disadvantages of each model in
associating and supporting XGBoost, and further measure the
correlations between individual local explanations and the
global explanation. With the detailed and clear information
derived from XAI, doctors and medical specialists can
identify the status of carotid plaques (e.g., shape, location,
period, and level) to obtain a more accurate diagnosis
and then guide the most appropriate treatment. DL with
CNN architectures has been widely used for medical image
analysis and demonstrated high performance in terms of
accuracy for various fundamental tasks, including detection,
classification, and recognition [161]. With the black-box
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FIGURE 8. An example of XAI with visual explanation for CNN-based diabetic retinopathy recognition.

nature, deep CNN models with a low level of account-
ability and transparency fail to explain and articulate how
their decisions can be reached. Consequently, understanding
the operation mechanisms of black-box models is nearly
impossible for stakeholders, including end-users and service
providers. In this context, it is crucial to develop models that
are inherently interpretable to render traceable explanations
of AI outcomes. In [162], the combination of saliency maps
and gradient class activation mapping (Grad-CAM) [40]
was explored to improve DL explanations of prostate lesion
localization while keeping high performance in terms of
accuracy of lesion classification. The saliency maps and
Grad-CAM techniques can emphasize not only the individual
pixels but also the feature maps that yield the greatest change
in class score, which improves the clarity of visual-based
explanations and reduces the amount of noise accordingly
in localization and segmentation tasks.
For computer-aided skin lesion analysis and diagnosis

with human-friendly explanations, Lucieri et al. [163]
proposed ExAID, an explainable AI for a dermatology
framework, capable of handling multimodal inputs. The
ExAID framework leveraged an activation vector technique
to translate the outcomes of deep networks to human-
understandable concepts and explored a localization maps
technique to highlight these concepts. Subsequently, the
relevant concepts are assembled to construct fine textual
explanations, which can be combined with concept-wise
location information to offer more coherent multimodal
explanations. Besides the ability to access data and come
to conclusions, XAI can provide doctors and specialists
with the decision routine information to understand how
those conclusions are reached. Meanwhile, few conclusions
require hints of human interpretation [164]. As a result,
with XAI, doctors can explain why a certain patient has a
high risk of health problems when he should be admitted to
the hospital for supervision, and what treatment would be
most suitable. An example of applying XAI with a visual

explanation technique to recognize image-based diabetic
retinopathy is illustrated in Fig. 8. Although current XAI
techniques can fulfill the interpretability of black-box models
with meaningful explanations to XAI stakeholders, they
reveal some serious concerns about the security and privacy
of medical data and patient results [165]. In summary, for the
service providers, XAI will improve the quality and privacy
of healthcare and medical data that is collected in the 6G
intelligent sensing layer across heterogeneous IoMT devices
and medical systems (e.g., smartphones, smartwatches,
electronic medical report systems, and medical imaging
systems), enhance the compatibility and interoperability
of hardware and software produced by different original
equipment manufacturers, and improve the performance of
healthcare and medical diagnosis with more coherent and
confident treatment plans based on the combination of expert
knowledge and explainable result. For the end-users, XAI
will provide more detailed numerical analytics and semantic
explanations on each medical diagnosis’ decision to enhance
the trust of patients and the confidence of doctors and
medical technicians.

B. INDUSTRY 5.0, COLLABORATIVE ROBOTS, DIGITAL
TWIN
1) MOTIVATION

Different from Industry 4.0, which spearheads the explosion
of IoT, cognitive computing, big data, and AI over technical
interconnectivity and decentralization, Industry 5.0 commits
the human touch of business and intelligent systems back
into development and production. The primary mission of
Industry 5.0 is to create a significant revolution in industrial
processes, manufacturing, and business, where problem-
solving and creativity-making are the superior objectives
instead of replacing repetitive jobs of people with automated
robots [166]. In this context, the combination of increas-
ingly powerful machines and well-trained experts motivates
effective, safe, and sustainable production, in which highly
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skilled operators and automated robots can work safely and
effectively side-by-side on the same manufacturing role to
produce personalized and customized products. Such kinds
of robots are known as collaborative robots and should be
designed to accomplish different heavy-precision tasks with a
high consistency guarantee. Digital twins, recognized as vir-
tual models of the process, product, or service enabling data
analysis, system monitoring, and operation and performance
assessment via simulations, are promising solutions to
optimize business and manufacturer outcomes over managing
the entire life cycle of a product [167]. Relying on the
comprehensively predictive and descriptive capabilities of
digital twins allows customers to comprehend the experience
of product functionalities along with operational optimization
fully, while manufacturers provide maintenance services to
guarantee digital twins are manageable and profitable [168].
In summary, Industry 5.0 is made possible by 6G, offering
vast personalized information that surpasses the capabilities
of 5G. Similarly, the digital twin will go the extra mile
due to 6G, providing ultra-low latency for interactions with
real-life objects in a much finer granularity and richer
information that is far beyond image, audio, and video. In
addition, AI integration in different segments (i.e., RAN,
Edge, and Core) of 6G networks is needed to realize
better digital twin applications than using AI only at the
application level (i.e., 5G does not support network-level
AI for the moment). To put it simply, the digital twin
will completely characterize a virtual representation of the
physical system along with remote sensing, computing,
communication, security, and privacy technologies to enable
6G-based IoE services and applications with the capability of
automatic planning, analysis, proactive monitoring, control,
preventive maintenance, optimization, and business decision
making. In the meantime, the digital twin should exploit AI
as a native part integrated with not only the smart application
layer but also other ones, including the intelligent sensing
layer, data mining layer, and intelligent control layer, thus
allowing the deployment of different types of digital twins
(e.g., from micro to macro level with component/part, asset,
system/unit, and process) more accurately and consistently
with the physical entity.

2) REQUIREMENTS

In the Industry 5.0 era, we expect to see an intensive
upgrade from cyber-physical (i.e., using digital technologies
to operate factories to reduce human participation) to
human-cyber-physical. Interestingly, as with the foreseeable
evolution of collaborative robots and digital twins, AI plays
a vital role. This involves processing raw data from sensors,
analyzing high-level information, and providing decisions
and recommendations automatically. At the center stage
of this new revolution, humans should work alongside
collaborative robots with the support of digital twin systems,
teach them to do tedious, repetitive, and dangerous tasks,
and correct them when they make operation mistakes or
conduct wrong decisions [169]. Besides the requirement for

faster and smarter decision-making in such manufacturing
tasks and processes, we desire collaborative robots and
digital twins for Industry 5.0 to be more understandable
and interpretable, which means, they can explain actions
and decisions derived from AI/ML models. The complexity
and sophistication of AI-powered automated manufacturing
systems rapidly increase to argue that humans cannot
understand the ambiguous mechanisms of AI systems,
especially when they deliver unpredictable and unexpected
decisions [170]. For preparing the incoming wave of Industry
5.0 with mega-factory, collaborative robots, and digital
twins, 6G should support offloading of real-time intensive
computations tasks, hyper-fast data rate, extremely low
latency communications, and highly flexible compatibility
of massive IoT devices. In addition, as expected to become
an essential requirement in the manufacturing environments,
the trustworthiness should be improved with secure-by-
design for trusted hardware/software and XAI for preventing
adversarial ML.

3) EXISTING AI SOLUTIONS

Nowadays, collaborative robots are being developed to
support automatic inspection and corrective action in high-
precision control systems [171], [172], in which there is
an AI-enabled intelligent module designed with DRL to
effectively learn and adaptively act based on inspection
results. The approach shows two primary advantages: first is
learning the AI model continuously without shutting systems
down, and second, its extensibility to different real-world
scenarios. In [173], a dual-input DL model was developed to
improve the performance of human-robot collaboration and
allow robots to learn from human demonstrations effectively.
This model synthesized the assembly contexts of multiple
human demonstration processes and tasks to accomplish
suitable assistant actions. Compared with traditional feature-
based approaches being more complex and time-consuming
for labeling a huge amount of data, the proposed method
can annotate data labels automatically by perceiving human
demonstrations. In another work [174], RL with CNN
architecture was leveraged to optimize the working sequence
of human-robot collaborative assembly, which increases
the working performance of smart manufacturing systems.
Some complicated learning use cases, such as robot random
failure and human behavior uncertainties, were further
taken into consideration to satisfy real-world conditions.
For the promotion of fully smart manufacturing, cognitive
digital twins [168] were presented by incorporating different
modern digital technologies, including industrial IoT, big
data, ML, and virtual reality, which aimed to analyze and
simulate operation modules, assets, systems, and processes.
In [175], a secure industrial automation system was built
based on a digital twin replication model to identify and
verify multi-level design-driving security requirements using
sophisticated simulations and optimizations. The digital twin
technology was also exploited in some heavy industry
sectors [176], such as shipbuilding, steel production, and oil
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FIGURE 9. An illustration of XAI for Industry 5.0, where the goal of XAI for different subjects varies: XAI helps end users trust AU’s decision while XAI makes engineers or
scientists understand the process of ML systems completely.

and gas, to enhance safety and productivity while reducing
operational costs and minimizing health risks and accidents.

4) HOW XAI CAN HELP

XAI enables humans to understand certain aspects of AI-
aided processes or systems, in which XAI answers such kinds
of questions: why is the prediction reliable, what are the sta-
ble working conditions of an AI model, and when is it likely
to crash; and provides more extra deep-analyzed information
about system parameters, operation factors, manufacturing
environments, and customer feedback to industry stakehold-
ers like system engineers, operators, and factory managers.
XAI becomes a sustainable solution for conventional and
advanced AI models developed for applications and services
in the manufacturing sector for trustworthiness improvement,
transparency enhancement, and result interaction of AI-based
predictive maintenance [177], ML-based manufacturing
diagnosis [178], and data-driven model-based human-robot
collaborative assembly [179].

6G with massive URLLC and O-RAN can lead to
remarkable advances in Industrial IoT (IIoT) and machine-
to-machine (M2M) communications, wherein a huge number
of automated connected edge devices and modules in smart
factories requires a flexible interface, reliable and low-
latency wireless communication, energy efficiency, and split
computing with data synchronization, especially comprehen-
sive XAI with the capability of self-detecting abnormality,
self-monitoring operation, and predictive maintenance. From
the viewpoint of system operators, XAI will improve the
efficiency of automatic system diagnosis and maintenance
based on the sensory data (e.g., sound, image, vibration
signal, acceleration signal, etc.) collected in the 6G intelli-
gent sensing layer, thus reducing time and cost of periodic

system maintenance. In [177], a CNN-based bearing faults
diagnosis method was proposed to classify vibration signals
with the short-time Fourier transform, in which Grad-CAM
was applied to generate the model’s awareness. By analyzing
the awareness, visual explanations of the damage conditions
of rolling element bearings can be carried out.
In experiments, the explanations generated by Grad-

CAM to articulate the decision of CNN were verified
by neural networks, decision trees, and adaptive network-
based fuzzy inference systems in terms of correctness and
persuasiveness. In [178], a LIME-based XAI framework for
chiller fault detection and diagnosis systems, denoted XAI-
FDD, was proposed to interpret data-driven classification
and regression models like XGBoost and other traditional
models. In association with AI models, LIME ranks the
importance of sensors based on the failure detection rate,
identifies the top of dominant handcrafted features for
failure type classification, and estimates the correlation
between configurable parameters (e.g., minimum of instance
weight and maximum delta step) and learning convergence.
Moreover, XAI-FDD provides AI stakeholders with more
meaningful diagnosis information, such as a set of frequently
fault modules and components in a chiller system and a
set of promisingly effective solutions to overcome failures,
thus reducing the cost of system maintenance and avoid the
system shutting down. In industrial control systems, analysts
should intervene and respond immediately when any sensor
fault is automatically detected by AI models. However,
many high-performance detection models have been limited
by weak interpretability and explainability. In [180], a
comprehensive XAI framework was deployed with Deep
SHAP and Gradient SHAP to explain the prediction results
derived from LSTM networks and to interpret the feature
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importance of predictions without compromising the accu-
racy of deep models. In experiments, it was concluded that
Deep SHAP consumes much processing time to interpret
complex deep networks (e.g., RNN and LSTM) and Gradient
SHAP presents some advantages in handling multiple input
models with a comfortable complexity.
Intelligent robots without explanatory capability may

cause failures and dangerous actions unexpectedly, hence
interpretability and explainability, including post-hoc ratio-
nalization and introspection, should be supposed to ensure
no conflict between supplementary explanations and reg-
ular requirements of applications. To reach human-like
communication in human-robot communications, a novel
XAI framework [181] was developed for collaborative
robots by constructing a hierarchical AI model with a
human-learned And-Or graph-based explanation scheme.
A spatial-temporal-causal And-Or graph (STC-AoG) was
designed to encode tasks and sub-tasks. It incorporates
temporal, spatial, and causal relations between robots and
an agent, enabling robots to understand human intentions.
Based on the comparison between robot and human mental
states updated and inferred by STC-AoG, it is possible to
estimate the difference between expected human action and
predicted robot response to decide whether explanations are
given. Besides graph-based techniques, reinforcement meta-
learning XAI algorithms were studied in [182] to interpret
spatial-temporal attention and emotion of humanoid robots
in collaborative tasks with agents, wherein the explanations
are generated and synthesized by a deep belief network,
rule-based fuzzy cognitive map, and genetic algorithm to
justify robot’s self-awareness and decision-making. In the
next industrial revolution, digital twins using explainable
models and explanation interfaces can become a promising
solution to enhance the trustworthiness of AI [179], where
6G will uplift digital twins in many aspects (e.g., effectively
handle the massive volume of heterogeneous IoT data in
real-time with ultra-low latency and ultra-high throughput,
increase flexibility with IIoT deployment and configuration
for digital twin refinement, improve analysis accuracy in
manufacturing operation and reduce time and cost with
predictive maintenance). Interestingly, as an exact virtual
representation, or virtual clone/mirror, of a real-world asset,
a digital twin enables XAI stakeholders to heighten the
explanatory capability with augmented reality and virtual
reality technologies, for example, the remaining life cycles
of modules/components in a production line and the data
transmission failure in a manufacturing network. In summary,
XAI enhances the efficiency of AI-based manufacturing
operations, particularly with collaborative robots on a
production line. Here, 6G facilitates nearly real-time multi-
robot task assignment (i.e., factory throughput estimation,
device-edge split computing, adaptive computation offload-
ing, optimal energy allocation) in complicated multi-agent
environments and supports conventional AI, including ML
and DL models, with more relevant information (e.g.,
useless features/characteristics of AI for removal without

performance degradation and useful kernels/layers/modules
of DL to improve the accuracy of robot’s decision-making).
With the end-users, XAI plays the role of providing more
detailed explanations and vindications on each action deci-
sion and more numerical analytics (simulation, experiment,
and test of digital twins before implementing on the physical
operation), thus enhancing the trust of customers, operators,
and product line engineers.

C. CONNECTED AUTONOMOUS VEHICLES, UAVS
1) MOTIVATION

Recently, the wealthy development of connected and auto-
mated vehicle technologies is expected to positively change
the manner vehicles move and the approach travelers
obtain mobility. Connected autonomous vehicle (CAV) is
recognized as one of the important vertical industries
in 6G, offering various on-demand services with dif-
ferent quality levels [183]. CAV can mean autonomous
vehicles that have the capabilities of connecting other
vehicles/infrastructures over wireless communications and
sensing the driving environment to achieve safe transporta-
tion with little or no human involvement. By incorporating
advanced technologies, autonomous vehicles collaborate
directly over an intermediate infrastructure to improve the
performance and efficiency of smart transportation systems
if compared with individual autonomous vehicles without
collaborative mechanisms. Indeed, the connected vehicle
and automated vehicle technologies should be developed in
parallel and closely cooperated to put forward completely
smart transportation in the future [184]. To this end, besides
6G-enabled wireless communications, AI plays one of the
most important core technologies in processing a massive
amount of sensory data collected by multiple sensors,
which helps autonomous vehicles understand the surrounding
environments and accordingly execute driving activities. In
addition to CAVs, the emergence of flying platforms such
as unmanned aerial vehicles (UAVs), commonly known as
drones, enables several key potential 6G applications and
services in a broad spectrum of domains thanks to their
mobility, flexibility, and adaptive altitude.

2) REQUIREMENTS

Besides some key connectivity requirements to achieve high-
speed, real-time, and reliable data transmission with different
communication scenarios, including vehicle-to-vehicle
(V2V), vehicle-to-infrastructure (V2I), vehicle-to-cloud
(V2C), vehicle-to-pedestrian (V2P), and vehicle-to-
everything (V2X), CAVs should strictly demand about the
QoS performance of autonomous driving systems. The
requirements may vary according to the autonomous level
of vehicles: no driving automation, driving assistance,
partial automation, conditional automation, high automation,
and full automation. To achieve the baseline autonomous
requirement, a vehicle needs to be aware of its surroundings
during the driving period by first perceiving information and
subsequently acting with vehicle control. To fully understand
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the driving environment, a massive amount of data recorded
by multimodal sensors should be processed automatically
and accurately via a driving computer system with advanced
AI/ML models. Due to the critical demand for safety,
a self-driving AI-powered system is expected to operate
flawlessly regardless of weather conditions, visibility, road
surface quality, and other situational conditions. In this
context, advanced ML algorithms and DL architectures
have been recently exploited to cover all possible driving
scenarios and surrounding environments [185], however,
the trustworthiness of AI systems embedded in CAVs
is questionable. In addition to delivering useful driving
recommendations and ensuring accurate driving activities
promptly to minimize the probability of traffic accidents, a
revolutionary AI system should be both understandable and
explainable. This ensures that drivers feel confident about
their decisions [186].

3) EXISTING AI SOLUTIONS

For safe and efficient operation on roads, CAVs should
understand the current state of nearby vehicles and surround-
ings to predict future driving behaviors, which allows AI
systems to react automatically and immediately. In [183],
a comprehensive survey on AI-aided driving behavior
prediction and potential risk analysis was presented, in which
the advances of DL with different architectures, compared
with conventional ML algorithms, were deliberated in terms
of prediction performance. This survey showed that DL
has been represented as a promising solution to deal with
different sensors (e.g., cameras, LiDAR, and radar) for
complicated driving scenarios. The survey also categorized
the state-of-the-art driving behavior prediction approaches
into three classes: input representation (track history of
target and surrounding vehicles, bird’s-eye view of the
environment, and raw sensory data), output type (maneuver
intention, unimodal trajectory, multimodal trajectory, and
occupancy map), and prediction method (RNN, LSTM, and
CNN). In [187], an innovative road condition supervision
system was developed by learning a deep network to
reduce accidents caused by poor road quality, in which
the sensory data of the accelerometer and the gyroscope
were processed in coordination with GPS data. Suddenly
changing lanes and braking of the leading vehicle, caused by
driver’s distraction, misjudgment, and misoperation, increase
the risk of accidents. An autonomous braking decision-
making strategy was proposed with deep reinforcement
learning in [188] to facilitate low-level control of CAVs
in emergencies. Despite promising as the core of next-
generation intelligent transportation systems, CAVs will face
some hidden security problems relating to the complicated
AI configurations/settings of autopilot systems [189], where
end-users with limited AI experience and knowledge can
be a nuisance and may cause accidents and risky dangers.
ML and DL have been recently leveraged for various
UAV-based applications in wireless communication systems
(e.g., interference management, catching optimization, and

resource allocation [190]) and intelligent transportation
systems (e.g., trajectory planning, traffic flow monitoring,
and navigation [191], [192], [193]). In cell-free and aerial-
assisted vehicular networks [194], UAVs were used to assist
CAVs in making decisions in driver assistance systems (for
example, path planning and crash warning on highway), in
which a supervised learning model was designed with CNN
architectures and optimized with particle swarm optimization
to make timely inference and facilitate online decisions in
real-world scenarios.

4) HOW XAI CAN HELP

The important role of AI in driver assistance systems
in CAVs is undeniable as we move forward to the next
generation of intelligent transportation systems. However,
there is an arguable issue of whether drivers completely
feel confident and secure with AI-based decisions. Several
advanced assistance systems developed by some big com-
panies like Tesla are very complex and have numerous
AI-based functionalities (e.g., automatic parking, adaptive
cruise control, automotive navigation, collision avoidance
system, driver drowsiness detection, and vehicle stability
control), which ask end-users to tune multiple settings to
ensure that the systems will operate smoothly and properly.
The transparency of system operation and the explainability
of decision-making are very immature in driverless cars. For
example, a self-organizing neuro-fuzzy model coupled with
a density-based feature selection technique was leveraged
in [195] to explain automated reacting decisions (e.g.,
braking, speeding up, changing lane to left), in which the
outputs of an AI model were capable of being interpreted
by human-understandable if-then rules. In [196], the rule-
based XAI was also investigated for different flying events of
UAVs, in which the decision of changing the lying path can
be explained regarding the weather conditions, surrounding
environments, and relative enemy locations based on the
representation of if-then rules derived from a fuzzy inference
model. In another work [197], XAI with a random forest
algorithm was proposed to improve the self-confidence
level of autonomous navigation in an autopilot system. The
intermediate information extracted from trees helped explain
navigation autonomy and AI-driven decisions. Most of the
existing works of XAI for CAVs have focused on explaining
the decision of a single system instead of the decision
derived from multiple interactive systems, where changeable
environments and conditions can affect the outputs of
prediction systems and consequently lead to some potential
threats. Indeed, explaining why a vehicle changes a lane or
hits the brakes is a more complicated task. For an early risk-
aware system, a hierarchical AI model [198] was studied to
predict uncertainty and collision risks under the constraint of
account perception, intention recognition, and tracking error.
At the highest level of automation (i.e., a vehicle is

free from geofencing with the capability of reacting as an
experienced human driver), explainability is one of the most
important requirements for not only system developers and

2516 VOLUME 5, 2024



FIGURE 10. An illustration of typical questions that XAI can answer for various CAV
stakeholders (e.g., engineers and passengers) across all AI-powered 6G layers. Note
that the three first questions (left-right) are related to Service Providers and the two
last questions are related to End-Users.

manufacturers but also customers, passengers, and society.
Fig. 10 shows some exemplary questions CAV stakeholders
may raise from each intelligent 6G layer that XAI can
help to answer. Specifically, for the service providers, XAI
will improve the quality of data that is collected in the
6G intelligent sensing layer across heterogeneous devices
(e.g., vehicles, pedestrians, UAVs) and wireless network
conditions (e.g., highway, congested/un-congested urban
scenarios), ensure the trained AI models on the 6G data
mining layer are robust and generalized to diverse scenarios
(e.g., traffic predictions for major/minor roads), and improve
the efficiency of network resource management in the 6G
intelligent control layer in supporting all intelligent functions
(e.g., more switches or routers allocated to congested urban
scenarios.). Those (i.e., sensing layer, data mining layer, and
intelligent control layer) are the main changes required in 6G
when compared with existing 5G architecture. For the end-
users, at the 6G smart application layer, XAI will provide
more detail on each driving behavior decision to enhance
the trust of drivers/passengers in CAVs.

D. SMART GRID 2.0
1) MOTIVATION

The core infrastructure in the smart grid is provided by IoT.
The smart grid, characterized by automation, informatization,
and interaction, provides a diverse and quality power
supply for customers efficiently and securely. To provide
supervision of the assets reliably, information interaction
in real-time, peer-to-peer trading of energy, load manage-
ment, and other electrical services, the smart grid needs
a communication infrastructure, which is flexible and also
highly reliable [199], [200]. One of the challenges in making
the smart grid more sustainable is to manage the remote
communication among various systems that are connected
by smart meters [201]. Smart grid 2.0 is a futuristic
evolution, where seamless connectivity of several power
generation sources such as large-scale renewable energy
sources is offered. In smart grid 2.0, machine-to-machine
communication is facilitated through AI-based algorithms

with no third-party intervention to automate the operations
of the smart grid. Customers can choose economically viable
local microgrids and at the same time pay attention to
reducing the impact on the environment. Smart cities, next-
generation vehicles such as electric vehicles, unmanned
aerial vehicles, and autonomous vehicles would benefit from
their capability of locating the nearest charging pile that
offers the best electricity price [202], [203], [204]. In smart
grid 2.0, smart autonomous contracts will autonomously
execute all the exchanges of energy transactions if they meet
the pre-defined conditions. In the futuristic smart grid 2.0 the
real-time measurements are acquired through IoT sensors,
which would be processed in distributed edge devices
and the data would be transmitted to energy management
systems that use cloud computing. The fusion of big data
analytics and deep learning-based algorithms would help
in realizing self-resilient smart grids [205]. 6G can help
in realizing intelligent applications of smart grid 2.0-like
remote monitoring and remote controlling of distributed
energy resources, automation of demand response, etc. [206].
A smart meter needs the deployment of a distributed network,
and wide coverage is essential in preventing blackouts and
also to ensure the smart grid’s self-healing capabilities.
6G can also help in realizing applications of smart grid
2.0 that require high-speed connectivity, such as predictive
maintenance, video surveillance in real-time or during natural
calamities, recovering proactively during emergency times,
etc. [207], [208].

2) REQUIREMENTS

To deal with the massive volume of data generated due
to constant communication and connectivity in the smart
grid, sophisticated techniques that can analyze the data and
assist in the decision-making process are required [209].
ML can solve the problems arising because of the large
volumes of data generated from smart grids and can assist the
smart grids in the collection of data, analyzing the patterns
existing in the data, and also making decisions to run the
smart grid. An ML-enabled 6G network can benefit the smart
grid by solving some of the issues in real-time such as
automated detection of intruders in the network, forecasting
the price of electricity consumption, electricity thefts, line
maintenance, generation of power based on demand, optimal
scheduling, detection of faults, demand response, prediction
of the stability of a smart grid, etc. [210].

3) EXISTING AI SOLUTIONS

To address the security of the smart grid, Babar et al. [211]
proposed a secured demand-side management engine for the
smart grid using Naive Bayes, a machine learning algorithm,
to preserve the energy utilization in the smart grid. Due to the
increased data generated at a rapid pace in 5G and beyond,
enabling the smart grid, data acquisition, and processing by
a smart meter is vital. The redundant data present in the data
acquired can be reduced by using event-driven sampling. To
address this issue, Qaisar et al. [212] employed the SVM
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FIGURE 11. An illustration of XAI for 6G-enabled smart grid 2.0: stability prediction, energy theft prediction, line maintenance, and charging pile localization.

algorithm to identify the relevant features for analyzing the
consumption patterns of appliances. Providing on-demand
services for electric vehicles through vehicle-to-grid systems
is very important because of the height maneuverability of
electric vehicles. Shen et al. [213] proposed a hybrid archi-
tecture based on cloud and fog computing with applications
in the 5G-enabled vehicle-to-grid networks. The proposed
architecture allows the bi-directional flow of information
and power between smart grids and schedulable electric
vehicles to improve the cost-effectiveness and QoS of the
energy service providers. For proper scheduling, the selection
of suitable electric vehicles is very important. To improve
scheduling efficiency, finding the categories of target electric
vehicle users is required. To identify target electric vehicles,
the authors proposed an artificial intelligence method that
is based on the electric vehicle’s charging behavior. In a
similar work, Sun et al. [214] proposed a novel architecture
for a 5G-enabled smart grid based on edge computing
and network slicing for providing on-demand services for
electric vehicles. This architecture collects the bidirectional
information of traffic between the electric vehicles and the
smart grids to decrease the cost of the energy providers
and improve the charging experience of electric vehicles.
To improve the scheduling efficiency of electric vehicles,
the authors proposed LSTM-based electric charging behavior
prediction, KNN-based classification of electric vehicle
charging, and k-means-based clustering of electric vehicle
charging.

4) HOW XAI CAN HELP

Using XAI in 6G-based smart grid systems will enable the
collection of the most significant data through smart meters

and sensing devices located at the intelligent sensing layer.
This data will be subjected to XAI algorithms to generate
justifiable/interpretable patterns in the data mining layer
(demand response, fault line prediction, closest charging
pile detection). Also, the use of XAI will ensure optimized
resource management, efficient network automation using
ZSM, and accurate information broadcasting through intelli-
gent radio in the intelligent control layer of 6G architecture.
These changes involving XAI in the sensing layer, data
mining layer, and intelligent control layer are required in
the 6G architecture when compared to the existing 5G
architecture. In the application layer of the 6G architecture,
the use of XAI will enable more informed and justifiable
decision-making capabilities for the end users to ensure
enhanced trust and confidence in the smart grid applications.
Kuzlu et al. [215] proposed a forecasting approach based

on an XAI methodology to predict the generation of PV
power, to increase the trustability of AI models, and hence
improve the acceptance of AI in smart grid applications.
Zhang et al. [216] proposed a Shapley additive explanations
(SHAPs) based backpropagation deep explainer, termed as
Deep-SHAP method, that produces an interpretable model
for emergency control applications in smart grids.
Some of the use cases of XAI-enabled 6G for the smart

grid are discussed below and are summarized in Fig. 11.
Use Case 1 (Stability Predictions of a Smart Grid):

Maintaining the stability of a smart grid is of paramount
importance. There are two criteria concerning the stability of
a smart grid. The first criterion is to have a reserve of battery
storage to meet the dynamic demand for electricity. The
second criterion is providing enough capacity for the stability
of the voltage at every location. The instability of a smart grid
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may lead to power outages and blackouts, which may lead
to huge losses in revenue in several industries [217], [218].
ML algorithms can analyze the data from several sensors
in the 6G-enabled smart grid to predict its stability. The
AI/ML algorithms should be able to predict the stability
of a smart grid early so that the operators can take the
necessary actions [219]. Since traditional AI/ML algorithms
could not justify the predictions, the operators of a smart
grid might be reluctant to take preventive or corrective
measures earlier to avoid losses due to instability. XAI can
help smart grid operators identify the causes of the under-
voltage load shedding, the need for secondary control power,
frequency stability, deterministic frequency deviations, post-
fault transient stability issues, and transient stability issues
that make the smart grid unstable. The insights provided by
XAI may encourage them to take immediate action without
further investigation.
Use Case 2 (Detection of Energy Theft in Smart Grid): It

is estimated that approximately 96 Billion dollars are being
lost every year by the utilities due to energy thefts, which
lead to increased prices of energy for the consumers [220].
The energy thieves make use of several methods such as
tapping a line between a house and the transformer, hacking
into meters of neighbors/their meters, and tampering with
the meters [221]. To minimize electricity thefts, we have to
identify the most likely cases of theft that can be investigated
further. By training the ML models on the data from the
smart meters, other external factors like geographic risk in
a particular area, and weather in a 6G enabled smart grid,
we can generate such a list in real-time that will enable the
operators to take appropriate measures immediately [222].
There is no fixed solution regarding the action taken by
the investigators/operators of the smart grid. For example,
a meter that is reversed may have to be disconnected, if
a meter is intruded, the household has to be alerted, and
also the meter that is altered has to be replaced, etc. XAI
can be helpful in this scenario to explain what kind of
theft may happen so that the operators of the smart grid
can take relevant action to address the issue. XAI can help
smart grid operators can also identify energy theft caused
by physical obstruction, electrostatic attacks on electronic
meters, obfuscation of the energy meter, the introduction
of foreign material into the energy meter, and direct line
connection.
Use Case 3 (Line maintenance in Smart Grid): The

reliability of a smart grid depends on the proper maintenance
of the infrastructure. The deterioration/aging of a transformer
or power lines (e.g., due to weather conditions) has to be
detected at an early stage to prevent the failure of equipment
that may cause power outages and blackouts [223]. The
conventional AI/ML methods in a 6G-enabled smart grid
can predict the aging/deterioration of the lines based on data
generated from the sensors such as humidity, weather, and so
on in real time. XAI can be used efficiently in these scenarios
to identify the exact location and reason for the deterioration
of the power lines so that the maintenance crew can be sent

to the exact location with the heads up on the reasons so
that they can take actions to limit/avoid the damages.
Use Case 4 (Location of Closest Charging Pile by Electric

Vehicles): In the futuristic Smart Grid 2.0, electric vehicles
can choose the closest charging pile that offers the best
price for charging electricity. To realize this, a 6G commu-
nication network, which offers ultra-reliable and low-latency
continuous services, is essential to monitor constantly the
geographical location of the electric vehicles and also to keep
searching for charging stations near the location of electric
vehicles. ML algorithms can help to identify the requirement
of the amount the charging for the vehicles and also the apt
charging station. However, the black-box nature of the ML
algorithms makes it difficult for electric vehicles to choose
the charging station among the available piles. XAI can come
in handy in this situation. With justification provided by XAI,
owners of electric vehicles can get a clear picture of which
charging stations can offer electricity charging at optimal
pricing considering many factors such as the distance of the
charging station from the location of the vehicle, incentives
offered, etc. This will help owners of electric vehicles select
a charging station based on the analysis provided by XAI.
Hence, XAI-enabled 6G can play a vital role in realizing
several futuristic and autonomous services of Smart Grid 2.0
for electric vehicles.
It is assumed that the XAI algorithms such as PIRL, SHAP,

and Facets can be integrated with 5G and beyond cellular
networks so that the grid operators can benefit from the
justifications/explanations provided by the XAI algorithms
that can help them in making apt decisions in several smart
grid 2.0 applications/scenarios. Even though XAI has a
tremendous potential to improve the operations of smart grid
2.0 by bringing in more transparency and justification of the
results obtained by AI algorithms, some challenges are to
be addressed to reap the benefits of XAI-enabled 5G and
beyond in smart grid 2.0 applications. One challenge is that
due to the lack of metrics to measure the performance of the
XAI algorithms, grid operators may face a severe challenge
while making decisions in real-time.

E. MULTI-SENSORY XR APPLICATIONS, HOLOGRAPHIC
TELEPRESENCE, METAVERSE
1) MOTIVATION

Extended Reality (XR) is a combination of all immersive
technologies such as virtual reality (VR), augmented reality
(AR), mixed reality (MR), etc. These immersive technologies
are used to extend the reality that is experienced by the
creation of an experience that is fully immersive or by
amalgamating the real and virtual worlds using multiple
sensors [224], [225]. XR has many real-time and practical
applications in many sectors where the travel cost and time
for the customers can be saved, such as entertainment, retail,
healthcare, real estate, marketing, remote working, disaster
handling, etc. [226], [227].
Holographic Telepresence is a technology, where the

systems can project real-time, full-motion, realistic 3D
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images of people located in distant places into a room,
with real-time audio communication, which will make the
users feel as though they are communicating with people
in person. Unlike in AR or VR, users don’t require any
device, sensors, or headsets to experience holographic telep-
resence. In holographic telepresence, the captured images
of people at remote locations along with their surrounding
objects will be compressed and then transmitted through
a broadband network. These images will be decompressed
at the users’ end and then projected through laser beams.
Holographic Telepresence has the potential to revolutionize
traditional communication via mobile phones by giving
immersive experiences to users. It has huge potential in many
other applications of communications such as telemedicine,
enhanced television and movie experiences, gaming, adver-
tising, robot control, aerospace navigation, 3D mapping, and
other simulations [228], [229].
Metaverse is a trending term that is the convergence of two

principal ideas: virtual reality and digital second life, and has
been very recently attracting much more interest from various
academic communities and big tech companies [230], [231].
Different from AR which can deliver to users the experiences
of video streams and holograms in the real physical world,
VR is responsible for conveying immersive experiences in
the virtual world. With a VR headset, users can experience
numerous services and applications in the metaverse, and
create their hyperreal content [232], [233]. In this con-
text, a variety of AI algorithms have been applied and
developed in VR devices to improve the human-machine
interactive experience based on modeling and learning
visual information. Some metaverse projects (for example,
Decentraland and Sandbox) have successfully built virtual
reality platforms, in which AI contributes in many aspects,
such as image retrieval, image quality enhancement, and 3-D
video rendering.

2) REQUIREMENTS

XR and holographic telepresence technologies require a
communication network that has near-zero latency, and fast
processing of the information from sensors. 6G, through its
attributes like connection density, user-experienced data rate,
scalability, mobility, reliability, and traffic volume density,
can play an efficient role in realizing the true benefits of
XR [141], [234], [235], [236].

3) EXISTING AI SOLUTIONS

AI can be effectively used for self-managing the participating
devices in 6G-enabled multisensory XR and holographic
telepresence technologies. Some of the potential applications
of AI in the end devices in these applications are to
understand the environment by applying computer vision to
analyze the multidimensional knowledge from the images
captured by the devices, reduction of network volume by
enabling AI-based applications in mobile devices, etc. Some
of the potential applications of AI/ML in multi-sensory XR
applications and Holographic Telepresence are [237]:

• Estimation of the Position of Objects: The object’s
position (such as fingers, hands) can be inferred for
controlling the content of XR [238].

• Labelling of Scenes and Images: Triggering XR labels
with image classification [239].

• Semantic Segmentation and Occlusion: Segmentation
and occlusion of the specified objects [240].

• Object Detection: The object’s extent and position in a
scene can be estimated to form colliders and hitboxes
to enable interactions between virtual and physical
objects [241].

• Recognition of Audio: Triggering the effects of AR
through recognition of keywords [242].

• Recognition and Translation of Text: The application
interfaces of XR can be used for overlaying the text
detected from an image into the 3D world [243].

• Content Generation: Designing of environment, char-
acters, and other graphical objects [244].

• Virtual Humans: Training of animations so that they
can respond in real-time [245].

• Virtual Assistants for Dynamic Customer Experiences:
Training of virtual assistants that answer the queries of
customers to provide a virtual experience on the latest
trends [246].

4) HOW XAI CAN HELP

XAI can offer valuable reasoning and justification
for predictions/classifications, persuading XR/Holographic
Telepresence application providers to base decisions on
AI/ML outcomes. For example, precise estimation of human
hand/finger positions is crucial in controlling XR content.
AI/ML algorithms can be used to estimate the position of
the objects. Real-time decisions based on AI/ML recommen-
dations may occasionally result in inaccurate XR content
due to false positives. If the 6G is enabled with XAI, the
application providers will understand the reasoning behind
the predictions/classifications by the AI/ML algorithms
that can help them make accurate decisions in real time.
Similarly, if 6G is enabled with XAI, the virtual assistants
can provide accurate information to customers [247].
In holographic telepresence-based applications, the use

of XAI will enable the generation of realistic 3D images
(e.g., human anatomy, clinicians, human holograph images)
of individuals located in geographically distributed locations
in the intelligent sensing layer. This data will be processed
using XAI algorithms providing a realistic and immersive
experience for the users without the use of any physical
devices, or sensors for achieving optimum quality holo-
graphic presence. In the intelligent control layer, the use
of XAI would enable seamless and faster processing of
data via network automation and ZSM, optimized resource
management ensuring near zero latency while streaming of
the 3D images ensuring justifiable decision making by the
stakeholders in the intelligent control layer within the 6G
architecture. The aforementioned changes are essential for
the integration of XAI into 5G architecture for realizing the
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true potential of holographic telepresence applications in 6G.
The use of XAI will enable the realistic presence of the end
users and the accurate positioning of objects in a holographic
telepresence environment ensuring accurate decision-making
at the 6G smart application layer.
The authors in [248] proposed guidelines for using

XAI techniques and simulations using XR for secured
human-robot interactions. The authors suggested that the
proliferation of high-fidelity VR-based simulation environ-
ments will result in the reduction of barriers in cataloging
and performing postmortems in operations by robotics that
may result in the characterization of more rigorous behavior
of autonomous system behavior and promote the adaption
of explainable techniques in their controllers.
When XAI is integrated with 5G and beyond cellular

networks, it may lead to performance degradation of the
AI algorithms to enable explainability. In the metaverse,
many VR-based services and applications leverage advanced
AI models to enhance user experiences with interactive
activities; however, they are usually presented as black
boxes without interpretability and explainability. In the
effort to completely explain AI decision-making processes,
a variety of XAI algorithms and methods can be studied
for many development tasks (e.g., object detection, semantic
segmentation, image super-resolution, 3D video rendering,
etc.) in the metaverse framework. For instance, with LIME
and LRP, 3D designers and computer vision scientists who
apply DL to build virtual worlds can understand and explain
what is happening inside deep models and when they are
likely to be broken down.

F. SMART GOVERNANCE
1) MOTIVATION

Smart governance is perceived as the intelligent use of ICT
and innovation to facilitate and support enhanced decision-
making, planning, and citizens’ role through collaborative
decision-making [249]. The motivation of smart governance
is similar to the ones realized under the ideals of good
governance [250] in modern-day democracies, with an
additional focus on ICT to uphold the ideals, ensuring
the development and welfare of the public and public
resources [251]. The fundamental challenge that remains
relevant in the existing governance is that of corruption [252]
and unfair policies, and methods, to improve education,
security, transport, resource management, and economic
infrastructure, which is where smart governance is envisioned
to offer better solutions.
Presently, 5G is enabling hyper-connectivity, decreasing

latency, increasing traffic capacity, and improving throughput
compared to 4G and its predecessor networks. Causing
an evolution in smart governance applications due to
unprecedented levels of real-time information from any
device, anytime, and anywhere, while improving public
infrastructure and experience [253]. The main beneficia-
ries of smart governance are the general public and the
government. The demand for smart governance will grow

with the growth of 6G to drive innovative applications
enhancing the user experience of governance by collecting
user data and rewarding with enriched information through
the advancement in AI and XAI [254], such as finding the
quickest path to a destination, following election campaigns,
law enforcement decisions or guidelines, or postal service
tracking.

2) REQUIREMENTS

To fully realize the vision of smart governance, we need ICT
services with high bandwidth connectivity and more devices
to connect and communicate with more focus on understand-
ing decision-making. The understanding of decision-making
means the Internet supports XAI, empowering users with
the decision and accompanying explanations to keep the
user informed. This decision-making and explanation would
require real-time operations, such as while driving in coop-
erative traffic management; therefore, high latency would be
catastrophic. Complex traffic management would require big
data operation for faster and safer commutes when many
devices and sensors produce data simultaneously. Besides
this, by the time 6G goes into effect, the advancement in
XAI will be further advanced, meaning smart governance
applications would require support from infrastructure to
consume XAI to its futuristic potential. It will empower users
with transparency, meaning 6G should allow application
support in terms of explanation instead of focusing on
improving hardware and signal processing.
Overall, the idea of the Internet of Everything will be

a crucial requirement for smart governance, requiring all
sensors and devices spread across smart cities to achieve
high-speed and real-time connectivity. Also, data transmis-
sion would demand highly reliable data exchange to ensure
QoS performance and optimal service to citizens, the gov-
ernment, and other stakeholders. Additionally, to implement
6G smart governance, the key difference compared with
the existing 5G network is that a much higher level of
security and privacy is required, especially at the intelligent
sensing layer of the 6G architecture shown in Figure 2.
It is crucial to ensure the trustworthiness of the massive
data collected from diverse sensors by the network itself, as
humans cannot inspect data on such a large scale. Moreover,
as most of the data collected in smart governance scenarios
may endanger the privacy concerns of personal data, the
whole data collection process needs legal compliance, which
XAI has great potential to ensure through transparency.

3) HOW XAI CAN HELP

The 5G initiative has primarily focused on enhancing
network infrastructure, sometimes overlooking the applica-
tion side of services. Hence, it restricted applications from
fully exploiting XAI in the context of smart governance.
Such as the current smart monitoring services have limited
use of transparency in decision-making [255], which is
one of the reasons engineers don’t fully trust automated
decision-making, where human oversight plays a crucial

VOLUME 5, 2024 2521



WANG et al.: XAI FOR 6G USE CASES: TECHNICAL ASPECTS AND RESEARCH CHALLENGES

role in monitoring. For example, in the oil and gas sector,
monitoring and maintenance of Valves are critical for
maintaining steady operations. Here the AI helps with
decision-making by informing when a valve is degrading and
needs to be replaced; however, the AI does not explain the
decision, which makes it hard for hardware engineers to trust
the decision. Things can go wrong when a valve is coming
to the end of life, and the AI decides it is healthy. From a
governance point of view, it will be highly catastrophic if oil
gets leaked into the sea, causing significant environmental
harm. Therefore, to avoid this circumstance, AI needs to
explain the decision to bring transparency, empowering
hardware engineers to make an informed judgment. To
this end, recently some efforts have been made to explain
decisions through graphs and reports based on semantics
that allow engineers and decision-makers to understand
automated decisions better [256], [257]. However, the efforts
could be advanced using XAI approaches such as LRP,
Bayesian RL, LIME, and SHAP that can improve the quality
of explanation by embedding explanation as a part of the
system instead of as a mere add-on; this will be strengthened
through 6G transparency and high-speed network. Also,
here, explanations can indicate what has changed visually
in the video feed or through sensor data points that may
call human attention for monitoring purposes. Another
area of application is public engagement in the system
of governance [258]. At present, governments are opting
for limited use of dashboards when it comes to smart
cities, and smart governance [259] to share insight and
stats. In this regard, there were some applications developed
to bring insights during the election campaigns [260] and
movements of public concerns and social causes [261] (e.g.,
austerity, Brexit, refugee crisis) with the use of AI. These
types of dashboards bring some transparency, such as which
politician or political party has a specific stance concerning
a domestic political issue on their social media, what is
the public voice concerning austerity, and the voice of
different media outlets. However, these dashboards don’t
explain their decisions to the degree where XAI is making
advancements. With XAI’s inherent strength of explaining
the decision and 6G’s interface that ensures high-quality real-
time data ingestion, these dashboards will further advance
and play essential roles during the elections, referendum,
and other political processes for all political stakeholders
(public, politicians, and government). In these dashboards,
XAI approaches will further open doors for explaining the
insights, accompanied by visualizations that portray real-time
data, particularly during elections. These explainable insights
can take the form of visuals, text, or even be conveyed
through conversation, where the likes of surrogate, visual,
and textual XAI approaches will contribute to improving the
overall user experience in explaining insights.
Different XAI algorithms can be applied in the context

of smart governance, where visuals and reports based
on semantics will be beneficial [256]. Model-agnostic

approaches [262] can be beneficial for complex decision-
making algorithms (such as DNN) where explanations
may be demanded in a real-time setting (applications
such as route planning and smart monitoring). However,
model-specific approaches will be useful where the
precision of the decision’s explanation is significantly
essential.
These types of decision-making may not require real-

time processing, such as when legal auditors are among
stakeholders or when decision-making informs policy-
makers and other applications can be city infrastructure
planning. Both model-agnostic and model-specific can also
co-exist for several applications within smart governance.
Here, model-agnostic approaches can provide a simpler and
quicker explanation that may be useful for end-users. For
a more detailed and accurate explanation, model-specific
explanations can be provided. The applications here would
include all areas of smart governance, such as smart
monitoring, election campaigns, causes of public concern,
law enforcement, and public order.
Despite the great potential of XAI in smart governance,

a simple explanation through a simplified user interface of
visuals or reports-based explanation might not inform the
user of an accurate explanation. It may mislead individuals
and become critical when applications belong to causes
of public concern. Here, application providers must inform
users of the potential risk of simplified explanations. Also,
there is a danger of trying to explain election campaigns due
to a lack of metrics of explanation, as the campaigns might
be so dynamic and novel that it would be challenging even
for a human expert to explain them due to subjectivity, let
alone XAI to do the job.
However, acknowledging the shortcomings of technology

may help. On the contrary, a complex explanation may
be more accurate but hard to comprehend. Also, real-time
decision-making and explaining the decision may be critical
for law and order applications requiring accurate information
that might demand computational power beyond current
capabilities, which may be achieved through technological
advancements. In particular, for stakeholders, XAI will
offer facilities to citizens and help better govern cities
and infrastructure, which is closely linked to data quality
and reliability at a high volume, a facet ensured by 6G.
Also, until IoE is fully realized, the promises of smart
governance, cities, and offered smart infrastructure cannot be
truly achieved [267]. Especially most of the network support
for IoE would be wireless, which is where promises of
6G are important. From a stakeholder’s perspective, getting
informed about a high volume of data from IoE means a
correct decision that can be trusted through explanation.
Overall, for smart governance, the efficiency of mobility
and resource management are critical issues that would be
potentially dealt with through the vision of 6G, similar to
Open RAN real-time operations via xAPPS deployed in NR-
RIC.
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TABLE 5. The requirement analysis of XAI for typical B5G/6G use cases.

G. SUMMARY OF THE XAI IMPACT ON 6G
APPLICATIONS AND TECHNICAL ASPECTS
This section reviews the attempts and potentials of XAI
for a wide range of 6G applications. Different from 6G
technical aspects, 6G applications involve more types of
stakeholders than engineers only: such as end-users and
legal auditors. Therefore, the requirements of XAI for 6G
applications will have to be analyzed case by case. In
Table 5, for each 6G use case, we describe its typical high-
stake AI-powered decisions that need the XAI most. Then,
we identify the level of demand for XAI for each stakeholder,
and for each XAI challenge that needs to be addressed in
the future. For instance, collision avoidance of CAVs or
UAVs is a typical high-stake AI decision as the incorrect
decision can lead to the loss of life. Thus, all stakeholders
would need the explainability for such decisions at the
highest level. Moreover, collision avoidance requires both
high model accuracy and explainability to give evidence for
legal experts to judge responsibilities on various occasions.
Another example from Table 5 is the quality inspection of
Industry 5.0. If a product is mistakenly qualified, it would
be risky for service providers mainly as it affects their
reputation. As most Industry 5.0 activities are within the
factory, the demand for wider legal engagement and higher
privacy protection is low.
In Table 6, we also summarised the key references that are

discussed in both this section and the previous section about
6G applications and technical aspects. Lots of existing work
focused on the security, privacy, and edge AI technical
aspects as these contain the most high-stake decision-
making process. In addition, these technical aspects also have
AI solutions deployed already in many existing systems.
However, the lower-level intelligent radio and the backhaul

ZSM are lacking attention, partly because these technologies
are still being studied in the early stages. The existing
research interests are roughly evenly distributed across all 6G
applications discussed in this paper. CAVs and UAVs are the
ones that have attracted the most interest so far due to their
large existing research communities, while intelligent health
still demands more work as it requires close interdisciplinary
collaborations.

VI. LIMITATIONS AND CHALLENGES OF XAI FOR 6G
This section summarises the major limitations of the recent
research and the possibilities of applying XAI for 6G. The
section also provides the research challenges to moving XAI
for 6G forward.

A. LIMITATIONS OF XAI FOR 6G
There are several well-known limitations [25] of existing
XAI methods that would also delay the successful deploy-
ment of XAI in the future 6G infrastructure.

• Lack of in-model XAI methods: There is a widespread
concern [19] that the performance of the AI models will
go down with the growth of its corresponding level of
explainability because of the ever-increasing level of AI
model complexity. Recently, in-model XAI methods are
likely to be satisfactory in both AI performance and its
corresponding explainability. It is because the in-model
XAI methods are designed to be self-explanatory, rather
than an add-on to the XAI method after the AI decision
is made (i.e., post-hoc XAI methods). However, most
existing XAI methods are still post-hoc (e.g., LIME,
SHAP), as they are more straightforward [25] to be
developed and pluggable with existing AI algorithms
compared to in-model methods.
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• Lack of quantifiable explainability metrics: Visual and
textual explanations are two commonly observed for-
mats of XAI methods output. These explanations are
intuitive for human beings but difficult to measure
objectively using quantifiable metrics. Therefore, it
is challenging for XAI system designers to achieve
standard/unified systems that are simple to deploy and
use for all stakeholders.

• Lack of engagement of stakeholders and legal experts:
A strong motivation for introducing XAI technologies
is to address the legal requirements. A typical example
is the “right to explanation” in the EU, GDPR which
requires machine algorithms to be capable of giving
explanations for their outputs. In the last few years
of early research into XAI, computer scientists have
proposed and applied many new technologies. However,
two important points are missing. Firstly, a meaningful
engagement of legal experts is required to ensure that
XAI complies with legal requirements. Secondly, a deep
engagement of stakeholders is needed to ensure the
explanations provided by the new XAI methods make
good sense to them.

• Lack of privacy leakage consideration: XAI could also
increase the risk of privacy leakage [17] which is more
significant in the 6G environment due to pervasive
connectivities. This possible privacy leakage refers to
the fact that when XAI is applied, more information
will inevitably be exposed externally concerning the AI
decision-making process, which likely leads to the leak-
age of users’ data. Anonymization might be a possible
solution to protect private information. However, if one
can easily violate such protection, the risk of privacy
leakage is still high.

B. RESEARCH CHALLENGES OF XAI FOR 6G
To address the identified XAI limitations for 6G, we
discuss their respective research challenges in the following
subsections.

1) DEVISING 6G-COMPLIANT QUANTIFIABLE METRICS
TO ASSESS THE EFFECTIVENESS OF EXPLAINABILITY

When the DARPA XAI program [19] launched in 2017,
researchers were focused on proposing general assess-
ment frameworks or metrics across different domains.
Doshi-Velez and Kim [268] proposed a taxonomy of
XAI assessment methodology which contains three classes:
application-grounded (i.e., measured for specific appli-
cations), human-grounded (i.e., measured for specific
stakeholders), and functionality-grounded (i.e., measured for
specific AI algorithms). Hoffman et al. [269] discussed
the evaluation of XAI in depth from both psychometric
and AI perspectives. They proposed an evaluation pro-
cess for measuring the goodness of explanations, user
satisfaction, user understanding of the AI system, user
motivation for explanations, user trust and reliance on the
AI, and the performance of the human-XAI work system.

TABLE 7. Key recent attempts at measuring the explainability of the XAI outcomes.

Holzinger et al. [270] proposed a system causability scale
(SCS) inspired by the success of the system usability scale
(SUS) that has been widely used for assessing the usability of
the system-human interface for over three decades. The SCS
has ten questions to measure if XAI-generated explanations
quickly meet the users’ intention. In 2022, researchers from
the Shapash open-source community3 proposed metrics to
assess the quality of explanations by XAI methods [271].
For example, stability measures for a certain XAI method if
its generated explanations are similar for similar input data.
Consistency tells of the same set of input data, and how
explanations vary among different XAI methods. Compacity
shows that a given XAI method can explain the majority of
its input data by the minimum number of features.
XAI researchers soon realized that to make explainability

measurement more effective, the quantifiable metrics have
to be designed specifically for stakeholders and scenarios
and cannot be domain-agnostic. For example, in the AI
health domain, Kaur et al. [15] proposed a metric called
“Trustworthy Explainability Acceptance” that measures the
Euclidean distance between XAI explanations and domain
experts’ reasonings in predicting Ductal Carcinoma in Situ
(DCIS) recurrence using AI. In the computer network
domain, Li et al. [23] proposed a metric called quality of
trust (QoT) to quantify the level of trust when a particular
XAI model is applied for 6G applications. The QoT contains
a physical and emotional trust, representing the objective
and subjective assessment of explainability, respectively. The
key attempts of the research mentioned in this section are
summarised in Table 7.

The Quality of Trust (QoT) [23] serves as an exemplary
initial effort in proposing quantifiable XAI metrics for 6G.

3https://github.com/MAIF/shapash
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FIGURE 12. Representation of the Interpretability versus Accuracy according
to [273]. Because of the increasing model complexity (i.e., from linear to non-linear)
and training data size (i.e., both in volume and number of features), it normally shows
the trend that the model interpretability decreases with the increasing model accuracy.

However, there are still many challenges to implementing a
full set of XAI metrics for all key stakeholders in different
6G scenarios. For example, as AI will be used across all
layers of the computer network infrastructure, the number
of specific 6G AI scenarios that require explanations will
be significantly higher than the existing 5G networks. Do
we need to propose a set of metrics for each of these
6G scenarios? Can we reuse some metrics across various
6G AI scenarios? What are the metrics that we have to
design specifically for particular use cases? Additionally,
although SCS [270] is a good strategy for measuring user
satisfaction with the generated explanation, the low-latency
6G networks may need quick solutions to capture the users’
feedback. Moreover, for use cases where the stakeholders are
engineers or scientists such as radio spectrum allocation, it
is necessary to gain expert explanations in advance to ensure
high effectiveness of XAI explanations, for example, [15].
However, the acquirement of explanations from domain
experts needs to be planned carefully to avoid the huge
potential cost in time and labor. The future research could
also explore information theory approach in measuring the
information gain before and after the application of XAI
approach to a specific problem.

2) PROPOSING NEW XAI METHODS THAT CAN ACHIEVE
A BETTER TRADE-OFF BETWEEN INTERPRETABILITY
AND MODEL PERFORMANCE IN LARGE-SCALE 6G
INFRASTRUCTURE

In the past decades, researchers primarily emphasized AI
performance, with limited attention to interpretability [272].
However, the GDPR shifted the focus, a regulation recogniz-
ing “an explanation of the decision reached after assessment”
for the users and holding automated algorithms accountable.
The caused shift is now deriving from the trend towards the
interpretability of the models.
The trade-off between the performance (accuracy) and

the simplicity (interpretability) of a model has been studied
many times in the literature [273], [274], [275]. As seen in
Figure 12, the more complex a machine learning model is
(such as a higher number of nodes, more rules, branches,

or layers), the less likely it is to be interpretable. Adding
complexity to the model is likely to model complex decision
boundaries, making the model prediction more accurate.
The fundamental challenge is to ensure higher accuracy
without compromising on interpretability. In some domains,
interpretable methods can provide similar levels of accuracy,
and therefore they are recommended [276]. Hence, when
choosing algorithms for constructing the large-scale 6G
infrastructure, it’s crucial to understand whether accuracy or
interpretability holds more significance in a given domain.
Choosing an appropriate method that balances inter-

pretability and performance is crucial, and the decision
should depend on the specific domain and application. In
certain fields, such as routing IP packets over a network,
understanding the internal reasoning of the model may not
be essential, as long as it demonstrates high efficiency.
Conversely, in domains like medicine or critical decision-
making within organizations, comprehending the model’s
internal reasoning becomes paramount. Alternatively, some
perspectives recommend avoiding black-box models alto-
gether due to their tendency to obscure the inference
process, posing an increased risk of errors without a clear
understanding of the underlying causes. Similarly, deep
learning methods that automate feature selection prevent
developers from identifying important features, as they
often mix them with redundant ones [276], [277]. This
significantly hampers the ability to overcome black-box
challenges. To address the limitations of black-box models,
there are two approaches. Firstly, advocating for the use
of simple models with limited but acceptable performance
has been proposed [277]. Secondly, the DL community is
actively working on developing improved and more effec-
tive explainability techniques, which represents a growing
trend [278].

Making informed decisions about algorithmic design is
crucial for each module in 6G. While some modules,
such as efficient IP packet routing or antenna selection
for users, prioritize accuracy over interpretability, others,
like providing route suggestions for cars, require models
that are interpretable to a greater extent [5]. Finally, to
strike a balance between AI model performance and inter-
pretability, the open-source community has shown a clear
inclination towards tree-based black-box AI models, such
as random forest, LightGBM [279], and XGBoost [280].
These models, which require fewer data compared to DNNs,
can still achieve high performance. Furthermore, reliable
XAI methods, such as SHAP, offer specialized versions
like TreeSHAP [281] for tree-based models. These versions
provide relatively fast and reliable interpretability.

3) IMPROVING SOCIETAL AND ECONOMIC
ENGAGEMENTS IN INTEGRATING XAI WITH 6G
INFRASTRUCTURE

The third challenge of adopting XAI for 6G is about
societal and economic engagement. Specifically, we first
examine trends concerning laws and ethics. Then, we discuss
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commercial challenges concerning technology producers and
intellectual property. Finally, we present the need for new
laws and regulations to evolve and support XAI for 6G.

• Laws & Ethics: The rising demand and development
of XAI and IoT will continue to shape evolving
challenges in ethics, granting users more choices and
preferences for transparency in automated decision-
making. Moreover, with the growth of IoT to IoE within
6G, more devices would be connected with decision-
making capability, raising security and privacy concerns.
Several devices will probably interact directly without
requiring human intervention. However, the endpoint
will serve human demands. Here, additional laws and
an understanding of ethics would be in demand to
ensure humans control all activities. Laws like GDPR
are necessary to mention, which will lead and enable
innovation with the optimal level of governance over
automated decision-making. However, GDPR alone
does not encompass a full spectrum of sets of rules
all around the globe. In addition, the Chinese PIPL
and other regional laws would collectively undertake
the future challenges of ethical practices concerning
automated decision algorithms and devices.

• Commercial Side: Requiring decision-making algo-
rithms to be explainable through legal or practical
means can raise concerns for technology producers.
The producer would find making algorithms transparent
a risky business to protect the intellectual property
of the technology. This concern would further grow
when 6G starts to converge on the application-centric
approach to automated decision-making, with the vision
of IoE. It is here, that the approach taken by the U.S.
is vital to consider which views data protection and
data integrity as a commercial asset, unlike GDPR. It
is important to note that explaining decision-making
can leak critical information to competitors, which can
quickly compromise commercial assets and undermine
freedom of ownership. The right approach would
balance GDPR and U.S. laws regarding data privacy
and protection while safeguarding consumer rights and
businesses.

• Compliance of New Laws: With the boom of 6G,
continuous evolution would take place from IoT to IoE,
focusing on applications that could explain automated
decision-making. However, unlike hardware infrastruc-
ture, software applications get upgraded quickly, and
many new types of applications keep popping up.
However, at this pace, future applications necessitating
explanations for decisions might face limitations due
to stringent laws lacking the flexibility to accommo-
date various emerging requirements. Here, the laws
should tolerate flexibility to assert the law’s spirit that
encourages best practices. These laws should protect
consumer rights and commercial assets, ensuring both
personal freedom and freedom of ownership. Finally,
future laws should promote globally accepted rules

while guaranteeing regional and transnational freedoms
that provide some adjustment and flexibility. Otherwise,
international acceptance of law that confirms the right
to explanation to exact detail internationally may be too
ideal to agree upon before 2030. The common future
data privacy laws should strike a balance that protects
businesses and users from exploitation while respecting
national policies globally.

A solution for developing current laws with a balanced
approach that recognizes consumer rights in terms of ethical
considerations and ensures technology producers’ intellectual
property concerns. In addition, these laws should be flexible
to allow rapid application development that matches the
pace of 6G adoption. Since the upcoming 6G is a global
phenomenon, future products would benefit from common
international law. This common international law would
better connect the world, world, safeguarding consumers’
rights and addressing technology producers’ concerns while
promoting the rapid growth and international adoption of 6G
products.

4) CONSIDERING THE PRIVACY AND SECURITY IMPACT
WHEN USING XAI

The utilization of XAI raises concerns regarding privacy and
security, particularly in 6G networks. XAI’s explanations
can play a vital role in detecting potential privacy violations
associated with 6G. For instance, Slack et al. [14] demon-
strated that explanations generated by LIME and SHAP,
which remain uncompromised, can expose if an AI model’s
decision heavily relies on sensitive personal information such
as gender, ethnicity, race, and others, which has implications
for applications like credit scoring and the prediction of
recidivism risks within the domain of 6G smart governance.
However, it is important to note that these explanations

reveal additional information about the AI decision-making
process and its underlying training data [282]. Consequently,
XAI can inadvertently facilitate the transition of a black
box attack into a white box attack, potentially leading to
higher attack success rates. This raises significant security
and privacy concerns for existing AI systems. For example,
privacy breaches related to user data or a company’s
proprietary AI model can be exploited through membership
inference attacks [283] and model inversion attacks [284].
One potential approach for addressing privacy concerns in
XAI is demonstrated by de Araújo [285], who employed
Generative Adversarial Networks (GANs) to preserve the
privacy of patient data while retaining important information
about the optic nerve to diagnose Glaucoma using AI.
Furthermore, Goethals et al. [286] proposed k-anonymous
counterfactual explanations as a means to defend against
privacy breaches arising from instance-based counterfactual
algorithms utilizing nearest unlike neighbors [287].

Thus, the successful integration of XAI into 6G systems
relies heavily on achieving a comprehensive trade-off among
interpretability, performance, security, and privacy [288].
Achieving this trade-off requires close engagement with
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stakeholders for each 6G application and technology. This
trade-off must be established through close engagement with
stakeholders for each 6G application and technology. An
essential step in this process is to identify the relative impor-
tance that stakeholders place on interpretability, performance,
security, and privacy. Additionally, it is essential to develop
a set of quantifiable metrics to measure the trade-off within
each of these dimensions.

VII. LESSONS LEARNED AND FUTURE RESEARCH
DIRECTIONS
This section briefly summarizes the lessons learned from the
topics discussed in the previous sections. These include the
background of AI and XAI, major research projects, and
standardization efforts related to XAI and 6G, the impact
of XAI on typical 6G technical aspects and use cases, and
limitations and challenges when developing XAI for 6G. 6G.
Additionally, we examine the corresponding future research
directions for each of these topics.

A. XAI TECHNIQUE
1) LESSONS LEARNED

Before 2010, AI scientists focused primarily on improving
the models’ accuracy. As a result, the complexity of the
models sharply increased (from simple rule-based models
like decision trees to DL now). It wasn’t until after 2010,
when ML models were used in areas that impacted humans,
such as diagnosing cancer or approving bank credit, that
concerns arose regarding the transparency of AI decisions.
Specifically, it became important to ensure that decisions
were not being made based on factors like a person’s
ethnicity or race. These concerns raised questions about why
the system decides in a particular way. In the imminent 6G
age, where various model devices can talk to each other,
more AI decisions will be made at a much faster pace. The
transparency and trustworthiness of responsible AI have to
be considered formally so that experts from academia and
industry can improve the overall technology ecosystem for
the future user experience.
XAI is a promising set of technologies that provide

transparency in the decision-making process behind the
AI black box. Although XAI is still in its early stages,
researchers have already learned an important lesson: there is
a trade-off between interpretability and performance. When
stakeholders need more explainability, AI system designers
may have to compromise the quality of the prediction or
classification results. XAI also has a very significant role in
validating the model. Sometimes, non-related factors to the
output can bias models and affect their predictions.
Another significant lesson to be aware of is that ML

models are heavily dependent on the quality of the training
dataset [289]. Incorrect AI predictions or classification can
lead to massive losses for 6G stakeholders in both economic
and non-economical (e.g., health and life) aspects. This
highlights the importance of AI systems’ robustness. Most
of the existing solutions [289] focus on improving the AI

robustness, which is to carefully design the data pipeline,
including data collection, pre-processing, augmentation, and
dimensionality reduction. This helps with reducing the error
rates.

2) KEY RESEARCH PROBLEMS

Explainability is the cornerstone for professionals adopting
AI models and validating the logic of the models. Some of
the important questions that arise in this area are:

• Is it possible to improve the explainability techniques
by creating an extra layer to translate into layman’s
terms the logic behind ML models so we can provide
models with both accuracy and suitable explanations?

• Would the next generation of ML models fill the
demands of current legislations such as GDPR which
highlights the importance of the right to explanation?
So people are entitled to explanations of the outputs’
algorithms that affect an individual?

• To what extent will ML models expand their use to other
domains by providing better explanations to increase
the professionals’ trustfulness?

3) PRELIMINARY SOLUTIONS

One of the most prominent lessons learned during several
decades of research, development, and commercialization of
AI is that the performance of AI, especially ML systems,
in certain domains, is not as important as the explain-
ability/interpretability of the model. And that a significant
strategy to involve professionals in implementing ML models
is to increase their trustworthiness in the model by providing
explanations of the decisions models make [28]. These
explanations can be in the shape of text, graphs, or by
providing an interpretable model [25]. Currently, there are
many technologies used to generate explanations such as
LIME and SHAP. However, they have a few limitations like
that they do not well with all the models (Lime does not
work well with XGBoost) or that SHAP is very slow in
some methods such as k-NN. LIME is in general faster than
SHAP, but LIME’s explanations based on linear models do
not guarantee the same levels of consistency as SHAP.

4) FUTURE DIRECTIONS

The wide and deep convergence of XAI to the existing
AI systems is foreseen to be increasingly important. Some
promising future research directions for this deployment
include are: how to measure the level of explainability,
how to satisfy the explainability demands from multiple
stakeholders, how to ensure high performance while still
being able to provide a high level of explainability, and how
to work collaboratively in a multi-disciplinary team (i.e.,
typically, ICT researchers with legal experts). Generating
clear and consistent explanations for accurate models easily
remains a future challenge for AI with great potential to
make AI more transparent and accessible to humans. Another
interesting research direction is about making more XAI
methods for multi-variant time-series data [290], which are
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widely seen in future mobile networks with lots of temporal
data automatically generated from various sensors and end-
devices.

B. STANDARDIZATION AND RESEARCH PROJECTS
1) LESSONS LEARNED

XAI is becoming an exciting research area under 6G. For the
moment, IEEE is leading the standardization activities related
to XAI. Especially, the IEEE Computer Society/Artificial
Intelligence Standards Committee (C/AISC) and IEEE
Intelligence Society - Standards Committee (CIS/SC) are
leading these tasks [291], [292]. In addition, the National
Institute of Standards and Technology (NIST) has published
a report on a set of principles that can be used to
judge the explainability of AI decisions [293]. This report
defines the four principles of XAI: Explanation: Ability to
provide reasons for the outcomes of the system, Meaningful:
The provided explanation should be understandable and
meaningful to the users, Explanation Accuracy: The provided
explanation should accurately describe the process of gener-
ating the outcome, and Knowledge Limits: The system should
understand the cases which are not designed or approved to
operate or are unable to operate reliably.
However, none of these XAI standardization activities is

focused on 6G or communication networks. Thus, it is yet to
initiate the more focused XAI standardization activities for
B5G and 6G domains. Moreover, the current 6G SDOs, such
as ETSI, and 3GPP, have not focused entirely on the XAI
domain. However, legal frameworks for XAI have already
been developed at the global level, including in the EU and
USA.
Several reputable research projects for 6G using XAI have

already started. Mainly, the EU H2020 funding program, EU
Christ-era funding program, EU MSCA program, and U.S.
DARPA program have funded many projects in the XAI
domain. Many of these projects are not directly related to
6G. However, most of these projects focus on technologies
and applications associated with B5G and 6G networks.

2) KEY CHALLENGES

SDOs and funding organizations must address the following
key challenges to support the integration of XAI into the 6G
domain:

• How to establish collaborations between telecommuni-
cation SDOs, AI organizations, and funding agencies
to define basic XAI requirements in 6G service
deployment?

• Promote the development of open-source XAI projects
and encourage funding organizations to invest in
projects that enable XAI in the telecom sector.

• Provide training and educational programs to enhance
the XAI expertise of both SDOs and funding agencies.

• How to foster partnerships between SDOs and funding
organizations with leading XAI experts and companies
to facilitate the integration of XAI into 6G services.

By tackling these challenges, SDOs and funding organi-
zations can pave the way for the successful integration of
XAI in the 6G domain, ensuring secure, accountable, and
responsible AI-enabled telecom services.

3) PRELIMINARY SOLUTIONS

Standardization of Explainable AI (XAI) can be integrated
with current standardization efforts for Zero-Touch Service
and Network Management (ZSM). The focus of ZSM
standardization is AI-powered service management in B5G
networks. Leading telecom SDOs, such as ETSI, NGMN,
3GPP, and ITU-T, should consider incorporating XAI into
their 6G standardization plans.

4) FUTURE DIRECTION

Given the substantial role that AI will play in 6G networks,
it becomes imperative to assess the need for XAI in
6G applications. Initially, research projects can build new
knowledge on utilizing XAI for B5G and 6G networks.
EU funding programs such as Horizon Europe and Eureka
programs can be ideal venues for funding research related
to XAI and 6G integration. In addition, global level 6G
programs such as Japan 6G/B5G Promotion Strategy and
South Korea MSIT 6G research program can also be
possible venues to obtain research funding for XAI and
6G integration. 6G standardization is essential to define
the technological requirements of 6G networks and select
suitable technologies to deploy 6G networks. XAI will be
considered one of the critical technologies to utilize in 6G
networks.

C. XAI FOR 6G TECHNICAL ASPECTS
1) LESSONS LEARNED

Conventional AI/ML algorithms and innovative DL archi-
tectures have been applied for different tasks in 6G
networks when considering technical aspects. The objective
includes accuracy improvement in intelligent radio and edge
networks, reliability enhancement in network security and
data privacy, and optimization in resource management.
While the system performance and automatic decision of
communication networks mostly depend on AI models, it
does not usually provide descriptions and explanations about
results, especially from the how-why-when perspective. XAI,
owning to three principal features, including explainability,
interpretability, and accountability, represents a promising
technique to help not only end-users but also AI stakeholders
understand how an AI model processes data and conducts
outcomes automatically, which in turn allows end-users
to be confident with its decision as well as engineers to
comprehend their systems. Some ML models present good
interpretability, but their performance in terms of accuracy is
unacceptable. Therefore, the balance between interpretability
and accuracy should be considered in XAI-based system
design. For example, some XAI approaches have exploited
the interpretability of AI models like a rule-based model
and linear regression to generate explanations. However,
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their accuracy can not satisfy the baseline QoS in 6G. On
the other hand, although DL showed high performance in
dealing with many fundamental tasks such as detection,
classification, and recognition, they offered little or no
interpretability. Furthermore, depending on the input data
type, storage infrastructure, computing platform, and com-
munication infrastructure, XAI for explanation generation
should be appropriately chosen to deal with a specific
technical problem while ensuring a reasonable performance
in terms of accuracy and complexity. Besides, the explanation
should be simple for end-users with less domain knowledge
and advanced for AI stakeholders with high expertise,
which can be numerical results, text, graphs, images, and
simulations. It can contain details on how a statistical AI
model causes a prediction from a feature set, a decision
path from a decision tree, a rule from a simple model,
and a visual operation graph of information flow. Lastly,
explanations brought by XAI may bring extra information
leakage unintentionally to potential privacy violators. XAI
can help strengthen AI accuracy and efficiency, but it can
also tell others how existing AI models work, which in some
cases should be confidential. Thus, extra attention should be
put when applying XAI to privacy-based 6G solutions.

2) KEY RESEARCH PROBLEMS

To integrate XAI with 6G, a few challenges have to be
addressed which are discussed below.

• Intelligent radio: With its interpretability and explain-
ability, XAI has the potential to revolutionize intelligent
radio in 6G, but it also increases the system’s complex-
ity. This creates a research problem on how to enhance
explainability and interoperability, without increasing
system complexity.

• Trust and security: Though XAI will provide admin-
istrators and stakeholders with significantly insightful,
comprehensive security and trust information, the data
may also be altered, which will influence the XAI
model’s decisions. This raises a research problem
regarding the development of tamper-resistant storage
and sharing of data.

• Privacy: Accountability will be improved by XAI, but
the privacy of the shared data will be a problem since
the data might be collected by a third party without the
consent of the legitimate user.

• Resource management: XAI can help with resource
management in 6G, the algorithms used for resource
management cannot be explained at a high level because
results vary from user to user. Context dependency is
a research issue that needs to be addressed.

• Edge AI: XAI can improve the performance and
explainability, but the issues, including the decreased
performance of the AI algorithms and the absence
of metrics to measure the performance of the XAI
algorithms, must be addressed for 6G to be enabled by
XAI with edge AI.

• Network automation and ZSM: XAI can improve
the interpretability and justification of the decisions
made by AI. However, performance deterioration of AI
algorithms due to the integration of XAI is a concern
that has to be addressed since the judgments made by
ZSM may be mission-critical and may influence the
network bandwidth and resource allocation.

3) PRELIMINARY SOLUTIONS

A critical component for reducing system complexity is a
model governance environment. A good model of gover-
nance reduces the risk of a compliance audit and establishes
the platform for transparent, ethical AI that eliminates bias
in 6G networks. blackUtilizing blockchain for data storage,
later fed to XAI for decision-making in 6G networks, will
enhance trust and security. The blockchain with its con-
sensus, cryptography, and decentralization principles helps
XAI to train on data that is tamper-resistant and trustworthy.
By eliminating the need for data from local models in
the creation of the global model, Federated Learning will
improve the privacy of XAI in 6G networks. The use of
incentives based on XAI will enhance resource sharing in
6G networks and help ZSM respond faster in mission-critical
situations.

4) FUTURE DIRECTION

Despite certain benefits of interpretability and explainability,
the utilization and development of XAI for different technical
aspects in 6G networks are still limited. In this context,
future work can focus on incorporating DL with several
explanation techniques for XAI at multiple levels, from
processing units to operation modules and systems. For
example, the visual explanation technique can be applied
to capture and then visualize the feature activation maps
of a trained CNN, which helps explain the labels outputted
by a DL-based automatic modulation classifier in intelligent
radio. Besides visual explanation techniques (e.g., class
activation mapping, peak response map, and class-enhanced
attentive response), some other textual explanations (e.g.,
question-answering and semantic information retrieval) and
numerical explanations (e.g., concept activation vectors and
local interpretable model agnostic) approaches should be
leveraged for a broad spectrum of 6G technical aspects.
The combination of different explanation techniques (such
as numerical and visual explanations) can be helpful for a
sequence of interactive decisions produced by hierarchical AI
models in complex systems. Many existing XAI works have
concentrated on explainability for ML at different stages in
developing AI systems to address several technical tasks in
6G. However, there remain some gaps in data explanation
methods, which help select and explore a better-suited model
later. Additionally, XAI methods should be designed to
incorporate domain knowledge to explain useful inferences
under clear and uncertain circumstances. One last promising
future research direction is to identify to what certain level of
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explainability provided by XAI could be potentially harmful
to preserving the privacy of XAI stakeholders.

D. XAI FOR 6G USE CASES
1) LESSONS LEARNED

Existing AI methodologies can provide prediction/classification
for future 6G-based applications such as healthcare, Industry
5.0, CAV, smart grid, multi-sensory XR applications, and
smart governance to help make decisions in real-time.
Decision-taking in mission-critical applications such as
healthcare, smart grid, and smart governance should be done
very carefully as it may result in the loss of properties and
lives and cause significant danger. However, the black-box
nature of AI-based algorithms makes it very difficult for
decision-makers to trust the results of these algorithms as
they lack justification/explanation. The explanation should
be technologically aware and thoroughly address the ethical,
legal, and societal questions. To address these issues, XAI
will be essential in future 6G-based applications (especially
healthcare, autonomous driving, and smart governance) to
trust, understand, and improve the accountability of the
decisions made by AI-based algorithms. It will help instill
confidence in end-users as they can understand the decision-
making process of these algorithms. However, several key
challenges and open issues need to be addressed to realize
the full potential of XAI in the 6G-based applications which
are discussed below.
The improved interpretability may result in reduced

performance of AI algorithms in terms of real-time decision-
making and prediction accuracy, which is unacceptable
in mission-critical applications such as smart healthcare,
autonomous vehicles, and smart grid. Hence, the trade-
off between interpretability and performance is an open
issue that needs addressing. Another important challenge is
addressing the issue of the high dimensionality of the data
generated from the applications based on IoT in real-time
due to the high bandwidth and reduced latency of the 6G
network infrastructure. Furthermore, the generation of labels
for the data in real-time in the big data era makes it suitable
for classification which is a tedious and demanding task. In
the case of 6G-enabled applications that use heterogeneous
networks, providing explainable and customized decisions
is another open issue that needs to be addressed in future
research. Another critical issue is the privacy preservation of
sensitive data generated from applications such as healthcare,
connected and autonomous vehicles, and smart grids. The
malicious users or attackers can gain access to the private and
sensitive data generated from these 6G applications through
several means such as poisonous attacks.

2) KEY RESEARCH PROBLEMS

There are still some challenges that need to be addressed
for the integration of XAI with 6G networks.

• In the case of intelligent health and wearables, and
body area networks, healthcare stakeholders may benefit

from explanations and assistance from XAI in inter-
preting AI models’ decisions. However, the information
used to feed XAI models may potentially come from
unreliable sources, and the information from these
sources can yield inaccurate results. Therefore, the
decisions taken by stakeholders can have grave con-
sequences. Identifying these unreliable sources is a
research problem to be addressed.

• In the case of industry 5.0, collaborative robots, and
digital twins, the stakeholders will benefit from the
trustworthiness improvement, transparency enhance-
ment, and result interaction provided by XAI. However,
the process of decision-making requires data from
multiple sensors, any fault in these sensors can lead to
erroneous decisions, identifying the fault sensor in real
time is an issue to be addressed.

• In the case of connected autonomous vehicles and
UAVs, the drivers will benefit from the suggestions
provided by XAI on issues related to collision alerts,
driving alerts, and navigation assistance. However,
most drivers lack the knowledge necessary to com-
prehend the justification and evaluate the decisions
provided by XAI. Because of this issue, the aid
provided by XAI is rendered ineffective in some
circumstances.

• In the case of smart grid 2.0, the accountability provided
by XAI will help identify the theft, and the reason
for electric outrage, and also help the experts respond
in an emergency. However, the complexity of the
system will increase as it becomes necessary to get
data from the whole chain of operations from multiple
sources to produce decisions, which is an issue to be
addressed.

• In the case of multi-sensory XR applications, holo-
graphic telepresence, and the metaverse, XAI can
improve the quality of service and experience in
these use cases. However, the issue related to system
complexity, security, and privacy is still an issue to be
addressed.

• In the case of smart governance, XAI can provide
accountability and transparency for decisions made.
However, due to politicization, there is a chance of
possible conflict and the chance of having faulty
outcomes, which is an issue that needs to be addressed.
There is also a need for standards and guidelines for
the integration of XAI with 6G.

3) PRELIMINARY SOLUTIONS

Many factors influence the decision-making of XAI models
in 6G networks. The security and privacy of data are crucial
factors that can be improved by combining blockchain and
federated learning with XAI, which will also increase the
trust in XAI decisions. In the use cases relating to 6G
networks, a robust governance model can minimize bias,
promote transparency, and decrease the chance of erroneous
outcomes.
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4) FUTURE DIRECTION

Some of the potential research directions that can address the
aforementioned challenges and open issues are as follows.
Researchers should focus on developing XAI algorithms
that maintain the balance between explainability and the
performance of the AI/ML algorithms by using technologies
such as techno-economic analysis [294], [295]. Several soft
computing techniques such as meta-heuristic algorithms,
principal component analysis, and fuzzy systems can be
considered to address the challenge of high dimensional-
ity through dimensionality reduction [296]. Unsupervised
learning algorithms such as clustering that do not require
labels for prediction/classification can be used to address
the issue of generation of labels in real-time for 6G-
based applications [125]. Federated learning (FL), which
is a recent development of ML, can be adopted in XAI-
enabled 6G applications to provide customized decisions
to heterogeneous networks [297]. Furthermore, FL can be
integrated with XAI-enabled 6G applications to address the
issue of privacy preservation [298], [299].

E. LIMITATIONS AND CHALLENGES OF XAI FOR 6G
1) LESSONS LEARNED

Recent studies on XAI methods in 6G exhibit three limita-
tions. Firstly, there are not enough in-model XAI methods
proposed so far. Most of the existing XAI can only explain
black boxes after the 6G AI decision-making results are
given. It prevents the achievement of a higher-level trade-
off between the interpretability and model performance
in 6G. Secondly, although many research studies have
emphasized the importance of XAI measurements, there are
no widely recognized quantifiable metrics for explainability
in typical AI applications in 6G. Thirdly, there is a lack
of multidisciplinary collaborations between experts in AI
and the legal community. Finally, the increased transparency
brought by XAI may lead to security and privacy concerns.

2) KEY RESEARCH PROBLEMS

XAI can be one of the engines to improve the development
of 6G in the coming era. However, there are still a few
challenges that need to be solved.

• Is it possible to develop better in-model XAI technolo-
gies for 6G to achieve a higher level of explainability
and high decision-making performance?

• Will researchers be able to apply recognized metrics
to evaluate explainability in 6G for end-users and
stakeholders?

• How can XAI methods in 6G by engaging legal experts
and experts from other disciplines meet the demands
of current legislation and user satisfaction in all major
stages (from design to evaluation)?

• What security and privacy threats can be posed by the
increased transparency of AI decision-making?

3) PRELIMINARY SOLUTIONS

According to recent literature [16], most of the core systems
that compose the wireless communications (signal detection,
antenna detection, channel estimation, power allocation, etc.)
which are essential in 6G have low, very low, or none
explainability. Significant efforts are needed to enhance the
explainability of 6G systems, particularly in critical domains
like autonomous driving or remote surgery, to build trust
among users. There are currently some frameworks proposed
for integrating XAI in 6G and future wireless networks to
help the understanding of the system by users and engineers
in charge of the network infrastructure. These frameworks
also consider malicious attacks from external threats [16].
DARPA addressed the lack of explainability in the U.S.

in 2017. DARPA launched an initiative to promote XAI
techniques to explain to humans the decisions taken by
ML models [300]. This new challenge involved different
areas such as designing explainable interfaces, understanding
how the human mind understands concepts, and learning
new explainable models. This was a four-year project and
there were two different teams. One team is the XAI
developers that worked on creating new effective techniques
to provide useful explanations based on Human-computer
interaction. The other team created an evaluation framework
based on psychology to test the quality of the explanations.
6G can be used for very critical services such as remote
surgery or autonomous driving [16]. The forthcoming EU
AI Act [301] is anticipated to mark a significant milestone
in the regulation of AI, aimed at addressing varying levels
of risks associated with its usage. The introduction of the
EU AI Act is likely to foster greater collaboration among all
stakeholders involved in XAI 6G, including end-users and
service providers, as they collectively confront challenges.
For instance, the enforcement of this legislation would
compel service providers to enhance the transparency of their
AI solutions, thereby instilling greater trustworthiness among
end-users.

4) FUTURE DIRECTION

In the upcoming years, we expect to see more applications
of XAI in filling the gaps within the existing AI-driven
6G use cases and technical aspects. For example, as one
type of quantum computing, the power of adiabatic quantum
computation was validated in a 6G smart transportation
pilot project for assigning optimal bus routes in the
city of Lisbon, Portugal [302]. Such quantum computing-
powered AI decision-making will be exponentially faster
in the 6G ages due to more input data every second. It
requires XAI technology to explain high-stakes decisions
under strict performance pressure where data flows are
extremely high in volume. Blockchain 3.0 [303] encom-
passes non-cryptocurrency blockchain applications such as
electronic voting and supply chain management. In the
6G era, many heterogeneous blockchain systems need to
be connected, which poses a great challenge to balancing
network performance and system security and privacy
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demands. Moreover, the high heterogeneity of blockchain
3.0 also implies more diverse stakeholders from different
organizations involved in 6G AI-assisted decision-making.
Ensuring stakeholder satisfaction and compliance with local
regulations for XAI methods would remain vital.

VIII. CONCLUSION
This paper provides a comprehensive review and analysis of
the potential of using XAI methods to increase transparency
and trustworthiness in a future AI-based 6G system. The
paper begins with an overview of existing ideas for designing
6G networks, followed by an exhaustive survey of state-
of-the-art AI and XAI methods. Several representative 6G
technical aspects and use cases are then carefully analyzed,
examining their existing AI-based solutions and the trend of
applying XAI to enhance the trustworthiness of 6G network
systems. Finally, the paper summarizes lessons learned
about the limitations of existing work, reminding researchers
and practitioners that XAI cannot solve all problems. The
paper also highlights research challenges that show promise
in overcoming or alleviating the potential limitations of
XAI. The hope is that this survey will guide future 6G
developments in a more sustainable direction.
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