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ABSTRACT This study explores the advantages of employing an unmanned aerial vehicle (UAV) in a
massive multiple-input multiple-output (MIMO) network with zero-forcing processing at the base station
(BS). Considering potential inaccuracies in channel estimation, we derive a closed-form expression for
lower bounds on spectral efficiency in the massive MIMO system, utilizing the UAV as an aerial relay.
Subsequently, we formulate a comprehensive optimization problem that encompasses UAV placement and
user power allocation in the downlink network, aiming to maximize the data rate for terrestrial users. To
address the optimization problem, we propose a novel deep learning-based algorithm that jointly optimizes
UAV positioning and power allocation. Finally, we present numerical results that not only validate our
theoretical framework and but also demonstrates the effectiveness of the proposed approach.

INDEX TERMS DDPG, massive MIMO, spectral efficiency analysis, unmanned aerial vehicles, Wishart
matrices, zero-forcing.

I. INTRODUCTION

THE COMMERCIALIZATION of fifth-generation (5G)
communications and the anticipated emergence of sixth-

generation (6G) have motivated considerable research efforts
towards integrating Unmanned Aerial Vehicles (UAVs),
commonly known as drones, into wireless communication
networks [1], [2]. This integration enables reliable UAV
command and control, as well as communications for
mission-related payloads [3]. In this context, UAVs, with
assigned missions, can seamlessly connect to wireless
networks, functioning as strategic aerial access points (APs),
base stations (BSs), or relays. This innovative approach,
known as UAV-assisted communications, leverages UAVs to
enhance the performance of terrestrial wireless communi-
cations from an aerial vantage point [4]. Essentially, UAVs
play a transformative role by serving as aerial entities that
not only fulfill their designated missions but also enhance
and diversify communication capabilities through integration
with cellular networks [5].

On the other hand, massive multiple-input multiple-output
(MIMO) technology has emerged as a critical component in
current 5G networks, offering improved spectral efficiency
(SE) and energy efficiency (EE) by employing adaptive
beamforming and spatial multiplexing techniques [6]. A mas-
sive MIMO base station (BS) is characterized by the presence
of hundreds of individually controllable antenna-integrated
radios, enabling the simultaneous servicing of numerous user
equipments (UEs) on the same time-frequency resource [7].
This technology effectively addresses the challenges in 5G
systems by efficiently handling massive data traffic and
accommodating a large number of UEs. Leading industry
players such as Ericsson, Nokia AirScale, and Huawei have
already begun commercializing massive MIMO technology,
with deployments featuring 64-antenna configurations at the
BS [8].
Given the pivotal role of massive MIMO in existing

and future wireless networks, considerable research attention
has been dedicated to exploring the integration of UAVs
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within massive MIMO-based networks, as discussed in the
following section.

A. RELATED WORK
The integration of UAVs and massive MIMO technol-
ogy in recent work can be mainly divided into three
categories according to the function of UAV as: fly-
ing BS [9], [10], [11], flying UEs [12], [13], or flying
relays [7], [14]. A substantial portion of the existing research
on UAV-assisted massive MIMO predominantly explores the
use of UAVs as either flying BSs or UEs, focusing on single-
hop communications.
However, limited attention has been given to the third

category involving relaying structures, where UAVs function
as aerial relays within a network comprising two links:
ground BS massive MIMO to aerial relay and aerial
relay to UEs. This study uniquely focuses on zero-forcing
processing within a UAV-assisted relay massive MIMO
network, employing deep learning-based approaches to
enhance system performance. Further details on the related
work are presented subsequently.

1) UAV-RELAY MASSIVE MIMO NETWORK

The deployment of large MIMO arrays in UAV-assisted
communication for 6G systems presents several challenges
due to the substantial load and size of these systems [15].
These challenges primarily revolve around addressing the
limited power resources and stringent constraints on energy
consumption, making ground base station (BS) deployment
more practical in practice. However, there are notable
examples, such as [5], [7], [14], [16], [17], [18], [19],
where UAVs are utilized as platforms for aerial intelligent
reflecting surfaces (IRS) [5], [16] or as aerial-mounted
relays [14], [17], [18], [19]. Flying relays, in comparison
to conventional terrestrial relays, offer significant benefits
like 360-degree coverage, three-dimensional mobility, and
on-demand deployment capabilities [1]. Additionally, UAV
relays can navigate above obstacles or affected regions,
establishing line-of-sight (LoS) connections with ground UEs
and BSs [14]. This inherent characteristic enhances their
appeal for delivering high transmission rates and ensuring
reliable wireless connectivity [20].

It is worth to note that the aforementioned investigations
focus primarily on UAV-assisted massive MIMO systems
operating in the millimeter-wave (mmWave) frequency
range. The short wavelength of mmWave signals enables
the packing of numerous antenna elements or IRS elements
into a limited physical area on UAV-mounted relays. This
factor has contributed to the growing interest in UAV-assisted
communication.
In [14], the optimization of UE association in a UAV relay-

assisted mmWave massive MIMO system was explored,
where a hybrid beamforming was proposed to mitigate
inter-user interference. Hybrid beamforming is particularly
advantageous in mmWave UAV-assisted communication, as

it utilizes a reduced number of radio frequency (RF) chains
to achieve low-dimensional digital beamformers.
Furthermore, [18] investigated the problem of maximizing

the total achievable rate in a mmWave UAV-assisted multi-
user massive MIMO system. The study jointly considered
hybrid beamforming, UAV relay positioning, and power allo-
cation. In [19], a solution was provided for the UAV-assisted
hybrid precoding problem, aiming to achieve performance
comparable to fully digital beamforming benchmark schemes
in terms of sum-mean squared error. Although mmWave
communication can effectively meet the high-throughput
and low-latency requirements of various UAV application
scenarios, it is more suitable for short-range connections
in dense urban areas or specific hotspot locations. This is
due to its vulnerability to signal attenuation and blockage
by obstacles. Consequently, a significant research gap exists
in the exploration the UAV-assisted massive MIMO model
within the current sub-6GHz range.

2) AI-BASED APPROACHES FOR UAV-ASSISTED
NETWORK

The optimization of UAV-assisted wireless massive MIMO
networks poses significant challenges due to the mobil-
ity of UAVs, the unpredictable wireless medium, and
the real-time decision-making requirements. Traditional
optimization methods struggle to address these chal-
lenges effectively, leading to the emergence of artificial
intelligence (AI) as a potential solution. In recent
research, various AI-based approaches, including deep
learning [21], reinforcement learning (RL) [22], and
deep reinforcement learning (DRL) [23], [24], have been
proposed to enhance the performance of UAV-assisted
communication.
DRL algorithms, in particular, are well-suited for UAV-

based networks with imperfect channel state information
(CSI). These algorithms enable UAVs to acquire channel
knowledge through iterative interactions and adapt their
action strategies accordingly. For example, in [25], a DRL-
based algorithm was proposed to optimize UAV altitude,
aiming to enhance the average Quality of Service (QoS)
for the UAV acting as an aerial UE. In [24], an extended
deep deterministic policy gradient (DDPG) algorithm was
employed to solve the joint optimization problem of maxi-
mizing sum data rate and harvested energy while minimizing
the UAV’s energy consumption in a UAV-based wireless
powered IoT network.
In the context of UAVs integrated with massive MIMO,

the authors in [26] utilized a Deep Q-Network (DQN)
to optimize UAV navigation, where UAVs acted as aerial
UEs. The DQN was used to select an optimal policy.
Recent work [18] has demonstrated significant performance
enhancements through DRL-based approaches for UAV-relay
massive MIMO scenarios. However, it is important to note
that the exploration of DRL-based wireless communications
is still in its early stages, and further research is warranted
to fully realize its potential.
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B. MOTIVATION AND CONTRIBUTION
Most of related work on UAV-relay massive MIMO network
has placed excessive emphasis on mmWave range, as noted
in [5], [7], [14], [17], [18], [19]. Although some studies have
explored AI-based solutions, their scope has been confined to
single-hop communication scenarios, which involve a direct
link between either a flying massive MIMO base station and
ground UEs or a ground massive MIMO base station and
flying UEs. However, due to UE mobility and complex nature
of the urban environment with dense high-rise buildings and
other obstacles, blockage emerges as a significant drawback
of massive MIMO. This issue results in the obstruction of
LoS transmission between ground BS and UEs [27]. In
contrast, our work focuses on a UAV-assisted massive MIMO
system where the UAV serves as an aerial relay to enhance
connectivity in scenarios where the direct transmission from
the BS to UEs is obstructed. We assume imperfect channel
knowledge, and direct links between the BS and UEs are
considered unavailable. Prior investigations [28], [29], [30]
have analyzed the performance of the low-complexity maxi-
mal ratio transmission (MRT) scheme in UAV-relay massive
MIMO networks. However, to the best of our knowledge,
no prior research has explored the application of favorable
zero-forcing (ZF) processing in the specific system under
consideration [30]. This research gap can be attributed, in
part, to the inherent challenges associated with handling
products of Wishart matrices and the complexity of signal
processing in a two-hop communication scenario, especially
when incorporating channel estimation in a network with
imperfect CSI.
This study aims to address this research gap by inves-

tigating the fundamental limits of the ZF technique in a
UAV-enhanced massive MIMO network. Furthermore, to
mitigate the effects of channel estimation errors, we employ
the deep deterministic policy gradient (DDPG) algorithm to
jointly optimize UAV positioning and maximize the system
sum rate. Our contribution lies in the specialized application
of DDPG to optimize ZF in a UAV-relay network, which
presents unique challenges such as high mobility, dynamic
environments, and real-time decision-making. We believe
that this focused approach fills a significant gap in the
literature, as it addresses a critical aspect of UAV network
design that is increasingly relevant in the era of 5G and
beyond.
Through extensive simulations, we demonstrate that our

proposed DDPG-based algorithm significantly enhances
the system sum rate even in the presence of imperfect
CSI. Notably, our approach outperforms conventional con-
vex optimization methods, highlighting its effectiveness
in addressing challenges associated with imperfect CSI.
These findings open up promising avenues for optimizing
UAV-enhanced massive MIMO networks. In summary, we
emphasize the following key advancements in our research:
• First, we provide a downlink performance analysis
of a UAV-relay massive MIMO system under the
assumption of imperfect CSI, adopting the minimum

mean square error (MMSE) channel estimate. Closed-
form expressions for the SE lower bounds are derived,
specifically for the ZF precoding scheme. Notably, these
expressions mark the first exploration of ZF within
the proposed UAV-relay massive MIMO network with
imperfect CSI.

• To maximize the downlink sum rate, we formulate
a joint optimization involving power allocation and
UAV placement. This optimization can be solved by
using a sequence of convex problems or sub-problems.
While traditional approaches typically employ algo-
rithms with polynomial computational complexity, it
is important to note that the formulated problem is
specifically tailored for a UAV-based system oper-
ating in a dynamic environment, requiring adaptive
behavior over time. Recognizing the effectiveness of
deep learning in handling continuous action spaces, we
propose a low-complexity algorithm that leverages the
DDPG methodology. By integrating ZF beamforming
with the DDPG-based algorithm, we aim to address
various challenges, including high mobility, dynamic
environments, and the need for real-time decision-
making.

• To validate the accuracy of the derived SE performance,
we conduct a comprehensive set of Monte Carlo
simulations for ZF processing in the downlink data
transmission. We compare these results with those
obtained from analytical analysis. Additionally, we
present analytical and simulation-based performance
evaluations of MRT processing for the purpose of
comparison. Both scenarios, considering perfect and
imperfect CSI, are investigated for both ZF and MRT
precoding schemes.

• Finally, we demonstrate the effectiveness of the
proposed DDPG-based algorithm, aligning with the
outcomes of our theoretical analysis. By analyzing
the training results, we illustrate that the optimal
policy derived from the DDPG algorithm surpasses
the flexibility offered by traditional rule-based policies.
The algorithm effectively explores various locations and
identifies optimal positions, leading to the maximization
of the system sum rate. The results indicate a significant
improvement in the system sum rate, particularly in
scenarios where perfect CSI is unavailable. Notably, the
proposed DDPG algorithm, as validated by simulation
results, achieves this enhancement while catering to a
relatively large number of UEs and ground BS antennas,
while still maintaining a moderate number of UAV-relay
antennas.

C. ORGANIZATION
The rest of this paper is organized as follows. Section II
introduces the system model, providing a foundation for
the ensuing discussion. A comprehensive analysis of down-
link spectral efficiency for ZF transmission is presented
in Section III. Section IV introduces the DDPG-based
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FIGURE 1. The proposed UAV-relay massive MIMO system model.

algorithm, addressing the joint optimization of power allo-
cation and UAV location while maximizing the system sum
rate. In Section V, we showcase numerical results that
substantiate the validity of our theoretical findings, encom-
passing the potential gains from the proposed algorithm.
Finally, conclusions are drawn in Section VI.
Notation: Bold lowercase letters denote column vectors,

while bold uppercase letters represent matrices. The expec-
tation, absolute value, and Euclidean norm are represented
by E{·}, | · |, and ‖ · ‖, respectively. The Hermitian transpose
of x is denoted by xH, and the trace of x is represented
as tr(x). The variance operator is denoted as Var(·). The
notation x ∼ CN (0, 1) indicates that the variable x follows
a circularly symmetric complex Gaussian distribution with
zero mean and unit variance.

II. SYSTEM MODEL
As illustrated in Fig. 1, we consider a downlink UAV-assisted
massive MIMO network, where the BS is equipped with
massive MIMO array comprising N antennas and serves K
single-antenna UEs. We assume that direct transmissions
between the ground BS and UEs are unavailable. This is due
to the challenging characteristics of the urban environment,
such as signal blockages and severe multi-path fading, which
makes it challenging for UEs to establish reliable LoS
links with the ground BS [30]. Therefore, a UAV with Nr
antennas serves as an aerial relay, augmenting the connection
between obstructed links from the BS to UEs and facilitating
high-speed data transfer. In this network, a UAV with
Nr antennas functions as an aerial relay, enhancing the
connection between obstructed links from the BS to UEs and
enabling high-speed data transfer. Global Positioning System
(GPS) coordinates precisely define the locations of network
nodes, represented as cX � [xX yX zX] ∈ R

3. Here, X ∈ N �
{B,V, {Uk}k∈K} denote the BS, the UAV, and the UE k, where
k ∈ K = {1, 2, . . . ,K}, respectively. The LoS distance in
three-dimensional space between any two nodes is calculated
as d(cA, cB) � ‖cA − cB‖, where A, B are elements of
the set N . Consequently, their horizontal ground distance is
expressed as dg(cA, cB) �

√
(xA − xB)2 + (yA − yB)2. It is

important to note that we assume the BS has access to UE
locations, obtained through data mining processes involving
social networks, such as the Twitter API [31]. Furthermore,

it is crucial to emphasize that the UAV operates within a
specified range of altitudes, specifically, Zmin ≤ zV ≤ Zmax.
A. CHANNEL MODEL
In our system model, we consider the presence of both large-
scale and small-scale fading in all channels. The channel
between the BS and the UAV can be expressed as an
N × Nr matrix GVB = HVBD

1/2
VB , where HVB ∈ C

N×Nr
represents the small-scale fading matrix. The elements of
HVB follow independent and identically distributed (i.i.d.)
complex normal CN (0, 1) random variables. The large-scale
fading effect between the BS and the UAV is accounted for
by the diagonal matrix DVB = βVBINr , where βVB represents
this fading effect. Similarly, the channel between the UAV
and each UE can be represented by an Nr × K matrix
GUV = HUVD

1/2
UV . Here, HUV ∈ C

Nr×K represents the small-
scale fading matrix, with elements following i.i.d. complex
normal CN (0, 1) random variables. The large-scale fading
effect between the UAV and the UEs is accounted for by
the diagonal matrix DUV ∈ C

K×K , where the k-th entry is
denoted as βUV,k.

The air-to-air channel of the BS-UAV link is characterized
by LoS transmission, with minimal small-scale fading
and non-line-of-sight (NLoS) components. This channel is
described by the free-space path loss model [32], where βVB
can be expressed as [33]

βVB = β0d(cB, cV)−2, (1)

with β0 representing the channel’s power gain at a reference
distance.
The connectivity between UAVs and ground-based UEs

is influenced by various urban environmental factors. In our
analysis, we incorporate the large-scale fading expression
derived from [34] to capture these effects. This expression
takes into account several elements, including the path
loss denoted as PL0

k , where the path loss exponent is
represented by αk. Moreover, the expression considers the
carrier frequency fc and the speed of light c, along with
supplementary factors for LoS and NLoS links, denoted as
μkLoS and μkNLoS, respectively.
In mathematical term, the large-scale fading expression

for the link between UAV and UE k is defined as

βUV,k = PL0
k + μk

LoSP
k
LoS + μk

NLoSP
k
NLoS, (2)

where the distance-related path loss PL0
k is defined as

PL0
k = 10αk log10

(
4π fcd(cUk , cV)

c

)
.

Here, PkNLoS represents the probability of NLoS, whereas its
complementary probability PkLoS = 1−PkNLoS is determined
according to [35]:

PkLoS =
1

1+ a exp [− b(arctan
( zV
d(cUk ,cV)

)− a)] ,

where the constants a and b are parameters characterizing
the environment.
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B. UPLINK TRAINING PHASE
We adopt a practical assumption in our system model, where
the UAV-relay does not possess knowledge of the small-scale
fading channels. Instead, it leverages information about the
large-scale fading to transmit an amplified version of the
received signal to the destination. This approach restricts
the channel estimation process to be performed solely at
the destination. To implement this assumption, a two-hop
channel estimation procedure is required, involving training
for both the UEs-UAV link and the UAV-BS link. We assume
that the link between the UEs and the BS through the UAV-
relay is synchronized, with negligible processing time. Let
τ represent the number of symbols per coherence block
(CB), where τp pilot symbols are allocated for the training
procedure (τp < τ). We denote the K × τp matrix � �
[φT1 φT2 . . . φTK]T as the pilot matrix allocated to the K UEs.
It is important to note that all pilot sequences within � are
orthogonal to each other, ensuring that ��H = IK .
For the link between UEs and UAV-relay: During the

training phase, the UAV-relay receives a Nr×τp matrix which
is denoted by YVp:

YVp =
√
PUpGUV�+ NVp, (3)

where PUp represents the pilot transmit power from each
UE and the AWGN noise NVp ∈ C

Nr×τp has i.i.d CN (0, 1)

elements.
For the link between UAV-relay and BS: In this scenario,

the UAV serves as an amplify-and-forward aerial relay.
Initially, the pilot signals undergo amplification at the
UAV, achieved by a normalization factor αp, before being
transmitted to the BS. The received N × τp pilot signals at
the BS are mathematically expressed as:

Yp = √αp(GVBYVp)+ NBp,

= √αpGVB(
√
PUpGUV�+ NVp)+ NBp,

= √
αpPUpG�+ Np. (4)

Here, G � GVBGUV represents the equivalent channel
matrix. The resulting noise matrix is given by Np =√

αpGVBNVp+NBp, where the AWGN matrix NBp ∈ C
N×τp

consists of i.i.d CN (0, 1) entries.
Denote gk ∈ C

N×1 as the channel vector of UE k, then
gk can be extracted as a column vector from the equivalent
channel matrix G. Building upon the derivations in [30],
the minimum mean-squared error (MMSE) channel estimate
matrix at the massive MIMO BS is provided as

Ĝ = ν1

ν2
√

αpPUp
YpD̃�HDUV, (5)

where D̃ = (Iτp + ν1
ν2

�DUV�
H)−1, ν1 � NNrβVB, and

ν2 � N(αpNrβVB+1)

αpPUp
.

Remark 1: From (5), the channel estimate ĝk ∈ C
N×1 for

UE k is given as

ĝk = νkYpφk, (6)

where

νk =
√

αpPUpNrβVBβUV,k

αpNrβVB(PUpτpβUV,k + 1)+ 1
. (7)

According to the orthogonal property of the MMSE
estimator [36], the two vectors ĝk and g̃k are mutually
uncorrelated. Here, g̃k represents the channel estimation
error, defined as g̃k = gk − ĝk. It is important to note
that gk and g̃k are uncorrelated but not independent. This
occurs because the two-hop vector channel gk is derived by
multiplying a Gaussian matrix and a Gaussian vector, and as
a result, it does not exhibit the characteristics of a Gaussian
vector. This leads to

E
{
gkgHk

} = NrβVBβUV,kIN . (8)

Meanwhile, the variance of the UE k channel estimate is
obtained as

E
{
ĝkĝHk

} = ν2
k κk IN, (9)

resulting in

E
{
g̃kg̃Hk

} = E{gkgHk } − E
{
ĝkĝHk

}

= (NrβVBβUV,k − ν2
k κk)IN .

= (βk − ηk)IN, (10)

where

βk � NrβVBβUV,k,

ηk � ν2
k κk,

κk = τ 2
pαpPUpNrβVBβUV,k + τp(αpNrβVB + 1). (11)

The detailed proofs are referred to [30, Appendix B].

C. DOWNLINK DATA TRANSMISSION PHASE
Similar to the uplink training phase, the downlink data
transmission also comprises two hops, corresponding to the
BS-UAV link and the subsequent UAV-UEs link.
First, the transmitted signal from the BS arrives at the

UAV as

yVd =
√
P0GH

VBWx+ nVd, (12)

where the N × K matrix W is the designed precoding matrix,
P0 represents the transmit power of the BS, and the signal
transmitted, denoted as x ∈ C

K×1, satisfies the condition
E{xxH} = I. Additionally, the received signal includes
Gaussian noise, characterized by nVd ∈ C

Nr×1, with each of
its entries following i.i.d. complex normal CN (0, 1) random
variables.
After amplification at the UAV-relay by a factor of αd,

the signals are delivered to the KUEs as

yd = GH
UVrVd + nU =

√
αdP0GHWx+ ñU. (13)

Here, nU ∈ C
K×1 represents the AWGN with ele-

ments being i.i.d CN (0, 1) random variables, resulting in
ñU = √

αd(G
H
UV)nVd + nU. To meet the UAV power
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constraint E{‖rVd‖2} ≤ PVd, the amplification factor needs
to satisfy the following condition [30]

αd ≤ PVd
Nr(P0βVBTr(WWH)+ 1)

. (14)

III. PERFORMANCE ANALYSIS AND PROBLEM
FORMULATION
A. DOWNLINK SPECTRAL EFFICIENCY WITH
ZERO-FORCING TRANSMISSION
Since the channel consists of two hops, the channel estimate
can be decomposed as Ĝ = Z1Z2D

1/2
g , where elements of

Z1 ∈ C
N×Nr and Z2 ∈ C

Nr×K are i.i.d. CN (0, 1) random
variables, and D1/2

g = diag(η1, . . . , ηK) is referred to (11).
Lemma 1: Let1

A = Ĝ
(
ĜHĜ

)−1
D1/2
g . (15)

Following the approach in [37], the precoding matrix is
designed as

WZF = √cAD1/2
p , (16)

where the diagonal elements of Dp = diag(p1, . . . , pK) are
the signal power of K UEs, and the scaling factor c is
designed to ensure that the total transmit power is no greater
than unity, i.e., E{||WZFx||2} ≤ 1 [37]. To this end, we
obtain the closed-form expression of c as follows:

c = (N − Nr)(Nr − K)

Nr
. (17)

Proof: Please refer to Appendix A for the derivation
of (17).
Collectively, the K × 1 received vector in (13) with ZF

precoding becomes

yd =
√

αdP0GHWZFx+ ñU
= √

αdP0ĜHWZFx+
√

αdP0G̃HWZFx+ ñU
= √

cαdP0D1/2
g D1/2

p x+√
αdP0G̃HWZFx+ ñU. (18)

The received signal at UE k is expressed as

ydk =
√
cαdP0ηkpk +

√
αdP0g̃Hk WZFx+ ñUk. (19)

Since the variance of ñUk is σ 2
k = αdNrβUV,k + 1 [30], it

is left to compute the variance of the second term in (19).
Adopting the approach in [37], using (10) leads to

Var{g̃Hk WZFx} = E{xHWH
ZFg̃kg̃

H
k WZFx}

= (βk − ηk)E
{
||WZFx||2

}

= (βk − ηk)

K∑

i=1

pi. (20)

1Given that an arbitrary N×N matrix typically requires O(N3) floating-
point operations (flops), the complexity for matrix inversion of ĜHĜ in (15)
would be O(K3), reminding that K ≤ Nr .

Lemma 2: From (19), the signal-to-interference-plus-
noise ratio (SINR) of UE k is bounded by the following
closed-form expression:

γk(p, cV) �
cαdP0pkηk

αdP0
∑K

i=1 pi(βk − ηk)+ σ 2
k

, (21)

where p = [p1, . . . , pK] is the vector of UE power control
coefficients. The respective lower bound of the achievable
rate of UE k is given by

Rk(p, cV) = τ − 2τp

2τ
ln

(
1+ γk(p, cV)

)
, (22)

where the utilization of the UAV in a half-duplex amplify-
and-forward relaying mode leads to the emergence of the
pre-log factor τ−2τp

2τ
.

From (22), the sum rate of all active UEs can be computed
as

R�(p, cV) =
K∑

k=1

Rk(p, cV). (23)

B. PROBLEM FORMULATION FOR SUM RATE
MAXIMIZATION
In the following, we present the conventional problem
formulation for maximizing the downlink sum rate R�

in (23), taking into account the system contraints.The
problem is introduced as follows:

maximize
p,cV

R�(p, cV), (24a)

s.t.

K∑

k=1

pk ≤ 1, (24b)

(14), (24c)

Zmin ≤ zV ≤ Zmax. (24d)

The constraints (24b) and (24c) are imposed to satisfy the
signal and the UAV power contraints, respectively, while
constraint (24d) ensures that the UAV operates within the
permissible altitude range. Here, we assume that at the
highest altitude, ZmaxV , the UAV’s coverage area is sufficient
to serve all UEs.
The problem stated in (24) can be tackled using traditional

optimization methods, involving the solution of a sequence
of convex problems or sub-problems. Such an approach
typically employs algorithms characterized by polynomial
computational complexity. It is crucial to note that the
formulated problem is tailored for a UAV-based system
operating in a dynamic environment, requiring adaptive
behavior over time. In light of this, the application of
deep learning emerges as a promising option. Among the
potential candidates, the DDPG-based algorithm, designed
for continuous action spaces, is anticipated to enhance
system performance. In the following, we will introduce
the DDPG algorithm and its application in addressing the
formulated problem.
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IV. DEEP DETERMINISTIC POLICY GRADIENT
(DDPG)-BASED ALGORITHM FOR MAXIMIZING SYSTEM
SUM RATE
In this section, we begin with a concise overview of rein-
forcement learning and DDPG. Subsequently, we introduce
the optimization problem, focusing on the maximization of
the sum rate. We then employ DDPG to address the proposed
problem by jointly optimizing the UAV location and the
power allocation for UEs.

A. INTRODUCTION TO REINFORCEMENT LEARNING
Markov decision process (MDP) is formally defined as
a quintuple (S,A,R, p, γ ), where S represents the state
space and A denotes the action space. The reward function,
defined over the Cartesian product space S×A and mapping
to a subset of real numbers, is denoted as R : S ×
A→ P(R). Additionally, we have the transition probability
function p : S ×A→ P(S), where P(S) signifies the set
encompassing all possible probability measures on S . Lastly,
the discount factor, denoted as 0 < γ < 1, represents a
critical component in the formulation.
The reward, crucially dependent on the state and action, is

denoted as r(t) = R(s(t), a(t), s(t+1)) at each time step t. The
return is defined as the sum of discounted future rewards:

R(t) =
inf∑

τ=1

γ τ r(t+τ+1). (25)

A policy π defines a probability distribution π(.|s) over the
action space A for each state s ∈ S (a(t) ∼ π(.|s)). If we
let θ denotes the policy parameters (the weights and biases
of a neural network), it can be expressed as

a(t) ∼ πθ (.|s). (26)

The goal of reinforcement learning is to discover a policy that
maximizes the expected return from the initial distribution
J = Er,s,a{R(1)}:

π∗ = arg max
π

J(π), (27)

where π∗ represents the optimal policy. Given a specific
policy π , the value of the state-action function Qπ (s(t), a(t))

at the time step t is expressed as:

Qπ

(
s(t), a(t)

)
= E

[
R(t)|s(t) = s, a(t) = a

]
. (28)

The Q function follows the Bellman equation and is
expressed as

Qπ

(
s(t), a(t)

)
= E

[
r(t+1)|s(t) = s, a(t) = a

]

+ γ
∑

s′∈S
Pass′

(
∑

a′∈A
π

(
s′, a′

)
Qπ

(
s′, a′

)
)

(29)

where Pass′ = Pr(s(t+1) = s′|s(t) = s, a(t) = a, ) represents
the transition probability from state s to state s′ through the
action a.

The Q-learning algorithm seeks to discover the optimal
action-value function Q∗π by employing the following
strategy:

Q∗π
(
s(t), a(t)

)
= r(t+1)

(
s(t) = s, a(t) = a, π = π∗

)

+ γ
∑

s′∈S
Pass′ max

a′∈A
Q∗

(
s′, a′

)
. (30)

To derive the optimal Q∗(s(t), a(t)), we can use a recursive
algorithm that does not require knowledge of the exact
reward model or the state transition model. The update rule
for the Q function is as follows:

Q∗π
(
s(t), a(t)

)
< −(1− α)Q∗π

(
s(t), a(t)

)

+ α

(
r(t+1) + γ max

a′∈A
Qπ

(
s(t+1), a′

))
, (31)

where α is the learning rate for updating the Q function.
A significant challenge in using neural networks to

approximate the Q function is the high correlation among
states over time. This correlation can reduce the diversity and
randomness of states, as they all stem from the same episode.
To address this challenge, experience replay is employed,
introducing a buffer window to store a subset of recent
states. This approach significantly enhances the effectiveness
of deep reinforcement learning (DRL). Instead of updating
the Q-value function solely based on the most recent state,
the deep neural network (DNN) is trained using a batch of
states randomly selected from the experience replay buffer.
This mechanism ensures that DRL can facilitate more stable
and diverse learning of the Q-value function.
In the context of DRL, the Q-function is precisely defined

with the assistance of a parameter vector denoted as θ , i.e.,

Q
(
s(t), a(t)

)
� Q

(
θ |s(t), a(t)

)
. (32)

Here, θ serves as a repository of acquired knowledge,
enabling the DNN to approximate the Q-function for
various state-action pairs, thereby enhancing the agent’s
decision-making capabilities. The value of θ undergoes
iterative updates through stochastic optimization algorithms,
expressed as

θ(t+1) = θ(t) − μ�θL(θ), (33)

where μ and �θ denote the learning rate for the update and
the gradient of the loss function L(θ) with respect to θ ,
respectively.

B. INTRODUCTION TO DEEP DETERMINISTIC POLICY
GRADIENT
The DDPG algorithm is recognized a robust method in the
realm of DRL, constituting a subset of MDPs. It excels
at tackling challenges presented by continuous action space
problems, extending traditional reinforcement learning into
domains such as robotics, finance, and control systems.
DDPG operates in an off-policy manner within the MDP
framework, allowing agents to optimize cumulative rewards
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through discrete-time interactions with environments, guided
by states, actions, transition probabilities, and rewards [38].
Let θ

(target)
c denote the target critic network. The Bellman

update target is then expressed as

y = r(t) + γQ
(
θ(target)
c |s(t+1), a′

)
. (34)

The mean squared error (MSE) quantifies the discrepancy
between the Q-values at time step t and the Bellman update
target, estimated using the reward r(t) and the Q-values at
time step (t + 1). This minimization process addresses the
one-step temporal difference and is formally expressed by
the following equation:

L(θ(train)
c ) = E(s,a,r,s′)D ∼

(
Q

(
θ(train)
c |s(t+1), a′

)
− y

)2
,(35)

where the replay buffer D is defined as a collection of
transitions (s, a, r, s′). In algorithms following the DDPG
framework, the target network undergoes an update during
each main network update through a Polyak averaging
process:

θ(target)
a ← ρθ(train)

a + (1− ρ)θ(target)
a , (36)

θ(target)
c ← ρθ(train)

c + (1− ρ)θ(target)
c , (37)

where ρ is a hyperparameter between 0 and 1 (usually close
to 1). An exploratory policy π ′ is constructed by adding a
noise process N into our the actor policy:

π ′
(
s(t)

)
= π

(
s(t)|θπ

a

)
+N . (38)

C. DDPG-BASED JOINT OPTIMIZATION OF POWER
ALLOCATION AND UAV LOCATION
1) ALGORITHM IMPLEMENTATION

This subsection present the algorithm design based on
DDPG. Specifically, the power allocation and UAV location
are jointly optimized as discovering the changes of three-
fold components: state/observation space, action space, and
reward design, as described below.

• State/Observation Space: At each time step t, an
observation is formed using the current environmental
state s(t), encompassing the channels from the BS to the
UAV and from the UAV to the K UEs. Subsequently,
the state space at time step t can be defined as

s(t) �
[
p(t−1)

1 , . . . , p(t−1)
K , x(t−1)

V , y(t−1)
V , z(t−1)

V ,

d(cU1 , cV)(t−1), . . . , d(cUK , cV)(t−1),

d(cB, cV)(t−1),

R(t−1)
1 , . . . ,R(t−1)

K

]
. (39)

• Action Space: The action space at time step t is
determined by

a(t) = [p(t)
1 , . . . , p(t)

K , x(t)V , y(t)V , z(t)V ]. (40)

Algorithm 1 Algorithm to Solve Problem (24)
1: Input:
2: The learning rate μa, μc.
3: The soft update coefficient τc.
4: The discount factor γ and batch size.
5: The locations of UEs and UAV.
6: Initialization:
7: Establish the replay buffer D.
8: Initialize the critic network Q(s, a|θQ) and the actor

π(s|θπ
a ).

9: Set the training actor and critic network parameters
θ

(train)
a and θ

(train)
c .

10: Set the target actor and critic network parameters
θ

(target)
a and θ

(target)
c .

11: Set the number of episodes nEpi and time steps nTS.
12: for epi = 1 : nEpi do
13: Compute the distances among nodes.
14: Set pk = 1/K, k = 1, . . . ,K.
15: Construct the initial state s(0).
16: for t = 1 : nTS do
17: Select action from the actor network according to

the current policy.
18: Get [p(t)

1 , . . . , p(t)
K , x(t)V , y(t)V , z(t)V ]a(t) from a(t) as

in (40).
19: Execute action a(t) and observe reward R(t+1)

by (41).
20: Observe and obtain the state s(t+1) as in (39).
21: Add the experience (s(t), a(t),R(t+1), s(t+1)) into the

replay buffer.
22: Update Q(

s(t), a(t)
)
in (32) by minimizing the loss

function in (45).
23: Soft update the actor and critic target networks as

in (47) and
24: end for
25: end for
26: Output: optimal action a.

• Reward: Obtained after executing the action a(t), the
reward at time step t is defined at time step t as the
sum rate:

r(t) = R�(p, cv). (41)

• Constraints: To satisfy constraints (24b) and (24c),
the sigmoid operator is used in the output
of the actor network, and at this time, the
action’s values are in the range [0,1]. The con-
straint (24c) is easily satisfied by scaling the
values in the range cv = cv(cvmax − cvmin) + cvmin .
Meanwhile, constraint (24b) is handled by normalizing
pk = pk/

∑K
k=1(pk).

Summarily, the DDPG-based algorithm is described in
Algorithm 1, where each iteration of the episode computes
the power allocation and UAV location corresponding to one
channel realization.
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2) COMPLEXITY ANALYSIS

The proposed algorithm, is developed within the DDPG
framework, exhibits the following complexities:
• The main algorithm efficiently manages the states and
actions to maximize rewards at each time step t. In the
worst case, this procedure takes O(|s(t)| · |a(t)|), where
|x| denotes the number of elements in vector x. Here,
|s(t)| = 3K + 4 and |a(t)| = K + 3.

• Achieving convergence for s(t) and a(t), involves iter-
ating over t, requiring nTS iterations of the main
algorithm.

The overall complexity of Algorithm 1 is determined as
O(nTS(3K+4)(K+3)), which is equivalent to O(nTSK2). It
should be noted that the proposed algorithm operates within
the DRL framework, where a substantial amount of data is
required for the reinforcement learning process. Therefore,
it takes several CBs for the DRL process to converge and
reach an optimal solution. The outermost loop, nEpi of CBs,
is needed to find a satisfactory solution, rather than the loop
inside the proposed algorithm. The convergence rate for the
reinforcement learning process will be further examined in
Section V.

V. NUMERICAL RESULTS AND DISCUSSIONS
We will now validate the accuracy of our analytical results
concerning the UAV-relay massive MIMO system with
imperfect CSI and assess the efficiency of the proposed
algorithm in solving the formulated optimization problem.
It should be noted that our analysis considers an imperfect
CSI transmission protocol, where the UAV-relay functions
without small-scale fading information. Instead, it relies
exclusively on knowledge about large-scale fading to amplify
and forward the received signal to the UEs. To evaluate
the system performance, we perform extensive simulations
using Python, involving 1000 channel realizations. In order
to ensure the robustness and reliability of our numerical
results, we execute 100 episodes for each channel realization.
Moreover, we simulate each episode over a total of 100 steps,
allowing for a comprehensive assessment of the system’s
performance and capturing any dynamics or variations that
may arise during the simulation.

A. SIMULATION PARAMETERS
As described in Section II, our system model features a
BS equipped with a massive MIMO array with N antennas
transmitting data to K UEs through a UAV-relay equipped
with Nr antennas, considering a scenario where direct
transmission is obstructed. For the simulation setup, we
initially randomize the positions of the UEs within the ranges
(x, y, z) ∈ (0:500,−50:50, 0:1.5) [m]. The ground-based BS
is set fixed at the origin position, with an assumed height of
20 m, i.e., (0, 0, 20) [m]. The initial position of the UAV is
set to (350, 0, 50) [m], where the UAV’s altitude is restricted
within the allowable range of {40:100} [m] [39].
The uplink training power is uniformly set to 10 dBm for

each UE and 23 dBm for the UAV-relay in all cases. For

TABLE 1. Simulation parameters.

FIGURE 2. Average sum rate as a function of the number of BS antennas (N) for
different values of UEs K = {4,8} with Nr = 16.

downlink data transmission, the BS is assigned a maximum
power of 43 dBm, while the UAV operates at 23 dBm. Unless
explicitly stated otherwise, we present the numerical results
based on a fixed signal-to-noise ratio (SNR) of 15 dB. It is
important to note that the number of uplink pilot sequences is
assumed to be equal to the number of UEs, ensuring that each
UE is assigned a unique pilot sequence for accurate channel
estimation. For further details on the simulation parameters,
please refer to Table 1.

B. ON THE VALIDITY OF ZF PERFORMANCE ANALYSIS
To validate the analytical derivations presented in
Section III-A, we first examine the system sum rate employ-
ing ZF processing as a function of the number of BS antennas
(N), while keeping the number of UAV-relay antennas fixed
at Nr = 16. The corresponding plot in Figure 2 showcases
the results of this analysis. We investigate two scenarios:
perfect CSI at the BS (labeled as ‘PerfCSI’ and depicted
by the green curves) and imperfect CSI (specifically, no
CSI at the UAV-relay, labeled as ‘ImPerfCSI’ and depicted
by the red curves). For both cases, we present simulation
results (labeled as ‘Sim’) as well as theoretical lower bounds
(labeled as ‘LB’).
In our analysis, we consider two different numbers of

UEs: K = 4 and K = 8, while adhering to the constraint
that the number of UAV-relay antennas is greater than or
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FIGURE 3. Average sum rate as a function of the number of the UAV-relay antennas
(Nr ) for different values of number of UEs K = {4,8} with fixed N = 128.

equal to the number of UEs, i.e., Nr ≥ K. To verify the
benefits of ZF technique, we also include here the analysis
of MRT processing from [30] for comparison purposes. The
corresponding results are depicted by the purple curves,
taking into account the presence of imperfect CSI.
Figure 2 clearly illustrates the substantial gain in sum

rate achieved by employing ZF processing compared to
MRT, particularly in scenarios with a high number of
UEs. For instance, at N = 64, the sum rate difference
between ZF and MRT is approximately 15 bps/Hz for
K = 4, while this difference expands to about 27 bps/Hz
for K = 8. Moreover, the impact of CSI unawareness on
system performance, especially with an increased number
of UEs, becomes apparent. At N = 64 and K = 8, there
is a substantial discrepancy between the curves representing
perfect CSI and imperfect CSI. The gap between these curves
is approximately 28 bps/Hz, nearly four times larger than the
gap observed for K = 4, which is approximately 7 bps/Hz.
This trend emphasizes the amplifying effect of imperfect CSI
on the disparity between the system performance assumed
under perfect CSI and the actual performance considering
the reality of imperfect CSI.
To further verify the accuracy of the analytical derivations

for ZF processing, Figure 3 depicts the system sum rate as a
function of the number of UAV-relay, with the number of BS
antennas fixed at N = 128. Due to the constraint Nr ≥ K,
the starting points for K = 4 and K = 8 coincide at the
same values of Nr, respectively. Consistent with the trends
observed in Figure 2, similar patterns emerge, confirming
the reliability of the derived analytical expressions and the
outperformance of ZF over MRT [30]. As Nr increases, a
widening gap between the simulation and analytical sum
rates is observed, although with marginal differences. For
instance, at Nr = 16, the gap is approximately 3% for K = 4
and approximately 4% for K = 8.

Moreover, Figure 3 emphasizes that increasing the number
of UAV-relay antennas has a positive impact on the system

sum rate, especially in scenarios where channel knowledge
is limited and a relatively large number of UEs are involved.
For instance, in cases with channel estimation, the system
sum rate improves from approximately 21 bps/Hz (at
Nr = 10) to about 24 bps/Hz (at Nr = 16) for K = 4,
representing a 13% improvement. This highlights the benefits
of increasing the number of UAV-relay antennas, as it allows
for better spatial multiplexing and enhanced performance.
In contrast, for K = 8, the gap widens as the number
of UAV-relay antennas increases. The system sum rate
increases from around 27 bps/Hz (at Nr = 10) to about 37
bps/Hz (at Nr = 16), indicating an almost 27% improvement.
This substantial increase in the sum rate demonstrates the
advantages of having a larger number of UAV-relay antennas,
particularly when dealing with a higher number of UEs.

C. EFFECTIVENESS OF THE PROPOSED DDPG-BASED
ALGORITHM
In Section V-B, both Figures 2 and 3 exhibit a considerable
reduction in SE between scenarios with perfect CSI and
those with imperfect CSI, demonstrating a substantial penalty
due to the lack of channel knowledge. In this section, we
evaluate the effectiveness of the proposed algorithm, tailored
for the imperfect CSI scenario, in mitigating this penalty.
Since DDPG is well-suited for continuous action spaces,
leveraging a deterministic policy, the DDPG-based approach
can optimize the UAV-relay’s position during execution.
Here we show the DDPG performance for the proposed
system with and without the application of the ZF technique.
For conventional precoding transmission, where the ZF
technique is not employed, the curve obtained solely by
the DDPG algorithm is labeled as “Rate DDPG non-ZF’.
Conversely, the curves obtained by the proposed DDPG-
based algorithm when integrated with ZF transmission, are
labeled as ‘Sim DDPG/Opt. UAV pos.’ and ‘LB DDPG/Opt.
UAV pos.’ for the simulation and theoretical lower bound
results, respectively. It is important to note that the analytical
curves labeled as ‘Sim ImPerfCSI’ and ‘LB ImPerfCSI’ are
obtained under the assumption of a fixed initial position of
the UAV. In contrast, the curves representing the DDPG-
based algorithm integrated with ZF transmission consider
the optimization of the UAV position as part of the overall
system performance evaluation.
Figure 4 displays the performance of the sum rate as a

function of the number of BS antennas (N), while keeping
the number of UAV-relay antennas (Nr) and the number
of UEs (K) fixed at Nr = 16 and K = 8. In this plot,
we compare the effectiveness of the proposed DDPG-based
algorithm with the theoretical and simulation performance
under the assumption of imperfect CSI. Notably, both the
theoretical lower bound derivations and simulation results
indicate that the proposed DDPG-based algorithm for ZF
transmission exhibits a significant improvement over the
analytical curves. The sum rate improvement between the
DDPG-based algorithm and the theoretical lower bound
remains consistently around 7 bps/Hz as the number of BS

2328 VOLUME 5, 2024



FIGURE 4. Average sum rate as a function of number of BS antennas (N) with fixed
Nr = 16 and K = 8.

antennas (N) increases. Furthermore, when compared to the
simulation curve, the proposed algorithm demonstrates a
substantial enhancement in the sum rate, increasing from
35 bps/Hz to 43 bps/Hz when N = 128 antennas. This
notable improvement can be attributed to the DDPG algo-
rithm’s ability to effectively balance between exploration and
exploitation. By exploring different locations, the algorithm
identifies optimal positions that maximize the system sum
rate. Nevertheless, the DDPG is effective only when ZF
precoding is applied for the system of interest. We show that
by involving the cases where the DDPG-based algorithm is
employed without using ZF technique. Obviously, the huge
gaps observed between the ZF curves and the recently added
“Rate DDPG non-ZF” curve can be viewed as evidence of the
effectiveness of the powerful ZF processing technique. These
gaps highlight the performance disparity between employing
ZF and conventional precoding techniques.
Figure 5 exhibits similar trends, focusing on system

performance across different SNR levels, where we perform
the system performance in terms of SNR, while keeping N =
64, Nr = 16, and K = 8 constant. This further validates the
analytical performance and the effectiveness of the proposed
algorithm. The DDPG algorithm, based on simulations,
consistently outperforms the analytical results, particularly
at low SNR levels, showcasing its ability to adapt. These
results underscore the efficacy of the proposed DDPG-based
algorithm in optimizing system performance, particularly
with the integration of ZF, surpassing both theoretical lower
bounds and simulations. The algorithm’s ability to leverage
reinforcement learning techniques and explore the solution
space enables it to achieve superior performance in terms of
sum rate optimization.
To investigate the impact of the number of UAV-relay

antennas (Nr) on the effectiveness of the proposed algorithm,
Figure 6 is provided with fixed conditions of N = 64, K = 4,
and SNR = 15dB. The figure illustrates that the performance
gap introduced by the simulation-based DDPG approach

FIGURE 5. Average sum rate as a function of SNR [dB] with fixed N = 64, Nr = 16
and K = 8.

FIGURE 6. Average sum rate as a function of the number of the UAV-relay antennas
(Nr ) with fixed N = 64, K = 4, and SNR = 15dB.

marginally widens with an increase in Nr. Conversely, the
gap for the theoretical-based DDPG approach decreases as
Nr grow. Furthermore, both the analytical and DDPG-based
results exhibit a similar trend as Nr ranges from 5 to 60
antennas. Within this range, the sum rate curves initially rise
proportionally with the growth of Nr, reaching their peaks at
Nr = 20, after which they gradually decline until Nr = 60.
This observed behavior aligns with the analytical predictions
provided by (21) and (17), indicating that increasing Nr
does not invariably lead to performance enhancement. The
theoretical analysis suggests the presence of an optimal Nr
for a given configuration of N,K, underscoring the necessity
of striking a suitable balance between the number of UAV-
relay antennas and system performance.
Motivated by the insights gained from Figure 6, we delve

deeper into the influence of the number of UEs on system
performance. Figure 7 showcases the average sum rate as
a function of K, while keeping other parameters fixed at
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FIGURE 7. Average sum rate as a function of number of UEs (K ) with fixed
SNR = 15 dB, N = 64, and Nr = 16.

N = 64, Nr = 16, and SNR = 15dB. Interestingly, the
proposed DDPG-based algorithm demonstrates a significant
improvement in the system sum rate, particularly with
a larger number of UEs. For example, at K = 2, the
sum rate enhancement achieved by the LB-based DDPG
algorithm over the LB-based imperfect CSI assumption is
approximately 1 bps/Hz. Similarly, the improvement between
the simulation-based DDPG algorithm and the simulation-
based imperfect CSI assumption is about 2 bps/Hz. These
gaps become even more pronounced at K = 12, reaching
9 bps/Hz and 14 bps/Hz, respectively. Similar to the impact
of Nr, the optimal number of UEs can be identified for
a specific system configuration based on the theoretical
analysis presented in Section II-B. This highlights the
importance of considering the number of UEs as a critical
parameter in optimizing system performance through the
proposed DDPG-based algorithm.
Finally, we investigate the convergence sped of the proposed

DDPG-based algorithm over training episodes. Figure 8
showcases the convergence behavior of the system sum
rate for two cases: computing reward DDPG and average
reward DDPG, with fixed values of N = 64, Nr = 16, and
K = 8. Remarkably, the figure demonstrates that the proposed
algorithm achieves rapid convergence of the sum rate. After
approximately 3 episodes, the algorithm reaches stability and
continues to converge towards a steady value. This stable
value is observed to be around 40.5 bps/Hz, indicating the
optimized system performance achieved by the algorithm.

VI. CONCLUSION
In this study, we conducted an analysis of the theoretical
performance of a UAV-relay massive MIMO network under
the constraints of imperfect CSI. We utilized the favorable
ZF processing technique at the BS due to its high spectral
efficiency and low complexity. The absence of direct
transmission led us to leverage a UAV as an amplify-and-
forward aerial relay to enhance communication from the

FIGURE 8. Convergence speed of the algorithms.

BS to the target UEs. Our investigation began by deriving
a closed-form expression for the lower bound of SE. We
employed the MMSE approach for channel estimation and
a ZF precoding scheme for downlink data transmission.
Subsequently, we formulated an optimization problem

with the primary objective of maximizing the overall sum
rate. To tackle this problem, we employed the DDPG
approach, which enabled us to optimize the UAV’s position
and power allocation for the UEs. Our numerical results
not only validated the accuracy of the analytical derivations
but also demonstrated the effectiveness of the proposed
DDPG-based algorithm. The outcomes revealed a significant
enhancement in the system sum rate, particularly in scenarios
with imperfect CSI. Notably, the proposed DDPG algorithm
exhibited superior performance in simulation results, catering
to a relatively large number of UEs and ground BS
antennas while maintaining a moderate number of UAV-relay
antennas.
Overall, our study contributes to the understanding of

UAV-relay massive MIMO systems operating under imper-
fect CSI. We successfully applied analytical derivations
and the DDPG algorithm to optimize system performance
and achieve significant improvements in the sum rate.
These findings have practical implications for scenarios
where direct transmission is not feasible, and UAVs can be
leveraged as relays to enhance communication in wireless
networks.

APPENDIX A
PROOF OF (17)
We begin by introducing the following remark, which will

be useful for the subsequent derivation.
Remark 2: The m× m random matrix W = ZZH , where

Z ∼ CN (0m×n, Im ⊗ In), is referred to as a central Wishart
matrix with n degrees of freedom (n ≥ m). According to [40,
Lemma 2.10], the following property holds:

E

{
tr
(
W−1

)}
= m

n− m . (42)
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Proof: From (15), it is expressed as

A = Ĝ
(
ĜHĜ

)−1
D1/2
g

= Z1Z2D1/2
g

(
D1/2
g ZH2 Z

H
1 Z1Z2D1/2

g

)−1
D1/2
g

= Z1Z2

(
ZH2 Z

H
1 Z1Z2

)−1
. (43)

Then

AHA =
(
ZH2 Z

H
1 Z1Z2

)−1
ZH2 Z

H
1 Z1Z2

(
ZH2 Z

H
1 Z1Z2

)−1

=
(
ZH2 Z

H
1 Z1Z2

)−1
. (44)

Following the approach in [37], the precoding matrix is
designed as

WZF = √cAD1/2
p , (45)

where the diagonal elements of Dp = diag(p1, . . . , pK)

represent the signal power of K UEs. To ensure that the total
transmitted power remains within the bounds of unity, i.e.,
E{||WZFx||2} ≤ 1, the scaling factor c is intricately designed
as follows:

E

{
||WZFx||2

}
= E

{
tr
(
WZFxxHWH

ZF

)}

= cE
{

tr
(
AHADp

)}

= cE
{

tr
(

[ZH2 Z
H
1 Z1Z2]−1Dp

)}

= c
K∑

k=1

pkE
{

tr
(

[ZH2 Z
H
1 Z1Z2]−1

k,k

)}

(a)≤ c
K∑

k=1

pkE
{

tr
(

[ZH1 Z1]k,k
−1

)
tr
(

[ZH2 Z2]−1
k,k

)}

(b)≤ c
K∑

k=1

pk
Nr

N − Nr
1

Nr − K ≤ 1, (46)

where (a) is based on Jensen inequality [30] and (b) is
obtained by using (42) in Remark 2. From (46), it leads to

c = (N − Nr)(Nr − K)

Nr
. (47)
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