
Received 8 March 2024; accepted 22 March 2024. Date of publication 28 March 2024; date of current version 12 April 2024.

Digital Object Identifier 10.1109/OJCOMS.2024.3382265

Artificial Intelligence-Defined Wireless Networking
for Computational Offloading and Resource

Allocation in Edge Computing Networks
SYED DANIAL ALI SHAH 1, MARK A. GREGORY 2 (Senior Member, IEEE),

FAYCAL BOUHAFS1 (Senior Member, IEEE), AND FRANK DEN HARTOG 1,3 (Senior Member, IEEE)
1School of Systems and Computing, The University of New South Wales, Canberra, ACT 2610, Australia

2School of Engineering, Royal Melbourne Institute of Technology, Melbourne, VIC 3001, Australia

3Network Engineering and Cyber Security, University of Canberra, Canberra, ACT 2617, Australia

CORRESPONDING AUTHOR: F. BOUHAFS (e-mail: F.Bouhafs@unsw.edu.au)

This work was supported by the School of Systems and Computing, University of New South Wales, Canberra, Australia.

ABSTRACT The advent of the Internet of Everything and new Ultra-Reliable Low-Latency
Communication (URLLC) services has resulted in an exponential growth in data demands at the network’s
edge. To meet the stringent performance requirements of evolving 5G (and beyond) applications, deploying
dedicated resources closer to mobile users is essential. Multi-Access Edge Computing (MEC) is a
promising technology for bringing computational resources closer to users. However, the distributed and
limited MEC resources must be effectively optimized to maximize the number of mobile users benefiting
from low-latency MEC services at each time slot in highly congested, large-scale, and dynamic wireless
network scenarios. In this research, we propose and evaluate a novel Artificial Intelligence-Defined
Wireless Networking (AIDWN) approach that builds on conventional Software-Defined Networking (SDN),
implementing a new AI-defined application plane for computational offloading and resource allocation
in MEC-enabled wireless networks. The AIDWN approach implements a deep reinforcement learning
framework and deep neural networks that dynamically adapt optimal computational offloading and wireless
resource allocation decisions while considering the handover, mobility, and coordinated resource allocation
challenges in highly dynamic and mobile multi-MEC server environments. Compared to recent state-of-
the-art proposals, the proposed AIDWN demonstrates a substantial performance improvement, utilizing
more than 90% of MEC resources per time slot across all MEC servers. It also accommodates significantly
more mobile users in highly congested wireless network scenarios. We identified various future research
directions highlighting the potential of the AIDWN approach in simplifying the management of next-
generation wireless networks.

INDEX TERMS Edge computing, resource management, AI, wireless networks, SDN, task offloading,
5G and beyond.

I. INTRODUCTION

THE GROWTH in data demands for Ultra-Reliable and
Low-Latency Communication (URLLC) services, e.g.,

Vehicle-to-Everything (V2X) and virtual reality/augmented
(VR/AR) reality, has led to a significant need for
the deployment of dedicated network resources closer
to the users [1], [2]. Multi-access Edge Computing
(MEC) is a promising technology standardized to bring

the computational resources closer to the users [3].
Computational offloading is a method that allows power-
constrained mobile users to offload their low-latency and
computation-intensive tasks to nearby MEC servers [4].
However, owing to the limited computational capacities of
the MEC servers, the distributed and limited MEC resources
must be effectively managed to maximize the number of
mobile users offloading the low-latency computational tasks
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to the MEC servers at each time slot in highly congested,
large-scale, and dynamic wireless network scenarios.
Computational offloading is a challenging problem, where

the users frequently relocate, resulting in constant varia-
tions in communication links, channel quality, and signal
strength [5]. This poses a major challenge in wireless
networks as it becomes essential to optimally and dynami-
cally adapt computational offloading and resource allocation
decisions to the time-varying wireless channel conditions
and resources available on the MEC servers in real-
time [6]. Therefore, designing effective and optimal methods
and approaches for computational offloading and resource
allocation in dynamic MEC-enabled next-generation wireless
networks demands the development of procedures to quickly
solve complex combinatorial optimization problems within
the channel coherence time. This is hard to achieve with
conventional numerical optimization methods [7].
The computational offloading problem could be mod-

eled as a Mixed-Integer Nonlinear Programming (MINLP)
Problem [8], which is a complex optimization problem
involving continuous and discrete variables. The continuous
variables include resource allocation parameters such as CPU
frequency, transmit power, and bandwidth, while the discrete
variables include the computational offloading decisions. The
MINLP problem becomes challenging to solve because of
the exponential growth of the action space with the problem
size, i.e., the number of mobile users in the network [9].
A potential solution for the computational offloading and
resource allocation problem in dynamic and mobile scenarios
suchasMEC-enabledvehicular networks is theuseofAI-based
approaches, e.g., deep reinforcement learning approach, where
optimal policy is learned through training that maximizes the
overall MEC system utility and reduces the computational
complexity of optimization problems.
The existing AI-based approaches for computational

offloading and resource allocation only focus on optimiz-
ing the MEC system utility of individual systems, i.e.,
computational rate, processing delay, latency, and energy
consumption [10], [11], [12], [13], and do not take into
account the challenges pertaining to multi-MEC server envi-
ronments, e.g., handover and mobility management, adaptive
and coordinated resource allocation, and load balancing.
This is insufficient for highly dynamic and mobile wireless
network scenarios where mobile users frequently relocate,
resulting in frequent network topology changes.
In this paper, the complexity arising from using AI on

a distributed system as edge computing is addressed by
leveraging the flexibility and centralized programmability
offered by Software-Defined Networking (SDN). We pro-
pose an Artificial Intelligence-Defined Wireless Networking
(AIDWN) approach that employs an AI-defined application
plane that dynamically adapts to the time-varying wireless
channel conditions and resources available on multiple MEC
servers, allowing for more efficient and effective resource
management and coordination. The AIDWN approach uses
artificial intelligence and machine learning techniques in the

AI-defined application plane, integrating behavioral models
and reasoning processes tailored to automate decision-
making and network configurations in SDN-based wireless
networks. The SDN controller utilizes the global network
topology information, i.e., network analytics, to make
informed and intelligent control decisions, and learn optimal
applications and use case-specific control policies.
The remainder of this paper is organized as follows. The

following Section II reviews the related works, research gaps,
and motivations and contributions are described. The chal-
lenges and design considerations for the proposed AIDWN
approach are provided in Section III. Section IV introduces
the proposed AIDWN architecture and its application in
the MEC-enabled next-generation wireless networks domain.
The novel AI-defined application plane is presented in
Section V for efficient computational offloading and resource
allocation in MEC. The final two sections discuss our
numerical results, conclusions, and potential use cases.
II. STATE OF THE ART
A. RELATED WORKS
Several related works implement AI-based approaches for
computational offloading and resource allocation with dif-
ferent optimization objectives. The authors in [14] modeled
the computational offloading policy as a Markov decision
process to maximize the long-term MEC system utility
performance based on the task and energy queue states and
the channel conditions of the wireless users. The authors
in [15], [16] proposed a value iteration-based reinforcement
learning approach and deep reinforcement learning approach
for joint optimization of computational offloading and
resource allocation in a multi-user MEC system environment
to optimize the energy consumption of the MEC system,
respectively. In [17], authors proposed a deep reinforcement
learning-based joint secure offloading and resource allocation
approach that applies physical layer security and spectrum
sharing techniques to improve vehicular edge computing
networks’ secrecy performance and resource efficiency. The
authors aim to minimize the overall MEC system processing
delay and secure the offloading process through physical
layer security techniques.
The correlation between the service caching and com-

putation offloading strategies for MEC has been discussed
in [18]. The authors proposed a deep reinforcement learning
approach to jointly optimize the service caching and compu-
tational offloading allocations in a vehicular edge computing
scenario with time-varying task requests for minimal average
task processing delay. In [19], the authors proposed a deep
reinforcement learning approach to maximize the number
of computational tasks offloaded to the MEC server with
limited computational capacity. In [20], authors proposed
an asynchronous deep reinforcement algorithm to jointly
optimize the problem of distributed task offloading and
multi-resource management. The authors investigated a col-
laborative computing framework where vehicle mobile users
collaborate their resources to maximize the system’s utility.
In [21], authors proposed a deep reinforcement learning
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algorithm to optimize the utility of a resource-constrained
MEC server by maximizing the distribution of tasks between
the MEC server and other computing groups in the network
to minimize the overall task processing latency in the system.
The authors in [22] proposed a multi-agent soft-actor-

critic-discrete based URLLC-constrained task offloading
and resource allocation to optimize throughput and reduce
power consumption at the remote end, taking into account
extended URLLC constraints. The approach offers superior
performance in delay and other characteristics related to
URLLC. In [23], authors proposed a double deep Q-network-
based algorithm and a dynamic offloading model to optimize
offloading decisions for compute-intensive tasks in a con-
gested scenario, to minimize the total delay and wait times
of mobile users, e.g., vehicles. A deep meta-reinforcement
learning-based offloading algorithm is proposed in [24] to
tackle the complexity of the optimal offloading-decision-
making optimization problem that leverages multiple parallel
DNNs and Q-learning to enable precise offloading decisions
within dynamic environments. In [25], authors proposed
a deep deterministic policy gradient-based mobility-aware
computation offloading and task migration approach based
on trajectory and resource prediction to minimize the
task turnaround time and system energy consumption and
optimize the offloading decisions in mobility scenarios.
The authors in [26] proposed a cost-efficient computation
offloading framework that utilizes a two-stage optimization
algorithm balancing cost and latency in edge computing
environments. A meta-reinforcement learning approach for
computational task offloading and power control among
users in a resource-limited MEC network is proposed in [27]
that aims to enhance user computation efficiency by minimiz-
ing power consumption during local computing and uplink
transmission within the MEC network environment. In [28],
a deep deterministic policy gradient algorithm based on a
greedy strategy is proposed that jointly optimizes scheduling,
device association, and task allocation of unmanned aerial
vehicles, aiming to minimize the weighted sum of total
system energy consumption and time delay.
The past decades saw a shift in the way data traffic

and spectrum resources are managed in telecommunication
and data networks. The introduction of novel softwariza-
tion techniques such as SDN [29] and Network Function
Virtualisation (NFV) [30] has enabled more scalable and
efficient management of these networks. Although initially
limited to wired networks, such techniques are now also used
for wireless communications. The rise of Software Defined
Wireless Networking (SDWN) [31] represents an extension
of SDN specifically in this context. One application domain
of SDWN could be 5G and MEC, as suggested by various
researchers (see, e.g., [32] and [33]), but this is not part of
the current 5G standard and will more likely be integrated
with 6G [32].
Some recent works have proposed SDN-based edge

computing networks adopting AI and machine learning
techniques for optimal computational offloading and resource

allocation decisions. In [34], authors proposed an SDN-based
multi-agent system to optimize computational offloading
in MEC networks, where the SDN controller provides the
global network view to allocate computational resources
to network devices optimally. The authors proposed a
stochastic game model that allows each user to maximize
its benefits, e.g., system delay and energy consumption,
by considering the constraints of the MEC server in the
multi-user environment. Knowledge-defined edge computing
networks are proposed in [35] to optimize computational
offloading and resource allocation strategy. The architecture
allows the collection of network information, self-learning,
and making decisions or recommendations for large-scale
network systems to jointly optimize the computation offload-
ing and resource allocation decisions and maximize the
long-term utility of the system.
In summary, the existing literature does not take into

account the challenges arising from the multi-MEC server
and highly varying wireless network environment, e.g.,
handover and mobility management, resource coordination
between different MEC servers, and load balancing. Instead,
our proposed AIDWN approach is based on SDN-based
intelligent architecture that learns an optimal policy maxi-
mizing the overall MEC system utility, i.e., the number of
mobile users benefiting from low-latency MEC services at
each time slot in a highly congested and dynamic wireless
network environment. The AIDWN approach then utilizes
the advantages of a centralized SDN control plane for
effectively managing the mobility, handover, and resource
coordination between the MEC servers by performing
dynamic flow updates, user associations, and traffic routing
between the users and the MEC servers, and allocating
network resources. The SDN control plane dynamically
installs and updates flow in the data plane, allocating the
optimal computational offloading, mobility, and network
resource allocation decisions as received from the AI-
defined application plane. The controller also operates the
Extended Forwarding Modules (EFM) as presented in our
previous research [33] to collect the wireless network topol-
ogy, i.e., wireless network association, channel conditions,
and resources availability on MEC servers, and feeds the
information to the AI-defined application plane, where the
network information is used to train the deep neural networks
and receive optimal control actions.

B. MOTIVATIONS AND CONTRIBUTIONS
1) MOTIVATIONS

The existing AI-based approaches for computational offload-
ing and resource allocation only focus on optimizing the
MEC system utility, i.e., computational rate, processing
delay, latency, and energy consumption [10], [11], [12],
[13], and do not take into account the challenges pertaining
to multi-MEC server environments, e.g., handover and
mobility management, adaptive and coordinated resource
allocation, and load balancing. In a highly dynamic wireless
network environment with frequent topology changes, the
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computational offloading decisions received at each time
slot may change for each user depending upon the various
parameters, e.g., channel conditions, load on MEC servers,
and the number of tasks to be processed by each user. In
addition, in the case of a multi-MEC server environment,
the computational offloading requests from the mobile users
may be distributed at different MEC servers at each time
slot. Therefore, developing effective handover and mobility
management techniques for computational offloading and
resource allocation in a multi-MEC server environment is
essential.
However, the existing deep reinforcement learning

approaches do not implement the computational offloading
decisions in real time. I.e., the current approaches only
achieve optimized computational offloading actions at each
time slot without translating those actions into the network
environment by the dynamic management of traffic flows and
traffic routing establishing low-latency communication paths
between the mobile users and their respective MEC servers.
In addition, in a resource-constrained multi-MEC server
environment, actively monitoring the available resources on
MEC servers and coordinating the resources to maximize
the overall MEC system utility is essential to increase
the number of mobile users benefiting from computational
offloading at each time slot. This is particularly important in
highly congested, large-scale, and dynamic wireless network
scenarios, where the demand for MEC resources is always
higher than the availability.
Within the context of the dynamic wireless and mobile

environment pertaining to multi-MEC server scenarios, there
remain unaddressed research challenges and gaps. They
serve as a compelling motivation for introducing the novel
concept of AIDWN, using intelligence supported by the SDN
controller. The extant research challenges and gaps may be
categorized as follows:

• Handover and Mobility Management: The presence of
multiple MEC servers for computational task offloading
within the system gives rise to a set of challenges
concerning handover and mobility management. As
a result, the mobility aspects of the system, encom-
passing dynamic handovers and connections between
mobile users and MEC servers, necessitate careful
consideration. The need for effective handover and
mobility management schemes is particularly important
in dynamic wireless network environments, where
mobile users frequently relocate, leading to dynamic
changes in network topology. In this context, the
proposed concept of AI-defined wireless networking
emerges as a potential solution to address this research
challenge. It uses centralized intelligence and provides
a global network topology view to enhance handover
and mobility management capabilities.

• Adaptive Resource Allocation: In a highly dynamic
wireless and mobile environment, the demand for MEC
resources may vary significantly in each time slot, i.e.,
the overall number of computational tasks requested

for computational offloading at each time slot will
vary. Consequently, predicting the varying demands for
MEC resources at each time slot and optimizing the
number of tasks to be offloaded at each time slot
becomes essential. Adopting an aggressive approach
whereby computational tasks are extensively offloaded
to MEC servers could result in the over-utilization
of MEC resource capabilities. Such over-utilization
may potentially violate the stringent low-latency QoS
requirements expected by mobile users. In contrast,
the conservative approach where fewer computational
tasks are offloaded to the MEC server, may result
in the under-utilization of scarce MEC resources.
Therefore, striking a balance between the two cases, as
mentioned above, is essential. The introduction of the
proposed AIDWN paradigm, defining the AI-defined
application plane endowed with centralized intelligence
and a comprehensive global view of network topology,
including the ability to monitor resource availability
across multiple MEC servers consistently, holds sig-
nificance in efficiently optimizing resource allocation
while adhering to resource constraints in this dynamic
context.

• Load Balancing for multi-MEC Scenario: In a multi-
MEC scenario, the imperative of load management
across MEC servers is underscored, necessitating the
efficient, fair, and balanced allocation of computational
tasks while considering the resource capacity of each
MEC server. The concept of AIDWN is pivotal in this
context. This paradigm enables the real-time collection
of pertinent network data, encompassing insights into
the workload and resource availability across various
MEC servers, access points, and switches. Accordingly,
the controller orchestrates AI-defined control actions,
implementing a policy-driven approach to load bal-
ancing through the southbound interface. This entails
the dynamic selection of optimal paths and load-
aware routing strategies to ensure a fair and balanced
distribution of computational tasks across different
MEC servers.

2) CONTRIBUTION AND VISION

Motivated by the research questions and challenges identified
above, the proposed AIDWN approach addresses the com-
plexity arising from the highly dynamic and varying wireless
network environment, e.g., multi-MEC server environment,
by leveraging the flexibility and centralized programmability
offered by SDN, and the intelligence, optimization, and
automation provided by the AI and machine learning
techniques in the AI-defined application plane. The main
contributions of this article are summarized as follows:

• We investigated and introduced design considerations
for the AIDWN paradigm, addressing the challenges
within the dynamic wireless and mobile environment
pertaining to multi-MEC server scenarios as identified
through a state-of-the-art literature review.
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• We proposed a novel AIDWN approach that builds
on the conventional SDN architecture and implements
an AI-defined application plane integrating application-
specific AI and machine learning models to automate
decision-making and network configurations in SDN-
based wireless networks.

• We evaluated the application of the proposed AIDWN
approach in MEC-enabled dynamic wireless networks
to maximize the overall utility of MEC system resources
while considering the handover, mobility, and resource
coordination challenges in multi-MEC server environ-
ments. The AIDWN approach uses a deep reinforcement
learning framework implementing deep neural networks
that dynamically learn the optimal binary computational
offloading and resource allocation decisions from past
experience and collected network information through
the SDN management plane, eliminating the need to
solve complex combinatorial optimization problems at
each time frame.

• In contrast to the existing AI-based approaches for
computational offloading and resource allocation in
MEC-enabled networks that focus on optimizing MEC
system utility in terms of computational rate, processing
delay, latency, and energy consumption, our research
integrates AI with SDN to optimize the utility of MEC
system resources in a multi-MEC server environment.
The proposed approach maximizes the number of
mobile users benefiting from the MEC resources in
highly congested and demanding network scenarios at
each time frame. Moreover, potential use cases and
applications of the proposed AIDWN approach are
discussed in terms of simplifying and automating the
management of next-generation wireless networks.

III. CHALLENGES AND DESIGN CONSIDERATIONS FOR
AI-DEFINED WIRELESS NETWORKING
Given the related works and research challenges, it is appar-
ent that the conventional machine learning approaches, e.g.,
deep reinforcement learning, are not enough to deal with the
complex computational offloading and resource management
optimization problem in highly dynamic and MEC-enabled
next-generation wireless network scenarios. Integrating AI
with SDN can play a significant role in dynamically
adapting the resource allocations to the time-varying wireless
channel conditions and automating real-time management
and control of next-generation wireless networks. In our
proposed AIDWN approach, we include the following design
considerations, focusing on addressing the aforementioned
challenges within the context of the dynamic wireless
and mobile environment pertaining to multi-MEC server
scenarios.

A. COMPUTATIONAL COMPLEXITY
The optimization methods adapted in the literature
for computational offloading and resource allocation in
highly dynamic and MEC-enabled next-generation wireless

network scenarios are computationally hard, i.e., NP-hard
optimization problems are generally considered computa-
tionally challenging to achieve an optimal solution. In the
context of highly dynamic and time-varying wireless network
conditions, especially in low-latency 5G and beyond wireless
networks where rapid and swift decision-making is essential,
solving NP-hard optimization problems in real time can
be a challenging task. This is particularly applicable when
the optimization problem involves complex variables, as the
time required for computation may lead to increased latency,
potentially affecting the performance requirements of MEC,
i.e., ultra-low latency requirement of up to 1 ms latency [36].
Integrating AI with SDN could be a potential solu-

tion to address the challenges posed by computationally
complex optimization problems in highly dynamic wireless
network conditions, especially in low latency 5G and beyond
networks. The programmability and centralized control
offered by SDN allow for real-time network adaptability.
Integrating it with AI and machine learning could facilitate
the analysis of historical network data, e.g., network topol-
ogy information, and make predictions about time-varying
wireless channel conditions, where the SDN controllers
can learn optimal network management policies through
model training. SDN controllers can use this information
to reconfigure the network proactively, optimizing resource
allocation, implementing policies, and ensuring low-latency
services even in the presence of computational complexity.

B. RESOURCE MONITORING IN MULTI-MEC SCENARIOS
Integrating AI with SDN for computational offloading and
resource allocation represents a paradigm that excels beyond
conventional deep reinforcement learning approaches. The
key role played by SDN in facilitating efficient network
orchestration is one of the most important aspects of this AI
paradigm. The integration empowers real-time monitoring
and dynamic allocation of available resources and enables a
flexible distribution of computational tasks to MEC servers.
In contrast, the traditional deep reinforcement learning
methods adapted for computational offloading and resource
allocation in edge computing are often based on a relatively
static and less responsive network configuration.
Moreover, the integration facilitates intelligent decision-

making and optimizes the QoS requirements. Dynamic
adaptability and control over network resources could be
achieved by constantly monitoring wireless network condi-
tions and assessing the specific performance requirements
of computational tasks. The collaboration enhances user
experiences and resource utilization, thus significantly rais-
ing the system’s utility. In addition, SDN is pivotal in
achieving efficient traffic management within the network
infrastructure. The centralized control and programmability
of network elements enabled by the SDN optimize the
routing of computational offloading traffic, preemptively
mitigate congestion, and avert network bottlenecks. Unlike
the conventional machine learning approaches adapted in the
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literature for computational offloading and resource alloca-
tion in edge computing that usually operate within more
fundamental traffic management paradigms, AI combined
with SDN offers a fine level of granular traffic control.

C. MONITORING WIRELESS ASSOCIATIONS
Integrating AI with SDN is instrumental in improving
computational offloading and resource allocation in MEC.
SDN plays a significant role in monitoring and gathering the
status and associations of wireless connections, feeding them
into the AI models running in the application plane to achieve
informed and intelligent AI-defined controls. The informed
decisions enable dynamic network path adjustments based
on wireless connectivity status and ensure that computational
tasks are efficiently routed through the most stable and
available connections, considering the network congestion
and resource availability.

D. DYNAMIC DATA FLOW MANAGEMENT
SDN enhanced with AI can play a crucial role in managing
dynamic traffic control for computational offloading and
resource allocation in edge computing scenarios involving
multiple MEC servers. AI can provide intelligent decision-
making capabilities to optimize data flow management.
In this context, AI is used to analyze real-time wireless
network information, application-specific requirements, and
the capabilities of MEC servers (collected through the
SDN management plane), and make informed decisions
about computational offloading and resource allocation,
taking into account factors such as latency, server load,
and energy efficiency. In particular, when mobile users
frequently relocate, they may be scheduled to offload their
computational tasks to different MEC servers at different
time slots depending on resource availability and wireless
channel conditions. Therefore, dynamic routing of the com-
putational tasks to the most optimal MEC server at each time
slot is essential, ensuring efficient resource utilization and
minimal latency for compute-intensive tasks. Additionally,
AI can predict traffic patterns and anticipate when and where
computational offloading will be needed, allowing SDN
controllers to allocate resources and establish low-latency
connections proactively. The level of automation and intel-
ligence enhances overall dynamic data flow management,
enabling edge computing networks to be more responsive
and capable of meeting the diverse performance requirements
of MEC services.

IV. THE PROPOSED AI-DEFINED WIRELESS
NETWORKING ARCHITECTURE
A. AI-DEFINED SDN APPLICATION PLANE
The proposed AIDWN approach uses artificial intelligence
and machine learning techniques at the application plane
of SDN to optimize network performance and decision-
making. The AIDWN approach evolves the conventional
SDN application plane to an AI-defined application plane,

FIGURE 1. The proposed AI-defined wireless networking architecture.

as shown in Fig. 1. The architectural layers of the proposed
AIDWN approach are defined as follows:

• AI-defined Application Plane: A major component of
the proposed AIDWN approach is the AI-defined appli-
cation plane. The AI-defined plane integrates behavioral
models and reasoning processes tailored to automate
decision-making and network configurations in SDN-
based wireless networks. The AI-defined plane uses
the control and management planes to achieve a global
view of the wireless network topology. The fundamental
working process of AIDWN involves the ability of the
AI-defined application plane to process the network
analytics, e.g., network topology information collected
through the management plane (EFM modules: SDN-
wireless extension modules), and transforming it into
AI via machine learning models. The AI is used to
automate wireless network management decisions. The
AI-defined application plane could learn different mod-
els and network management policies from the analytics
platform’s historical network data and real-time wireless
network information, e.g., channel conditions, signal
strength, and user location updates, collected from the
radio network information service and WLAN access
information service offered by MEC systems, as shown
in Fig. 1. More discussion on the EFM modules is pro-
vided in the later sections. Different machine learning
and deep learning approaches could be implemented
in the AI-defined application plane to learn from the
network behavior, including supervised, unsupervised,
and deep reinforcement learning. For example, in the
reinforcement learning approach, the network adminis-
trator can set a target policy to optimize the system
utility of MEC by learning optimal computational
offloading and resource allocation decisions; then, the
reinforcement learning agent acts on the SDN controller
by applying all the different computational offloading
decisions and resource allocation configurations and
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receiving a reward for each action, that increases as the
agent learns the optimal target policy. In this context,
the optimal policy could be learned through online or
offline training.

• Control Plane: The SDN control plane uses the
AI acquired to make informed real-time decisions,
such as dynamic flow updates, traffic routing, and
resource allocation, without solving complex combi-
natorial optimization problems at each iteration in
highly latency-sensitive, dynamic, and varying wireless
network environments. This allows for more efficient
and effective management and utilization of constrained
network resources in highly dynamic and rapidly
changing environments, e.g., MEC-enabled resource-
constrained environments. The control plane uses AI to
automate network configuration and decision-making,
dynamically adapting to varying channel conditions,
enforcing control policies, and ensuring optimal data
transmission by dynamically adjusting network param-
eters based on real-time network state analysis.

• Data Plane: The data plane constitutes the operational
layer responsible for directly handling and forwarding
network traffic. The actions and decisions received from
the AI-defined application plane and the centralized
control plane are implemented in the data plane.
Specifically, the data plane executes the transmission
and reception of data packets, performing functions
such as packet forwarding, resource allocation, and
routing based on decisions orchestrated by the AI-
defined application and control planes. The data plane
is realized through software or programmable hardware
that physically handles the traffic based on the network
configurations. This abstraction enhances adaptability
to dynamic network conditions, flexibility, and efficient
resource utilization.

B. AIDWN APPLICATION: COMPUTATIONAL
OFFLOADING AND RESOURCE ALLOCATION IN EDGE
COMPUTING
Fig. 2 depicts an application and use case of the proposed
AIDWN approach that learns an optimal policy to optimize
computational offloading and resource allocation, maxi-
mizing the utility of limited MEC resources in a highly
congested, large-scale, and dynamic wireless network sce-
nario. The data plane consists of base stations and multiple
MEC servers M, where each MEC server j has its own
dedicated computational resources and is connected to its
respective base station/access point. We assume that there are
U mobile users in the network, where each user u requests
the offloading of computational tasks L, and execution of
each computational task l requires computational resources
from the MEC server at each time frame.
In practical applications, the dynamic and constantly

varying MEC environment demands mobile users to make
effective and real-time computational offloading decisions
considering the uncertainty and unpredictability of the

future channel conditions and task arrivals [37]. However,
this presents two major challenges. Firstly, the rapidly
changing wireless environment demands frequent re-solving
of complex optimization problems in real-time, which can be
computationally infeasible when the problem size is large,
or the service request has ultra-low-latency requirements.
Secondly, it is difficult for online computational offloading
decisions to meet long-term system constraints, such as
power and bandwidth consumption, and to dynamically
adapt the optimal number of users selected for computa-
tional offloading as each mobile user may have varying
numbers of low-latency tasks to be offloaded at each
instance.
In this research, we propose a novel AIDWN approach

for computational offloading and resource allocation in
MEC. The SDN controller (control plane) in this approach
consistently tracks the wireless network information, e.g.,
topology, channel conditions, signal strength, and user
location updates, from the Radio Access Network (RAN)
and feeds this information to the AI-defined application
plane. In an emulator such as Mininet-WiFi [38], this can
be done using EFM, as previously proposed in [33]. The
EFM module provides the WLAN/RAN information service
the SDN controller uses to optimize the wireless network
management. This is achieved using hostapd_cli, a tool in
Linux that runs in the background and scans and collects
access network information, and a Python Scapy module that
monitors mobile user, e.g., wireless channel information such
as Received Signal Strength Indicator (RSSI). The collected
information is then sent to OpenFlow-enabled Access Points
(APs) on a specified source destination port. The APs use the
EFM module to forward the wireless network information,
i.e., network topology updates to the SDN controller by
generating a packet_in message. The SDN controller then
extracts the network information, achieving a global view of
the underlying networks. More detailed information on the
SDN extension for wireless networks and the EFM module
can be found in [33] and the official documentation of
Mininet-WiFi [38].

The network topology information is then fed into an
AI-defined application layer that uses deep neural networks
to provide real-time and optimal binary computational
offloading, inter-MEC mobility and handover, and resource
coordination and allocation decisions, as explained in more
detail further on in this paper. The SDN controller then
installs and updates new flows to route the mobile user
traffic towards the optimal MEC server and allocates the
MEC resources based on the optimal actions received from
the AI-defined application plane.

V. AI-DEFINED APPLICATION PLANE FOR RESOURCE
MANAGEMENT IN EDGE COMPUTING
The AI-defined application plane implements a deep rein-
forcement learning approach to learn from the network
information and effectively apply AI-defined decisions in
the data plane. The AI-defined application plane consists of
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FIGURE 2. AI-defined wireless networking approach for computational offloading and resource allocation in MEC.

the following key components: the state and environment,
actions, rewards, and system utility. We define these com-
ponents in our systems as follows:

A. STATE AND ENVIRONMENT
The state S is represented as the collection of all envi-
ronmental states, defined as the channel conditions, e.g.,
channel gain for each mobile user at any time slot t, and the
corresponding number of binary computational offloading
combinations as predicted by the deep neural networks in the
AI-defined application plane. The SDN controller collects
the global topology information, e.g., wireless channel
conditions, association, and RSSI information, and feeds that
into the deep neural networks in the application plane. The
deep neural networks predict all the possible combinations of

binary computational offloading decisions. The state space
varies based on the number of mobile users in the network.
In dynamic and highly congested scenarios such as vehicular
networks where a large number of mobile users demand
access to the limited resources of the MEC server, the state
space could be significantly ample. The large state and action
space make the conventional combinatorial optimization
problems inefficient, as they are computationally intensive
and lack the utilization of historical data. The conventional
methods need to recalculate each time there are changes in
the parameters of the wireless system, hindering real-time
implementation. This makes the conventional optimization
methods inefficient for highly dynamic and mobile sce-
narios such as vehicular networks. We decomposed the
original optimization problem into two sub-problems, i.e., the
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resource allocation sub-problem and the offloading decision
sub-problem, thus, avoiding the curse of dimensionality
problem and not requiring the discretization of wireless
channel gains. The decomposition approaches are known
to effectively reduce the computational complexity of an
optimization problem by decomposing a large-size problem
into smaller parallel sub-problems [11].

B. ACTION AND SYSTEM UTILITY
The action A at any time slot t is defined as the resource
allocation and computational offloading decisions received
by the SDN controller, i.e., agent. The SDN controllers feed
the wireless channel information, e.g., channel gain, to the
AI-defined application plane at each time slot t that gen-
erates several binary computational offloading combinations
predictions K. We modeled an optimization problem to select
the most optimal computational offloading combination that
maximizes the system utility, i.e., data rate, in a Gaussian
channel. The optimization method is also used to determine
the optimal allocation of power and bandwidth resources to
each user selected for computational offloading to the MEC
server in any combination of binary computational offloading
prediction Ak.

The system utility S can be defined as:

S =
N∑

u=1

Ru, (1)

where N represents the number of users predicted for
computational offloading in any Ak, and Ru represents the
achievable bit rate of each user u in a receiver channel in
bps.
When the mobile user u is selected to offload its task to

the MEC server, the task is first uploaded to the associated
base station. A fraction of bandwidth and power resources
are assigned for the transmission from the user u to the base
station [39], [40].
Similar to the communication model in [10], [33], [39],

[40], [41], Ru can be defined as:

Ru = Wuj log2

(
1 + GujP

j
lu

NoWuj

)
, (2)

where Pjlu is the fraction of power assigned to task l by user
u for the transmission from user u to the base station and
its associated MEC server j [39], [41], Wuj is the fraction
of total bandwidth provided by the base station and its
associated MEC server j allocated to each user u, and No is
the receiver noise power [10], [39], [40], [42], [43]. Here Guj
is a known positive representing the channel gain between
the user u and the base station and its associated MEC server
j. The objective is to select the most optimal computational
offloading combination, i.e., action Ask, that maximizes the
MEC system utility subject to the resource constraints.

The optimization problem is formulated as follows:

Smax = Max
N∑

u=1

M∑

j=1

Ruxuj

Subject to:

CO1
N∑

u=1

Wuxuj ≤ W total
j , ∀j ∈ M

CO2
M∑

j=1

xuj = 1, ∀u ∈ N

CO3 xuj ∈ {0, 1}, ∀u ∈ N, j ∈ M (3)

Here, CO1 guarantees that the combined bandwidth allocated
to the N users by MEC server j does not exceed the maximum
capacity of MEC server j. CO2 ensures that each mobile
user u is handed over to no more than one MEC server
at any given time slot. Thus, it takes care that tasks from
user u are offloaded to at most one MEC server j. CO3
represents the binary decision constraint, i.e., xuj can only
be 0 or 1, which indicates whether a user u is offloaded to
MEC server j. In addition, as (3) restricts each mobile user
to be handed over to a maximum of one MEC server at a
time, we assumed that each computational task l for MEC
server j by user u requires equal transmit power, such that
the cumulative transmit power allocated for the transmission
of computational tasks L to MEC server j remains within
the specified maximum for user u, i.e.,

L∑

l=1

Pjlu ≤ Ptotalu . (4)

The complexity of the optimization problem (3) can be
reduced if the bandwidth resources allocated to each user
selected for computational offloading, i.e., Wu, are known.
In our system model, the SDN controller accumulates and
coordinates the available resources among all the MEC
servers in the network and acts as a central intelligent
entity that optimally allocates bandwidth resources to each
user, i.e., Wu. The allocation is solved using the convex
optimization solver CVXPY [44], where the objective is to
maximize S subject to

N∑

u=1

Wu ≤ Wtotal
M . (5)

Here, Wtotal
M is the accumulated bandwidth resources of all

the MEC servers M in the network coordinated by the SDN
controller.
The optimization problem (3) is an NP-hard problem. To

establish the NP-hardness of (3), we elucidate a polynomial-
time reduction from the 0-1 Multiple Knapsack Problem
(01-MKP) to (3) [45]. The reduction involves transforming
instances of the 01-MKP into instances of (3) so that solving
(3) implies an efficient solution to the 01-MKP, a known NP-
hard problem [45]. In the 01-MKP, we have a set of items
I with values vi and weights wi, and a set of knapsacks kn
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with capacities Ckn. To map these elements to (3), we define
each item i in the 01-MKP corresponding to a user-MEC
pair (u, j), the value vi of item i represents the achievable bit
rate Ru of user u, and the weight wi of item i is transformed
to represent the bandwidth requirement of offloading tasks
from user u. Additionally, each knapsack kn in the 01-MKP
corresponds to a MEC server j in (3), with the capacity Ckn
mapped to the total available resources W total

j of MEC server
j. This transformation is represented as:

vi → Ru, wi → Wu, Ckn → W total
j

Through this correspondence, solving (3) yields an optimal
solution to the 01-MKP, and vice versa, establishing the
NP-hardness of (3).

The current solutions in the literature proposing deep rein-
forcement learning approaches for computational offloading
in a MEC environment mainly consider the achievable
system utility, e.g., computation rates and processing delay,
as the reward function where the Ask is selected that
maximizes the system utility [10], [11], [12]. The existing
proposals prioritize selecting users for computational offload-
ing with the highest channel gain, which could lead to a
higher system utility. The solutions do not take into account
the number of MEC servers and their corresponding resource
availability, leading to inefficient use of vital and scarce MEC
resources. Therefore, in our proposed solution, in addition to
the data rates, we also aim to maximize the number of mobile
users benefiting from computational offloading to fully use
the limited and varying MEC resources available at each time
slot t. Although in most use-case scenarios, some mobile
users may prefer to process a simple or delay-insensitive
task using their own computational resources, we assumed
that each mobile user has delay-sensitive computational tasks
to be offloaded to the MEC server at each time slot t.
This assumption is made to evaluate the performance of
the proposed approach in a practical, complex, and highly
congested wireless network environment where the demand
for MEC resources is always higher than the availability.
Therefore, we define the overall system utility function
(initial reward) Uo as:

Uo = ρsS+ βNp, (6)

where Np is the ratio of the number of mobile users
predicted for computational offloading in any Ak to the
total number of mobile users in the network, i.e., NP =
N
U . Here ρs is a scaling factor introduced to adjust the
magnitudes of S to achieve a balanced contribution of all
the terms and a balanced learning process [46], [47]. The
parameter β is a control parameter used to define the
priority of each component in this utility function. The
SDN controller then compares each combination of binary
computational offloading predictions received from the deep
neural networks and selects the action Ask that has the highest
overall system utility (initial reward). A list of the used
notations in the paper is provided in Table 1.

TABLE 1. Notation table.

C. REWARD
Maximizing the number of mobile users selected for com-
putational offloading also poses a significant challenge. The
selection of Ask having the highest overall system utility could
result in over-utilizing the limited MEC resources as the
SDN controller would always tend to select the action with
the maximum number of users predicted for computational
offloading. Given the limited and varying MEC resource
availability at any time slot t, this could lead to over-
utilized MEC resources and, as a result, cause significant
performance degradation in the quality of service achieved
by mobile users. Therefore, we formulated a 01-MKP which
is an optimization problem that aims to select users for
computational offloading and assigns them to MEC servers,
i.e., knapsacks, that maximize the overall system value,
without exceeding the capacity of the MEC servers.
The 01-MKP is a combinatorial optimization problem

where a set of items are packed into a fixed number of
knapsacks, i.e., bins, while maximizing the overall system
profit and staying within the constraints of limited knapsack
capacity. Each item has a specific size, and each knapsack
has a limited capacity. The 01-MKP is an NP-hard problem
that is computationally intensive and infeasible to find an
optimal and exact solution within a reasonable time. We
define the fixed number of knapsacks as the number of MEC
servers, each with limited resource capacity, whereas the
item is defined as a computational task of a specific size
requested for computational offloading by the mobile user.
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Let xuj be a binary decision variable that indicates whether
the computational task requested for offloading by user u is
handed over to the MEC server j. It is defined as:

xuj =
{

1, if user u is handed over to MEC server j,

0, otherwise.

The objective is to maximize the overall MEC system value
V , i.e., aggregated sum of achievable data rate in Mbps
by optimizing the selection of mobile users selected for
computational offloading, subject to resource constraints.
The objective function is defined as:

Vmax = max
N∑

u=1

M∑

j=1

Vu · xuj

s.t. C1 :
M∑

j=1

xuj = 1 for u = 1, 2, . . . ,N,

C2 :
N∑

u=1

zu · xuj ≤ Cj for j = 1, 2, . . . ,M. (7)

Here, Vu is the individual value of user u in Mbps,
representing the data rate that can be achieved if selected
for computational offloading. Constraint C1 represents that
each mobile user must be handed over to a maximum of one
MEC server at a particular time slot, whereas C2 represents
the total computing resources required to compute the tasks
from the mobile users selected for computational offloading
should not exceed the maximum capacity of MEC server
j. zu represents the number of processing units, i.e., virtual
CPUs (vCPUs), required to compute the task(s) requested
for offloading by user u, and Cj represents the maximum
computing resources, i.e., vCPUs, available in MEC server j.
Given the highly dynamic nature of mobile networks, e.g.,

UAV and V2X networks, with frequent topology changes,
system parameter variations, and stringent performance
requirements, finding optimal computational offloading and
resource allocation decisions with ultra-low latency is essen-
tial. Therefore, we formulated a reward function to train
the deep neural networks to maximize the expected reward
over time and learn an optimal policy. The AI-defined
application plane selects the mobile users from the selected
computational offloading combination, i.e., action Ask having
the highest overall system utility in (6), that maximizes
the overall system value, i.e., aggregated sum of achievable
data rate, while following the resource constraints of the
MEC servers using (8), producing the optimal computational
offloading action A∗

t , at each time slot t. The proposed
approach takes into account the varying resource demands for
MEC resources, i.e., the number of tasks offloading requests
at each time slot t, and adapts the optimal number of users
selected for computational offloading while maximizing

the overall system value and meeting the MEC resources
constraints. The reward function RW can be defined as:

RW =
N∑

u=1

M∑

j=1

(
τv · Vu · xuj

)− Ap ·
M∑

j=1

(
N∑

u=1

(zu · xuj) − Cj

)

−Bp ·
N∑

u=1

⎛

⎝1 −
M∑

j=1

xuj

⎞

⎠ (8)

Here, Ap is a constant penalty factor that controls the trade-
off between optimizing the overall system value and adhering
to MEC resource constraints, with higher values resulting in
amplifying penalties for exceeding resource limits. Bp is a
constant penalty factor that influences the balance between
maximizing the overall system value and enforcing the
constraint that each mobile user is assigned to only one MEC
server. τv is a scaling factor introduced to adjust the units
and magnitudes of Vu to achieve a balanced contribution of
all the terms to the overall reward and a balanced learning
process [46], [47]. The process is shown in Fig. 2.
The pseudo-code of the working of the proposed AIDWN

approach for computational offloading and resource alloca-
tion in a highly dynamic and mobile wireless networking
environment is provided in Algorithm 1. In addition, the
overall learning process of the proposed solution is summa-
rized as described in the following paragraph.
The system utility evaluates the maximum achievable data

rate for different binary computational offloading combi-
nations predicted by deep reinforcement learning agents in
the AI-defined application plane. Meanwhile, the overall
system utility consolidates multiple objectives that encourage
behaviors that maximize achievable data rates and increase
the number of mobile users who successfully offload com-
putational tasks to the MEC servers and effectively utilize
scarce MEC resources. To manage resource constraints and
avoid overestimating the number of mobile users selected
for computational offloading and thus violating the QoS
requirements, a formulated reward function selects actions
that maximize overall system value, ensuring efficient utiliza-
tion of computational resources while maximizing data rates.
Together, system utility, overall system utility, and reward
provide critical feedback mechanisms that guide agent
decisions in the AI-defined application plane, facilitating the
optimization of computational offloading strategies in MEC
environments.

VI. NUMERICAL RESULTS AND DISCUSSIONS
A. SIMULATION SETUP
The simulation results are presented to exhibit the
performance gain achieved by using the novel AIDWN
approach in terms of maximizing the overall system value,
the number of mobile users successfully offloading the tasks
to the MEC, and ensuring effective utilization of limited
MEC resources. We also provided numerical comparisons
with other similar approaches in the literature that apply a
deep reinforcement learning framework for computational
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Algorithm 1 AIDWN for Computational Offloading and
Resource Allocation in MEC
1: Input: Wireless channel information, e.g., channel

gain, total MEC resources available (SDN Northbound
Interface)

2: Output: AI-defined control actions: optimal compu-
tational offloading actions, inter-MEC mobility and
handover decisions, resource coordination and allocation
decisions, and SDN flow, control, and routing updates
(SDN Southbound Interface)

3: Begin
4: Initialize deep neural network and an empty memory
5: Setting time iterations T=10000 and a training interval
6: for for t=1,2,3,4,......T do
7: Generate binary offloading combinations

predictions K
8: Computing system utility S and resource allocations
Pjlu and Wuj for each generated combination

9: Computing overall system utility Uo (initial reward)
for each generated combination

10: Select the action Ask that maximizes the Uo
11: Calculate the Reward RW at time t
12: Select the optimal computational offloading action

A∗
t that maximizes the reward using (8)

13: Updating the memory with wireless channel gain
(Input) and the corresponding A∗

t (Action)
14: if t mod training interval == 0 then
15: Uniform sampling of data set from the memory
16: Train the deep neural network
17: end if
18: end for

offloading in MEC. The proposed approach is compared to
the following other approaches:

• The Deep Reinforcement Learning for Online
Computation Offloading (DROO): The DROO approach
presented in [10], [11], [48] aims to maximize wireless
users’ computation rates by achieving optimal compu-
tational offloading decisions. However, as with most
other work in the literature, the algorithm tends to
always select the computational offloading decision
as an optimal action where the mobile users have
the strongest wireless channel gain, without taking
into account the varying resource availability on MEC
servers per time slot, leading to inefficient use of limited
MEC resources.

• The Conventional Proximity-based Offloading (CPBO)
approach as detailed in [49], [50] where the mobile
users are selected to offload/handover tasks for com-
putation to the nearest MEC servers based on the
channel signal strength, e.g., RSSI-based computational
offloading. The conventional approach lacks resource
coordination and collaboration among the MEC servers
enabled by the proposed AIDWN approach. This

resource-unaware strategy can lead to inefficient utiliza-
tion of MEC resources, wherein one MEC server may
experience overload while another in the same network
remains underutilized.

In an extensive and congested wireless network with
a large number of mobile users, several candidate binary
combinations of computational offloading decisions are
possible. Prioritizing the combination where only a few users
have a very high wireless channel gain could lead to a severe
under-utilization of scarce MEC resources. For example, in
a network of 10 mobile users, a binary combination [1, 0, 0,
0, 0, 0, 1, 0, 0, 0] (i.e., offload users 1 and 7) may become
preferred over [1, 1, 0, 0, 1, 0, 1, 0, 1, 0], as the former
combination has two users with significantly higher channel
conditions, resulting in higher system utility, irrespective of
it maybe resulting in significant under-utilization of MEC
resources. Therefore, our proposed solution leverages the
centralized intelligence and programmability offered by the
SDN controller to consistently monitor and coordinate the
resources available on multiple MEC servers, and it fully
uses the available resources to maximize the system utility
in a highly congested wireless network scenario.
We considered a fully connected deep neural network with

1 input layer, 2 hidden layers, and 1 output layer, with the
first and second hidden layers having 120 and 80 hidden
neurons, respectively. The proposed AIDWN is implemented
in Python using TensorFlow 2.0 with a training interval set
to 10, training batch size equal to 128, memory size of
1024, and learning rate for Adam optimizer as 0.01. These
parameters of the deep neural network align closely with
those of the DROO approach [10] for a fair comparison with
our proposed solution. We considered 3 MEC servers, i.e.,
M=3, available in the network with a total bandwidth of
Wtotal
M = 50MHz, and receiver noise power No=10−10 [10].

We evaluated our proposal for varied capacities by varying
the total number of computing resources available in the
MEC, i.e., CM=30 vCPUs and 40 vCPUs, where a MEC
resource (vCPU) is assigned to compute only one of the tasks
l requested for offloading by the user u, and each time slot t is
1 second [51], [52]. A task is a specific set of computations,
i.e., a computation job, that can be offloaded to the MEC
servers and performed by 1 vCPU during a single time slot.
CM is the aggregated and coordinated capacity of all the
MEC servers in the network that the SDN controller could
use to offload and distribute the computational tasks from the
mobile users. We also varied the computing resources of each
MEC server j, i.e., Cj, and used different combinations, e.g.,
(C1,C2,C3)=(20,5,5) vCPUs and (C1,C2,C3)=(20,10,10)
vCPUs.
As with most existing research, as discussed in the related

works, the DROO approach [10], [11], [48] only explores
a scenario involving a single MEC server. In contrast, our
proposed AIDWN approach considers a more comprehensive
network with multiple MEC servers. To facilitate a fair
comparison, we assumed that the maximum capacity of the
single MEC server is equivalent to the aggregated capacity
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of multiple MEC servers in our network, enabled by the
SDN controller. This ensures that both approaches under
evaluation have the same maximum MEC capacity for
mobile users’ computational offloading.
We also evaluated the proposed solution for varying

numbers of mobile users in the network, i.e., U=20 and 30,
where the users are randomly distributed across the coverage
areas of the MEC servers in the network [53]. We assumed
that each mobile user has a varying number of computational
tasks to be offloaded to the MEC servers at each time slot t,
where the samples are uniformly distributed, i.e., each mobile
user can offload 1 to 3 tasks of the same size at any time
interval t, i.e., zu=1–3 vCPUs. This assumption is made to
evaluate the performance of the proposed AIDWN approach
in complex, highly congested, and resource-demanding wire-
less network scenarios, where full utilization of scarce MEC
resources is essential. Considering the parameters specified
above, we explored various simulation scenarios to assess
the viability of our proposal, focusing on highly congested
environments where the demand for MEC resources is
higher than the available capacity. We considered differ-
ent combinations including: (1) U=20, CM=30 vCPUS,
(2) U=30, CM=30 vCPUS, and (3) U=30, CM=40 vCPUS.

We used Mininet-WiFi [38], [54], a widely accepted
fork of Mininet that allows the simulation of SDN-capable
APs, wireless stations, and docker containerized services
and applications. Using Mininet-WiFi, mobile users were
simulated as wireless hosts capable of connecting with the
APs and their corresponding MEC servers. Three OpenFlow-
supported APs were simulated, each connected to their
respective MEC server. Each MEC server is modeled as
a virtual host with computational resources. We consid-
ered a network deployment scenario where all the APs
have overlapping coverage areas to facilitate a cooperative
scenario where the SDN controller can make use of the AI-
defined application plane to efficiently enable coordination
and distribute computational tasks among different APs
and their corresponding MEC servers depending upon the
availability of the resources and system utility. We chose
RYU for the SDN controller for our experimental evaluation.
A detailed description of the Mininet-WiFi components used
in this research and their working is provided in [49].
The proposed solution is radio access technology agnostic
and can be applied to both the Wi-Fi and 5G networks, a
requirement defined by the European Telecommunications
Standards Institute (ETSI) in [55]. Therefore, the proposed
approach can be applied to both the cellular and vehicular
networks.
Unlike the existing research, the AI-defined control

actions, e.g., computational offloading decisions and resource
allocation configurations, are implemented in real-time as the
SDN controller installs dynamic flows, routing, and control
updates in the data plane devices. The mobility updates
redirect and hand-over the traffic from the mobile users
selected for computational offloading to the corresponding
MEC servers.

FIGURE 3. Average number of mobile users and tasks offloaded at each time frame.

B. NUMERICAL RESULTS
The numerical results exhibit the performance gains of
the proposed AIDWN approach in terms of maximizing
the usage of limited MEC resources, the number of users
benefiting from the MEC computational capabilities, and the
overall system value, i.e., aggregated sum of data rate, in
highly dynamic and mobile scenarios. We also highlighted
the potential of our proposed approach in learning from
the past and significantly reducing the number of binary
offloading combinations predictions K, i.e., action space,
required to obtain an optimal computational offloading
decision for all the mobile users in the network. In a highly
congested and dynamic wireless network environment, the
action space becomes enormous because of the large number
of mobile users in the network. Therefore, to reach an
optimal computational offloading and resource allocation
action, the optimization algorithms must be executed many
times at each time slot t, i.e., solving the optimization
problem for each action, which adds significant computa-
tional complexity to the network. In our proposed approach,
we reduced the number of actions the deep neural network
generates as it learns to adapt and predict the most optimal
computational offloading action during the training process,
as shown further on in this paper.
Fig. 3 illustrates the performance in terms of the number

of mobile users benefiting from offloading computational

VOLUME 5, 2024 2051



SHAH et al.: AIDWN FOR COMPUTATIONAL OFFLOADING AND RESOURCE ALLOCATION

tasks to the MEC server and the total number of tasks
offloaded to the MEC servers at each time slot. Fig. 3 also
compares the proposed AIDWN with DROO and the CPBO
approach. The results show that, for a typical network with 3
MEC servers with a total of 30 or 40 available vCPUs, and
with 20-30 users offloading 1-3 tasks, the proposed AIDWN
outperforms DROO and the CPBO approach in terms of
maximizing the use of limited MEC resources, as shown in
Fig. 3. A significantly larger number of mobile users could
benefit from computational offloading to MEC servers at
any time slot while staying within the limits of maximum
MEC capacity CM , as seen in Fig. 3(a). The proposed
approach can fully use the resources available at the MEC
servers, where the average number of tasks successfully
offloaded per time slot is very close to the maximum
MEC capacity CM , as shown in Fig. 3(b). As mentioned
above, the reason for this phenomenon is that DROO selects
the computational offloading actions where the users have
the highest channel gain. It does not take into account
the resource availability and capabilities of MEC servers,
resulting in the under-utilization of MEC resources. In the
CPBO approach, uneven and random distribution of mobile
users leads to a bias toward frequently offloading tasks to
nearby MEC servers, potentially causing overloading and
neglecting less loaded neighboring MEC servers, resulting
in the inefficient utility of MEC resources. Maximizing the
number of mobile users benefiting from the MEC capabilities
at any time slot is essential in highly congested and dynamic
wireless network scenarios where the demand for MEC
resources is significantly higher than the availability.
Fig. 4(a) shows the accuracy of the proposed approach

in terms of predicting the varying demands for MEC
resources, i.e., the number of computational tasks requested
for offloading by each mobile user, and selecting an optimal
number of mobile users for computational offloading at
each time slot. The prediction accuracy is the ratio of
the number of mobile users successfully offloading the
computational tasks to the MEC and the number of mobile
users predicted for computational offloading while staying
within the resource constraints of the MEC at each time slot.
The users successfully offloading tasks consistently end up
being fewer or equal to the initially predicted set, resulting
in an accuracy metric consistently ≤ 1. This is because of
the early-stage strategy that the agent adopts, overestimating
the number of mobile users predicted for offloading to
ensure robust utilization of MEC resources. Subsequently,
through a combination of the multiple knapsack optimization
problem and a carefully designed reward function, the agent
consistently improves its prediction accuracy to optimally
select users for offloading, maximizing rewards within
resource constraints. The agent learns to predict optimal
computational offloading decisions throughout training, lead-
ing to reduced predictions and algorithmic executions. The
accuracy Acc per time slot can be defined as:

Acc = Users offloading

N
× 100 (9)

FIGURE 4. Performance of the proposed AIDWN approach and dynamic tuning of
action space.

The results show that the prediction accuracy gradually
increases and finally converges, due to the adaptability of
the proposed approach in dynamically learning the optimal
computational offloading actions and reducing the number of
actions required to find the optimal one during the training
process. This significantly reduces the processing time and
latency associated with achieving the optimal computational
offloading decisions, as it reduces the number of times K
(dark blue curve) the optimization problem needs to be
solved. The same phenomenon can be seen in Fig. 4(b)
where the overall system value, i.e., Vmax as defined in
(7), gradually increases and converges during the training
process, whereas the fluctuations observed are because of
the rapid variations in the channel conditions of the mobile
users at each time slot affecting the aggregated sum of data
rate.
Fig. 5 illustrates the ability of the proposed AIDWN

approach to efficiently manage mobility and distribute com-
putational offloading tasks among different MEC servers,
with the main objective of optimizing overall MEC system
utility while adhering to the individual constraints of each
MEC server. The AIDWN framework facilitates the real-
time collection of pertinent network data, providing valuable
insights into workload patterns and resource availability
across various MEC servers, and it allocates computational
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FIGURE 5. Average number of tasks offloaded/handover to MEC servers per time
slot.

FIGURE 6. Training loss.

offloading tasks to different MEC servers based on available
resources. Based on these allocations, the SDN controller
performs the traffic handover from the mobile users
selected for computational offloading to their respective
MEC servers. In Fig. 5, we present a scenario featuring
multiple MEC servers within the system, each characterized
by varying maximum resource capacity denoted as Cj,
i.e., (C1,C2,C3)=(20,10,5) vCPUs. As observed in Fig. 5,
the AIDWN approach effectively optimizes mobility and
workload distribution among these MEC servers, thereby
maximizing the resource utilization of each server. Fig. 5
also compares the effectiveness of the proposed AIDWN
approach with that of DROO and the CPBO approach in
terms of optimizing MEC resource utility. As DROO is
designed for a single MEC server scenario, directly compar-
ing the utility of individual servers is not feasible. However,
in an aggregated scenario, we evaluate our proposal against
DROO by aligning the maximum capacity of the single MEC
server with the aggregated capacity of all MEC servers, i.e.,
CM , in our network, as enabled by the SDN controller in our
proposed case. The results highlight significant performance
improvements in the efficient utilization of limited MEC
resources compared to the DROO approach. Whereas the

TABLE 2. Comparisons of execution latency.

CPBO approach results in an inefficient and imbalanced
distribution of computational tasks among the 3 MEC
servers, leading to overloading certain servers while under-
utilizing others. This is because users may be distributed
unevenly, and those close to a low-capacity server might
always look to offload tasks to it more frequently, even if
it is over-utilized and other neighboring high-capacity MEC
servers, e.g., MEC server 1, are less loaded.
Fig. 6 represents the training loss as a measure of the

error/difference between the predicted and target values
during the training process [56]. Training loss is used to
update the parameters of the neural network to improve
the agent’s performance. As seen in Fig. 6, the training
loss gradually decreases during the training process, where
the fluctuations seen are mainly because of the randomly
sampled training data.

C. COMPUTATIONAL COMPLEXITY ANALYSIS
Our analysis reveals that the overall computational com-
plexity of the proposed algorithm is dependent upon several
factors, primarily driven by the total number of users in
the network (U) and the number of binary offloading
combinations predictions (K). Additionally, the system utility
and reward calculation complexity (N ·M) and the training
of the neural network (E ·T) contribute to the computational
demands, where E is the size of the training dataset,
and T is training iterations. We evaluated the overall
computational complexity of the proposed algorithm in
terms of its execution latency. This method is pertinent to
evaluating computational complexity for NP-hard computa-
tional offloading solutions in MEC, as highlighted in prior
works [10], [57].
We evaluated and compared the execution latency of

the proposed algorithm with the DROO approach. To
facilitate fair comparison, we excluded the comparison of
execution latency with the CPBO approach, as the conven-
tional approach does not include significant optimization
objectives. Instead, the mobile users are offloaded to the
nearest MEC servers based on the channel signal strength.
The execution latency of the proposed algorithm and
its comparison with the DROO approach is provided in
Table 2, averaging over 10,000 independent wireless channel
realizations, including both offloading action generation and
deep neural network training. For example, in the proposed
approach, in a network of U = 20, it takes 39 ms to generate
an optimal computational offloading action and train the deep
neural network at each time frame. Similar to the DROO
approach, the simulations are performed on an Intel Core
i5 machine with a 3.2 GHz CPU and 12 GB memory.
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The analysis of execution latency, as seen in Table 2,
indicates that the proposed approach exhibits execution
latencies that are highly comparable to those of the DROO
approach, despite the proposed AIDWN approach consider-
ing a more comprehensive and complex network scenario
and optimization problem involving multiple MEC servers
compared to the single MEC server scenario employed in the
DROO approach. The AIDWN approach entails exploring
numerous (u, j) combinations to optimize user offloading
to MEC servers, making the optimization problem signifi-
cantly harder compared to DROO. Despite this complexity,
achieving similar execution latencies to DROO signifies the
efficiency of the proposed AIDWN approach. As shown
previously in Fig. 4(a), the proposed algorithm mitigates
computational complexity through the dynamic reduction of
K as the deep neural network learns during the training
process in the AI-defined application plane. This reduction
in K streamlines the decision-making process, leading to
enhanced computational efficiency without compromising
the ability of the proposed algorithm to derive optimal
offloading strategies.

VII. CONCLUSION, POTENTIAL USE CASES, AND
FUTURE WORK
A. CONCLUSION
In this article, we proposed a novel AI-defined wireless
networking approach for managing MEC-enabled next-
generation wireless networks. The AIDWN implements a
new AI-defined application plane to process the network ana-
lytics, network topology, and wireless channel information
received from the SDN control plane, making intelligent,
informed, and optimal control actions and learning optimal
application-specific control policies. The AI-defined actions
are used to dynamically and efficiently control the network
flow information, mobility and handover, resource coordina-
tion and allocation, and data plane management in wireless
networks. We utilized the proposed approach to dynamically
adapt the optimal binary computational offloading and
resource allocation decisions in MEC use case scenarios.
Finally, the numerical results highlight this approach’s
benefits in optimizing the use of limited and scarce MEC
resources in a typical highly dynamic and complex mobile
network scenario.

B. AIDWN APPLICATION DOMAINS
1) FEDERATION OF MEC RESOURCES

The inter-MEC system communication and collaboration
between network operators are essential for mutual con-
sumption and sharing of MEC capabilities offered by
them [58]. The MEC resources are limited, and the dedicated
MEC services are not readily available on each MEC
server of a specific network operator, particularly for the
highly dynamic and mobile networks scenario, such as the
vehicular networks [49], [59]. Therefore, migration of MEC
services across different MEC servers and federation of MEC
resources between different network operators is essential

to ensure service quality in mobile scenarios [49], [60].
Any methods and approaches developed to ensure the
continued service quality for mobile network scenarios
should be lightweight and meet the stringent performance
requirements of their specific use case. One possible solution
to ensure continued service quality in highly dynamic and
mobile network scenarios is to use the AIDWN approach,
where the AI-defined application plane could learn from
the past wireless network information and adapt optimal
MEC service migration and resource coordination decisions
between network operators in real time.

2) NETWORK SLICING ADMISSION CONTROL

The service providers need to instantiate different types of
network slices with diverse service requirements to meet
the envisioned use cases of 5G and beyond [61], [62].
The dedicated network slices should be implemented at the
MEC servers to meet the stringent performance require-
ments of the 5G and beyond use cases, i.e., ultra-low
latency [63]. However, the MEC servers have constrained
network resources, and therefore, developing optimal and
efficient joint network slice admission control and resource
management techniques is essential. The methods should be
dynamic and in real-time able to adapt optimal admission
control and resource allocation decisions and capable of
scaling the network resources to meet the diverse service
requirements [51], [63]. The AIDWN approach could be
a potential solution to intelligent management of network
slice admission control and resource allocation. Using
the AI-defined application plane, the SDN controller can
make informed decisions on admission control and resource
allocation based on past information and network training.

3) SECURITY OF WIRELESS COMMUNICATIONS

AIDWN approach holds the potential to significantly
enhance the security of wireless communication networks,
with a particular focus on fortifying physical layer security.
Physical layer security [64] utilizes the physical attributes
of the communication channel, encompassing factors such
as signal strength, interference profiles, and propagation
characteristics, to support an additional layer of security
beyond the conventional cryptography methods. In theory,
perfect secrecy is achievable when the Shannon capacity of
a potential eavesdropper station remains lower than that of
the legitimate receiver. The centralized intelligence provided
through the SDWN paradigm offers a comprehensive view
of the network’s topology [65]. This network information
can be harnessed within the AI-defined application plane to
effectively allocate legitimate mobile users for computational
offloading to APs and their corresponding MEC servers,
optimizing the network’s secrecy capacity through dynamic
handover and mobility management functionalities.

C. FUTURE WORK
For our future work, we will focus on exploring how
interference impacts computational offloading scenarios
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within MEC-enabled wireless networks, particularly dynamic
and mobile network scenarios such as V2X and UAV. We
plan to investigate how interference from neighboring MEC
servers and mobile users can influence the efficacy of
offloading computations to MEC servers. We will leverage
machine learning and artificial intelligence algorithms to
develop adaptive interference management strategies that
optimize resource allocation and transmission parameters
in real time, mitigating interference effects, specifically in
the context of computational offloading in MEC-enabled
wireless networks. By incorporating real-time network feed-
back and environmental data as enabled by the proposed
AIDWN approach, our goal is to enhance the reliability and
efficiency of offloading processes, thereby maximizing the
performance of MEC-enabled wireless networks in dynamic
and congested wireless network environments.
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