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ABSTRACT Limited power and computational resources make the employment of complex classical
encryption schemes unrealistic in resource-limited networks, e.g., the Internet of Things (IoT). To this
end, physical layer security (PLS) has shown great potential in securing such resource-limited networks.
To further combat the power scarcity in IoT nodes, radio frequency (RF) based energy harvesting (EH)
is an attractive energy source while relaying can enhance the energy efficiency and extend the range of
data transmission. Additionally, due to deploying low-cost hardware, imperfections in the RF chain of
IoT transceivers are common. Against this background, in this paper, we investigate an untrusted EH
relay-aided secure communication with RF impairments. Specifically, the relay simultaneously receives
the desired signal from the source and the jamming from the destination in the first phase. Hence the
relay is unable to extract the confidential desired signal. The resultant composite signal is then amplified
by the relay in the second phase by using the energy harvested from the composite signal followed
by its transmission to the destination. Since the destination is the original source of the jamming, its
effect can be readily subtracted from the composite signal to recover the original desired signal of the
source. Moreover, in the face of hardware impairments (HWIs) in all nodes, maintaining optimal power
management both at the source and destination may impose excessive computations on an IoT node.
We solve this problem by deep learning (DL) based optimal power management maximizing the secrecy
rate based on the instantaneous channel coefficients. We show that our learning-based scheme can reach
the accuracy of the exhaustive search method despite its considerably lower computational complexity.
Moreover, we developed an optimization framework for judiciously sharing HWIs across the nodes, so that
we attain the maximum secrecy rate. To derive an efficient solution, we utilize a majorization-minimization
(MM) algorithm, which is a particular instance in the family of successive convex approximation (SCA)
methods. The simulation results show that the proposed HWI aware design considerably improves the
secrecy rate.

INDEX TERMS Deep learning, energy harvesting, hardware impairments, majorization-minimization,
physical layer security, untrusted relaying.

I. INTRODUCTION etc. is widely acknowledged. However, providing connectivity
HE POTENTIAL of the Internet of Things (IoT) in among numerous wireless devices on a massive scale faces
revolutionizing smart cities, healthcare, transportation, significant challenges [1], [2]. To be specific, acquiring a
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permanent power source for these devices is not viable, e.g.,
due to their mobility, hence they tend to depend on batteries.
Moreover, frequent recharging and battery replacement would
be inappropriate in most applications such as in toxic
environments or wireless body area networks, where medical
devices are implanted into a patient’s body [3]. Accordingly,
we have to acquire a sustainable energy source for IoT
devices. Another issue is that of the hardware quality in these
networks. As the massive deployment of devices is required
in most IoT applications, utilizing nodes relying on low-cost
hardware becomes inevitable. This leads to relatively high
imperfections in the RF chain of the IoT nodes [4]. Another
challenge is in the realms of security. Classical encryption
schemes are computationally demanding [5] and do not fit
well into the low energy-dissipation requirements of IoT
devices. Physical layer security (PLS) techniques rely on
low-complexity security protocols which fit well into IoT
networks [6], [7], [8]. Additionally, the implementation of
complex optimization algorithms is quite a challenge owing to
the limited resources of IoT networks [9]. Moreover, artificial
intelligence (AI) methods, particularly deep learning (DL), are
eminently suitable for low-complexity near-real-time resource
allocation [10], [11]. In this contribution, we design a security
protocol for tackling the aforementioned challenges.

Energy harvesting (EH) is capable of extending the
lifetime of energy-constrained wireless nodes [12]. This
technique gleans energy from the surrounding radio
frequency (RF) signals to recharge the batteries [13], [14].
Very recently, EH applications were studied in numer-
ous use cases, e.g., reconfigurable intelligent surfaces
(RIS) [15], multiple input multiple output (MIMO) com-
munications [16], distributed antenna systems [17], relay
networks [18], etc. Moreover, in the context of PLS, numer-
ous studies have simultaneously considered the security
and energy efficiency of IoT nodes [3], [19], [20], [21].
Specifically, the authors of [3] considered a simultaneous
wireless information and power transfer-based (SWIPT-
based) amplify and forward (AF) relaying scenario in the
presence of an eavesdropper. The relay harvests energy
both from the transmitted RF signals of the source and
from friendly jammers to glean sufficient power. In [19],
the optimal power sharing factor between the source and
destination is obtained by maximizing the secrecy rate in
a wireless-powered untrusted relaying network, where the
untrusted relay is exposed to destination-based jamming.
Furthermore, the authors of [20] proposed a wireless-
powered two-way cooperative network, wherein the two
sources communicate via a wireless-powered untrusted relay.
To boost the secrecy performance, an external jammer was
relied upon, which was also wirelessly charged by the two
sources. In [21], the IoT nodes first harvested energy from
the hybrid sink (H-sink) and then transmitted the information
to the H-sink and generated interference to confuse the
eavesdropper. The sum-throughput maximization problem
was formulated to allocate the optimum power to each of
the nodes.
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In realistic digital communication systems, practical
impairments, such as I/Q imbalance, phase noise, ampli-
fier nonlinearities, quantization errors and non-ideal filters
inevitably degrade the system performance [22], [23], [24].
Naturally, the level of residual hardware impairments (HWIs)
is determined by the quality of the RF transceivers as well
as by the analog and digital signal processing techniques
adopted [24]. For the sake of analytical tractability, the
HWIs may be modeled by additive noise at the transmitter
and receiver nodes [22], [23]. This model was confirmed
by experiments and it is extensively applied in various use
cases in the literature to model the impact of the residual
HWIs [25], [26], [27], [28], [29]. Based on this model,
several studies have examined the impact of HWIs on
the security of diverse communication networks [30], [31],
[32], [33], [34]. To be specific, the authors of [30] con-
sidered the residual HWIs in a dual-hop untrusted relaying
network. Furthermore, the authors of [31] studied a three-
hop untrusted relaying network in the presence of HWIs
and imperfect channel estimation. Additionally, the authors
of [32] have studied physical layer secret key generation
(SKG) in direct source-to-destination communication in
the presence of a man-in-the-middle adversary, where the
legitimate users suffer from HWIs. The same authors [33]
also adopted the concept of recurrent neural networks
to compensate the HWIs at the legitimate transceivers.
Furthermore, in [34], a source intends to transmit its
confidential information to a destination in the presence
of a group of untrusted AF relays. All the nodes are
assumed to have residual HWIs in their transceiver chains,
except for the eavesdropper. A sophisticated joint cooperative
beamforming, jamming and power allocation policy was
proposed to safeguard the confidential information.

DL provides unique advantages in numerous areas,
including security. Accordingly, researchers are seeking DL
solutions for employment in resource-limited mobile and IoT
devices [35]. Some recent PLS studies exploit the ability
of deep neural networks (DNNs) to approximate continuous
functions for solving resource allocation problems, which
are usually non-convex [36], [37], [38], [39], [40], [42], [43].
Specifically, in [36], [37], [38], a transmit power control
(TPC) regime was designed for maximizing the system’s
secrecy rate. An unsupervised DL-assisted approach is
proposed for reducing the complexity of the conventional
optimization-based techniques and for circumventing their
performance erosion due to approximations. EH is also
considered in these studies, while the authors of [36] and [38]
also take into account the deleterious effects of imperfect
channel state information (CSI). Furthermore, the quality-of-
security violation probability (QVP) experienced in image
transmission is minimized in [39] by utilizing a fully-
connected feedforward DNN. The optimal values of the
power allocation ratio, the transmit power, the decision
threshold on whether to send public or confidential packets
and the transmission rate are determined by the DNN. The
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authors of [40] leverage a deep feedforward neural network
to obtain the optimal fraction of power allocated to the
information signal, the redundancy rate and power transfer
time that jointly maximize the effective secrecy throughput
in a wireless-powered system. The security versus reliability
trade-off is considered in [41]. Optimum power allocation
coefficient for information and artificial noise power ratio
is determined using a feedforward DNN. Additionally, the
authors of [42] study a transmit antenna selection (TAS)
scheme based on feedforward DNNs in untrusted relay
networks. Finally, the authors of [43] propose a specific
fully-connected DNN to obtain the optimal precoding matrix,
which maximized the secrecy rate in a MIMO Gaussian
Wiretap Channel.

Against this background, in this paper, we consider two
legitimate nodes in which the source, S, wants to send its
confidential information to the destination, D, with the aid
of an amplify and forward (AF) relay, R. The relay is
powered by the signals gleaned from the environment and
it is also assumed to be curious about the information sent
from S. Hence D aims for preventing R from obtaining
the confidential signal by sending jamming during the
reception phase of the untrusted relay R. Accordingly, R
simultaneously receives the desired signal from S and the
jamming from D in the first phase. Hence R is unable
to extract the confidential desired signal. The resultant
composite signal is then amplified by R in the second
phase using the energy harvested from the composite signal,
followed by its transmission to D. Since D is the original
source of the jamming, its effect can be readily subtracted
from the composite signal to recover the original desired
signal of the source. Although the energy efficiency of the
system suffers, because D has to dissipate power for jamming
transmission and cancellation, this solution assists distant
destinations in improving both their reception integrity and
confidentiality. Furthermore, we take into account the HWIs
of all three nodes. Seeking a light-weight optimization
approach, we aim for exploiting the potential of DL in
obtaining the optimum power allocation for this scenario.The
main contributions of this paper are boldly and explicitly
contrasted to the literature in Table 1 and are summarized
as follows:

o We first calculate the instantaneous secrecy rate and
formulate a secrecy rate optimization problem subject
to the individual power constraints of the nodes.
We then design a deep neural network (DNN) for
addressing the optimization problem formulated. By
exploiting the potential of deep learning, we are able
to promptly configure the power allocation factors at
S and D based on the changes in the S — R and
R — D links. Our simulation results show that the
proposed deep network approaches the accuracy of
the exhaustive search method, despite its substantially
reduced complexity.

e To provide further insights on how the available
power budget at S and D impacts the system model
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TABLE 1. Contrasting our contributions to the state-of-the art.

Contributions This work [ 1361 | 1371 | 1381 | 139) [ 140] [ [42]

Untrusted EH Relay v
Hardware Design v
DL-based PLS v v v v v v v

()
" ( ‘)

Destination
g es 0

First phase Relay

Second phase
Impairment distortion

FIGURE 1. System model: An untrusted energy harvesting relay conveys the source
signal to the destination in the face of hardware impairments. The destination exploits
jamming to disturb the signal reception at the untrusted relay.

considered, we derive analytical results at high SNRs.
Furthermore we discuss the rationale behind our optimal
power management problem and discuss the special case
in which the secrecy rate becomes equal to zero.

e We develop an optimization framework for finding
the optimal sharing of the total HWIs among the
nodes for maximizing the secrecy rate. To over-
come the non-convexity of this problem, we derive
a low-complexity algorithm based on the popular
majorization-minimization (MM) method for improving
the secrecy rate.

o To gain further insights, a detailed discussion is
presented concerning both the impact of HWIs, as well
as the energy efficiency and the available power budget
at S and D on the overall secrecy rate. The impact
of these parameters on the power allocation problem
considered is also studied in detail.

The remainder of this paper is organized as follows. In
Section II, we introduce our system model and problem
formulation. In Section III, we define our approach to
solving the optimal power allocation problem by utilizing
DL. Accordingly, the structure of our training and test data,
activation functions and the loss function are described in
detail. To gain further insights, in Section IV, we derive high-
SNR expressions of the instantaneous secrecy rate. Based
on high-SNR results of Section IV, in Section V, a HWI
allocation problem is formulated and solved by applying the
MM technique. Finally, in Section VI, our discussions and
numerical results are presented, while our conclusions are
offered in Section VII.

Il. SYSTEM MODEL

We investigate the EH-aided untrusted relay network of
Fig. 1, which consists of a source, a destination, and an
untrusted AF relay. All the nodes are equipped with a
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phase I: relay harvests and receives signals phase II: relay transmits signals

slot II: information processing

slot I: energy harvesting (EH) P

slot III: signal transmission

T/3 T/3 T/3

FIGURE 2. Slot allocation for time switching (TS) based energy harvesting in the
proposed system model.

single antenna. The transmission is performed in two phases
within the time 7. In the first phase, the source transmits
confidential data to the untrusted relay. Furthermore, to
confuse the untrusted relay in this phase, the destination
simultaneously emits a jamming signal. In the second phase,
the untrusted relay amplifies and retransmits the signal
received in the previous phase. Note that the untrusted
relay is an essential partner in the proposed system model,
but it may also act similar to an eavesdropper and extract
confidential data without any permission from the network.
Moreover, the untrusted relay considered is able to harvest
energy from the signals received in the first phase and
consumes it in the second phase. This capability leads to
its sustained communication without high-energy batteries.
We note that the considered system is equivalent to an IoT
sensor (source) which intends to send its sensory data to a
central node (destination) with the aid of a third node which
acts as a relay and can not be trusted.

Remark 1: Energy harvesting and information transmission
have to be appropriately scheduled. In this regard, SWIPT
transmission techniques include the time, power, antenna and
spatial domains [13]. Here, we consider the time switching
(TS) method. As shown in Fig. 2, in this method, the first
phase is split into two slots. In the first slot which lasts for
T/3 seconds, the relay harvests energy from the transmitted
signals of source and destination. The second slot is for
information processing (IP) which again has the duration of
T/3. Finally, in the second phase and during the time of 7/3,
the relay transmits the received signal with the harvested
energy in the first phase.

Because of the obstacles between the source and desti-
nation, the direct link is not available. It is assumed that
reciprocity is satisfied by the system model considered. The
channels spanning from the source to relay and relay to
destination are complex-valued Gaussian with a distribution
of hg ~ CN(0, vg) and kg ~ CN (0, vig), respectively. The
HWTIs in node i (source, relay, destination) are expressed
as él-’ and & for the transmission and reception modes,
respectively, which are defined as [23]

£~ CN (0. pks”). &) ~ CN (0. pak}y”).
& ~ CN (0. prlinal*py?). & ~ CN (0. kE7),
gk ~ CN (0, k5 (il + palhnal®) ). (M

where ps, pr, and py are the transmit powers at the source,
relay, and destination, respectively. Moreover, k! > 0 and
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ki > 0 are the level of imperfections at the transmitter and
receiver hardware, respectively. Note that the additive white
noise at node i, i € {R, D} is defined as n; ~ CA(0, al.z),
i € {R, D}.

A. ENERGY HARVESTING AT THE UNTRUSTED RELAY
In the TS based energy harvesting, the energy E harvested

during the first time slot with duration 7/3 is equal
to [20], [44], [45]

T
E = A | Vpshorxs + Jpahwal . @)

where A € [0, 1] is the energy conversion efficiency and x4
and x; are the jamming and information signals with unit
power, respectively. The relay uses this energy to transmit
the signal in the second phase with the power of

E

pr= g5 = B+ Bl O

B. IP AT THE UNTRUSTED RELAY
The signal received at the untrusted relay in the second slot
of the first phase is given by

r = (PsXs + E)hyr + (VPaxa + Ep)hra + & + nr. (4)

The received signal-to-interference-plus-noise-ratio (SINR)
at the relay is expressed as

I = pslhsrl®
Pl (K + ke2) + pallal® (1 + Ky? + ki) + 03
5)

C. SIGNAL FORWARDING

In the second phase, the untrusted relay amplifies the
received signal y, by an amplification factor G and then
forwards it to the destination. Explicitly, the relay transmits
xr = Gy,, where the amplification factor is defined as

Pr
G = . 6
vV lly,II? ©

The signal received at the destination is a combination of the
information signal, self interference, distortion, and thermal
noise. After self-interference cancelation, the signal received
at the destination is expressed as

YD = vashsrhrdxs
—_—
Information signal

+ Gééhsrhrd + nghrdhrd + Géj_]ghrd + E}tehrd + S[r)

Distortion

+ Gngh,q + np . @)
————

noise

It is worth noting that when the relay aims for transmitting
data in the second phase, it completely dissipates the
total energy harvested in the previous phase, hence, by
considering (3) and (6), we have G =~ V.
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Remark 2: We note that the approximation G ~ /A is
justified, since the term /pshs x5 + /PahriXa in p, is way
larger than the impairment and noise terms in (4) for practical
networks. Otherwise, the end-to-end SNR would be very low.
This assumption is widely used in the related literature [46],
[47], [48], [49], [50].

We define k;erDz = k’ k;)z and after some simplifica-
tions, the SINR at the destlnatlon is given by

pslhsr|?

F:
b B

, (®)
where we have
B = polhy P (kS 4+ K+ K™ + K K™ + K i)
palhnal® (K + ki + K+ K K™ + K k)
o (14+Kgp") + 0Bl 227" )

Therefore, the instantaneous secrecy rate at the destination
can be expressed as

Ry = [logy(1 + Tp) — logy (1 + Te)],

where [k]T = max(k,0). In this paper, our aim is to
maximize the secrecy rate by considering realistic power
constraints at the source and destination. Hence, we propose
the following optimization problem

(10)

max Ry, (11a)
Ps\Pd
s.t: 0 < pg < P (11b)

0 < pa < PJ™, (11c)

where PP and PJ® are the maximum transmit power
available at the source and destination, respectively.

lll. DEEP LEARNING BASED OPTIMAL POWER
ALLOCATION

In this section, we intend to propose a DNN based
solution to solve the optimal power allocation problem. The

optimization problem defined in (11) can be rewritten as
max Ry, (12a)
a.p

st:0<a<1

0<p=1,

(12b)
(12¢)

where o = % and B8 = Pmax The above form will later

facilitate the des1gn of the ‘neural network to obtain the
optimal solution.

However, the above optimization problem is non-convex
and complex, hence it is a challenge to find the optimal
power allocation coefficients («*, 8*) analytically. On the
other hand, solving this problem numerically requires
substantial processing power and vast memory. Therefore,
motivated by the capability of DNNs to solve complex
optimization problems, we intend to solve the above problem
using a DNN. The following sections show that utilizing DL
to solve this optimization problem will significantly reduce
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the time required for finding the optimal solution compared
to the exhaustive search method, when they have the same
processing capability.

The primary goal of neural networks is to estimate
complex functions using simple operations of the neurons.
Here, we will harness this feature of DNNs to obtain a
complex mapping between the channel coefficients (/g, hq)
and optimal power allocation coefficients (a*, ). The result
will eventually be able to maximize the ergodic secrecy rate
(ESR). This action can be summarized as follows

(Ot*, ﬁ*) = W* (hr, hra),

where W* represents the complex mapping from (kg h,q) to
(o™, B*). It should be noted that because the channel exhibits
fast fading, the coefficients Ay and h,y of the consecutive
coherence time intervals will have different values. As such,
for each pair of (hg, h,y), the optimal values of o* and
B* will be different. Accordingly, performing exhaustive
search for each distinct pair of (A, h;g) Will impose a heavy
computational burden on the network, which highlights the
need for harnessing a less complex method, such as a
DNN. As DNNs can estimate any measurable function up
to a desired value [51], we intend to estimate W* with the
required accuracy using our proposed DNN.

13)

A. PROPOSED DEEP NEURAL NETWORK
As shown in Fig. 3, the proposed DNN consists of the input,
hidden, and output layers. According to (5), (8) and (10),
R, is a function of |hsr|2 and |hrd|2. Accordingly, instead
of using complex values of hg and h,y, we use |hsr|2 and
|hq)? as the input of our DNN. This will further simplify
its implementation. We also consider the output of the two
neurons in the last layer of the DNN as an (&, B) pair.
Furthermore, we set the number of hidden layers in our DNN
to I

In a DNN, each layer’s output is the next layer’s input.
Therefore, the output of each layer can be written as a
function of the input in the same layer formulated as

Xi=oWXi_1 + b)), (14)

where ®(.) is the activation function for the ith layer, and
W; and b; are the weight and bias matrices of the ith layer,
respectively. In this work, we use the rectified linear unit
(ReLU) activation function for the hidden layers and the
Sigmoid activation function for the output layer, which are
defined as

ReLU(z) = max(0, z), (15)

Sigmoid(z) = (16)

l+e*
Using the ReLU function in hidden layers is capable of coun-
teracting the gradient vanishing problem. Moreover, using the
Sigmoid function in the output layer can implicitly include
constraints (12b) and (12c) in the DNN’s optimization
problem, since the Sigmoid function always has an output
value between 0 and 1.
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|hrd| — = =
m
- 7

FIGURE 3. Structure of our proposed deep neural network.

B. TRAINING OUR DNN MODEL

This subsection will discuss how to train the proposed
DNN to generate optimal power allocation coefficients for
maximizing the ESR. To this end, we should first create a
dataset to train the DNN for our optimization problem. In
the second step, we must define a suitable criterion for the
network to enforce its output to get closer to the optimal
values of the optimization problem.

1) TRAINING SET GENERATION

To train the DNN, we generate a dataset having M
members. Each member of this dataset is an optimal power
allocation coefficient as an («a*, 8*) pair, each obtained
for the corresponding (|hsr|2, |hrd|2)pair, so that we have
tn = {(Ihsr?, hral®) — (@*, B*)), where m = {1,..., M).
Accordingly, we randomly generate the (g%, 1hra)® pairs
and obtain the corresponding («*, 8*) pair using the exhaus-
tive search method.

2) LOSS FUNCTION

To define the Loss Function, we first define W =
[wi, wa, ..., wil. Accordingly, the mapping between the
DNN input and output can be defined as

(@ 8) = w(Ih . thual, W).
We remark that the function W* is a mapping that accepts the
channel coefficients at its input and results in the exact value
of the optimal power allocation coefficients. At the same
time, W is the mapping between the DNN input and output.

Our goal is for ¥ and W* to be as similar as possible. To
achieve this, we use the mean square error (MSE) criterion

A7)

2
T = [9( Il VP, W) = W g )| (18)
In other words,
T = (@ —a)°+ (8- 4)
In Section VI, using the above loss function, we will train

our proposed DNN by applying the error back propagation
(EBP) algorithm [52].

2
. (19)
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max
F
n
a
g annd b Dg
=) = =
] < g
8 = 8 Il =
p—
sl 3|l »| Ef
s |l 2 £ sl E
@) ~ ZO O o0
= = @
= = =
E S E er(R)—s Pa
& p
7 max
Pd

IV. ASYMPTOTIC HIGH-SNR ANALYSIS
In this section, to provide a better practical insight into the
parameters of the scenario studied, we examine the equations
obtained in Section II for the asymptotic SNR. To simplify
the analysis, we rewrite Eq. (10) as
+
R; = [log2 i::—?;} , (20)

1+Tp
T+ T, 1S presented at the

where the expanded expression for
top of the next page with

2 2 2
ki= KK HRED kg KR RED ke D)
ko = Ky +Kpp + KO 4 k0K ke (22)
_ 2 (t.n?
ks = o (1+kgp ). (23)
ka = o227, (24)
no=k K, (25)
=1+ K+ K, (26)
73 =02, 27)

Additionally, we have assumed equal noise power at all nodes
s hsr 2 hr 2
(02) and set y, = p_lazl and y,y = Pl 2d| .
Corollary 1: If yg5 — 00 and y,4 has a finite value, then
Ry =0.
Proof: According to (20) we can write

. 1+Tp +(28)[ (l—i-kl)ﬁTr
lim |[log, ———— = [log, ——————| . (29
y:r—>00|: 2717 FR} B+ (29)

Moreover according to (21) and (25), 11 < k; leading to
71 + T1k1 < ki + T1ky so

(I+ k)7

(1 + k)7
—_ < g—
ki(1+ 1)

hato) = < 0. (30)

Therefore, we have Ry = 0.
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Corollary 1 states that by increasing the quality of signal
reception at the untrusted relay, at some point the rate at
the relay exceeds the corresponding rate at the destination.
This leads to zero secrecy rate. Moreover, we know that
when the transmitter power is zero, Ry = 0. Accordingly
the optimal value for the transmitted power lays between 0
and oo. This observation has motivated us to formulate the
power allocation problem. |

Corollary 2: If y,q — oo and y, has a finite value, then
Ry =0.

Proof: According to (20) we can write

1+Tp"
|:10g2 . j: If;j @ [log, 1]" = 0.
Corollary 2 states a completely different result with respect
to the ideal hardware case. This is because by increasing y,4
(for example, increasing the level of jamming power sent by
the destination), due to the presence of HWIs in the jamming
signal transmitted, this node cannot effectively remove the
distortion caused by itself, when receiving it again after being
forwarded by the relay. This observation is quite different
from the ideal hardware mode in which the destination
can eliminate the distortion caused by itself. Accordingly,
in the ideal hardware case, it will be optimal to use the
maximum power of the destination to degrade the quality
of the relay’s reception. The observation in Corollary 2 was
another incentive for us to formulate the optimal power
allocation problem. |
Corollary 3: If y,qg — 00, Y — 00 and % = v, then

v(l+ k) +k
Rs; = |log, Ttk

lim
Yrd—> 00

€1V

+
VT + 1 H 3
v(l+1)+m

Moreover, to have a non-zero secrecy rate, we shall
have

2
P— ke (14K + k7 )

Kep (14K +k7)

(33)

Proof: According to (20), we can write
. 1+Tp +
lim [log,
YsrsYid—> 00 1+Tg

(28) v(l 4+ k1) + ko
= lo 2
vk + kp

,_rmtn ]T (34)
v(l4+1)+ 1m0

Additionally, to have non-zero Rj, }ill:g has to be strictly

positive. Using (32) and (21)—(27) we get the condition
in (33).

Corollary 3 highlights three important points of our
scenario. Firstly, according to (32), upon increasing the
powers at the nodes, the ESR value for this scenario becomes

saturated for a given v. This is due to the HWIs in
our scenario and is a fundamental difference with respect
to (w.rt) the ideal hardware case in which the ESR
increases unboundedly upon increasing the power. Secondly,
it provides an upper bound on the ratio of 2, which can
be helpful when adjusting the power of the ‘nodes. If the
power of S exceeds a specific level, the rate of the relay
will be increased. However, due to the presence of HWIs,
D will not be able to completely contaminate the received
signal of the relay. This will eventually lzead to zero secrecy
rate. Finally, according to (33), for kl(;:g 1+ k}; + kI’;) >1
the system will have a zero ESR. This provides us with
an upper bound on the worst case HWI values and states
that for impairment levels above this upper bound, the ESR
will always be zero, regardless of the transmit powers at S
and D. ]

V. OPTIMUM HARDWARE IMPAIRMENT SHARING
The principal motivation behind optimal HWI sharing is to
provide a guideline for an overall system design under a
total cost constraint [25]. Specifically, the level of HWIs
directly depends on the quality of hardware utilized in the
RF section of the nodes. These impairments may become
excessive in low-cost IoT networks. In such networks, the
financial budget and total revenue will eventually determine
the quality of RF hardware utilized in each node and the
total tolerable HWI levels [25], [30], [31], [53]. In this
section we formulate and solve an optimization problem,
which determines the optimum sharing of the HWI levels
among the nodes. More explicitly, the total tolerable HWIs
could be shared in an equitable manner across the three nodes
or in an extreme case we could opt for an expensive but
high-quality source and low-quality, high-impairment relay
and destination.

Accordingly, the optimization problem is formulated using
the results of our high-SNR regime in Corollary 3 as

v(l+ k) +kp VT + 17
. (352)
vk + k2 v(l+1)+ 1

stk =K kg + (K k) (14 + k),

max max log, |:
k v

(35b)
k= Ky + kg + (ki + k%) (14K + ki ). (350)
T =k 4K, (35d)
T Ry iy (35¢)
k$'p = ks + kpy + kp, (35f)
k' = ki + kg. (352)

where k = {k§, k§, kj, ki, k[,}, k' is the joint error vector
magnitude (EVM) constraint at S and D, which kf’ is the

1+ Tp [+ k)0 hal*Vor + koo hral*Yea + k3lhpal* + ka][210°ver + 1202 yra + T3]

l—i-FR_

2202

[k1021hral>Vsr + k202 | hyd|*Vra + k31hra|? + ka][(1 + 11)02ysr 4+ 1202 Yra + T3]

(28)
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maximum tolerable HWIs in R. In our optimization problem
we have considered the impairment sharing for the value of
v, which leads to maximizing the instantaneous secrecy rate.
This is because when utilizing the system model considered,
one intends to adjust the transmit powers of S and D in a
way, which leads to the maximum secrecy rate and it is in
line with the optimization problem in (12). The solution for
the optimization problem in (35) is not straightforward, since
neither the objective function nor the rational expression
inside log(.) are concave w.r.t. the optimization variables.
Furthermore, we have non-affine equality constraints in (35b)
through (35e). In the following, we intend to solve the above
problem using MM by utilizing geometric programming
(GP) in each step.

To solve the optimization problem in (35), we consider the
joint maximization of the secrecy rate versus the optimization
variables v and k. We can also substitute for ki, kp, 71 and
77 in (35a) to eliminate the non-affine equalities. This yields
log, [%’] in the objective function where N and D are defined
in (36) and (37) at the bottom of the page. Accordingly, we
can rewrite (35) as

1

max t; (38a)
kv 3

st: ;D <p;, i=1,...,1, (38b)

k’S‘ftD = k’S + kg + kp, (38¢c)

k;é’t = k} + kg, (38d)

where p; represents each of the monomial terms in (36),
t; represents the slack variables and I is the number of
monomials in it (I = 56). We have also taken into account
the maximization of the rational expression inside the log
function, since log(x) is a monotonically increasing function
w.r.t. x. The optimization problem in (38) is in the form
of Signomial Programming (SP) and it is still non-convex.

However, by applying the following Corollary we can solve
it iteratively by converting the SP into a GP in each iteration.

Remark 3: Before proceeding, we need to define the
concepts of posynomials and monomials. A monomial is a
function f:R} | — R:

e o™

fx) = dx‘f(l)xZ e (39)

where the multiplicative constant d > 0 and the exponential
constants a(j) € R, j = 1,2,...,n. A sum of monomials
is called a posynomial [54]. Note that a GP program is
the minimization of a posynomial subject to posynomial
upper bound inequality constraints and monomial equality
constraints. Moreover, since the domain of monomials is
the strictly positive real numbers, when a GP is written in
terms of monomials, it is implicitly assumed that the optimal
variables are greater than zero [54]. A GP is easily converted
to a convex program with the change of variables and can
be directly defined in MATLAB CVX.

Corollary 4: Let {u;(x)} represent the monomial terms in
a posynomial f(x) = ) u;(x). A monomial approximation

of the posynomial f (x)lcan be formulated as:

H("“”) . (40)
AN
in which « can be chosen as

a;(x) = u;(x)/f(x), Vi. (41)

Proof: Please see [54]. ]

The objective function in (38a) and the equality con-
straints in (38c) and (38d) are in posynomial forms. Using
Corollary 4, at each iteration of the proposed algorithm,
we approximate these posynomial forms with monomials to
have a GP program. The resulting monomial is a global
lower bound of the corresponding posynomial term and is
equal to it at the approximation point [55]. This means that

N = Ky Kby + 2 ks ke v+ 20 ko ke 20y Ko ks v =+ Ky Koy v + 2K0 Kb+ il kly 12 + 2Kl kly v + kfy kly
20 Kl K v 2K K K v A Ky Ky v+ 3Kl Ky v o 2K K+ Ky K 02 4 Ky K 12 2 K v

2

KRV Ky KK K o 2Kk K v+ 2KD K Kl + 2K K v 2Kk 4 2KD KR kS v 4 KDk

2Kl 2Kk v K v K A Ky K 02 2 Kl v+ Ky Ky + Ky 12+ 2Kly v+ Ky + 2Ky Ky K12
212 72 22 2 P2 12 P22 22 2 212 ) r? P2 2ot 2

2Ky K K v Ky Kl 12 - 3K Kl 1 + 2K Ky + 2Ky K 02 2Ky K v K 1 + 2Ky v+ Ky + KK v

K KV 4 2K K v K v Ky K2 KV Ky v,

(36)

D = Ky Kby + 2K} ki Ky v + 2Ky KoKy -+ 26y Kokl v + 2Kfy Koy v + 2K5 Ky —+ Ky kg 12 + 2K}y Ky v + Ky iy
2Ky Ky K 02 - 2K K K v + 2k Ky v Ay Ky v+ 2K Ky + Ky K 12+ 2k K 02 4 2K kS v + Ky v
r2 r2 I4 12 I4 12 r2 12 12 r2 12 [2 r2 12 r2 12 12 [2 12 12
2KV A Ky KoK K+ 2KD K K v 2K K ke -+ 2Kk v+ 2KD KL+ 2Kk K v + 2K ke v
2K Ky 2K K v Ky o K o Kl K 0% - 2K Kl v+ K Ky + K 12+ 2Ky v+ KLy A+ 2k Kl ki 12
2kl Kl kS v+ 2K K 02 + 4Kl Ky v + 2Kly Kly + 2Kl K 12+ 2K Ko v+ Ky V2 + 2kl v + Ky + K K 12

2Kl K V2 2l v K v o 2k v K+ K 02 K1 4 K .
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Algorithm 1 Proposed MM Based Iterative Optimization

Input: k(. kg', ©
Output: kY, kf,, Ky, k7, k],
1: Initialization:

e =0
kt kt_kr_kgo,;)
* s =Fkp="~fp =73
t_ o _ k¢
° kR_kR_ 2
”2

_ kg (k)
2D (1K k)
2: repeat (MM Algorithm for k and v)
3: Use (41) to convert the posynomials in the objective

unction and equality conditions into monomials:
funct d lity dit t 1
M ri=f—, i=1,...,1
=11t
S S
Kk 4k Kk 4k, K+ki+k],
t kr

an sp =

k
I q1 = m,% = W
4: Solve the polynomial time GP:

st ;D <p;, i=1,...,1,

ktot — k_.tg " @ . é B
s.D S1 52 S3 ’

() (&)
F=\a) \@)

5: Update 6 =6 + 1.
6: until the optimization variables k and v reache conver-
gence or § = ©.

the resulting iterative algorithm is MM, and the optimization
problem at each step is GP [55]. Accordingly, we start with
an arbitrary feasible point in our MM algorithm and apply
Corollary 4 to Problem (38) to obtain a standard form GP
in each iteration.

Algorithm 1 details our proposed MM algorithm, where ®
is the maximum number of iterations. We have also exploited
the upper bound expression in (33) to initialize v in this
algorithm. Our numerical results validate that the proposed
algorithm converges rapidly to the optimum point and the
approximations are tight.

VI. NUMERICAL RESULTS AND DISCUSSIONS

In this section, we demonstrate the efficiency of our proposed
DNN-based power allocation scheme by facilitating Keras
Tensorflow [56]. Specifically, we first justify our motivation
behind proposing the power allocation problem. Then we
will examine the impact of the transmission parameters,
namely the power, HWIs and energy efficiency on the ESR.
Additionally, by contrasting the outcome of our DNN to
the optimum values obtained through exhaustive search, we
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TABLE 2. Parameter Settings

Parameter description ‘ Value

hardware imperfection level k =0.05

energy conversion efficiency | A =

search step size Co=C=1072
training dataset size M = 10000
batch size 128

initial learning rate 1072

decay rate 0.9

Number of training epochs 1000

Optimizer Adam

will evaluate the performance of our DNN. Furthermore, we
will run our MM based algorithm to demonstrate the effect
of optimum HWTI allocation on the ESR. Finally, we will
compare the computational cost of our DNN to that of the
exhaustive search.

In our simulations we assume having equal noise power
in the receiver nodes, 0,% = 0[2) = 0.025. Additionally, unless
otherwise stated, we set A = 1 and consider the levels of
HWIs found in the related literature [24], [34], k’S2 = k;)z =
K% = k2 = k2 = k = 0.05. Fig. 4 shows the impact
of HWIs on the ESR of the scenario studied with different
available power constraints in the S and D nodes. We can
observe that when perfect hardware is considered, regardless
of the available power in active nodes, the maximum ESR
is obtained upon using the maximum available power in
both nodes. However, this is not the case for the scenario
of HWIs. We can see that the optimum power allocation
factors have to be assigned to the active nodes to reach
the maximum ESR and the power allocation factors vary,
when the transmit power available at the nodes changes.
This observation is the baseline for raising the problem of
optimum power allocation. We further note that for all of the
cases shown, there is only a single unique optimum point
for the maximization of the ESR.

In Fig. 5, we intend to get a better notion of how
our optimization problem reacts in the face of different
power budgets at S and D. From an energy harvesting
perspective, we expect that the relay will mainly acquire
its transmit power by harvesting from the transmit power
of D. This is because D sends a jamming signal, while S
transmits the main message and accordingly, its power boost
will directly boost the eavesdropping opportunities of the
untrusted relay. This is in line with the trend observed in
Fig. 5. Explicitly, we can see in all cases that the maximum
ESR is achieved through utilizing the maximum available
power at D, (B =1,a < 1), with an exception in the case
of py << py. In the latter case to avoid weak reception of
the signal at D and for acquiring sufficient transmit power
for R, S utilizes its maximum power (¢ = 1). However,
due to the presence of HWIs at D, the utilization of the
maximum power in this node may deteriorate the quality
of signal reception and accordingly, it is not an optimum
choice. Furthermore, Fig. 5 confirms our results presented
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in Corollary 3. This is shown by the ESR versus o curve,
in which the transmit powers are set as Py** = 80.9 and
P7™ = 10. These two values are selected in a way that their
ratio meets the condition stated in (33). As expected, when
the condition in (33) is met in @« = 1, the ESR becomes
equal to zero.

Fig. 6, demonstrates how the impairment in each of the
nodes can affect the ESR. To have a fair comparison, we
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have assumed equal total impairment levels in each of the
nodes and equivalently in each of the curves. Firstly, we can
see that the presence of HWIs in every node can severely
degrade the ESR. Accordingly, it is vital to take into account
the HWIs of nodes in realistic implementations. Additionally,
we can observe that the presence of impairments at R and
D imposes more severe degradation on the ESR than at S.
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This is because the HWIs of R and D are boosted by the
transmit power of both S and D nodes. However, this is not
the case when we only have HWIs in the S node, where this
impairment is introduced to the system only by the transmit
power of the source.

Moreover, we can observe that the HWIs at R lead to
more grave degradation than those at the D. Nevertheless,
this observation may seem ironic at first sight, since one
may expect that in the case of impairments at the untrusted
relay, the detection capability of R degrades, while D
benefits from perfect hardware in support of its detection and
accordingly we can get a better ESR. However, in this case,
the message transmitted from S experiences HWIs in both
the reception and transmission phases of R. By contrast,
when the impairment is only present at D, this only plays
a detrimental role once in the reception at D. Care must be
taken concerning the transmit power of S in the latter case,
because in the case of P >> PJ® R can efficiently
decode the message and the ESR will drop compared to the
former case.

In Fig. 7, we can see the impact of the energy conversion
efficiency of our energy harvesting relay imposed on the
ESR. The maximum ESR is always obtained when A = 1,
regardless of the allocation factors. However, for different
energy conversion efficiencies, we get different optimum
power allocation factors. The trend of change in optimum
response with respect to energy conversion efficiency is a
function of the power available at D. In Fig. 7, there are two
sets of curves, one for PJ'** = 1 and the other for PJ}** = 10.
When there is sufficient power at D (P7** = 10), the relay
can mainly rely on the transmit power of D to provide
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its power. Accordingly, by enhancing the energy efficiency
coefficient, the transmit power of S can be reduced, which
leads to reduced information leakage to the untrusted relay.
However, this trend does not apply to the scenario, in which
the power available at D is scarce (P;** = 1). This is
because despite the enhancement of the energy efficiency
coefficient, the relay is unable to harvest sufficient transmit
power from D and accordingly, it requires more power to
be transmitted from S.

Now that we have gained better insights into the impact
of the various parameters on the ESR, we intend to solve the
optimization problem in (12a) by harnessing a DNN. In the
training phase of our DNN, we set P = Pz’a" =1, kf; =
K =Ko = ki =kl =k =0.05 and A = 1. The optimum
hyper parameters were determined experimentally for our
DNN and accordingly we considered a fully-connected
neural network having 2 neurons in the input layer and / = 6
hidden layers associated with (16, 16, 16, 8, 8, 8) neurons, in
addition to output layer consisting of 2 neurons, as shown
in Fig. 3. The activation functions for each of these neurons
and the corresponding loss function are set in accordance
with Section III. We train our DNN with batch sizes of 128
and 1000 training epochs. Moreover, the Adam optimizer
having decaying steps is utilized with an initial learning rate
of 1072 and decay rate of 0.9. Furthermore, we harness
Keras in Python for training and testing our DNN.

We generate a training dataset having M = 10000
members. Each optimal power allocation pair («*, 8*) is
generated through applying exhaustive search based on (12a).
Moreover, for each SNR, HWI level and energy conversion
efficiency, we generate another dataset independent of the
training dataset having M = 10000 members to contrast
their optimal power allocation obtained by exhaustive search
with the output of the trained DNN. Accordingly, in the
following figures we average the maximum ESR over 10000
samples formulated by Ry = Ep,, p,[R(a*, p*)], for each
SNR, HWI level and energy conversion efficiency value.

Fig. 8 characterizes the performance of our trained DNN
and compares it to the exhaustive search results for different
values of SNRs in the S-R and R-D links. The plots prove
the robustness of the trained DNN and it can be seen that
for some SNRs the performance is slightly better than that
of the exhaustive search. This is because the performance
of the exhaustive search is limited by its search step size,
while the sigmoid activation function at the output allows
the DNN to produce any arbitrary number between 0 and 1.
Additionally, we can observe that the ESR versus y, curves
saturate at lower SNRs compared to the ESR versus y,4
curves. This is in line with our previous deductions, since
increasing the power of S will lead to better reception quality
at the untrusted relay, which may lead to the degradation of
the ESR.

We note that when deployed in practice, we need to
fine-tune the trained DNN with the channel samples of
the wireless medium [57]. This is because, due to the
impairments or channel variations, the channel samples
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generated in simulation may vary from the samples in
practice and lead to non-optimal power values [57]. Another
method to acquire the channel samples is to deploy gen-
erative adversarial networks (GANs). In this method, no
assumption is made about the wireless channel model.
Specifically, a GAN is trained to mimic the wireless envi-
ronment based on the measured channel samples [58], [59].
Deploying GANs to acquire the training dataset of the DNN
will be considered in our future study.

In Fig. 9, we observe the impact of HWIs on the maximum
ESR, which may significantly degrade the ESR. Additionally,
the performance of our trained DNN is shown for different
values of HWI levels. The ESR attained by the DNN is very
close to that of the exhaustive search. This shows that despite
being trained on optimum values obtained by k& = 0.05, our
DNN can generate near-optimal results for the entire range
of HWIs.

In Fig. 10, one can observe how the energy conversion
efficiency affects the maximum ESR. As expected, enhancing
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the energy conversion efficiency will boost the ESR. Again,
we can observe that despite being trained on A = 1, our
trained DNN generates allocation factors very close to those
generated by the exhaustive search for the entire range of
energy conversion efficiencies.

Fig. 11 demonstrates how the optimal impairment dis-
tribution between the nodes can enhance the secrecy rate.
Again, we have considered the equal HWI sharing among
the nodes as K = ki = kbt = kb = ki =k = 0.05 to
contrast it with the results obtained by our proposed MM
algorithm. Accordingly, we set k{7, = 0.67 and kg’ = 0.45
and by running Algorithm 1 using MATLAB CVX, we get
the optimal values of HWIs in the nodes as k_’g2 = 0.09,
ki = 0.06,ky = 0.04,k = 0.06,k; = 0.01. It takes
four iterations for the algorithm to converge and accordingly
the time required to run the algorithm is short. In Fig. 11
we can observe that the optimal impairment sharing among
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the nodes can significantly mitigate the deleterious effect of
HWTIs and enhance the secrecy rate.

The output of Algorithm 1 can give us useful insights
in designing the impairment of the scenario considered. We
can observe that a considerable share of kg””D is allocated
to the S. This is in line with our observations in Fig. 6,
namely that the presence of HWIs in & will lead to lower
degradation of the ESR compared to that in D. Additionally,
we observe that kg > krD2 . This is because the higher share
of impairment in the transmitter block of D can lead to
higher distortion power at R, hence degrading the reception
capability of R. Moreover, the algorithm allocates much of
the kjg’ to the receiver block compared to the transmitter
block of R. This setting can again degrade the reception
quality of R.

Finally, we contrast the computational requirements of
the exhaustive search to that of the learning-based method.
Accordingly, we define Ny = 1/¢, and Ng = 1/{g, where
{y and g denote the search step size for o and B in
our exhaustive search algorithm. To elaborate further, we
quantize  and B with N, and Ng equally spaced values.
Then, by substituting all possible combinations, we can find
the maximizing o and B. We note that the computational
complexity of DNN-based power allocation is on the order of
O(1), which is significantly lower than that of the exhaustive
search O(NyNpg). This is because when a DNN is utilized,
we need just finite steps of arithmetic calculations to get the
optimum power allocation factors, while in the exhaustive
search we have to go through every point in the search
space. We validate these results by contrasting the time
taken to obtain the optimum solution by the two methods
upon running them on PYTHON using a dual core 2.2 GHz
Intel Xeon microprocessor having search step sizes of §, =
{p = 1072, The running time of the learning-based method
is as low as 73 microseconds, while for the exhaustive
search this is 4.6 milliseconds. This shows about two orders
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of magnitude difference between the running time of the
learning-based method and the exhaustive search. However,
recall from Fig. 8, that the DNN performs better at some
SNRs than the exhaustive search for the search step sizes
assumed. This means that to get an identical performance
to the DNN, we even have to make ¢, and {g smaller for
the full search, leading to much more time for obtaining
the solution. These observations show that the exhaustive
search method may become infeasible in practical cases and
that the learning-based method is more suitable in real-time
applications.

VIl. CONCLUSION

In this paper, we studied a wirelessly powered cooperative
communication scheme, while considering the presence
of HWIs for all nodes. We provided analytical results
for the system model in the high-SNR regime to obtain
better insights on how the power available at the source
and destination can affect the secrecy rate. Furthermore,
an optimization problem associated with individual power
constraints was formulated for maximizing the secrecy rate.
Accordingly, a DNN was designed and trained to get
the optimum power allocation factors at the source and
destination. We showed that the proposed DNN succeeds
in matching the secrecy rate performance of the exhaustive
search, while its complexity is considerably lower. This
makes the DNN designed an attractive choice for real-
time applications. Finally, we formulated an optimization
problem for optimally sharing the HWIs among the nodes
and proposed an MM-based algorithm to solve it. It was
shown that the optimal distribution of HWIs can substantially
enhance the secrecy rate of our system model across the
entire range of SNRs. For our future work, we will consider
the deleterious effect of channel estimation error (CEE)
in the self-interference cancellation phase for a two-way
relaying system. Moreover, considering a multi-node and
interference-limited scenario with exponential complexity in
the corresponding optimization problem, we will deploy
unsupervised deep learning or deep reinforcement learning
(DRL) to obtain the optimum power values. Devising deep
denoising autoencoders to compensate for the deleterious
effects of HWIs and CEEs is another intriguing future
research direction. Finally, we note that we have assumed a
linear relationship between the hardware cost and quality in
our HWI sharing problem. However, the connection between
the hardware cost and quality can be nonlinear in practice.
A deeper examination of the relationship between the cost
and hardware quality for optimum HWTI sharing is another
interesting research direction.
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