
Received 12 February 2024; revised 1 March 2024; accepted 19 March 2024. Date of publication 25 March 2024; date of current version 1 May 2024.

Digital Object Identifier 10.1109/OJCOMS.2024.3381546

A Blockchain-Based Approach for USIM
Management in Mobile Networks

MAEDE HOJJATI 1, ARIAN ARABNOURI1, ALIREZA SHAFIEINEJAD 1,
AND HALIM YANIKOMEROGLU 2 (Fellow, IEEE)

1Department of Electrical and Computer Engineering, Tarbiat Modares University, Tehran, Iran
2Department of System and Computer Engineering, Carleton University, Ottawa, ON K1S 5B6, Canada

CORRESPONDING AUTHOR: A. SHAFIEINEJAD (e-mail: shafieinejad@modares.ac.ir)

ABSTRACT Universal Subscriber Identity Module (USIM) is an essential part of the mobile network
mainly for providing identification and authentication of the subscriber. The activation and deactivation of
USIMs are the two most critical services that must be supported by Mobile Network Operators (MNOs).
The current solutions suffer from several limitations such as the lack of round-the-clock services and the
presence of a single point of failure. In this paper, we propose a blockchain-based scheme for USIM
management. Each MNO creates its own smart contract and publishes its address to subscribers. Subscribers
can then directly submit their requests by registering a transaction that invokes a specific function of the
smart contract. The proposed scheme provides an anytime-anywhere service while at the same time it
leverages the benefits of blockchain technology, such as a decentralized architecture that prevents Denial-
of-Service (DoS) attacks, as well as a secure auditable log and payment using cryptocurrency. Moreover,
we provide a security proof for the scheme through formal verification. Our results demonstrate that our
scheme ensures subscriber privacy while providing mutual authentication among participants. Finally, our
evaluation on the Ethereum blockchain confirms the efficiency of the scheme in terms of both transaction
and execution costs.

INDEX TERMS Mobile networks, blockchain system, formal verification, USIM management.

I. INTRODUCTION

INGSM (Global System for Mobile communication), each
subscriber is identified by the use of a Subscriber Identity

Module (SIM) [1]. In third generation mobile networks
known as UMTS (Universal Mobile Telecommunications
System), the terminology was changed and the specifications
were split into UICC [2] (Universal Integrated Circuit
Card) and USIM [3] (Universal Subscriber Identity Module)
specifications. While in GSM, SIM refers to both software
and hardware, in UMTS, UICC generally points to a multi-
application hardware platform that provides hosting for SIM
and/or USIM as applications.
A USIM is a removable smart card for mobile phones

which has a critical role in identification and authentication
of subscribers. It is a tamper-proof device which provides a
managed platform for storing operator specific configurations
and subscriber related data. The deployment a USIM card
with new services into operational mode, requires a process

involving multiple parties such as the card manufacturer, the
operator, operator agents or representatives and subscribers.
In summary, the USIM lifecycle management process can
be described as follows [4]:

1. Planning
2. Ordering
3. Production
4. Test
5. Preactivation
6. Logistics
7. Activation
8. USIM card usage
9. Deactivation

In the first step, MNO designs a USIM based on its criteria
and then orders it to a vendor by means of an input file. It
contains the profile information, USIM card serial number
denoted by ICCID (Integrated Circuit Card Identification

c© 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME 5, 2024 2401

HTTPS://ORCID.ORG/0000-0001-7713-8620
HTTPS://ORCID.ORG/0000-0002-2449-2914
HTTPS://ORCID.ORG/0000-0003-4776-9354

HOJJATI et al.: BLOCKCHAIN-BASED APPROACH FOR USIM MANAGEMENT IN MOBILE NETWORKS

Number) and the IMSI (International Mobile Subscriber
Identity). In some cases, such as prepaid cards, the MSISDN
(Mobile Station International Subscriber Directory Number)
is further identified.
In the third step, production and personalization are done

in which the USIM manufacturer creates all secret data, such
as PIN codes and OTA (Over-The-Air) keys, and writes them
into the card’s memory. Further, an output file is generated,
containing all necessary data in a suitable format which can
be fed into the operator’s network entities.
Tests are conducted to ensure that each USIM functions

properly before shipment to the customer. After successful
verification, the pre-activation phase begins in which the
output file is securely loaded into the operator’s network
systems including:

• UDM (Unified Database Management),
• AUSF (Authentication Server Function),
• CCMS (Customer Care and Billing Systems) and
• OTA (Over-The-Air) systems.

The above systems are dedicated for 5G networks. For
other networks, some of systems are different. More specifi-
cally, the first system is HLR (Home Location Register) and
HSS (Home Subscriber Server) in 3G and 4G, respectively.
Furthermore, the second system is replaced with AuC
(Authentication Centre). in both 3G and 4G.
Then USIM cards are shipped from the card vendor to the

operator and distributed to the operator’s shopping agents.
Before delivering USIM to the subscriber, the activation must
be done. In this phase, the MSISDN field is assigned by one
of the subscriber’s owned phone numbers and then the card
is activated in all systems.
Usually, each MNO has a specific customer activation tool

which is remotely accessed by authorized agents using an
online connection to MNO’s customer management system.
This tool allows for card activation when the subscriber has
obtained a new USIM card. The operator agent is responsible
for identification and authentication of the subscriber as well
as verifying that the phone number assigned to the MSISDN
is owned by the subscriber.
While the USIM card has no validity period to define

the end of life, deactivation is an essential operation for
lost, stolen, or malfunctioning cards. Deactivation causes the
USIM card to be disabled in all systems, but usually, the
card data remains in the systems for tracking its history.
Deactivation may be initiated by the MNO to replace old
USIM cards. In fact, most deactivations are done due to
upgrades, in which subscribers with old USIM cards are
encouraged by the operator to exchange them for more recent
versions of USIM to enable new services.
It should be noted that both activation and deactivation

are sensitive services that must be done securely. The lack
of sufficient security in the design and deployment of
these services can lead to unintended USIM deactivation
and activation, which in turn can pose numerous threats

against subscribers, such as identity theft, compromised
social accounts, privacy violation, and fraud.
Current solutions for USIM activation are dependent on

policies established by each country and imposed to the
mobile operators. Based on the subscriber identification
method, activation is done: 1) by physical document in
the store of service provider, 2) by video identification,
3) by physical document in post office and 4) online
identification by electronic ID (eID) card. The first way
is only good for the provider that facilitate subscribers
with physical stores. Although the second solution is
preferred to the first method, it will be an offline service
if it encounters human intervention for committing the
verification. Furthermore, it is usually limited due to age
restrictions, legal restrictions, privacy concerns or foreign
citizenship. The fourth solution requires eID infrastructure
which in most countries are still in the early stages of
implementation.
In this paper, we propose a PKI-based solution to integrate

blockchain technology into the design of the framework
that implements USIM services. This scheme is able to
overcome the single point of failure problem as well as
providing an automatic platform to support round-the-clock
services.
Blockchain, originally known as the underlying technol-

ogy of Bitcoin [5], has evolved to have applications beyond
accounting. Its main characteristics include decentralization,
immutability, transparency, auditability, anonymity, and the
ability to bring trust to a network. Platforms such as
Ethereum [6] and Binance smart chain [7] enable execution
of decentralized applications created by third-parties, and
thereby bringing dynamicity in a wide range of applications.
This capability is known as smart contract in blockchain
environment.
Due to the significant increase in USIM usage, it is

crucial to have an efficient solution for USIM management.
In our proposed scheme, each MNO creates its own smart
contract and publishes its address to inform subscribers. This
allows subscribers to directly communicate with the MNO
by registering a transaction that invokes a specific function
of the smart contract. It enables an anytime-anywhere service
that is independent of the subscriber’s location or the time of
service. The only requirement is that each subscriber must
have an electronic ID for mutual authentication with the
MNO.
Our scheme aims to preserve subscriber privacy while

at the same time preventing DoS attacks on the MNO’s
customer management system by keeping it inaccessible to
attackers. It provides non-tampered and auditable logs of
incoming requests, including USIM activation and deactiva-
tion. To the best of our knowledge, this research represents
the first work on a 5G customer management system based
on blockchain and serves as a foundation for efficient USIM
lifecycle management. The main contributions of this paper
can be summarized as follows:

2402 VOLUME 5, 2024

• The scheme supports cross-domain authentication
of a user to different MNOs and interoperation of
them.

• The scheme is based on blockchain which provides
high level of security controls including protection
against malicious MNO and DoS attacks and
thereby solving the single point of failure problem.
Further, the smart contract function checks the
freshness of incoming request to avoid replay
attack.

• The security of the proposed scheme has been
proven using formal verification, ensuring the
secrecy of credentials information and authentica-
tion of subscribers and MNO to each other.

• The efficiency of the proposed smart contract in
terms of GAS costs has been assessed.

• The opportunity to pay the charge of service with
cryptocurrency instead of national currency.

The rest of this article is organized as follows. In
Section II, we review the related work. The required
backgrounds are given in Section III. The system model
and design goals as well as threat model are presented in
Section IV. The proposed scheme is introduced in Section V.
The security proof of the scheme is explained in Section VI.
The performance of the scheme is discussed in Section VII.
Finally, Section VIII concludes the paper.

II. RELATED WORK
To the best of our knowledge, there is currently no published
literature discussing the benefits of blockchain for USIM
management in mobile networks. In this section, first
we discuss the current solution employed by MNOs for
subscriber identification for USIM activation/deactivation.
Then, we have focused on a set of closely related topic
discussing benefits of blockchain in IoT device management.
More specifically, we discussed the schemes that uses
blockchain for identity management [8] and [9], monitoring
the devices in supply chain management [10], [11], [12]
and [13], privacy preserving management [14] and [15],
creation and handling task [16], bidding purchase manage-
ment [17], service provisioning [18], interbank customer
management [19] and secure firmware updating of IoT
devices.

A. USIM ACTIVATION STATE-OF-THE-ART
The type of identification can vary depending on the specific
operator and country. Based on the subscriber identification
method, one of the followings is utilized:

• Activation in the store of service provider,
• Activation by video identification,
• Activation in post office and
• Online activation by electronic ID (eID) card.

The first three methods need physical documents of
subscriber including government-issued ID, international
passport, address verification, proof of residency or a

FIGURE 1. Typical connection of operator’s agents to CRM.

combination of them while the last one only requires an eID
card.
The first way is the most common way and is good

for the provider that facilitate subscribers with physical
stores. Each MNO assigns subscriber identification to its
agents that accept user request after a rigorous identification.
Since the service area of an MNO usually covers an entire
state, authorized agents are distributed across different geo-
graphical locations. Thus, secure communication of agents
with operator customer management system, is a serious
challenge. A typical solution used by MNOs, as shown in
Fig. 1, is based on a Virtual Private Network (VPN).
For example, “Hamrahe Aval”, the first mobile operator

in Iran with over 75 million active subscriptions, has
approximately 5000 agents throughout the entire provinces
of Iran [20]. Each agent establishes a connection to the VPN
server of “Hamrahe Aval” to be able to communicate with
the Customer Relationship Management (CRM) system. To
have a higher security level, each agent is equipped with
a USB token which acts as a secure memory to store the
credentials required for connecting to the VPN server. At
the same time, each agent is restricted to connecting only
from a fixed-point location identified by either a specific IP
or MAC address.
This architecture exhibits the lack of round-the-clock

service (supporting service only during business hours), a
significant amount of human resources to manage the agents,
human intervention and thereby possibility of human error
and/or collusion between subscriber and agent and single
point of failure for VPN server in the first layer and the
CRM in the second layer.
The second solution is suitable for the operators without

physical stores while at the same time facilitate subscribers
to purchase a USIM card from any sales point and check
the ID through a video connection. Some MNOs may utilize
automated systems or AI-powered chatbots to verify user
identities during video calls, while others may have human
agents or moderators who review and confirm identities. The
subscriber should upload his/her ID documents and waits
for video call appointments. After a primary verification,
the subscriber joins the video call and shows his/her
original documents to the video chat agent. Although it
is preferred to the previous method, it will be an offline
service if it encounters human intervention for committing
the verification.

VOLUME 5, 2024 2403

HOJJATI et al.: BLOCKCHAIN-BASED APPROACH FOR USIM MANAGEMENT IN MOBILE NETWORKS

The third solution is suitable for users that online
identification is not applicable or not accepted. It is occurred
due to age restrictions, legal restrictions, privacy concerns
or foreign citizenship.
The fourth solution allows citizens to prove and verify

their identity using their eIDs and connecting with their
identity provider when requesting on-line USIM activa-
tion [21]. Although this provides anytime-anywhere service,
it requires eID infrastructure which in some countries
such as Estonia and Belgium are well-established and
widely used, while others are still in the early stages
of implementation. Estonian and Belgian eID are national
deployment of eIDAS regulation [22] which is the European
directive about electronic identities. Estonian eID [23] is
part of “e-residency” program which includes a PKCS11-
enabled NFC-based smart card supports online identification,
eiDAS-compliant digital signature including timestamping
and electronic. Due to substantial invest of time and money,
this solution is less versatile than a “conventional” PKI
solution.
Our scheme is independent of any infrastructure while

eID-based solutions such as [21] need eID infrastructure.
Comparing with the scheme with video identification,
our scheme has low latency about few minutes without
any human intervention. Further, our scheme is based on
blockchain and provides high level of security controls
including protection against malicious MNO, DoS attacks
and thereby solving the single point of failure problem
as well as checking the freshness of incoming request
to avoid replay attack. Moreover, since both request and
response messages are stored on blockchain, our scheme
is forensic-ready. It means that in the case of unintended
USIM activation/deactivation, both MNO and subscriber are
able to decrypt and track the transmitted message to detect
any abusing, for example unauthorized use of a person’s
certificate.

B. BLOCKCHAIN BASED APPROACH FOR DEVICE
MANAGEMENT
The scheme in [8] presents a semi-decentralized IoT identity
management framework providing identity creation, transfer
of ownership and identity portability among networks visited
by the devices. It uses a set of smart contracts that provide
the functions of the registrar and management contracts.
In [9], the authors proposed an IoT device identification
and management in 5G smart grid. They used a hybrid
blockchain mechanism based on 5G MEC smart grid, where
both public blockchain and private blockchain are deployed
on the MEC gateway/server. To facilitate the data searching
and extracting, they endeavor to build a blockchain explorer
indexed by IoT device identifier.
Arumugam [10] proposed a smart logistics solution,

logistics planner and condition monitoring of the IoT devices
in the Supply Chain Management area using smart contracts.
It aims to achieve accountability, traceability and liability
for asset handling across the supply chain by various parties

involved in a logistics scenario. In [11], the authors presented
a blockchain-solution and implementation using Ethereum
smart contracts for monetizing IoT data with automated pay-
ment involving no intermediary. They discussed key aspects
related to architectural design, entity relations, interactions
among participants, logic flow, implementation and testing
of the overall system functionality. Zuo and Qi [12] proposed
an IoT framework for real-time monitoring and control to
increase oil field operation and asset efficiency and safety.
The authors in [13] proposed a distributed ledger solution
to offer a decentralized, privacy-preserving, and verifiable
management of Smart Tags during a product’s lifecycle.
The solution uses the Ethereum blockchain to mediate
interactions between the stakeholders during a product’s
exchange process in which all involved stakeholders and
product consumers can verify the product’s authenticity
without revealing their identity. The proposed solution
provides evidence of the product’s origin and its journey
across the supply chain while preventing tag duplication and
manipulation.
He et al. [14] proposed a privacy-preserving IoT devices

management scheme which provides efficient time-bound
and attribute-based access and supports key automatic revo-
cation. Feng et al. [15] proposed a privacy-preserving tucker
train decomposition, to extract meaningful and underlying
data generated by different kinds of devices in a wide range
of Industrial IoT (IIoT) applications, over blockchain-based
encrypted IIoT data without the involvement of users. It
enables IIoT data providers to reliably and securely share
their data by encrypting them locally before recording them
in the blockchain. It consumes massive resources of fogs and
clouds to implement an efficient privacy-preserving tucker
train decomposition scheme.
Wickstrom et al. [16] proposed a smart contract solution

for creating and handling generic IoT tasks. It enables users
to manage IoT devices by utilizing the Ethereum infrastruc-
ture for authentication, authorization, and communication.
This design allows the devices to function autonomously by
interpreting tasks received through smart contract transac-
tions, without any direct human to device interaction. Smart
contracts in [17] are used for implementing bidding purchase,
contract communication, inventory management, and multi-
department joint supervision of medical devices.
Alghamdi et al. [18] proposed a secure service provi-

sioning scheme with a fair payment system for lightweight
clients based on blockchain. The scheme uses an incentive
mechanism based on reputation. It uses a consortium
blockchain with the proof of authority consensus mechanism
and smart contracts to validate the services provided to
the lightweight clients, transfer cryptocurrency to service
providers and maintain their reputation.
Hajiabbasi et al. [19] proposed an automated framework

for interbank Know-Your-Customer (KYC) in robot-based
cyber-physical banking. A deep biometric architecture was
used to model the customer’s KYC and anonymize the
collected visual data to ensure the customer’s privacy.

2404 VOLUME 5, 2024

The authors in [24] presented a blockchain-based national
Digital ID Framework to improve digital identity government
service as a simple single sign-on for each service. The
framework consists of smart contracts which are the core of
the identity services and incorporate logic.
Zhang et al. [25] proposed a decentralized and multi

factor eID registration and verification using a consortium
blockchain. The system consists of client, identity registra-
tion, identity verification, electronic signature system and
blockchain service module. The registration module reads
citizen’s identity from the ID card, creating a QR code for
encrypted eID by signature system. The QR code is stored
on blockchain and decentralized identity storage system.
The verification system use identity information along with
biometric multi-factor identity verification mode to create a
unique ID to identify a citizen.
Argento et al. [26] utilized blockchain for service account-

ability integrating eIDAS-compliant Public Digital Identity.
Accountability is usually achieved by involving a trusted
third party (TTP). Since blockchain decentralizes trust, it
avoids relying on a single TTP.

III. PRELIMINARIES
A. BLOCKCHAIN AND ITS BENEFITS IN 5G NETWORKS
The motivation behind the combination of blockchain and
5G is to utilize the strengths and characteristics of blockchain
to address challenges in 5G and open up new opportunities
for services and applications. These challenges arise from
the variety of new services in 5G and can be identified
in terms of decentralization, transparency, interoperability,
performance limitations, security, and privacy. Traditional
approaches may not be able to overcome these challenges,
and researchers recognize the need for innovative solu-
tions [27].
Several schemes proposed in [28], [29], [30], [31], [32],

[33] and [34], aim to improve 5G applications using
blockchain. In [28], an authentication protocol based on
blockchain was proposed for 5G networks. Blockchain is
utilized to provide a public channel for communication
between the Home Network (HN) and Serving Networks
(SNs), enhancing security and protection against malicious
SNs. In [29], a sharing economy system for mobile
edge computing is proposed, leveraging blockchain for
immutability. Guo et al. [30] proposed distributed and
trusted authentication system for different edge-based IoT
platforms. The proposed system utilizes blockchain to
securely store data and user access information. In [31],
a hierarchical access control scheme for the cloud is
proposed, which uses blockchain to build a key management
system. In [32], the authors proposed an access control and
authentication scheme for smart grid. Reference [33] utilizes
blockchain to provide a secure communication channel by
immutability characteristic of transactions. Reference [34]
utilizes blockchain for the secure management of Network
Function Virtualization (NF), using Practical Byzantine Fault
Tolerance (PBFT) as the consensus mechanism.

B. SMART CONTRACT
A smart contract is a computer program that contains a
set of rules agreed upon by the parties involved in the
contract. Its implementation is guaranteed and produces a
definite output. The concept of smart contracts was initially
proposed by Szabo [35]. By enabling automatic execution,
smart contracts ensure correct execution while eliminating
intermediaries and enabling direct peer-to-peer transactions.
This reduces costs by eliminating brokerage fees. Smart
contracts are decentralized on all network nodes and are
executed automatically. The benefits of smart contracts on
the blockchain platform include the immutability of the
contract and its information, transparency, reviewability, and
accessibility
Ethereum is one of the most popular public networks used

to create smart contracts on the blockchain platform. It has
attracted attention from prestigious projects due to its lower
concentration compared to other blockchain networks like
Binance Chain [8]. However, projects that do not require
a high level of decentralization might prefer running on
other blockchains such as Binance Chain due to Ethereum’s
high cost and low transactions per second (TPS). Ethereum
has its own language, Solidity, which allows developers to
create and compile desired smart contracts and run them
on the Ethereum virtual machine. The concept of GAS in
Ethereum provides a reward mechanism for miners and DoS
attacks. Moreover, the use of blockchain as a distributed
decentralized database ensures data accuracy, accessibility,
and resistance to censorship, information deletion, and
double spending attacks.

IV. PROBLEM FORMULATION
In this section, we describe the system model and design
goals as well as design goals.

A. SYSTEM MODEL
The framework shown in Fig. 2 consists of the following
entities:
Subscribers: End users who send activation/deactivation

requests. They are classified into subscribers with and
without a certificate. Each subscriber with a certificate, which
contains his/her social identifier in the subject field, can
directly send the desired request to the MNO.
Blockchain: An entity positioned between the MNO and

subscribers, acting as a secure communication channel.
Additionally, it allows the MNO to create a smart contract
that handles both subscriber requests and MNO responses.
MNO: The home network operator that receives subscriber

requests through the smart contract function. It processes
the request and, in error-free situations, sends a query to the
AUSF/AuC system. The query is insertion and deletion for
USIM activation and deactivation, respectively. For USIM
upgrading, both the deletion of the previous entry and the
insertion of a new entry are performed simultaneously in the
AUSF/AuC system.

VOLUME 5, 2024 2405

HOJJATI et al.: BLOCKCHAIN-BASED APPROACH FOR USIM MANAGEMENT IN MOBILE NETWORKS

FIGURE 2. Overall architecture of the proposed scheme.

Certificate authority: The entity that is responsible for
issuing digital certificate for both MNO and users.

B. THREAT MODEL
First of all, we assume that the interface between subscribers
and the MNO is a public channel. It is originated from the
fact that we use a public blockchain which anybody can
track transactions and scan content of each block.
Secondly, we consider an active attacker model. It means

that he/she can inject new messages into the public channel
or can save messages for future use to act as either the MNO
or a subscriber. It implies that an attacker can eavesdrop on
all messages exchanged over it. The attacker may try to act
as a malicious MNO to get information from the subscriber.
The attacker may try to conduct impersonation attack.

In this case, a legitimate user ‘A’ who has enough creden-
tials for authentication triggers a successful authentication,
pretends to be user ‘B’, and carries out an USIM activa-
tion/deactivation against him/her. The attacker my conduct
man-in-the-middle attack for either impersonation attack or
acting as malicious MNO. Further, the attacker can request
to run multiple instances of the protocol to investigate
interleaving attacks.
The only limitation of the attacker is the access to

credentials, i.e., he/she has no access to the private key of
either MNO or subscriber.

C. DESIGN CONSIDERATIONS
The main ideas of our scheme are as follows:

• We consider blockchain as an interface between the
MNO and subscribers who want to send a USIM
activation/deactivation request.

• Assuming an insecure channel between the
MNO and its subscribers, all messages are
encrypted by suitable cryptographic algorithms,
i.e., the transaction metadata containing the USIM
request/response is always encrypted. Therefore,
anyone who scans the blocks of the blockchain is
incapable of acquiring any information about the
subscriber’s sensitive data.

TABLE 1. Notations used in system modeling.

Symbol Description

SC Smart Contract
U Subscriber

MNO Mobile Network Operator
IDX Identifier of participant X
PKX Public Key of the principal X
SKX Private Key of the principal X
h(.) Hash function

reqinfo Request information (encrypted)
Asymmetric encryption of message m with public
key of participant X
Asymmetric decryption of ciphertext c with private
key of participant X
Symmetric encryption of message m with key K
Symmetric decryption of ciphertext c with key K
Signing message m with private key of participant X
Verify the signature with public key of participant X

• The scheme enforces a rigid access control mecha-
nism for calling the smart contract functions. More
specifically, as the owner of the smart contract,
the MNO is the only node capable of registering
a response transaction.

• The scheme enforces MNO to register the set of
valid USIM serial numbers into the blockchain
prior to any activation request. It enables the
smart contract to verify the validity and freshness
of subsequent request and thus aborts invalid
and repetitive requests, thereby preventing replay
attacks.

V. PROPOSED SCHEME FOR USIM MANAGEMENT
In this section, we introduce our scheme. First, initialization
phase is described. Then, the construction of scheme includ-
ing detail of each phase is explained. Finally, the design of
smart contract is presented. Note, that Table 1 summarizes
the definitions and symbols used throughout the paper.

A. INITIALIZATION
1) GLOBAL SETUP

In the first step, each user as well as MNO generates a key
pair as private and public key of his/her digital certificate
(e.g., in X509 format) and signed it by certificate authority.
The key pair is used for both encryption and signing of
request/response message.
Then, each MNO creates its own smart contract and

deploys it on the public blockchain. The MNO publicly
publishes the address of this smart contract (e.g., through
its official website). Any subscriber who wishes to get a
USIM service from the MNO can register a transaction by
calling the relevant smart contract function with the required
parameters. Using a public blockchain allows the MNO to
eliminate the need for infrastructure development, thereby
following a pay-per-service business model. As mentioned in
the previous section, the smart contract verifies the request
for freshness and USIM validation. If these conditions are

2406 VOLUME 5, 2024

not met, the smart contract reverts the transaction and aborts
further processing. Otherwise, the request is forwarded to
the MNO for final processing. The processing result is also
registered in the blockchain by the MNO as a response
transaction.

2) REGISTERING A SET OF USIM SERIAL NUMBERS

In this step, the MNO registers the serial numbers of a
given set of USIMs in the blockchain. These cards are
newly produced USIMs ready to be distributed in the market.
This is achieved by calling a specific function of the smart
contract. The MNO continuously performs this registration
upon receiving demand from the market.
This step is carried out after the preactivation phase and

before the shipment of the USIM cards to the MNO’s
shopping centers. Each subscriber with a valid certificate
can purchase a USIM card and activate it for his/her own
mobile number.

B. CONSTRUCTION
The overall message sequence is depicted in Fig. 2. It
consists of four messages exchanged between subscriber and
MNO via smart contract. Each message is dedicated to a
specific phase which will be described in more detail in the
following subsections.

1) REGISTERING REQUEST BY THE SUBSCRIBER

The details of this phase are shown in Algorithm 1. First,
the subscriber generates a 128-bit random key namely KA,
as well as random number R1 with the same size. Next,
subscriber’s ID, digital certificate, mobile number along
with R1 are concatenated and encrypted by a symmetric
algorithm such as AES using KA. Let the result be denoted
by reqinfo. Then, KA itself is encrypted twice by an
asymmetric algorithm, first with the MNO’s public key and
the second with subscriber’s public key to generate K1 and
K2, respectively.
Further, a digital signature is generated by subscriber’s

private key on four-tuple (reqid, reqinfo,K1, K2) where
reqid denotes the pair (USIMid, ServiceType). Finally,
the subscriber registers a transaction with the five-tuple
(reqid, reqinfo,K1, K2, reqsign) into the blockchain which
invokes a specific function of MNO’s smart contract.
To avoid large payload for transaction, we do not directly

put the content of the subscriber’s certificate into the reqinfo
field. Instead, we use a public link to the certificate that is
located by the subscriber in a desired public cloud storage.
The resulting link usually is a string less than 40 ascii
characters.
Further, there is a slight difference in the algorithm when

the requested service is a USIM upgrade. In this case, two
USIM serial numbers are located in reqid field. The first
indicates the old USIM which must be deactivated and the
second denotes the new USIM that needs to be activated.
To simplify discussion and avoid any loss of generality,

we will not address the handling of either upgrade requests

Algorithm 1 The Subscriber’s Request
Input: USIMid, ServiceType

1: KA← generating a random 128-bit key
2: R1 ← generating a random 128-bit number
3: reqinfo← EKA(IDU, CertU, #mob, R1)

4: reqid ← (USIMid, ServiceType)
5: K1 ← EPKHN (KA)
6: K2 ← EPKU (KA)
7: reqsign← signSKU (reqid, reqinfo,K1, K2)

8: Subscriber registers the transaction (reqid, reqinfo,
K1, K2, reqsign)

or certificate-less subscribers in this paper. However, as
mentioned earlier, these can easily be accommodated by
making some modifications to the existing scheme.

2) CHECKING REQUEST AND FORWARDING TO MNO

Upon receiving the request, the smart contract checks the
following conditions:
• Freshness of the request.
• Registration of the requested USIM.
The first condition is checked by searching for an entry

with reqid in previous request records that is currently being
processed by the MNO. If such an item is found, the
request is rejected and the transaction will be reverted. This
effectively prevents reply attacks. For the second condition,
the smart contract extracts the USIM identifier from the reqid
and searches it in registered USIMs. If the USIM identifier
is not found, the request is rejected and the transaction will
be reverted. Otherwise, the smart contract sets a Boolean
flag, called bRunning, to true and forwards the request to
the MNO for final processing. Setting the flag indicates
that the request is currently being processed and any further
incoming requests with the same reqid will be blocked.
In summary, the smart contract is responsible for

preventing replay attacks as well as rejecting requests with
invalid USIM.

3) REGISTERING RESPONSE TRANSACTION BY MNO

Upon receiving the request from smart contract, the MNO
decrypts K1 with its own private key to retrieve KA. Next,
the MNO decrypts reqinfo using KA to obtain IDU , the
subscriber’s digital certificate, and the mobile number. Then,
the following condition are checked by the MNO:
• Validation of the certificate and its ownership to

IDU by verifying the subject field.
• Verification of request signature by PKU extracted

from the subscriber’s certificate.
Violating either of the above conditions prohibits the

MNO from further processing and leads to the rejection of
the request with an appropriate error code. Otherwise, the
process continues by invoking the Do-Service function. It
first checks the ownership of the mobile number by searching
the entry (#mob, IDU) in AUSF/ AuC. If such an item is

VOLUME 5, 2024 2407

HOJJATI et al.: BLOCKCHAIN-BASED APPROACH FOR USIM MANAGEMENT IN MOBILE NETWORKS

FIGURE 3. The message sequences of the proposed scheme (Smart contract aborts the request if it is not fresh or USIM is invalid).

not found it means that the mobile number does not belon
to the subscriber and thus the request is rejected. Now, if
the requested service is deactivation, it can be simply done
by disabling USIMid in corresponding subsystems. MNO
removes the entry (USIMid, #mob) from AUSF/AuC and also
deletes any record containing USIMid in HLR/HSS/UDM,
CCMS and OTA repositories. If the requested service is
USIM-activation, the MNO further checks the following
conditions:
• USIMid was not previously activated for a differ-

ent mobile number, i.e., there is no record like
(USIMid, x) in AUSF/AuC for any x.

• The target mobile number is not activated by
a different USIM, i.e., there is no record like
(x, #mob) in AUSF/AuC for any x.

When both conditions are met, the MNO activates USIMid

for #mob by inserting the entry (USIMid, #mob) into
AUSF/AuC as well as enabling it in HLR/HSS/UDM, CCMS
and OTA repositories.
Next, the MNO proceeds to compute the payload of the

response transaction by the following actions:
• Selecting a 128-bit random key KB.
• Computing resinfo by symmetric encryption of

(result, R1) with KB.
• Asymmetric encryption of KB by both MNO’s and

subscriber’s public key and putting the results into
K3 and K4, respectively.

• Generating ressign as digital signature on (resinfo,
K3, K4) by MNO’s private key.

At the end, the MNO registers the 4-tuple (resinfo, K3,
K4, ressign) as the response transaction into the blockchain. It
is worth mentioning that regardless of the processing result,
the response transaction is always registered by the MNO.

4) REDIRECTING THE RESPONSE TO THE SUBSCRIBER

In this step, the corresponding function checks whether
the message sender is the owner of the smart contract.
It implies that only the MNO is allowed to register a
response transaction to the smart contract. Meanwhile, the
flag bRunning is set to false, indicating that the request has
been completely processed.

5) VERIFYING THE RESPONSE BY THE SUBSCRIBER

Upon receiving the response transaction, the subscriber
performs the following actions:

• Verifying ressign by MNO’s public key.
• Decrypting K4 by its private key to retrieve KB.
• Decrypting resinfo with KB to obtain the challenge

response and service result.

C. SMART CONTRACT DESIGN
Algorithm 3 presents our smart contract implementation in
Solidity, a high-level, object-oriented language for creating
smart contracts [36]. There is a pair of data structures,
namely ServReq and ServRes, dedicated to store the request
and response information, respectively. Additionally, there
are five functions within the contract that perform specific
operations of the scheme.
The function RegisterUSIMSNs is responsible for regis-

tering a range of USIM serial numbers between two 128-bit
integers ‘beg’ and ‘end’. It inserts each serial number into a
map data structure of type Boolean called RegisteredUSIMs.
This function is called by MNO during the initialization
phase.
The next two functions, ProcessRequest and

ProcessResponse, are responsible for handling subscriber’s
request and MNO’s response, respectively, in accordance
with phase 2 and 4 of the scheme. Complying with Solidity
syntax, the notations have a slight difference compared to
those used in algorithms. For example, a request identifier
(reqid) is denoted by req_id.
The former receives the request, including req_id,

req_info, K1, K2 and req_sign as inputs, and checks two
conditions: 1) the registration of the USIM by searching
through the map structure RegisteredUSIMs and 2) the
freshness of request by seeking through reqMap, a map
data structure that holds information of previous requests.
The field bRunning of each ServReq object shows the state
of the request. True means this request is under process,
thereby, waiting for MNO response. Against, false indicates
the request has been completed.
For an incoming request x identified by req_id, if any

request with the same identifier and true bRunning is found

2408 VOLUME 5, 2024

Algorithm 2 MNO’s Response
Input: reqid, reqinfo, K1, K2, reqsign, ether

1: function DoService(ServiceType, IDU , USIMid, #mob)
2: if (The owner of #mob is not IDU) then
3: return ERR-MOB-NUMBER-IS-NOT-BELONG-

TO-USER
4: end if
5: if (ServiceType = DEACTIVATE) then
6: Remove the entry (USIMid, #mob) from AUSF/AuC;
7: result ← DEACTIVATION-DONE
8: else if (ServiceType = ACTIVATE) then
9: if (an entry like (x, #mob) exists in AUSF/AuC) then
10: result← ERR-MOB-NUM-ACTIVATED-BY-

ANOTHER-USIM
11: else if (an entry like (USIMid, x) exists in AUSF/AuC)

then
12: result← ERR-USIM-IS-CURRENTLY-ACTIVE
13: else
14: Insert the entry (USIMid, #mob) into AUSF/AuC;
15: result← ACTIVATION-DONE
16: end if
17: end if
18: return result
19: end function
20: (USIMid, ServiceType)← reqid
21: K ← DSKHN (K1)

22: (IDU, CertU, #mob) ← DK (reqinfo)
23: if (CertU is not a valid certificate) then
24: result← ERR-CERT-IS-INVALID
25: else if reqsign is not verified with PKU then
26: result← ERR-SIGN-IS-INVALID
27: else
28: result← DoService(ServiceType, IDU , USIMid, #mob)
29: end if
30: KB← gernerating a random 128-bit key
31: resinfo← EK(result, R1)

32: K3 ← EPKHN (KB)
33: K4 ← EPKU (KB)
34: ressign← signSKHN

(
resinfo, K3 K4

)

35: The MNO registers the transaction (reqid, resinfo,
ressign, K3, K4)

in reqMap, x is detected as repetitious and accordingly is
rejected.
Note that previous requests with false bRunning are

ignored and the incoming request is forwarded to MNO. This
policy is unavoidable, as it allows the subscriber to retry an
unsuccessful request after a certain period of time. In sum-
mary, this mechanism prevents duplication of active requests
for a duration that depends on blockchain network. Since
an active request is completed by registration of response
transaction, the minimum time for accepting a request with
the same req_id is longer than the transaction delay.

Algorithm 3 Solidity Code for Smart Contract Functions
pragma solidity ˆ0.8.7;
contract USIMServingContract
{
address owner;
constructor () public {owner = msg.sender;}
struct ServReq{
bool bRunning;
bytes req_info;
bytes K1, K2;
bytes req_sign;
uint eth_val;

}
struct ServRes{

bytes res_info;
bytes K3, K4;
bytes res_sign;

}
mapping (uint => ServReq) private reqMap;
mapping (uint => ServRes) private resMap;
mapping (uint128 => bool) private RegisteredUSIMs;

function RegisterUSIMSNs (uint128 beg, uint128 end) public
{

require(msg.sender == owner);
for (uint128 j=beg; j < end; j++) {
RegisteredUSIMs [j]= true;

}
}
function ProcessRequest (uint128 req_id, bytes memory
req_info, bytes memory K1, bytes memory K2, bytes
memory req_sign) public payable
{

uint128 USIMid = req_id >> 8;
// reject request with unregistered USIM
if (RegisteredUSIMs[USIMid] && RegisteredUSIMs [USIMid] !=

true)
return “Error: Unregistered USIM”;

// reject request repeated request
if (reqMap[req_id] && reqMap[req_id].bRunning) “Error: Repeated

request”;; reqMap[req_id] = ServReq(true, req_info, K1, K2, req_sign,
msg.value);
}
Function ProcessResponse (uint req_id, byte memory res_info,
bytes memory K3, bytes memory K4, bytes memory
res_sign) public payable{

require(msg.sender == owner);
if (reqMap[req_id])
reqMap[req_id].bRunning = false;

else
return “Error: Request is not found”;

resMap[req_id] = ServRes(result, K3, K4, res_sign);
}
function getRequest(uint req_id) public view returns (ServReq
memory) {
return reqMap[req_id];
}
function getResponse(uint req_id) public view returns (ServRes
memory) {
return resMap[req_id];
}
}

It means that our scheme on Ethereum blockchain, where
the transaction delay is higher than 30 seconds, at least
prevents repeated requests within a 30-second interval. This
policy effectively mitigates reply attacks. If both conditions
are satisfied, a new ServReq object is created and initialized

VOLUME 5, 2024 2409

HOJJATI et al.: BLOCKCHAIN-BASED APPROACH FOR USIM MANAGEMENT IN MOBILE NETWORKS

with the input parameters, with bRunning set to true. Then,
the object is inserted into reqMap using the req_id as key.
Finally, the access fee is received in GAS.
The latter, ProcessResponse, is invoked by the MNO to

register the response transaction. It searches through reqMap
for a ServReq object with the corresponding req_id. If the
target object is not found, an error message is returned and
the transaction is aborted. Otherwise, bRunning is set to false,
a new ServRes object is created using the input parameters,
and added into the resMap.
Importantly, the first line of the ProcessResponse function

ensures that only the owner of the smart contract (the MNO)
is allowed to register a response transaction. This is a security
mechanism which prohibits an attacker from registering a
response transaction, and thus resisting against malicious
MNO.
The last two functions, getReqeust and getResponse, allow

the MNO and subscriber, respectively, to retrieve the payload
of request and response transactions. The MNO invokes the
former at the beginning of phase 3 while the subscriber
calls the latter in phase 5. Both of them are defined as view
functions which implies that they do not modify any data on
the blockchain network. As a result, invoking each of them
does not impose any payment in GAS on the caller.

VI. SECURITY PROOF
In this section, we will discuss the security of our scheme.
First, we will provide a security proof through formal
verification. Secondly, we will consider attacks that are
not covered by formal verification and discuss our security
measures against them.

A. FORMAL VERIFICATION
The message exchanging is modeled by ProVerif [37], a
well-known cryptographic protocol verifier. Although, it is
basically designed for verification of secrecy and authentica-
tion properties, it can also verify additional properties, such
as privacy and traceability.

1) THREAT MODEL AND SECURITY REQUIREMENTS

The security goals of our proposed scheme can be divided
into two parts: authentication of the participants and secrecy
of sensitive data. For the authentication aspect, we aim to
provide mutual authentication between subscribers and the
MNO. For the secrecy aspect, we investigate the following
properties:
• Confidentiality of subscriber’s credentials includ-

ing, temporary and private key, i.e., KA and SKU .
• Confidentiality of MNO’s credentials including key

and secret key, i.e., KB and SKMNO.
• Confidentiality of subscriber’s sensitive data

including his/her social identifier, digital certificate
and mobile number, i.e., IDU , CertU and #mob.

• Confidentiality of the processing result of the
service done either acceptance or rejection of the
request as well as its error code, i.e., result.

The secrecy of IDU , CertU and #mob aims to preserve the
privacy of subscribers. Regarding capability of the attacker,
we can refer to the following features:
• The interface between subscribers and the MNO is

considered as a public channel. It implies that an
attacker can eavesdrop on all messages exchanged
over it.

• An active attacker model is assumed. He/she can
inject new messages into the public channel or can
save messages for future use to act as either the
MNO or a subscriber.

• The attacker can request to run multiple instances
of the protocol to investigate interleaving attacks.

The only limitation of the attacker is the access to
credentials, i.e., he/she has no access to the private key of
either MNO or subscriber.

2) PROTOCOL MODELING

The model has three main parts: declarations, process
macros, and the main process. For the subscriber and the
MNO, we consider the generation of a public and private
key pair. This key pair will be used for both message
encryption and decryption as well as signature generation
and verification.
The declaration part includes four sections: user-defined

types, objects, constructors and events. In the first one,
privateKey, publicKey and SessionKey indicate the private
key, public key and encryption key type, respectively. In
the second part, the first statement declares bcChannel as a
communication channel between subscribers and the MNO.
The concept of a free statement is similar to global scope
in programming languages; that is, free names are globally
known to all processes. The object definition is followed
with an access method denoted by either [public] or [private]
keywords. Each object which is unknown to the attacker
must be declared private, otherwise it is declared public. By
default, the access method is public.
The presence of free keyword along with public access

method in the definition of bcChannel indicates that it is
known by the attacker as well as he/she can eavesdrop any
message exchanged over the channel. It reflects a realistic
assumption about the communication media between MNO
and subscribers provided by the public blockchain since a
desired node can join the blockchain network and acts as a
full node. Each full node has access to transaction data as
well as smart contract functions.
The third portion defines function symbols as constructors

or destructors. A constructor aims to model a particu-
lar primitive of cryptographic protocols. In our scheme,
symEnc, asymEnc, sign and getPK are the constructors,
which respectively model symmetric encryption, public-key
encryption, digital signature and returning the public key of
a secret key. On the other hand, the relationship between
cryptographic primitives is shown by destructors which
manipulate terms formed by constructors. In our scheme,
pkiDec, symDec and checkSign are the destructors which

2410 VOLUME 5, 2024

Algorithm 4 Type, Object and Function Definitions
1: type SessionKey.
2: type publicKey.
3: type privateKey.
4: free bcChannel: channel. (*Public*)
5: free KA: SessionKey [private].
6: free KB: SessionKey [private].
7: free SKU : privateKey [private].
8: free SKMNO: privateKey [private].
9: free mobNum: bitstring [private].
10: free IDU: bitstring [private].
11: free R1: bitstring [private].
12: fun getPK(privateKey): publicKey.
13: fun asymEnc(publicKey, SessionKey): bitstring.
14: reduc forall priv: privateKey, k: SessionKey;

asymDec(priv, asymEnc(getPK(priv), k)) = k.
15: fun symEnc(SessionKey, bitstring): bitstring.
16: reduc forall k: SessionKey, m: bitstring; symDec(k,

symEnc(k, m)) = m.
17: fun Sign(privateKey, bitstring): bitstring.
18: reduc forall priv: privateKey, m:bitstring; check-

Sign(getPK(priv), Sign(priv, m)) = m.
19: fun decode(bitstring): bitstring.
20: event SubscriberRegisterReq (bitstring).
21: event MNORcvSubscriberReq(bitstring).
22: event AcceptSubscriber (bitstring).
23: event MNORegisterRes(bitstring).
24: event SubscriberRcvMNORes(bitstring).

respectively model public-key decryption, symmetric key
decryption and signature verification algorithms. The last
portion defines a set of events described later.
Instead of encoding our scheme in a single main process,

we use sub-processes to declare interactions between partici-
pants. Each process emulates the action of the corresponding
participant to the occurred events. The proposed scheme
has three active participants: the subscriber, MNO, and
smart contract. However, only two macros are defined,
respectively for the subscriber and MNO. In our model,
these processes respectively simulate the behavior of the
subscriber and MNO defined by Alg. 1 and Alg. 2. We do
not model the smart contract as a process macro since it
does not have any credentials and does not perform any
cryptographic operations. Its main operations are limited to
searching through a dynamic map structure and inserting a
new item. As mentioned in the declaration part, we model
the blockchain as the communication channel bcChannel.
This simplifies our model but at the same time causes some
security features, such as resistance to replay attacks, to not
be proven by formal verification.
The subscriber process is shown in Algorithm 5. The

subscriber starts the scheme by encrypting the temporary
key KA using both MNO’s and his/her public key. Then,
he/she puts the result, K1 and K2, along with req_info on the

Algorithm 5 The Subscriber Process
1: let Subscriber(IDU ,USIMid, mobNum: bitstring,
PKMNO:

2: publicKey, SKU :privateKey)=
3: let K1 = asymEnc(PKMNO, KA) in
4: let K2 = asymEnc(getPK(SKU), KA) in
5: let req_info = symEnc(KA, (IDU , mobNum, R1)) in
6: let SigU = Sign(SKU , (USIMid, req_info, K1, K2)) in
7: event SubscriberRegisterReq((USIMid, req_info, K1, K2,
SigU));

8: out (bcChannel, (USIMid, req_info, K1, K2, SigU));
9: in (bcChannel, (res_info: bitstring, SigMNO:

bitstring, K3:
10: bitstring, K4: bitstring));
11: let KeyB = asymDec(SKU , K4) in
12: let response = symDec(KeyB, res_info) in
13: let Dec_R1 = decode(response) in
14: let (=PKMNO, verify_res:bitstring) =

checkSign(PKMNO, SigMNO) in
15: if (verify_res =(res_info, K3, K4) && Dec_R1=R1) then
16: event SubscriberRcvMNORes((USIMid, res_info,

SigMNO, K3, K4)).

interface bcChannel, and waits for MNO’s response. At the
same time, he/she triggers a SubscriberRegisterReq event to
denote reaching a checkpoint in the scheme.
Upon receiving a response from the MNO, the subscriber

decrypts K4 by his/her own private key to recover KeyB
and be able to decrypt res_info. Then, after successful
verification of the signature and challenge response, a
SubscriberRcvMNORes event is triggered by the subscriber.
On the other hand, the MNO process, shown in

Algorithm 6, starts by receiving a request from the sub-
scriber. Next, it triggers a MNOReciveUserReq event.
After decrypting req_info and successful verification of
the subscriber’s signature, it triggers another event of type
AcceptSubscriber. It then computes the response message
by encrypting result into res_info. Finally, it triggers a
MNORegisterRes event and puts res_info along with the key
materials on the bcChannel. Note that MNO process is a
simplified version of Algorithm 2, i.e., ignores non-security
checking such as ownership of mobNUM by IDU .

The main process is the starting point of the verification.
It initializes the scheme by setting up the key materials,
communication channel, and then invoking the participant
processes. As shown in Algorithm 7, it begins by the
keyword process, generates private key for both MNO
and subscriber along with an identifier for the subscriber.
The corresponding public keys are derived by invoking
getPK constructor and the results are revealed on the public
interface bcChannel, ensuring that the public keys are acces-
sible to any attacker. Then, it instantiates multiple copies
of the subscriber and MNO macros with the corresponding
parameters serving as multiple sessions for each principal.

VOLUME 5, 2024 2411

HOJJATI et al.: BLOCKCHAIN-BASED APPROACH FOR USIM MANAGEMENT IN MOBILE NETWORKS

Algorithm 6 The MNO Process
1: let MNO(SKMNO: privateKey, PKU : publicKey)=
2: in (bcChannel, (USIM: bitstring, req_info: bitstring,
K1: bitstring, K2: bitstring, SigU: bitstring));

3: eventMNORcvSubscriberReq ((USIM, req_info, K1, K2,
SigU));

4: let KeyA = asymDec(SKMNO, K1) in
5: let (=PKU , verify_req:bitstring) = checkSign(PKU ,
SigU) in

6: if (verify_req=(USIM, req_info, K1, K2))
7: then
8: event AcceptSubscriber(K1);
9: let req_info_dec = symDec(KeyA, req_info) in
10: let Dec_mobNum = decode(req_info_dec) in
11: let Dec_R1 = decode(req_info_dec) in
12: new KeyB: SessionKey;
13: new result: bitstring;
14: let res_info = symEnc(KeyB, (result, Dec_R1)) in
15: let K3 = asymEnc(getPK(SKMNO), KeyB) in
16: let K4 = asymEnc(PKU , KeyB) in
17: let SigMNO = Sign(SKMNO, (res_info, K3, K4)) in
18: event MNORegisterRes((res_info, SigMNO, K3, K4));
19: out(bcChannel, (res_info, SigMNO, K3, K4)).

This provides the benefits of multiple concurrent sessions
for the attacker to investigate the possibility of interleaving
attacks.

3) SECURITY PROPERTIES

ProVerif attempts to prove that a state which violates a
security property is unreachable. A security property is
defined by the statement “query attacker(M)” to test the
secrecy of term M in the model. Note that M is a ground
term, which is likely private and not initially known to the
attacker. We consider the following security properties:

• Attack on secrecy of KeyA
• Attack on secrecy of KeyB
• Attack on secrecy of IDU
• Attack on secrecy of mobNum
• Attack on secrecy of SKU
• Attack on secrecy of SKMNO
• Attack on secrecy of R1

Further, authentication can be represented by correspond-
ing assertions used to capture relationships between events.
This is expressed in the form of “if an event e1 has been
executed, then event e0 has been previously executed”.
Annotating the process with events marks important stages
reached by the scheme while not affecting other behavior.
In our scheme, we define a set of four event pairs:

1. (MNORcvSubscriberReq, SubscriberRegisterReq)
2. (AcceptSubscriber, MNORcvSubscriberReq)
3. (MNORegisterRes, AcceptSubscriber)
4. (SubscriberRcvMNORes, MNORegisterRes)

Algorithm 7 Security Properties and the Main Process
1: query attacker (KA).
2: query attacker (KB).
3: query attacker (IDU).
4: query attacker (mobNum).
5: query attacker (SKU).
6: query attacker (SKMNO).
7: query attacker (R1).
8: query x:bitstring; event(MNORcvSubscriberReq (x))
==> event(SubscriberRegisterReq (x)).

9: query x:bitstring; event(AcceptSubscriber (x)) ==>
event(MNORcvSubscriberReq (x)).

10: query x:bitstring; event(MNORegisterRes (x)) ==>
event(AcceptSubscriber (x)).

11: query x:bitstring; event(SubscriberRcvMNORes (x))
==> event (MNORegisterRes (x)).

12: process
13: new USIM: bitstring;
14: let PKMNO = getPK(SKMNO) in out (bcChannel,

PKMNO);
15: let PKU = getPK(SKU) in out (bcChannel, PKU);
16: (!Subscriber(IDU , USIM, mobNum, PKMNO, SKU) |

!MNO(SKMNO, PKU))

The first pair is dedicated to sending a request by the
subscriber and receiving it by the MNO. These events are
bound together by an inj-event statement in the main process.
It means that before the MNORcvSubscriberReq event, the
SubscriberRegisterReq event must be triggered. This binding
imposes an order on the sequence of messages exchanged
by the subscriber and the MNO.
In a similar way, the rest of pairs are bound together

with a query statement. ProVerif can check whether a given
binding is satisfied during the execution of the scheme.
Thus, reaching the state of the scheme to the point of
SubscriberRcvMNORes shows that the required messages are
exchanged by the participants. Further, the authentication
is held if the last message is successfully verified by the
subscriber.

4) VERIFICATION RESULTS

The verification results of the secrecy properties of the
proposed scheme are summarized as follows:
• RESULT not attacker(KeyA) is true.
• RESULT not attacker(KeyB) is true.
• RESULT not attacker(IDU) is true.
• RESULT not attacker(mobNum) is true.
• RESULT not attacker(SKU) is true.
• RESULT not attacker(SKMNO) is true.
• RESULT not attacker(R1) is true.
The results show that the secrecy of the corresponding

terms is preserved by the scheme and there is no information
leakage for the related sensitive data. Further, for the
authentication properties, the verification results are as
follows:

2412 VOLUME 5, 2024

• RESULT event(MNORcvSubscriberReq (x)) ==>
event(SubscriberRegisterReq (x)) is false.

• RESULT event(AcceptSubscriber (x)) ==>
event(MNORcvSubscriberReq (x)) is true.

• RESULT event(MNORegisterRes (x)) ==>
event(AcceptSubscriber (x)) is true.

• RESULT event(SubscriberRcvMNORes (x)) ==>
event(MNORegisterRes (x)) is true.

The results indicate that all of the authentication proper-
ties, except the first one, are satisfied by the scheme. Tracing
the verification result for the first message shows that any
attacker can act as a subscriber by generating a correct
message for the first phase of the scheme. This is originated
from the replay attack, since the attacker can eavesdrop on
the blockchain interface and collect subscriber requests sent
to the MNO. The attacker can pick up one of these requests
and send it to the intended MNO. Actually, in our scheme,
the smart contract can verify the freshness of request and
thereby preventing reply attack. However, since we did not
model the smart contract as an active player, the security
property related to replay attacks is not satisfied. This causes
the verification to generate a false alarm which we ignore it.

B. OTHER SECURITY ISSUES
1) FORGERY AND IMPERSONATION ATTACKS

Each approach to security proof, such as formal verification,
has its own shortcomings. The extent of the security proof
is mainly dependent on the assumptions about threat and
adversarial model. In our formal verification, we assumed
an active attacker who has access to the public channel in
order to read a message, inject a new message, or change a
given message. At the same time, they do not have access to
any credentials (e.g., private key of the user) and therefore
act as an outside attacker.
However, a significant portion of threats are related to

insider attacks, such as forgery and impersonation. In this
case, a legitimate user who has enough credentials for
authentication triggers a successful authentication, pretends
to be a different user, and carries out an attack against
him/her. Note that impersonation can also be caused by
identity theft or session hijacking, which are the result of bad
implementation and are not the subject of our discussion. The
defense against impersonation is mainly done by adopting
rigorous access control to a given object or data. It is almost
infeasible to include access control in the formal model, as
well as defining security properties for impersonation attacks.
In our scheme, the conditions checked in the function

DoService provide resistance to impersonation and forgery
attacks. The condition in line 2 implies that #mob is
owned by the subscriber who sends the request, thus
prohibiting USIM activation/deactivation for a different user.
Furthermore, the condition in line 11 states that the current
USIMid has not previously been activated for a different
#mob, i.e., preventing deactivation of an in-use USIM that
is bound to a different subscriber.

2) DOS ATTACKS

Our scheme is resistant against DoS attacks since the MNO
only receives incoming requests via the smart contract, not
from subscriber. Actually, the need for direct communication
between subscriber and MNO is eliminated. Since the smart
contract is implemented in a distributed manner, there is no
potential for a single point of failure. This mitigates the risk
of DoS attacks on the MNO module. However, for a higher
level of reliability, a replication mechanism for the MNO
module can be taken into account.
Furthermore, the subscriber acts as a simple Registrar

Module (RM) that performs a primary check for information
provided by the user and finally registers a transaction
into the blockchain. There is no need to connect to a
centralized database for this checking and registering since
the blockchain is used as a distributed ledger to save the
request/response data, and the final checking is left to the
MNO. The only issue that must be considered in the client
program is that it must invoke the valid address of the MNO’s
smart contract. For this purpose, it is enough to implement
the RM as a simple Web application secured by the MNO
certificate. To avoid a single point of failure, the RM itself
can be replicated regionally, i.e., based on the location of
the user, its IP address is connected to a different RM.

VII. EVALUATIONS
A. EXPERIMENTAL PARAMETERS
Registering a request, by invoking SetRequest, involves
performing a single symmetric encryption, two asymmetric
encryptions, and a digital signature generation. We choose
AES for symmetric encryption and elliptic curve algorithm
for both asymmetric encryption and digital signature. We
offer two security modes to accommodate different security
levels. In mode 1, we use AES-128 and SECP256R1
for symmetric encryption and asymmetric encryption/digital
signature respectively while in mode 2, AES-256 and
SECP521R1 are used. It should be noted that SECP256R1
and SECP521R1 are elliptic curves recommended by NIST
for 256-bit and 521-bit primes [38].

While mode 2 provides a higher level of security, it also
results in larger ciphertext and signature output, leading to
higher execution and transaction costs compared to mode 1.
GAS, a metric for energy consumption in processing and
validating transactions on the Ethereum blockchain, is used
to allocate resources on the Ethereum virtual machine.
Higher GAS means more work to execute, and the end user
registering the transaction pays for it. Table 2 summarizes
the experimental parameters which are set in our evaluations.
The request message, in addition to the security level, is

also dependent on the length of input parameters. According
to ITU standard [39], the identifier of the smart card (ICCID)
is encoded as a 10-octet string. Thus, we define USIMid
as an array of 10 bytes. Similarly, ITU recommendation
E.164 limits MSISDN to a maximum of 15 digits [40],
so we consider #mob as an array of 8 bytes. For IDU as

VOLUME 5, 2024 2413

HOJJATI et al.: BLOCKCHAIN-BASED APPROACH FOR USIM MANAGEMENT IN MOBILE NETWORKS

TABLE 2. Experimental parameters.

Parameter Length
in byte Description

IDU 8 16 decimal digits
USIMid 10 ICCID is 10-octet string
#mob 8 MSISDN is 15 digits.
Cert 16 A link of 24 base-64 chars

KA, KB 16 Security mode 1 (128 bit)
KA, KB 32 Security mode 2 (256 bit)

K1, K2, K3, K4 64 Security mode 1 (2×256 bit)
K1, K2, K3, K4 132 Security mode 2 (2×521 bit)
reqsign, ressign 64 Security mode 1 (2×256 bit)
reqsign, ressign 132 Security mode 2 (2×521 bit)

TABLE 3. Running time of basic cryptographic operations.

Operation Curve Time on
Laptop

Time on
Mobile

ECC encryption P256R1 88 ms 154 ms
ECC decryption P256R1 43 ms 67 ms
ECC sign P256R1 0.05 ms 0.13 ms
ECC verification P256R1 0.01 ms 0.23 ms

national identifier number, we consider 16 decimal digits or
equivalently 8 bytes.
To avoid high execution and transaction costs in the

ProcessRequest function, we suggest storing the certificate
file in a public cloud storage like Google Drive and using the
URI in reqinfo. This approach allows us to allocate 16 bytes
for the certificate link, which is equivalent a string of 24
base-64 characters.

B. PROCESSING TIME ANALYSIS
However, computing request message, needs some calcu-
lations among them 2 ECC encryption and 1 ECDSA
are significant. Further, for generating response payload at
the server, in addition to these operations, a single ECC
decryption and verification are required. We measured the
time of each operation on a pair of laptop and mobile
platform. The former is composed of Windows 10 system
(64 bits) with an Intel Core i7-6500U CPU@2.50GHz with
8GB of RAM while the latter is composed of Android 9.0
with Qualcomm SDM730 Kryo 470 CPU@2.2 GHz with
the same amount of RAM. The results are shown in Table 3.
It is worth noting that the measurement is done by a code
written by Python language.
We can see that the processing time for generation of

request payload, denoting by TRequest, is approximately
equal to 2TENC+TSIGN in which for a client running on
laptop yields 2×88+0.05 ≈ 176 ms while for a client on
mobile platform becomes 2×154+0.13 ≈ 308 ms. Against,
the time for generation of response payload, denoting
by TResponse, is about TDEC+TVERIFY+2TENC+TSIGN =
43+0.01+2×88+0.05 ≈ 219 ms for a server running on
laptop platform. For a platform with a lower processing
and memory resource than the above assumption, the
processing delay can increase. However, we can state the
total processing time at both client and server side is less
than one second.

C. BLOCKCHAIN TRANSACTION ANALYSIS
Table 4 shows the results of our smart contract imple-
mentation on the Ethereum blockchain. The cost of each
function depends on both the message size and the number
of instructions executed. We can see that the cost paid for
security mode 2 is approximately 66% higher than mode 1.
Note that GAS price is not fixed and has a dynamic

mechanism to compute the total fee. The Ethereum GAS
tracker [41] allows us to monitor GAS price online. The
GAS price is periodically updated in 12-second time slots
upon generation of a new block. GAS price is expressed in
Gwei unit which is equivalent to 10−9 ETHER (Ethereum
cryptocurrency). Tracking the GAS fee over a longer period
shows that it fluctuates within a wider range (15 to 37
Gwei). For a lower GAS fee, we can switch to another
blockchains such as Binance Smart Chain (BSC) [7]. BSC
was initially based on the Ethereum network but now has
its own blockchain with the native currency Binance coin
(BNB). Following BNB smart chain tracker [42], we can see
that the GAS price for BNB Smart Chain is approximately
3 to 5 Gwei, which is lower than Ethereum GAS by a
factor of about 5. Moreover, the Binance Coin price versus
ETHER is approximately 0.13. This means that the final
GAS cost in Ethereum is approximately 38 times more
expensive than in BSC. Furthermore, the BSC transaction
delay is significantly lower than the Ethereum delay. The
difference between Ethereum and BSC primarily stems from
the degree of transparency and accuracy. Ethereum provides
higher decentralization than BSC but at a significantly higher
cost and latency compared to BSC.

D. PUTTING IT ALL TOGETHER
The overall latency of the service from the user’s view
consists of the time required for encryption and sending
the request message, registering the request transaction,
decrypting the request by the MNO, creating the response
message, and registering the response transaction by the data
owner, respectively. Thus, for total delay, we can write:

T = 2TTrans + TRequest + TResponse (1)

According to previous section, when running request and
response generation on the laptop platform, they will take
176 and 219 milliseconds, respectively. Thus,

T = 2TTrans + 0.395 seconds (2)

The delay for registering a transaction is mainly dependent
on Tip, known as a priority fee, which is an additional fee
paid by a user to complete the transaction faster. Ethereum
considers three priorities: low, average and high which
currently correspond to transaction delay equal to 180, 180
and 30 seconds, respectively [41]. It is worth mentioning
that Tip also has a direct impact on GAS prices in Gwei.
Faster transactions result in more Gwei being paid for each
GAS unit. Therefore, if anybody wants to ensure his/her
transaction is processed quickly, they may need to increase
the amount of Gwei they are willing to pay for GAS.

2414 VOLUME 5, 2024

TABLE 4. Execution and transaction GAS.

Trans.
delay

Total fee
in ETHERGweiTrans.

delay
Total fee
in BNBGweiTransaction

Cost
Execution

Cost

30~180
seconds

2.98×10-229,871,440

5~60
seconds

1.61×10-31,609,542279,091 257,423 32-RegisterUSIMSNs
3.52×10-235,166,5921.90×10-31,895412329,304 302,500 2511ProcessRequest 5.77×10-257,732,5763.11×10-33,105816532,802 502,470 4552
3.04×10-230,417,3121.64×10-31,640,844286,710 260,238 2351ProcessResponse 5.30×10-252,983,1841.85×10-32,851,242490,207 460,207 4092

This can be adjusted in wallet settings or through
transaction settings on some platforms. The amount of Gwei
paid for GAS unit will directly affect the speed and priority
of a transaction being processed on the blockchain. It is
important for users to consider this factor when sending
transactions, especially during times of high network traffic
when GAS prices may be higher.
Similarly, BSC defines three priorities known as standard,

fast and rapid which currently have a delay equal to 30∼60,
10∼30 and 5∼10 seconds, respectively [42]. Thus, the
overall delay fluctuates between 60.5 and 360.5 in Ethereum
while it varies between 10.5 and 120.5 in BSC based on the
priority chosen by the end user at the time of registering
the transactionA major challenge in the implementation
process is how users or the MNO inform about registering a
transaction. In the simplest scenario, the user and the MNO
can continuously scan the new blocks in the blockchain
and search for the intended request or response message.
However, this is not an efficient solution. A more intelligent
solution could be deployed by calling a Web service and
using a one-time email. The former is suitable for the
MNO side while the latter is suitable for deployment on
user side. The Web service could be called at the end of
the smart contract function ProcessRequest, after successful
verification of the request. The Web service is not a good
solution on the user side since the user usually does not have
a fixed address and at the same time it reveals information
about the user, which violates user anonymity. Therefore, we
propose that each user sends a one-time email address in their
request for the smart contract function to be able to redirect
the MNO’s response to the end user via email service.

VIII. CONCLUSION
In this article, we presented a scheme for automatic USIM
management based on blockchain. The scheme allows
subscribers to communicate directly with the MNO by
registering a transaction on the blockchain. The use of smart
contracts enables the scheme to validate the request in terms
of freshness and USIM validation, providing transparency,
non-repudiation of service, and preventing a single point of
failure. Additionally, the security of the scheme has been
proven through formal verification, ensuring the secrecy of
subscriber credentials and sensitive data, as well as mutual
authentication of participants. Moreover, the smart contract
was executed on both Ethereum and Binance smart chain,

and its execution and transaction costs in GAS fee were
measured.
In spite the bandwidth problem of blockchain as well as

computational efficiency of smart contracts, our scheme is
practical since:

• The payload of transaction is relatively low. Precisely, it
is less than 455 and 409 bytes, respectively for request
and response messages.

• The smart contract functions do not contain high-
load instructions, limited to primitive checking and the
insertion of request/response into a map object.

• The execution and transaction GAS are deemed accept-
able in most cases.

The proposed scheme demonstrates that a public
blockchain platform is capable of replacing certain compo-
nents of the current CRM system, offering improved service
and enhanced security. The use of smart contracts is essential
in avoiding a centralized solution that would introduce a
single point of failure.
Further, the cost of system maintenance is always a major

challenge in legacy solutions, whereas the cost of creating a
smart contract is only paid once during the system’s lifetime
and currently has no time limit. Therefore, schemes like
ours, which follow a pay-per-service model, distribute the
cost over time and among all subscribers.
Finally, it is possible to present future work that builds upon

or extends the current research. That is the proposed scheme
has the potential to be integrated with other services such as
the 5G authentication and key agreement protocol discussed
in [28]. This integration would provide a framework for a
wide range of services in 5G and beyond networks.

REFERENCES
[1] “Specification of the subscriber identity module-mobile equipment

(SIM-ME) interface; (Release 1),” 3GPP, Sophia Antipolis, France,
Rep. 11.11, 2017. [Online]. Available: http://www.3gpp.org/ftp/specs/
html-info/1111.htm

[2] “Smart cards; UICC-Terminal interface; Physical and logical char-
acteristics, (Release 15), Version 15.0.0,” 3GPP, Sophia Antipolis,
France, Rep. ETSI TS 102 221, 2002.

[3] “Characteristics of the Universal Subscriber Identity Module (USIM)
application; (Release 15), Version 15.1.0,” 3GPP, Sophia Antipolis,
France, Rep. TS 31.102, 2018.

[4] J. Cadonau, D. Jayasinghe, and S. Cobourne, “OTA and secure
SIM lifecycle management,” in Smart Cards, Tokens, Security and
Applications. Boston, MA, USA: Springer, 2017, pp. 283–304.

[5] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,”
Decentralized Bus. Rev., 2008, pp. 1–9.

VOLUME 5, 2024 2415

HOJJATI et al.: BLOCKCHAIN-BASED APPROACH FOR USIM MANAGEMENT IN MOBILE NETWORKS

[6] V. Buterin, “A next-generation smart contract and decentralized
application platform,” Etherium, Zug, Switzerland, White Paper, 2017.

[7] “Binance chain.” Binance. Accessed: Apr. 10, 2024. [Online].
Available: https://www.binance.com

[8] A. S. Omar and O. Bashir, “Identity management in IoT networks
using blockchain and smart contracts,” in Proc. IEEE Int. Conf.
Internet Things (iThings) IEEE Green Comput. Commun. (GreenCom)
IEEE Cyber, Phys. Soc. Comput. (CPSCom) IEEE Smart Data
(SmartData), 2018. pp. 994–1000.

[9] D. Wang, H. Wang, and Y. Fu, “Blockchain-based IoT device
identification and management in 5G smart grid,” EURASIP J. Wireless
Commun. Netw., vol. 1, pp. 125–144, May 2021.

[10] S. S. Arumugam, “IOT enabled smart logistics using smart contracts,”
in Proc. 8th Int. Conf. Logist., Informat. Service Sci. (LISS), Toronto,
ON, Canada, 2018, pp. 1–6.

[11] A. Suliman, Z. Husain, M. Abououf, M. Alblooshi, and K. Salah,
“Monetization of IoT data using smart contracts,” Inst. Eng. Technol.
Netw., vol. 8, no. 1, pp. 32–37, 2019.

[12] Y. Zuo and Z. Qi, “A blockchain-based IoT framework for
oil field remote monitoring and control.,” IEEE Access, vol. 10,
pp. 2497–2514, 2021.

[13] F. M. Benčić, P. Skočir, and L. P. Žarko, “DL-Tags: DLT and smart
tags for decentralized, privacy-preserving, and verifiable supply chain
management.,” IEEE Access, vol. 7, pp. 46198–46209, 2019.

[14] Q. He, Y. Xu, Z. Liu, J. He, Y. Sun, and R. Zhang, “A
privacy-preserving Internet of Things device management scheme
based on blockchain,” Int. J. Distrib., vol. 14, no. 11, 2018,
Art. no. 1550147718808750.

[15] J. Feng, L. T. Yang, R. Zhang, and B. S. Gavuna, “Privacy-preserving
tucker train decomposition over blockchain-based encrypted industrial
IoT data,” IEEE Trans. Ind. Informat., vol. 17, no. 7, pp. 4904–4913,
Jul. 2021.

[16] J. Wickstrom, M. Westerlund, and G. O. Pulkkis, “Smart contract
based distributed IoT security: A protocol for autonomous device
management,” in Proc. IEEE/ACM 21st Int. Symp. Cluster, Cloud
Internet Comput. (CCGrid), 2021, pp. 776–781.

[17] X. Yao, X. Zhao, R. He, H. Nie, H. Nie, and S. Sun,
“A medical device management system using smart contract on
blockchain,” in Proc. 9th Int. Conf. Behav. Soc. Comput. (BESC), 2022,
pp. 1–5.

[18] T. A. Alghamdi, I. Ali, N. Javaid, and M. Shafiq, “Secure service
provisioning scheme for lightweight IoT devices with a fair payment
system and an incentive mechanism based on blockchain,” IEEE
Access, vol. 8, pp. 1048–1061, 2019.

[19] M. Hajiabbasi, E. Akhtarkavan, and B. Majidi, “Cyber-physical cus-
tomer management for Internet of Robotic Things-enabled banking,”
IEEE Access, vol. 11, pp. 34062–34079., 2023.

[20] H. Aval. “Mobile communications company of Iran (MCI).” Accessed:
Apr. 10, 2024. [Online]. Available: https://mci.ir/en

[21] (MyProximus, Brussels, Belgium). Identify Your Prepaid Card.
Accessed: Jan. 1, 2024. [Online]. Available: https://www.proximus.
be/en/id_cr_prepidentif/personal/mobile/prepaid-cards/identification-
of-your-prepaid-card.html

[22] (Eur. Comm., Brussels, Belgium). eiDAS Regulation. Accessed:
Jan. 2, 2024. [Online]. Available: https://digital-strategy.ec.europa.eu/
en/policies/eidas-regulation

[23] “e-Identity of Estonia.” Accessed: Apr. 10, 2024. [Online]. Available:
https://e-estonia.com/solutions/e-identity/id-card/

[24] N. Chalaemwongwan and W. Kurutach, “A practical national digital
id framework on blockchain (NIDBC),” in Proc. 15th Int. Conf.
Elect. Eng./Electron., Comput., Telecommun. Inf. Technol., 2018,
pp. 497–500.

[25] Z. Zhang, Y. Sun, P. Huang, and C. Wang, “A blockchain and multi
factor fusion based electronic identity registration and verification
system,” in Proc. 3rd Int. Conf. Comput. Sci. Manag. Technol.
(ICCSMT), Shanghai, China, 2022, pp. 431–435.

[26] L. Argento, F. Buccafurri, A. Furfaro, S. Graziano, G. A. G. Lax, and
D. Saccà, “Id-service: A blockchain-based platform to support digital-
identity-aware service accountability,” Appl. Sci., vol. 11, no. 1,
p. 165, 2022.

[27] D. C. Nguyen, P. N. Pathirana, M. Ding, and A. Seneviratne,
“Blockchain for 5G and beyond networks: A state of the art survey,”
J. Netw. Comput. Appl., vol. 166, Sep. 2020, Art. no. 102693.

[28] M. Hojjati, A. Shafieinejad, and H. Yanikomeroglu, “A blockchain-
based authentication and key agreement (AKA) protocol for 5G
networks,” IEEE Access, vol. 8, pp. 216461–216476, 2020.

[29] M. A. Rahman, M. M. Rashid, M. S. Hossain, E. Hassanain,
M. F. Alhamid, and M. Guizani, “Blockchain and IoT-based cognitive
edge framework for sharing economy services in a smart city,” IEEE
Access, vol. 7, pp. 18611–18621, 2019.

[30] S. Guo, X. Hu, S. Guo, X. Qiu, and F. Qi, “Blockchain meets edge
computing: A distributed and trusted authentication system,” IEEE
Trans. Ind. Informat., vol. 16, no. 3, pp. 1972–1983, Mar. 2020.

[31] M. Ma, G. Shi, and F. Li, “Privacy-oriented blockchain-based
distributed key management architecture for hierarchical access control
in the IoT scenario,” IEEE Access, vol. 7, pp. 34045–34059, 2019.

[32] J. Wang, L. Wu, K. K. R. Choo, and D. He, “Blockchain-based
anonymous authentication with key management for smart grid edge
computing infrastructure,” IEEE Trans. Ind. Informat., vol. 16, no. 3,
pp. 1984–1992, Mar. 2020.

[33] M. Li, L. Zhu, and X. Lin, “Efficient and privacy-preserving
carpooling using blockchain-assisted vehicular fog computing,” IEEE
Internet Things J., vol. 6, no. 3, pp. 4573–4584, Jun. 2019.

[34] G. A. F. Rebello, I. D. Alvarenga, I. J. Sanz, and O. C. M. Duarte,
“BSec-NFVO: A blockchain-based security for network function
virtualization orchestration,” in Proc. IEEE Int. Conf. Commun. (ICC),
2019, pp. 1–6.

[35] N. Szabo, “Formalizing and securing relationships on public
networks,” First Monday, vol. 2, no. 9, 1997. [Online]. Available:
https://firstmonday.org/ojs/index.php/fm/article/view/548

[36] C. Dannen, Introducing Ethereum and Solidity, vol. 1. Berkeley, CA,
USA: Apress, 2017.

[37] B. Blanche, M. Abadi, and C. Fournet, “Automated verification of
selected equivalences for security protocols,” J. Log. Algebr. Program,
vol. 75, no. 1, pp. 3–51, 2008.

[38] “Elliptic curve cryptography subject public key information,” Internet
Eng. Task Force, RFC 5480, Mar. 2009, Accessed: Dec. 2022.
[Online]. Available: https://www.ietf.org/rfc/rfc5480.txt

[39] “Key establishment between a Universal Integrated Circuit Card
(UICC) and a terminal; (Release 7), Version 7.5.0,” 3GPP, Sophia
Antipolis, France, Rep. TS 33.110, 2008.

[40] The International Public Telecommunication Numbering Plan, ITU-
Rec. E. 164, Int. Telecommun. Union, Geneva, Switzerland, 2011.

[41] “Ethereum gas tracker.” Etherscan. 2024. [Online]. Available:
https://etherscan.io/gastracker

[42] “BNB smart chain gas tracker.” BscScan. 2024. [Online]. Available:
https://bscscan.com/gastracker

[43] B. Lee and J.-H. Lee, “Blockchain-based secure firmware update
for embedded devices in an Internet of Things environment,” J.
Supercomput., vol. 73, pp. 1152–1167, Mar. 2017.

[44] A. Yohan and N.-W. Lo, “An over-the-blockchain firmware update
framework for IoT devices,” in Proc. IEEE Conf. Depend. Secure
Comput. (DSC), 2018, pp. 1–8.

[45] S. Choi and J.-H. Lee, “Blockchain-based distributed firmware update
architecture for IoT devices,” IEEE Access, vol. 8, pp. 37518–37525,
2020.

[46] M. Son and H. Kim, “Blockchain-based secure firmware management
system in IoT environment,” in Proc. 21st Int. Conf. Adv. Commun.
Technol. (ICACT), 2019, pp. 142–146.

MAEDE HOJJATI was born in Tehran, Iran, in
1993. She received the B.S. degree in com-
puter engineering from Arak University in 2015,
and M.Sc. degree in computer engineering from
Tarbiat Modares University, Tehran, Iran, in
2020. Since 2019, she is a Researcher with the
Security Evaluation Laboratory, Tarbiat Modares
University. She also works as a penetration testing
professional. Her research area includes network
security, 5G networks, and blockchain. Her current
interests include security and privacy protocols for
IoT, blockchain, and 5G security.

2416 VOLUME 5, 2024

ARIAN ARABNOURI was born in Tehran, Iran, in
1990. He received the B.S. degree in computer
engineering from Azad Islamic University in 2015,
and the M.Sc. degree in computer engineering
from Guilan University, Guilan, Iran, in 2020. He
is currently pursuing the Ph.D. degree with Tarbiat
Modares University. His research area includes
formal verification, searchable encryption, 5G
networks, and blockchain.

ALIREZA SHAFIEINEJAD received the B.S. degree
in computer engineering from the Sharif
University of Technology, Tehran, Iran, in 1999,
and the M.Sc. and Ph.D. degrees in electrical engi-
neering from the Isfahan University of Technology,
Isfahan, Iran, in 2002 and 2013, respectively. He
is an Assistant Professor with the Department
of Electrical and Computer Engineering, Tarbiat
Modares University, Tehran, where he has been
an Assistant Professor since 2015. At Tarbiat
Modares University, he leads research in network

security and penetration test in Security Evaluation Laboratory. His research
interests are in the area of wireless network coding, network security, and
design and analysis of cryptography algorithms.

HALIM YANIKOMEROGLU (Fellow, IEEE)
received the B.Sc. degree in electrical and
electronics engineering from the Middle East
Technical University, Ankara, Turkey, in 1990,
and the M.A.Sc. degree in electrical engineering
and the Ph.D. degree in electrical and computer
engineering from the University of Toronto,
Canada, in 1992 and 1998, respectively. Since
1998, he has been with the Department of
Systems and Computer Engineering, Carleton
University, Ottawa, Canada, where he is currently

a Full Professor. His research interests cover many aspects of wireless
communications and networks, with a special emphasis on non-terrestrial
networks in the recent years. He has given 110+ invited seminars, keynotes,
panel talks, and tutorials in the last five years. He has supervised or hosted
over 150 postgraduate researchers in his lab at Carleton. His extensive
collaborative research with industry resulted in 39 granted patents. He
served as the general chair and the technical program chair of several IEEE
conferences. He has also served in the editorial boards of various IEEE
periodicals. He received several awards for his research, teaching, and
service, including the IEEE ComSoc Fred W. Ellersick Prize in 2021, the
IEEE VTS Stuart Meyer Memorial Award in 2020, and the IEEE ComSoc
Wireless Communications TC Recognition Award in 2018. He received
Best Paper Awards at IEEE Competition on Non-Terrestrial Networks for
B5G and 6G in 2022 (grand prize), IEEE ICC 2021, and IEEE WISEE
2021 and 2022. He is currently serving as the Chair of the Steering
Committee of IEEE’s flagship wireless event, Wireless Communications
and Networking Conference. He is also a member of the IEEE ComSoc
Governance Council, IEEE ComSoc GIMS, IEEE ComSoc Conference
Council, and IEEE PIMRC Steering Committee. He is a Distinguished
Speaker for the IEEE Communications Society and the IEEE Vehicular
Technology Society, and an Expert Panelist of the Council of Canadian
Academies (CCA|CAC). He is a Fellow of the Engineering Institute of
Canada and the Canadian Academy of Engineering.

VOLUME 5, 2024 2417

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Helvetica-Condensed-Bold
 /Helvetica-LightOblique
 /HelveticaNeue-Bold
 /HelveticaNeue-BoldItalic
 /HelveticaNeue-Condensed
 /HelveticaNeue-CondensedObl
 /HelveticaNeue-Italic
 /HelveticaNeueLightcon-LightCond
 /HelveticaNeue-MediumCond
 /HelveticaNeue-MediumCondObl
 /HelveticaNeue-Roman
 /HelveticaNeue-ThinCond
 /Helvetica-Oblique
 /HelvetisADF-Bold
 /HelvetisADF-BoldItalic
 /HelvetisADFCd-Bold
 /HelvetisADFCd-BoldItalic
 /HelvetisADFCd-Italic
 /HelvetisADFCd-Regular
 /HelvetisADFEx-Bold
 /HelvetisADFEx-BoldItalic
 /HelvetisADFEx-Italic
 /HelvetisADFEx-Regular
 /HelvetisADF-Italic
 /HelvetisADF-Regular
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

