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ABSTRACT In the era of fifth-generation (5G) cellular networks and beyond, network sharing has
emerged as a promising approach to address the escalating demand for spectrum and infrastructure
resources. Intelligent Neutral Host (INH) is an advanced network-sharing method facilitated by Open Radio
Access Network (O-RAN) capabilities. This paper addresses the challenge of Radio Resource Management
(RRM) in a multi-operator, multi-slice scenario. We propose an algorithm based on Q-learning and deep
Q-learning, particularly concerning different Physical Resource Block (PRB) types to cater to diverse
operator requirements. Implemented as an xApp on the Colosseum platform, our algorithm introduces
a dynamic resource allocation strategy that adheres to Service Level Agreement (SLA) constraints and
optimizes real-time Key Performance metrics (KPMs), including throughput, buffer occupancy, and PRB
utilization. We assess the performance and efficacy of our algorithm in a complex traffic scenario to
demonstrate how it effectively allocates resources among operators’ slices to satisfy their respective
SLA while ensuring optimal resource utilization. The experimental results show that our proposed
algorithm can efficiently allocate resources to individual slices while satisfying the SLA. Compared to
traditional algorithms, our approach significantly minimizes SLA violations, reducing them to 2.5% for
enhanced Mobile Broadband (eMBB) slices and eliminating them entirely for Ultra-Reliable Low-Latency
Communications (URLLC) slices.

INDEX TERMS Intelligent neutral host, multi-operator core network, reinforcement learning, deep
Q-learning, Q-learning, service level agreement, radio resource management.

I. INTRODUCTION

THE EMERGENCE of fifth-generation (5G) technology
marks a significant leap in wireless communications.

Characterized by high data speeds, extremely low latency,
and massive device connectivity, 5G is not merely an
evolution of its predecessors but a revolutionary framework
that promises to support a wide array of applications. The
architectural flexibility and scalability make it uniquely
suited to cater to the varying demands of different use cases
and applications. As 5G networks evolve, they are expected
to form the backbone of increasingly interconnected and
intelligent digital ecosystems, reshaping industries and user
experiences [1].

Network slicing is a key technology in 5G systems
that enables dynamic and efficient allocation of network
resources to different service types. It allows simultaneous
support of multiple, logically separate networks that cater
to diverse service needs on a shared infrastructure platform.
Network slicing is vital for addressing the wide range of use
cases and services in 5G, from enhanced Mobile Broadband
(eMBB) applications that demand high data rates to Ultra-
Reliable Low-Latency Communications (URLLC) that are
crucial for mission-critical communication services requiring
minimal latency and tactile Internet [2].
Open Radio Access Network (O-RAN), a pivotal innova-

tion in 5G technologies, is revolutionizing our understanding
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and construction of telecommunication infrastructures. It
disaggregates and virtualizes the traditional monolithic and
proprietary Radio Access Network (RAN), resulting in
more flexible, efficient, and open network architectures.
O-RAN provides a multi-vendor, interoperable environ-
ment expected to disrupt the telecommunications industry,
encouraging competition and driving rapid innovation.
Furthermore, programmability and extensibility through
software-defined networking and network function virtu-
alization make O-RAN an ideal platform to meet the
dynamically changing demands of 5G networks [3]. For
instance, the RAN Intelligent Controller (RIC) concept
within O-RAN enables real-time control and optimization of
the RAN through software applications known as xApps [4].
The O-RAN architecture divides the base-station protocol

stack into a Centralized Unit (CU), a Distributed Unit
(DU), and a Radio Unit (RU), bringing more flexibility
into network design. The DU manages high physical
layer procedures, while the CU manages less time-sensitive
higher-layer procedures. This separation promotes RAN
sharing, allowing various operators to share the same
hardware resources while maintaining their independent
control and configuration of software entities. Network
slicing is essential to ensure that each slice meets specific
performance metrics without adversely impacting others [5].
However, effectively managing these slices to maintain
optimal performance and resource allocation, especially in a
dynamic network environment where demands and priorities
change, is challenging [6].
In traditional RAN settings, radio resources are typically

confined to a single operator, making resource sharing
challenging and competitive. The modular and software-
defined nature of O-RAN enables operators to share RAN
resources based on specific agreements [7]. Operators can
even allow a third party, such as a neutral host, to manage
these shared resources. This brings us to the innovative
concept of an Intelligent Neutral Host (INH), which acts as
an impartial entity that manages shared RAN resources on
behalf of multiple operators [8]. INH utilizes the O-RAN
paradigm to enable control loops for operators using the RIC
and applies software-defined networking concept to control
potential network congestion in the transport network [8].
INH is particularly advantageous when network coverage

is crucial, but infrastructure deployment costs are prohibitive.
By leveraging INH, operators can effectively share network
infrastructure and associated costs while meeting their
Service Level Agreements (SLA). This approach is partic-
ularly beneficial in Multi-Operator Core Network (MOCN)
scenarios, where several operators share a common RAN
but maintain their independent core networks [9]. Equipped
with intelligent and adaptive algorithms for resource allo-
cation, INH can dynamically assign resources to different
operators based on their real-time traffic demand and SLA
requirements [8], [10].
Radio Resource Management (RRM) in MOCN scenarios

presents unique challenges, primarily due to the complexity

of managing shared resources across multiple operators. In
such environments, ensuring fair and efficient allocation
of radio resources becomes complicated, as each operator
has distinct Quality of Service (QoS) requirements and
traffic patterns. This complexity is further amplified in
dense urban areas with constant demand for high-speed
data and connectivity, leading to intense competition for
limited radio resources. Additionally, adapting to real-time
changes in network conditions, such as user mobility and
fluctuating traffic loads, poses a significant challenge for
RRM strategies.
Addressing the challenges of shared resource manage-

ment in MOCN scenarios, our study introduces a novel
approach to RRM within the context of INH. We propose
an algorithm based on Reinforcement Learning (RL) to
allocate resources dynamically among network slices of
multiple operators. The algorithm considers real-time Key
Performance Metrics (KPMs) such as throughput, buffer
occupancy, and Physical Resource Block (PRB) utilization
while adhering to the constraints set by SLA. We deploy this
algorithm as an xApp in a real-time O-RAN environment
on the Colosseum platform to demonstrate its ability to
cater to the dynamic needs of the network. This research
illustrates how intelligent resource allocation can optimize
network performance, reduce operational costs, and enhance
service quality in a multi-slice, multi-operator O-RAN
environment. Accordingly, the contributions of this study can
be summarized as follows:

1) We introduce a novel approach in RRM for MOCN
scenarios, focusing on optimizing network sharing
while adhering to operator-specific SLA. By employ-
ing a novel function, we quantify the performance of
network slices, enabling dynamic resource distribution.

2) Surpassing the conventional focus on a single resource
type, our work considers various resource types,
including dedicated, prioritized, and shared resources,
enhancing the versatility and efficiency of resource
allocation within O-RAN settings.

3) Our methodology utilizes Q-learning and deep
Q-learning for resource allocation in INH, efficiently
allocatingPRBs tomultiple network slices fromdifferent
operators while satisfying their individual SLA.

4) Finally, we implement the algorithm as an xApp on the
Colosseum platform, providing a realistic evaluation
under diverse and dynamic traffic scenarios. The
performance of our xApp is compared with widely
adapted traditional resource allocation methods in
terms of performance metrics and SLA satisfaction per
slice and operator.

The remainder of the paper is organized as follows:
Relevant literature related to our work is reviewed in
Section II. Section III outlines our system model and
formulates the resource allocation approach. Our proposed
RL-based RRM algorithm is detailed in Section IV.
Section V discusses the experimental analysis and results.
Finally, we conclude the paper in Section VI.
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II. RELATED WORK
Recent advancements in RRM focus on addressing the
complexities and dynamic nature of next-generation cellular
networks [11]. In this landscape, Machine Learning (ML)
emerges as a powerful tool to enhance RRM, adapting to
varying network conditions [12]. Specifically, applications
of ML in managing resources across various RAN-slicing
schemes are a focal point of interest. For instance, the work
presented in [13] explores the potential of different learning
methods to optimize RRM in such environments.
Among other works, [14] addresses resource allocation

challenges in virtualized 5G RAN and proposes a dynamic
resource provisioning scheme that accounts for varying
user requirements in terms of delay and data rate. A
shape-based heuristic algorithm complements this scheme
to enhance QoS and resource utilization. Widening the
scope, Sebakara et al. [15] present an innovative end-
to-end approach for resource allocation in virtualized 5G
networks that considers both the RAN and core network.
They leverage a deep RL-based scheme for joint resource
slicing, emphasizing the importance of synchronization for
efficient resource allocation. In a similar work, dueling deep
Q-network has been suggested for efficient resource slicing
and customization, focusing on satisfying QoS requirements
and maximizing resource utilization [16].
Within the context of O-RAN, the potential, challenges,

and limitations of data-driven optimization approaches in
network control have been discussed in [4]. The authors
propose a deep RL-based algorithm to optimize KPMs across
different network slices and evaluate it against traditional
algorithms such as Round-Robin (RR), Proportional Fair
(PF), and water-filling. Motalleb et al. [17] address the
problem of baseband resource allocation in O-RAN for
different 5G service classes. They propose a two-step
algorithm using the Lagrangian function and Karush-Kuhn-
Tucker conditions to obtain optimal power and resource
allocation. The proposed method is validated through simula-
tions showing higher data rates and lower end-to-end delays.
Further enhancing resource allocation in O-RAN envi-

ronments, Mollahasani et al. [18] propose a dynamic
CU-DU selection approach using two actor-critic models.
This method allocates resource blocks and distributes the
processing load across different layers. The results suggest
that dynamically relocating network functions based on
service requirements can achieve significant gains in latency
and throughput. In another work, Filali et al. [6] propose a
deep RL-based xApp to allocate resources among URLLC
users, satisfying desired QoS requirements.
Addressing xApp conflicts arising from different vendors,

Zhang et al. [19] propose a team learning algorithm based
on deep Q-learning. They implement two different xApps
for power and radio resource allocation and demonstrate
significant performance improvements by eliminating con-
flicts in O-RAN. The authors extend their work and present
a federated deep RL algorithm to coordinate multiple
independent xApps for network slicing [20]. In the proposed

federated learning approach, each xApp trains a local model,
which is then submitted to a coordination model to predict
a joint Q-table. In both papers, the authors consider a
scenario where operators deploy and manage their xApps
independently. However, our study considers a setting where
an INH oversees the RAN and its resources, centralizing
control and eliminating xApp conflicts.
Existing works mainly address resource allocation for

specific network slices or service classes, limiting their
adaptability to complex and dynamic RAN-sharing scenarios.
While these studies offer valuable insights into resource
allocation within O-RAN environments, they predominantly
focus on traditional RAN configurations rather than the
MOCN scenario. In contrast, our work addresses the chal-
lenge of resource allocation within a MOCN scenario where
an INH orchestrates resource allocation across a shared
infrastructure. This approach not only addresses a previously
unexplored aspect of RAN sharing but also proposes a
solution specifically designed for this unique scenario, filling
a gap in the current literature.

III. SYSTEM MODEL
Our system model, depicted in Fig. 1, represents a MOCN
RRM scenario where multiple operators with several slices
utilize the same RAN shared and managed by the INH.
We assume the RAN is shared among N operators and L
slices. Therefore, the sets of all operators and slices available
in the system are denoted by N and L, respectively. Each
operator n contains of Ln slices, forming the set Ln. The RAN
components, namely the DU, CU, and RU, are shared among
all operators’ User Equipment (UE). The INH, acting as an
impartial entity, oversees the allocation of different resource
types among various operators to fulfill their specific QoS
requirements.
The RIC is a vital component of the O-RAN archi-

tecture, designed to introduce advanced intelligence and
programmability into the RAN. The near-real-time RIC
(near-RT RIC) operates in a timescale of milliseconds and
performs functions like RRM, load balancing, handover,
and dynamic spectrum management. It hosts ML models
and xApps, which are used to analyze network trends and
make high-level decisions regarding network optimization,
planning, and policy management [4]. The xApps interact
with RIC through the standard E2 interface, facilitating the
transfer of RAN telemetry data and real-time KPMs [3].
The primary goal of our RRM xApp is to distribute the
corresponding amount of PRBs to each slice. Within each
slice, an intra-slice scheduler allocates PRBs to the UEs.
We define three classes of radio resources: Dedicated,

Prioritized, and Shared. Dedicated resources are exclusively
reserved for a specific slice and are allocated to the users
within, guaranteeing a minimum level of QoS per their SLA,
regardless of the traffic conditions or utilization. Prioritized
resources are assigned to a specific operator and are not tied
to any particular slice. These resources cannot be allocated
to slices or users belonging to other operators but can be
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FIGURE 1. Overview of our system model for MOCN scenario with different types
of PRBs.

interchanged between the slices or users of the operator as
per demand and priority. Finally, Shared resources do not
belong to any specific slice or operator and can be allocated
to any slice on demand. Shared PRBs provide a buffer of
resources that can be utilized to meet unexpected demands or
peak loads, thus enhancing the overall efficiency of resource
utilization.
This classification of resources into dedicated, prioritized,

and shared types is not arbitrarily determined but rather
is derived from and in accordance with the 3GPP TS
28.541 [21], which provides the management and orches-
tration specifications for the network resource model. These
resource types are integral in managing multi-tenancy in
RAN, providing a balanced framework for RRM that focuses
on guaranteeing service requirements and efficient resource
utilization.
Accordingly, in Fig. 1, each operator serves multiple

slices and is allocated some prioritized PRBs. Each slice
serves numerous UEs and is allocated some dedicated PRBs,
which can only be allocated to UEs corresponding to that
slice. Real-time network status and metrics such as the
instantaneous throughput, buffer occupancy, and number of

used PRBs are provided to the near-RT RIC through the E2
interface.
We define a unique function for each slice called the

Slice Performance Index (SPI) that encapsulates specific
performance metrics and maps them into a value that reflects
the slice performance relative to the SLA. The SPI function
allows us to capture diverse SLA requirements and roles of
different slices in a quantifiable manner that the decision-
making agent can utilize to make informed decisions. It serves
a dual purpose - acting as a basis for the learning and decision-
making process and as an indicator of SLA adherence for
the respective slices. Maintaining high SPI values across
all operators and slices ensures SLA compliance, effective
resource allocation, and optimal system performance. The
SPI function for each slice (l ∈ L) is defined as

Sl = w1
Tl
Treq
+ w2

1

c+ Bl
Breq

+ w3Ul − w4
Bl
Bmax

, (1)

where Tl, Bl, and Ul are the instantaneous throughput, buffer
occupancy, and PRB utilization at the slice level, obtained
as KPMs from the RAN. Treq and Breq are the minimum
required instantaneous throughput and maximum required
buffer occupancy as per SLA, and Bmax is the maximum size
of the downlink buffer. Finally, w1 to w4 are weights that
can be adjusted based on the slice role, and c is an arbitrary
normalization constant.
For eMBB slices, where throughput is crucial, the

SPI function is primarily influenced by the instantaneous
throughput achieved. Conversely, for URLLC slices, the
SPI function is influenced by the current downlink buffer
occupancy of the UEs and PRB utilization (ratio of used PRBs
to allocated PRBs). Although end-to-end latency might appear
to be a key metric for URLLC slices, it can be influenced
by external factors that are often beyond the control of the
RRM, such as core network delays or processing times at the
UE. On the contrary, downlink buffer occupancy is a more
direct measure within the scope of the RAN and can be an
indirect measure of latency for URLLC applications.
Consequently, the problem of fairly allocating PRBs to

the slices at the INH level can be posed as an optimization
problem where we aim to maximize the combined SPI for
all slices, subject to the constraints of the resource types:

maximize
P

∑

l

Sl

subject to
∑

l

pl ≤ PT ,
∑

l∈Ln
ppriol ≤ pprioOpn

, ∀n ∈ N

pl ≥ pdedil , ∀l ∈ L

PT = Pdedi + Pprio + Pshare. (2)

In (2), pl, p
prio
l , and pdedil represent the number of PRBs,

prioritized PRBs, and dedicated PRBs allocated to slice
l, respectively. PT is the total number of PRBs available
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in the system, Opn is the n-th operator, and pprioOpn
is the

number of prioritized PRBs belonging to operator Opn.
Pdedi, Pprio, and Pshare correspond to the total number of
dedicated, prioritized, and shared PRBs available in the
system, respectively. Finally, P is the PRB allocation vector,
defined as P = [p1, p2, . . . , pL]. Each constraint in (2)
corresponds to a limitation imposed by the definition of
different PRB types.
An essential concept in resource allocation of cellular

systems is the Resource Block Group (RBG). While a PRB is
the smallest unit of resources that can be allocated to a user
in a cell, representing a portion of frequency and time on the
radio spectrum, RBG is a bundle of consecutive PRBs treated
as a single unit by the scheduling or resource allocation
algorithm. The exact size of an RBG (the number of PRBs
it contains) can depend on the total system bandwidth and
configuration. In resource allocation type 0 [22], RBGs are
the minimum allocated resource units and are represented by
a bitmap, where each bit represents one RBG. To allocate
resources, the xApp has to configure the RBG bitmap
per each slice at the RAN level while ensuring efficient
utilization of resources and satisfying SLA [23].

IV. METHODOLOGY
In this section, the proposed algorithm for RRM is described.
Initially, components of the RL algorithm are introduced.
Then, the Q-learning and the more advanced deep Q-learning
algorithm are presented.

A. REINFORCEMENT LEARNING
As shown in Fig. 2, the RL framework comprises an
agent in the near-RT RIC interacting with the environment
(the RAN). Real-time KPMs from the RAN and SLA
requirements from a local database serve as the input. At
each timestep t, the agent receives the inputs, observes state
st, and selects an action at determined by the state-action
function Q(st, at). This triggers a state transition to st+1
and generates a reward Rt+1 based on the selected action.
To comprehensively understand the RL approach, we must
define its components: state space, action space, and reward
function. Each component has been designed to encapsulate
the essence of our problem space:
States: The states shall represent the current KPMs for

each slice derived from the corresponding terms of the
SPI function. Specifically, for eMBB and URLLC slices,
we consider the throughput and buffer occupancy terms of
the (1) as the state, respectively. The state of each slice is
mathematically expressed as

sl =
⎧
⎨

⎩

c1
TL
Treq

if l is eMBB
1

c2+ Bl
Breq

if l is URLLC (3)

where c1 and c2 are normalization constants. Consequently,
the state of the agent at each timestep will be

st = [s1, s2, . . . , sL]. (4)

FIGURE 2. Overview of the proposed RL system for RRM.

Both terms of the (3) are bounded, as both throughput
and buffer occupancy of the system have an upper limit.
By adjusting the constants c1 and c2, the states can be
normalized to any desired value.
Actions: The action space consists of potential resource

allocation strategies that the RRM agent can execute. In our
system, the actions are derived from the concept of RBG. For
a given slice, the agent can decrease or increase the allocated
resources by one RBG or maintain the current allocation.
Therefore, the possible actions for each slice are [−1, 0, 1],
and the action at each timestep can be represented as the
vector

at = [a1, a2, . . . , aL], ai ∈ {−1, 0, 1}, (5)

where i = 1, 2, . . . ,L. This results in an action space size
of |A| = 3L.
Reward: Central to the learning process, the reward

function quantifies the success of an action taken in a
particular state. It is formulated to capture the efficiency
and effectiveness of resource allocation strategy. The agent
tries to maximize the minimum SPI across all slices. Actions
that result in violations of resource constraints (prioritized
or dedicated PRBs) or unfair distribution of resources are
penalized, guiding the agent to make different decisions in
the future. The reward function is given as

Rt+1 = β1min Sl
l
− β2

(
1−minUl

l

)
− β3ϕ, (6)

where ϕ represents the penalty term imposed for actions that
violate the constraints of (2) and β1 to β3 are the reward
weights. The penalty term can be mathematically expressed
as

ϕ =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 if
∑

l∈Ln p
prio
l > pprioOpn

for any n ∈ N

1 if pl < pdedil for any l ∈ L

1 if
∑

l pl > PT
0 otherwise.

(7)

The coefficients of the reward function (6) influence the
agent’s behavior during the decision-making process. β1 is
the weight of the primary objective and encourages the agent
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to ensure a minimum level of service across all network
slices. β2 aims to increase PRB utilization by penalizing
actions that lead to inefficient PRB usage within any slice.
Finally, β3 deters the agent from taking actions that would
violate resource constraints.

B. Q-LEARNING
Q-learning is a model-free RL algorithm that determines
the optimal action-selection policy within a finite Markov
decision process. It operates by learning the values of state-
action pairs without requiring a model of the environment.
The algorithm utilizes a Q-table to record the value of each
state-action pair, representing the expected future rewards for
selecting a specific action in a given state. This Q-table is
updated iteratively using the Bellman equation as the agent
explores the environment [24]:

Q(st, at)← (1− α)Q(st, at)+ α

[
Rt+1 + γ max

a′
Q

(
st+1, a

′)
]

(8)

In (8), Q(st, at) is the Q-value of taking action at in state
st at time t, yielding the reward Rt+1. The term a′ denotes
any possible action at the next state (st+1). The learning
rate α adjusts the impact of each update on the Q-value,
while the discount factor γ determines the importance of
future rewards. As the learning proceeds through sufficient
iterations, the values in the Q-table will converge to reflect
the significance of each state-action pair, maximizing the
expected reward.
During the learning phase, the agent occasionally opts to

explore a new action rather than exploiting the best-known
action in the current state. This exploration-exploitation
trade-off is controlled using the epsilon-greedy strategy,
where the agent has a probability ε of choosing a random
action and a probability 1 − ε of choosing the best-
known action. This strategy ensures convergence of Q-values,
preventing the agent from getting trapped in a suboptimal
solution. We gradually reduce the value of the ε over
iterations to shift the balance from exploration to exploitation
as the agent learns more about the environment. Initially,
a higher epsilon value encourages exploration, preventing
the agent from converging to a local optimum. As the
learning progresses and the Q-table is updated, the epsilon
value decreases, leading the agent to exploit the best-known
actions.
The inherent discrete structure of the Q-table necessitates

that both the state and action spaces be discrete. This draw-
back of Q-learning limits its ability to deal with continuous
state variables. Given that the state space presented in (4)
is continuous, it must be discretized. To address this, we
digitize the SPI function for each slice into predefined states,
where each state indicates the status of the SLA satisfaction
for that slice. The simplest digitization is the binary one,
where one indicates that the SLA of that particular slice is
satisfied, while zero indicates an unsatisfied SLA. The size
of this binary digitized state space is |S| = 2L.

Finally, the dimensions of the Q-table play a crucial role
in determining both the computational feasibility and the
performance of the algorithm. A larger Q-table increases
the exploration time required for the agent to evaluate each
state-action pair, extending the training duration. A strategic
adjustment can be made to mitigate this by limiting the
agent’s decision-making to only one slice per timestep rather
than simultaneous decisions across all slices. This approach
effectively reduces the action space from |A| = 3L to
|A| = 2L + 1 without severely affecting the response time.
Consequently, the size of the Q-table is refined to |Q| =
2L(2L+1). The overall procedure of the Q-learning algorithm
is presented in Alg. 1.

C. DEEP Q-LEARNING
Deep Q-learning leverages a deep neural network to
approximate the Q-value function. In contrast to traditional
Q-learning, which relies on a tabular representation of the
Q-function, deep Q-learning can generalize over a continuous
and ample state space. This feature particularly benefits our
setting, where the state space encompasses the SPI function
across multiple operators and slices. The input and output
dimensions of the deep neural network, which receives the
state and calculates the Q-value for every possible action,
are determined by the state size and the number of actions,
respectively. Specifically, the input dimension is equal to the
number of slices (L), and the output dimension corresponds
to the size of the action space (|A|).

In traditional Q-learning, the Q-value update is based
on the Bellman equation presented in (8), establishing a
recursive relationship between the current and subsequent
Q-values. However, this recursive relationship can lead to
instability in deep Q-learning as the same neural network
estimates the current and subsequent Q-values. The instabil-
ity arises from the moving target problem, where the weight
updates change the values it attempts to predict. This issue
can be mitigated by using a second neural network, the
target network, that decouples the estimation of current and
subsequent Q-values [25]. Based on the Bellman equation,
the target Q-values can be expressed as

y = Rt+1 + γ max
a′

Q
(
st+1, a

′; θ̂
)

(9)

where θ̂ represents weights of the target network. These
weights are periodically updated with weights of the main
network (θ) but are kept constant between updates to provide
a stable target for training. The training procedure involves
updating the main network weights to minimize the loss
between predicted and target Q-values. The loss function,
typically a mean squared error, is given by

L(θ) = E

[
(y− Q(st, at; θ))2

]
. (10)

Since consecutive experiences can be correlated, directly
updating the neural network at each iteration can be
inefficient. This correlation can lead to suboptimal learning
and affect the convergence of the neural network. Experience
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Algorithm 1 Overview of the Q-Learning for RRM
Input: a) Initial Q-table

b) xApp configuration from the database
c) SLA requirements per each operator

Output: RBG allocation bitmap for each slice
1: for each timestep do
2: Read the current KPMs from the RAN
3: Calculate the SPI function for every slice using (1)
4: Update the state of the agent using (4) and (3)
5: Calculate the agent reward for the last performed

action using (6)
6: Update the Q-table using the Bellman Equation
7: if a random number between 0 and 1 ≤ ε then
8: Choose a random action (explore)
9: else
10: Choose best action using at = arg max

a
(st, at)

11: end if
12: Update ε with the decay rate
13: Check for illegal actions
14: Update the slice allocation configuration and send it

to RAN
15: end for

replay solves this issue by storing the experiences of
the agent at each timestep (st, at,Rt+1, st+1) in a replay
buffer. During the training phase, the deep Q-learning
algorithm randomly samples a mini-batch of experiences
from this replay buffer, breaking the correlation between
consecutive learning samples. It also enables the agent
to reuse previous experiences, maximizing the learning
from each interaction with the environment. The overall
procedure of the deep Q-learning algorithm is presented in
Alg. 2.

V. EXPERIMENTAL ANALYSIS
This section details experiments conducted to evaluate
the proposed framework. First, a brief description of our
experimental setup and parameters used within the algo-
rithm is provided. Next, the results of our evaluation are
shown. Finally, we discuss the complexity analysis of the
algorithm.

A. EXPERIMENT SETUP
We deployed our RRM algorithm in the Colosseum envi-
ronment, the world’s largest wireless network emulator
based on Software-Defined Radios (SDRS) [26]. On top
of the Colosseum, we utilized SCOPE [23], an open-
source framework that builds upon srsRAN [27] capabilities.
SCOPE offers advanced data collection tools and APIs for
runtime management of cellular stack functionalities [28].
Our experimental setup involves two operators (Op1 and
Op2), each composed of two slices (URLLC and eMBB)
that share the RAN.
Since this work mainly focuses on distributing the

resources to slices and mitigating the effect of the intra-slice

Algorithm 2 Overview of the Deep Q-Learning for RRM
Input: a) Initial experience replay buffer

b) Initialize θ and θ̂

c) xApp configuration from the database
d) SLA requirements per each operator

Output: RBG allocation bitmap for each slice
1: for each timestep do
2: Read the current KPMs from the RAN
3: Calculate the SPI function for every slice
4: Update the state of the agent using (4) and (3)
5: Calculate the agent reward for the last performed

action using (6)
6: Store the last transition (st, at,Rt+1, st+1) in the replay

memory
7: Perform a gradient descent step on the DQN model

with respect to its loss function
8: if a random number between 0 and 1 ≤ ε then
9: Choose a random action (explore)

10: else
11: Choose best action using at = arg max

a
(st, at; θ)

12: end if
13: Sample a mini-batch from the replay memory
14: Update θ by minimizing the loss function in (10)
15: Periodically update the target network weights θ̂ to

match θ

16: Update ε with the decay rate
17: Check for illegal actions
18: Update the slice allocation configuration and send it

to RAN
19: end for

scheduler on performance, each slice caters to only one UE
using all of its available resources. Hence, we require five
nodes (SDRs) in the Colosseum system, one for the base
station and four for the UEs. Traffic generation is done using
the iPerf tool over the srsRAN network. Details of the neural
network architecture and parameters of the xApp and the
algorithm are outlined in Table 1 and 2, respectively.

The proposed RRM model operates as an xApp within
the near-RT RIC, executing every 250ms. During each
execution cycle, the xApp collects KPMs from the RAN,
makes resource allocation decisions, and communicates
the slice allocation configuration back to the RAN over
the E2 interface. This cycle constitutes a single iteration
of the xApp. While the execution interval is adjustable
to meet specific demands, it is vital to consider the
trade-offs involved. Decreasing this interval increases the
communication frequency between the RAN and the near-RT
RIC, potentially overloading the E2 interface. Conversely,
increasing it can slow down the agent, hindering its ability
to react quickly and consequently affecting the SLA.
The xApp implements the decision-making process as out-

lined in Algorithms 1 and 2. Upon determining the optimal
action, the xApp evaluates if it violates the constraints
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TABLE 1. Neural network architecture.

defined in (2). Such illegal actions are not only penalized
through the reward function (6) but also prevented from
execution, as they could severely impact SLA or other
conditions. We employ a neural network architecture with
three hidden layers and the ReLU activation function for the
deep Q-learning network.
We evaluate the performance of our model in a traffic

scenario where, after a period of stability for all slices,
the eMBB traffic for Op2 starts increasing, remains con-
stant for a duration, and then decreases. In contrast, the
eMBB traffic for Op1 demonstrates an opposite pattern: it
initially decreases, remains constant for a while, and then
increases. URLLC traffic for both operators remains constant
throughout the scenario. This scenario is designed to assess
the adaptability and resilience of our model in intricate
environments, particularly when both operators experience
varying and opposing traffic demands.

B. RESULTS
In order to evaluate the performance and efficiency of our
deep Q-learning-based RRM xApp, we visualize several
metrics after training it for sufficient iterations. These metrics
include instantaneous throughput, SPI function, and PRB
allocation pattern throughout the traffic scenario. These
metrics, illustrated in Fig. 3 collectively provide insights into
the xApp’s ability to adapt to varying traffic conditions,
prioritize resources, and maintain service quality.
At t = 200, we observe a sudden increase in eMBB

traffic for eMBB/Op2 while eMBB/Op1 traffic decreases.
This change leads to an immediate drop in the SPI function
for both slices, accompanied by a surge in buffer occupancy
for the slice experiencing increased traffic as packets
accumulate. On the other hand, the buffer occupancy for
eMBB/Op1 declines, reflecting its reduced traffic demand.
This brief SLA violation prompts the agent to act, allocating
more PRBs to eMBB/Op2, raising its throughput. Following
this adjustment in PRB distribution, a significant reduction
in buffer occupancy is evident.
We witness another shift in traffic demand at t = 400,

with both slices returning to their initial state. Similar to
the previous observation, this transition triggers a buffer
occupancy spike and a drop in the SPI function for
eMBB/Op1. The agent promptly allocates more PRBs from
eMBB/Op2 to eMBB/Op1. The PRB allocation for URLLC
slices remains consistent throughout the traffic scenario,
given the stability in their traffic demands.

TABLE 2. Parameters used throughout the experiment.

In the next stage of our analysis, we compare the
performance of our proposed RRM xApp against the widely
adopted PF and RR algorithms [29], [30]. The PF algo-
rithm prioritizes a balance between total system throughput
and fairness among users [31], while the RR algorithm
ensures each user gets an equal share of the available
PRBs [32]. Utilizing the identical traffic scenario, we assess
the performance of the PF and RR in managing RRM for the
INH in two distinct runs. For a detailed analysis, we visualize
the empirical Cumulative Distribution Function (CDF) of
the KPMs for different slices in Fig. 4. Each point on the
CDF curves represents the probability that a specific KPM
value for a particular slice will be less than or equal to a
certain threshold. The x-axis of the plot shows the range of
possible KPM values, while the y-axis depicts the probability
of falling within that range.
A detailed examination shows that our RRM xApp (deep

Q-learning) significantly surpasses RR and PF algorithms in
terms of URLLC slice buffer occupancy. A similar pattern
is observed in the eMBB slices throughput, where the gap
between the two slices reflects their differing traffic demands.
Regarding throughput for eMBB/Op1, RR performs closely
to our xApp and better than PF. This is because RR
distributes PRBs equally among the slices, resulting in
eMBB/Op1 receiving more PRBs than needed. However,
this advantage diminishes for eMBB/Op2 during peak traffic
demands, causing the performance of RR to fall behind both
PF and our xApp.
While at first glance, PF and RR might appear superior in

PRB utilization, especially for the eMBB slices, their inade-
quacy in maintaining SLA becomes noticeable. Conversely,
RR outperforms PF in keeping the SLA satisfied for the
URLLC slices, as it ensures equal PRB distribution between
all slices. This fairness guarantees no SLA violation for
URLLC slices, albeit at the trade-off of poor PRB utilization.
Remarkably, our xApp manages to reduce the SLA violation
rate to a mere 2.5% for eMBB slices compared to PF’s
36.1% and RR’s 17.9%. Moreover, it completely eliminates
the SLA violations for URLLC slices, highlighting the ability

1982 VOLUME 5, 2024



FIGURE 3. Metrics for each slice during the traffic scenario obtained using the deep Q-learning xApp. The x-axis represents timesteps after starting the traffic scenario, where
each timestep corresponds to 250ms. The vertical dotted lines at t = 200 and t = 400 indicate the changes in the traffic scenario and metrics, while the horizontal dotted line in
(c) represents the SLA violation threshold.

of our xApp to cater to SLA demands consistently across
various operators and slices.
Despite the advanced capabilities of deep Q-learning, such

as handling high-dimensional state spaces and leveraging
deep learning for function approximation, the performance
results were closely aligned with those of Q-learning.
Since the network size (slices and operators) is chosen
to be small due to implementation limitations, the xApp
may not fully exploit the complex pattern recognition and
generalization capabilities of deep Q-learning. In other
words, the effectiveness and simplicity of Q-learning in
this setting suggest that small networks may not require
the additional complexity and computational resources that
deep Q-learning entails. However, it is clear that as
network size increases, the scalability of Q-learning becomes
questionable.

C. COMPLEXITY ANALYSIS
The complexity of the Q-learning algorithm primarily stems
from determining and updating the Q-value approximations,
with the complexity of each update being O(1). Therefore,
the time complexity of the optimal allocation strategy across
multiple iterations becomes O(mt), where m represents the
number of iterations required for convergence and t denotes
the operation interval of the algorithm.
On the other hand, the complexity of deep Q-learning

is influenced by the architecture of the underlying neural
network and the dimensions of the state and action spaces.
For a fully connected network with J layers, the operation
time of each update is given by

∑J−1
j=0 ujuj+1, where uj

denotes the number of neurons in layer j. Therefore,
the time complexity for deep Q-learning is expressed by
O(mt

∑J−1
j=0 ujuj+1) [33].
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FIGURE 4. Comparison of the empirical CDF of buffer occupancy (a), throughput (b), PRB utilization (c), and the percentage of SLA violation (d) between our RRM xApp and
two traditional RRM algorithms. xApp (QL) stands for the xApp using Q-learning, and xApp (DQL) stands for the xApp using deep Q-learning.

Training time for Q-learning is relatively shorter due to
the more straightforward structure of updating the Q-table,
which does not require the extensive computational resources
that deep neural networks demand. However, as the size
of the state and action spaces increases, the Q-table grows
exponentially, diminishing its efficiency. Hence, traditional
Q-learning is better suited for scenarios with a few slices
served by the INH, while deep Q-learning becomes advan-
tageous for more extensive networks.

VI. CONCLUSION
In this paper, we explored the evolving dynamics of RAN
sharing, highlighting the pivotal role of the INH in shaping
the future of telecommunications, particularly for 5G and
beyond. Our study addresses the challenge of managing
resources efficiently and fairly for multiple operators within
the INH. By accommodating different PRB types and
proposing an RRM algorithm based on Q-learning and deep
Q-learning, we present a comprehensive solution tailored
explicitly for multi-operator, multi-slice environments. This
approach underscores the potential of the INH to ensure
equitable and efficient resource allocation while meeting

real-time KPMs and SLA constraints. Our Experimental
evaluations conducted in the Colosseum environment demon-
strate the superiority of our approach over traditional
methods, particularly in its ability to reduce SLA violations
drastically.
Although our current model employs deep Q-learning, we

recognize the potential of alternative methods in this domain,
such as actor-critic networks. Furthermore, the scalability of
our proposed solution remains to be further explored through
simulations. We plan to integrate these algorithms, which are
inherently more scalable and stable, to enhance further the
efficiency and adaptability of our RRM xApp. Furthermore,
we plan to test and refine our xApp in more intricate traffic
conditions, ensuring it remains robust and efficient in real-
world deployments.
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