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ABSTRACT Over the past decade, Unmanned Aerial Vehicles (UAVs) have attracted significant attention
due to their potential applications in emergency-response applications, including wireless power transfer
(WPT) and data collection from Internet of Things (IoT) devices in disaster-affected areas. UAVs are
more attractive than traditional techniques due to their maneuverability, flexibility, and low deployment
costs. However, using UAVs for such critical tasks comes with challenges, including limited resources,
energy constraints, and the need to complete missions within strict time frames. IoT devices in disaster
areas have limited resources (e.g., computation, energy), so they depend on the UAVs’ resources to
accomplish vital missions. To address these resource problems in a disaster scenario, we propose a meta-
reinforcement learning (RL)-based energy harvesting (EH) framework. Our system model considers a
swarm of UAVs that navigate an area, providing wireless power and collecting data from IoT devices on
the ground. The primary objective is to enhance the quality of service for strategic locations while allowing
UAVs to dynamically join and leave the swarm (e.g., for recharging). In this context, we formulate the
problem as a non-linear programming (NLP) optimization problem aimed at maximizing the total EH IoT
devices and determining the optimal trajectory paths for UAVs while adhering to the constraints related
to the maximum time duration, the UAVs’ maximum energy consumption, and the minimum data rate to
achieve a reliable transmission. Due to the complexity of the problem, the combinatorial nature of the
formulated problem, and the difficulty of obtaining the optimal solution using conventional optimization
problems, we propose a lightweight meta-RL solution capable of solving the problem by learning the
system dynamics. We conducted extensive simulations and compared our approach with two state-of-the-
art models using traditional RL algorithms represented by a deep Q-network algorithm, a Particle Swarm
Optimization (PSO) algorithm, and one greedy solution. Our simulation results show that the proposed
Meta-RL algorithm can outperform the IoT EH of the DQN, PSO algorithm, and the greedy solution
by 25%, 32%, and 45%, respectively. The results of our simulations also demonstrate that our proposed
approach outperforms the competitive solutions in terms of efficiently covering strategic locations with a
high satisfaction rate and high accuracy.

INDEX TERMS Energy harvesting, UAVs positions, energy consumption, meta-reinforcement learning,
UAVs, strategic locations.

I. INTRODUCTION

WIRELESS power transfer (WPT) holds immense
potential in revolutionizing the Internet of Things

(IoT) landscape by addressing key challenges associated
with powering and maintaining numerous connected devices
in a plethora of critical applications such as post-disaster
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scenarios, search and rescue operations, etc [1], [2], [3]. The
IoT devices, crucial for data collection, monitoring, and
communication in post-disaster scenarios, often grapple with
depleted energy reserves, intensifying the need for innovative
solutions. Compounding this challenge is the impracticality
of relying on traditional powering systems, which may be
compromised or inaccessible in disaster-stricken areas. WPT
emerges as a transformative solution, offering the potential
to overcome the limitations of conventional power sources
by providing cable-free charging for energy-constrained IoT
devices [4]. Specifically, WPT mechanisms that operate on
radio frequency (RF) signals are considered an alternative
solution to traditional power supply to address the energy
supply challenges faced by many IoT devices [5].
Utilizing ground chargers for transmitting power to IoT

devices has been investigated in many research stud-
ies [6], [7]. Nonetheless, this technique poses several
limitations, causing the efficiency of WPT to decrease due
to poor line of sight (LoS) and long distances, particularly
in post-disaster scenarios where traditional power infras-
tructure may be compromised. To address this challenge,
an unmanned aerial vehicle (UAV) equipped with WPT
capabilities can serve as a dynamic and adaptable platform
for delivering power to remote or inaccessible areas affected
by disasters [8]. The advantages of utilizing the UAV
include effective deployment cost, flexibility, maneuverabil-
ity, scalability, and direct LoS channel. However, utilizing
one UAV to cover the entire area with high efficiency
is insufficient due to the limitations of energy and the
UAVs’ flight duration. UAV swarm can provide a cost-
effective and reliable solution to collect data and provide
services to dispatched IoT devices over a wide geographical
area with terrestrial infrastructure impacted by natural or
man-made disasters [1]. The deployment of UAVs for
WPT in disaster-stricken areas necessitates strategic path
planning to maximize energy harvesting (EH) and efficiently
reach critical locations, hereinafter referred to as strategic
locations. The goal is to find the UAVs’ trajectories, ensuring
they cover strategic locations within the affected area while
concurrently harvesting energy to collect data from the
ground IoT devices. Path planning algorithms need to
consider the energy-harvesting capabilities of the UAVs, the
distribution of IoT sensors’ energy-demanding devices, and
the post-disaster dynamic environmental conditions.
Deep reinforcement learning (DRL) has recently appeared

as a promising solution for UAVs and their autonomous
movements. The agent is trained to learn the optimal control
policy and make autonomous decisions through interactions
with their environment. In particular, DRL techniques solve
several challenges in state-of-the-art techniques. First, they
offer real-time and online-based solutions to most of the
complicated problems of using UAVs that navigate an area
and learn how to interact with environments, allowing
them to be used as intelligent machines in places that
humans cannot reach, such as volcanoes. Second, DRL
solves and provides efficient solutions to complex problems
that traditional optimization techniques cannot solve. These

exceptional features enable the DRL solutions to be an
excellent choice for most path planning and UAV missions.
Most of the UAV’s environments are dynamic, and a prompt
interaction is required to be taken, which poses a challenge
for conventional RL techniques [9]. Meta-reinforcement
learning (Meta-RL) techniques have emerged as a potential
solution to address this challenge, in which the agent is
trained to learn the optimal policies in environments with
similar constructions quickly [10].

Nevertheless, most of the existing studies investigate single
aspects of utilizing UAVs for WPT and wireless information
transfer (WIT), such as considering a single UAV or ignoring
the practical constraints of UAVs, including UAVs’ energy
consumption and UAVs’ flight duration. This study addresses
a critical gap by concentrating on the optimization of
WPT and data collection services specifically tailored for
strategic locations. This investigation delves into the intricate
problem of WPT and data collection while meticulously
considering practical constraints inherent in UAV operations,
such as energy consumption, limited flight duration, and
the minimum data rate for efficient data transmission. The
objective is to strike a balance between maximizing EH,
ensuring efficient data collection, and adhering to the UAV’s
operational limitations. The proposed study contributes to the
advancement of UAV-based disaster response capabilities by
providing a comprehensive analysis of the intricate interplay
between WPT, data collection, and the inherent challenges
associated with practical UAV constraints. Our contributions
can be summarized as follows:

• We formulate a system model involving a UAV swarm
that navigates a designated area, providing WPT to
scattered IoT devices and enabling WIT from ground-
distributed IoT devices. Unlike previous research work,
this model considers essential constraints, including
UAVs’ energy consumption, minimum data rate, and
maximum flight duration, focusing on covering strategic
locations such as post-disaster-stricken areas for better
UAV services.

• We delineate our approach as an optimization problem
aimed at maximizing the total EH of IoT devices
through downlink channels from UAVs. The harvested
energy in the downlink channels enables the IoT devices
to transmit their data to the UAVs via uplink channels.
The optimization problem seeks maximum EH by
evaluating the trajectory paths of UAVs through the
covered area, specifically focusing on strategic locations
to enhance service delivery.

• The formulated optimization problem is a non-linear
programming (NLP) problem, and employing con-
ventional optimization techniques for its solution is
challenging and time-consuming. To address this, we
opt for a real-time solution leveraging deep learning
techniques. Given the dynamic nature of post-disaster
environments, traditional reinforcement learning (RL)
struggles to adapt to continuous changes. Consequently,
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we adopt a lightweight and online solution by employ-
ing meta-RL.

• We investigate the proposed system model through
extensive simulations to prove its performance by
testing it on various parameters and comparing our
adopted meta-RL solution with two state-of-the-art
algorithms: RL with DQN algorithm and particle swarm
optimization (PSO), and a greedy solution. We also
draw the maximum threshold on EH and data rate as a
benchmark for our solutions. We demonstrate that our
adopted meta-RL algorithm outperforms the competitive
algorithms.

The rest of this article is organized as follows: Section II
presents the related work, and Section III presents the
description of our system model. In Section IV, we delineate
the problem formulation. Section V introduces the adopted
meta-RL model. Section VI explains the implementation
results of the proposed approach. At the end, Section VII
concludes and discusses the future research directions.

II. RELATED WORK
Various optimization objectives of WPT are investigated in
existing studies. In [2], UAVs are explored for WPT in
unknown environments. The optimization problem jointly
optimizes UAVs’ search effectiveness, energy harvesting,
and energy consumption. Another study, [16], optimizes
the allocation of time slots for different tasks to maximize
the offloaded data rate to the base station. In [11], [17],
researchers focus on joint optimization of UAV trajectory
planning and analog beamforming to enhance wireless power
transmission. The work in [12] explores the maximization
of EH by finding the optimal position of the UAV. While
these studies tackle the WPT challenge from different angles,
critical parameters such as using a single UAV for the mis-
sion and UAV’s time duration and energy consumption are
not considered in the optimization formulation. To overcome
the problem, the studies in [13], [14] investigate WPT with
multiple UAVs to complete the mission while minimizing
the completion time and data rate, respectively. Nevertheless,
these studies explore the problem of WPT while ignoring
crucial parameters that affect the delivery of wireless power,
such as the constraints related to energy harvesting from
UAVs. To tackle these problem, we investigate the problem
of minimizing EH of IoT devices while considering crucial
parameters that affect WPT and data collection.
Over the past decades, extensive research has delved

into optimizing UAV path planning for WPT to IoT
devices. Dynamic solutions, particularly DRL, have garnered
significant attention in UAV-enabled WPT systems. In [3],
the approach involves a single UAV navigating an area to
provide power to ground IoT devices. However, relying on a
single UAV proves insufficient to cover and adequately serve
the area. Moreover, utilizing DRL techniques for real-time
path planning solutions is also investigated in [9], [15], [18],
[19]. In [9], meta-RL is employed for UAV trajectory plan-
ning, leveraging dynamic meta-RL attributes to maximize

the ground coverage of users in dynamic environments.
Meanwhile, Xu et al. in [18] focuse on multi-UAV trajectory
planning for data collection, emphasizing the minimization
of mission completion time. Another study, [19], uses DRL
techniques for UAV position control to track a ground-based
object, and Wang et al. in [15] utilize DRL to maximize the
computation efficiency while optimizing UAVs and mobile
devices positions. Bezziane et al. in [20] investigated the
communication protocols between UAVs to ensure efficient
communication and efficient UAVs trajectory planning.
Notably, none of the previously mentioned studies [9], [15],
[18], [19], [20] investigates estimating the UAV’s position
specifically for providing WPT and WIT, with a focus on
strategic locations in the covered area, which is deeply
investigated in this paper.
For efficient use of UAVs for data collection, UAV-based

approaches need to strike a balance among trajectory paths,
energy consumption, and completion time [21], [22], [23].
In [21], the authors advocate for joint optimization of UAV
positions and transmit power to ensure reliable information
transmission and swift data collection from ground users.
Meanwhile, [22] introduces joint position and travel path
optimization to minimize energy consumption during data
collection, focusing on optimizing trajectory paths to collect
more user data within energy constraints. In [23], DRL
is employed for UAV trajectory planning optimization,
emphasizing finding optimal paths under time constraints
and ensuring timely delivery of collected data to a central
station. These studies [21], [22], [23] primarily concentrate
on optimizing UAV path planning to minimize energy
consumption while maximizing coverage for extensive data
collection. However, none of these studies investigates UAV
path planning for efficient data collection by utilizing UAVs
for energy harvesting while considering critical constraints
for improving WPT and WIT, explicitly for disaster-affected
areas, with a focus on vulnerable spots to ensure strategic
trajectory planning for data collection from the most affected
ground IoT devices. Our approach addresses these challenges
by utilizing UAVs for WPT and WIT by estimating the
optimal UAVs paths. In particular, UAVs navigate the
entire area and strategically focus on trajectories in critical
locations (e.g., post-earthquake, flood-prone areas), ensuring
a minimum data rate for reliable data transmission to the
UAVs in the swarm. Additionally, as UAVs traverse the
area, they remotely provide power to IoT devices, ensuring
successful data collection before uploading it to the remote-
control station.
A multitude of research studies have delved into UAVs

path planning, with a predominant focus on ensuring
transmission reliability [24], [25], [26], [27]. Particularly,
the authors in [24] investigated UAVs’ role as relay devices
in reliability systems, emphasizing the transmission of
control information. In a related context, [25] investigated
the required data rate for successful control data delivery
between the base station and UAVs while maintaining
Quality of Service (QoS) reliability standards. Meanwhile,
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TABLE 1. Summary of relevant related works.

the work by She et al. in [26], delved into optimizing
UAV positions to achieve reliable transmissions. Despite
their contributions to maximizing data rate for transmission
reliability, these studies did not consider the crucial aspect
of minimum energy consumption by UAVs, which is the
primary focus of our work in this paper. Our research in [27]
studied the reliability of transmission. However, in this paper,
we consider a simple scenario where the UAVs navigate an
area to find the optimal positions of UAVs that minimize
the completion time. We did not investigate delivering WPT
to ground IoT devices to improve the services that UAVs
were intended to offer, which is the main focus of this
work. Furthermore, we introduce several dynamic solutions,
including two state-of-the-art algorithms based on RL and
PSO and one greedy algorithm, to enrich the implementation
of our proposed approach. We present a comprehensive
summary of some closely related works in TABLE 1.

This paper tackles the intricacies associated with employ-
ing a UAV swarm for WPT to navigate specific strategic
locations to enhance service provision. The primary goal is
to determine optimal UAV positions that maximize the effi-
ciency of EH of IoT devices. This optimization accounts for
various factors, including the cumulative energy consumption

of UAVs, ensuring a minimum data rate for reliable transmis-
sion, and adhering to the maximum time duration constraints
of UAV operations. To address this complex challenge, we
formulate the problem as an NLP problem, a computationally
demanding task for conventional optimization techniques.
Consequently, we propose an innovative online solution
employing a deep learning technique, specifically meta-
RL, to acquire knowledge about the optimal dynamics
of the control policy for real-time decision-making. This
approach aims to overcome the inherent complexities of
the optimization problem, providing a dynamic and adaptive
solution to the challenges associated with UAV swarm-
enabled WPT in strategically important areas.

III. SYSTEM MODEL
Figure 1(a) depicts our system model. The covered area is
partitioned into equal-sized C cells, C̄ = {1, 2, . . . ,C}, with
each cell c ∈ C̄. According to this approach, U UAVs,
represented as Ū = {1, 2, . . . ,U}, navigate to cover C cells,
with a focus on some strategic locations denoted by q cells,
where q ∈ C̄ cells, representing areas most impacted by
natural disasters like earthquakes or hurricanes. Each UAV at
one cell is denoted by uc is tasked with remotely delivering
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FIGURE 1. System model for multi-UAVs covering an area with strategic locations. The mission of UAVs is to deliver wireless power and collect data from distributed IoT
devices.

power and collecting data from randomly distributed IoT
devices, N � 1, where N̄ = {1, 2, . . . ,N}. The positions of
ground IoT devices are denoted by i, Qi = [xi, yi, 0], with
i ∈ N̄, are assumed to be known using global positioning
systems (GPS). Each UAV is equipped with two antennas,
one for WPT in the downlink channel, facilitated by UAVs
onboard batteries, and the other for collecting data from
ground IoT devices [3]. The movements and directions of
UAVs are optimized using a central station (control center)
denoted as Bc, as illustrated in Figure 1(a). The UAVs depart
from this central station and return to it to upload the
collected data, pointing to completing one round of the
UAVs. Furthermore, Figure 1(b) illustrates the maximum
distances between UAVs, emphasizing the need for each
UAV to maintain a safe distance to prevent collisions.
Let us consider that the UAVs operate within a time frame

T , where T > 0 in seconds (s). For simplicity, we assume
that each UAV maintains a fixed altitude huc , complying with
regulatory standards and safety requirements, with uc ∈ Ū
representing the UAV index in the set Ū. Additionally, we
assume that the time frame T is divided into M equal time
slots, characterized by the set M̄ = {1, . . . ,M} representing
the set of time slots within one-time frame [28]. Each time
slot t indicates a single movement of the UAVs and is defined
by the time step duration μ = T

M , chosen to ensure a stable
time interval for determining the 3D location of the UAV.
Consequently, based on time slot t, the 3D position of the
UAVs can be expressed as Quc [t] = [xuc [t], yuc[t], huc [t]],
where t ∈ M̄ denotes the time slot index in the set M̄. UAVs
navigate the area in each time slot t, providing WPT and
collecting data. The collected data from ground IoT devices
is uploaded to the ground central station Bc after the UAVs
complete a full-time frame T . The UAVs provide WPT in
the downlink channel from batteries carried onboard UAVs.

A. WIRELESS CHANNEL MODEL
In our approach and for practical scenarios, the obstacle
information, including their number, height, and loca-
tions, might not be known; hence, the randomness of the

availability of LoS and non-line-of-sight (NLoS) channels
of the air-to-ground link between UAVs and IoT devices
are considered. Note that the LoS and NLoS depend on
the type of environment (e.g., rural, urban, suburban, etc.),
the location of UAVs and IoT devices, and the altitude of
the flying UAVs. Hence, the probability of the expression
of LoS is given by [29]:

PLoSi,uc =
1

1+ ω1 exp
(−ω2

[
θi,uc − ω1

]) , (1)

where ω1 and ω2 are constant parameters, and their values
are specified based on the type of the environment, θi,uc
represents the elevation angle between the UAV uc and the
IoT device i. In particular, θi,uc = 180

π
× sin−1(

huc
di,uc

), where

di,uc =
√
(xuc − xi)2 + (yuc − yi)2 + h2

uc is the distance
between the UAV uc and the IoT device i. The probability
of NLoS is given by PNLoSi,uc = 1− PLoSi,uc .

The path loss models of LoS and NLoS are expressed as
follows [29]:

Li,u
c

LoS = ψLoS
(

4π fcdi,uc

c

)2

(2)

Li,u
c

NLoS = ψNLoS
(

4π fcdi,uc

c

)2

, (3)

where fc is denoted as the carrier frequency and c is the
speed of light. ψLoS and ψNLoS are denoted to the excessive
path loss related to the loss of free space propagation for
LoS and NLoS, respectively. The total average path of the
communication link between the UAVs and the IoT devices
is given by:

L̄i,uc = PLoSi,ucL
i,uc

LoS + PNLoSi,uc Li,u
c

NLoS (4)

Moreover, the average channel gain of the communication
link between IoT devices and UAVs is ḡi,uc = (1/L̄i,uc).
The data rate for data transmission between IoT devices and
UAVs is expressed as:

ρi,uc = Bi,uc log2

(
1+ Pr

σ 2

)
, (5)
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where Bi,uc is the transmission bandwidth between the UAV
uc and IoT device i, Pr is the received power at the UAV
uc, and Pr = Pi × ḡi,uc , Pi is denoted to the transmit power
at the device i, and σ 2 represents the thermal noise power.
Hence, to achieve reliable data collection at UAVs from IoT
devices at each time slot t, the following condition needs to
be satisfied:

ρti,uc ≥ ρth (6)

B. DEVICE-TO-DEVICE (D2D) TIME DELAY MODEL
D2D time delay is the time required to complete the data
collection and send it to the central station. The completion
time contains the time required to collect the data from IoT
devices at time slot Ttdata and the time required by the UAVs
to move between two successive time-slots t and t + 1 and
denoted by Ttuc , and they can be expressed by the following
expressions:

Ti,u
c

data[t] =
∑

i∈N

Ki
ρti,uc

(7)

Tuc [t] = ‖Quc [t + 1]− Quc[t]‖
V

, t = 1, . . . ,M, (8)

where Ki is the IoT’s data packets and V is the average speed
of uc-th UAV traveling between two consecutive locations.
Then, the total completion time of uc-th UAV mission is
given by:

Tttot = |Tmax −
(
Ti,u

c

data[t]+ Tuc [t]
)
| (9)

In each cell, the varying number of IoT devices necessitates
different visitation frequencies for data upload. We consider
the time UAVs spend traversing through IoT devices and the
time to collect the data. During each time slot, the maximum
flight time of UAVs is reduced by the time required
for traversal and data collection. To adhere to completion
time constraints and encourage UAVs to prioritize strategic
locations with higher demand services, thereby enhancing
the total EH of IoT devices, we impose the completion time
constraint as follows:

Tttot ≤ Tmax, (10)

where Tmax is the maximum time for UAVs to complete their
mission, which is updated at each movement of UAVs.

C. ENERGY CONSUMPTION MODEL
UAVs have limited energy capacity as a result of their con-
strained onboard batteries. The battery lifespan is influenced
by various factors, such as the UAV’s energy source, type,
weight, and speed. Usually, the UAV’s energy usage can be
categorized into three main components: propulsion energy,
communication energy, and WPT energy. Communication
energy is the energy required to configure the communication
link to the IoT devices and data collection through the uplink
and the energy of the dissemination to the central station
that is taken at each time step of UAV’s movement. The

communication energy is smaller than the propulsion and
WPT energy [30]. To model the propulsion energy, we utilize
the propulsion-power model designed for rotary-wing UAVs
as in [30]:

εtprop,uc = ηi

√√√√
(√(

1+ v4
uc

4v4
0

)
− v2

uc

2v2
0

)

︸ ︷︷ ︸
Induced Power

+ ηb
(

1+ 3v2
uc

v2
tip

)

︸ ︷︷ ︸
Blade Power

+ 1

2
f0ϕrDav

3
uc

︸ ︷︷ ︸
Parasite Power

, (11)

where ηi refers to the blade profile power and ηb refers to the
induced power, v2

tip indicates the speed of the UAV’s rotor
blade, v0 is the rotor induced velocity, f0 refers to fuselage
drag ratio, r refers to the rotor solidity, ϕ refers to the air
density, and Da is the area of the rotor disc. To calculate
the hovering power consumption, equation (11) is used with
zero speed of the UAV, i.e., vuc = 0, as follows:

εt(hov,uc) = ηi + ηb. (12)

Therefore, the propulsion energy consumption of UAV uc at
time slot t is obtained as follows:

εt(uc,prop) =
{
ε(prop,uc) × t if vuc > 0
ε(hov,uc) × t if vuc = 0.

(13)

Moreover, the communication energy consumption is
the total energy consumed by each UAV to collect the
data from the IoT devices, and the energy required to
disseminate the updated state with the central station Bc.
If the distance between a UAV and an IoT device or the
distance between the UAV and the central station is large,
more communication energy is consumed, and hence, the
energy consumption will be depleted quickly, and a UAV
with sufficient power traverses this cell to provide services.
Then, the communication energy consumed by all the UAVs
(in Joules) in the swarm is expressed as:

εt(uc,comm) =
∑

u∈U
P(uc,comm)

(
Ti,u

c

data[t]+ TBc,ucdata [t]
)
, (14)

where P(uc,comm) is the UAV’s communication power,
TBc,u

c

data = Su
ρtBc,uc

is the time required to transmit the UAVs’s

state to the central station, Su is the UAV’s state to be shared
with the central station, and ρtBc,uc is the data rate required
to transmit the UAV’s state to the central station Bc. This
energy is designed to calculate the energy consumed by the
UAV to collect data, and disseminate UAV’s state to the
central station while focusing on strategic locations. At each
time slot t, at least one strategic location is visited by one
UAV.
The UAVs navigate the area and work in a full duplex

scenario. The UAVs transmit wireless power to the IoT
devices with constant transmit power Pwpt in the downlink
channel and collect information in the uplink channel from
the IoT devices that exist within the UAVs’ maximum
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coverage power, i.e., all of the IoT devices within the
coverage of the UAV receives wireless power from that UAV
∀�dti ≤ Dmax, where Dmax is the maximum radius coverage
of the UAV; hence, the received power at the IoT device i
at time slot t can be expressed as follows [3]:

Ptr = Pwpt |ḡti,uc |2,∀�dti ≤ Dmax. (15)

Thus, the UAVs energy consumption for WPT can be
calculated as [3]:

εt(uc,wpt) =
∑

uc∈U
Ptrμwpt, (16)

where μwpt is the time required to deliver wireless power to
the IoT devices. Hence, the total UAVs’ energy consumption
at time slot t can be calculated as follows:

εtuc,tot = ε(uc,prop) + ε(uc,comm) + ε(uc,wpt). (17)

Due to their limited battery lifespan, UAVs need to have
sufficient energy to accomplish their mission; hence, we add
a constraint to ensure sufficient energy is available for the
UAVs during their mission. The battery status �t

uc at each
time slot t can be obtained as follows:

�t
uc = �t−1

uc − εtuc,tot, (18)

where �t−1
u is the battery level at the end of t − 1. Let

�0
uc denote the battery capacity before the mission starts, in

which �0
uc = �init

uc +�min
uc , where �init

uc is the battery capacity
of the UAV that is assigned for the mission, and �min

uc is the
minimum battery level for the UAV to return to its central
station, therefore, �t

uc ∈ [�min
uc ,�

0
uc ].

For the UAVs to satisfy the constraint of the maximum
energy consumption in the one-time frame, the total energy
consumption of UAVs in time slot t should be greater than
the minimum energy conceptions of the UAVs, i.e., UAVs
need to have sufficient energy to complete the mission as
expressed in the following constraint:

�t
uc ≥ �min

uc , ∀uc ∈ U,∀t ∈ M̄. (19)

D. ENERGY HARVESTING MODEL
For a practical scenario of the EH model, we consider the
non-linear EH model [31]. Compared to a linear model, a
non-linear model considers the practical limitations of the
circuits. The EH of the RF-EH circuit can be expressed
by [3]:

Pharvr,i =
Plimeab − Plime−a(Ptr−b)

eab1+ e−a(Ptr−b) , (20)

where Plim is the threshold of the output DC power, the
parameters a and b refer to the characteristics of the EH
circuits.
The total EH of IoT devices in one time frame T that is

received from the swarm of UAVs can be expressed as:

Pharvr,tot =
∑

i∈N
δuc,i,q . P

harv
r,i ,∀uc ∈ U,∀q ∈ C, (21)

where δu,i,q is a binary constraint to encourage UAVs to pass
through strategic locations and exploit their energy to collect
data from the IoT devices, and it is defined as:

δuc,i,q =
⎧
⎨

⎩

1, if UAV uc is collecting data from IoT i that
is in strategic location q,

0, otherwise.
(22)

IV. PROBLEM FORMULATION
The main objective is to maximize the total EH of the
ground IoT devices presented in equation (21) by finding the
optimal positions of UAVs while respecting the constraints
of the maximum completion time, minimum UAVs’ energy
consumption, and minimum achievable data rate for reliable
data collection. The problem formulation is expressed as
follows:

PPP = max
Q

Pharvr,tot (23)

subject to:

C1: ρti,uc ≥ ρth, (23a)

C2: Tttot ≤ Tmax, (23b)

C3: �t
uc ≥ �min

uc , ∀uc ∈ Ū,∀t ∈ M̄, (23c)

C4: duc,kv ≥ 2Dmax, ∀uc, kv ∈ Ū, (23d)

C5:
N∑

i=1

δuc,i,q ≥ 1,∀uc ∈ Ū,∀q ∈ C̄, (23e)

C6: Q(0) = Q(M), (23f)

δuc,i,q ∈ {0, 1} (24)

The objective function presented in Equation (23) is
designed to maximize the total EH of the distributed IoT
devices. It achieves this by determining optimal UAV paths
that encompass navigating to cover the area, delivering
wireless power, and collecting data from IoT devices,
with a specific focus on visiting strategic locations. The
mission needs to adhere to several constraints, including
the maximum completion time, the minimum data rate,
and the maximum energy consumption of UAVs to ensure
reliable data transmission from IoT devices to airborne
UAVs. The optimization problem presented in Equation (23)
is classified as an NLP problem due to the non-linearity
inherent in Equations (23), (23a), and (23c).
The constraint defined in Equation (23a) is imposed to

guarantee that the transmission data rate surpasses a specified
threshold, ensuring the reliable transmission of data packets,
which mainly depends on the distance between the UAV and
the IoT device. When the distance is very large, more EH to
IoT device is required, causing quick consumption of UAV’s
energy and channel gain between the UAV and the IoT device
are affected, causing degradation in data rate as indicated
in Equation (5), hence a violation of constraint (23a). In
case of violating the constraint in Equation (6), a UAV
with sufficient energy and time visits this cell to provide
services to the IoT device in which it takes more time and
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TABLE 2. Symbols list.

energy than closer IoT devices to upload its data to the
UAV successfully. Simultaneously, the constraint specified
in Equation (23b) is established to ensure that UAVs operate
within their maximum duration before returning to the central
station. The energy consumption of the UAV is bounded,
leading to the formulation of constraint (23c), which ensures
that the UAV’s energy consumption remains sufficient for
its mission, encompassing the delivery of WPT and data
collection. Additionally, constraint (23d) is introduced to
maintain a safe distance between UAVs, mitigating the risk
of collisions within the UAV swarm. The constraint presented
in Equation (23e) is devised to guarantee that, at each time
step or time slot t, at least one UAV visits one of the strategic
locations. Lastly, The constraint in Equation (23f) indicates
that the starting point of the UAVs and the endpoint is the
same.
Solving the objective function outlined in Equation (23)

poses a challenge when employing conventional optimization
techniques, primarily due to the non-linearity inherent in
constraints (6) and (19). Consequently, we opt for a real-
time-based solution, employing meta-RL to address both
the objective function and its associated constraints. The
subsequent sections will elaborate on the application and
methodology of this real-time solution.

V. META-REINFORCEMENT LEARNING FOR EFFICIENT
ENERGY HARVESTING AND UAVS PATH PLANNING
In this section, we present the system model of our adopted
solution to address the optimization problem (23) utilizing a
deep learning technique. Conventional RL algorithms require
a specific number of episodes to learn the optimal policy
and converge into the maximum expected reward. With

any change in the environment, the agent has difficulties
converging so quickly to the maximum rewards. Due to
the dynamic environment of our adopted scenario, in which
UAVs join and disconnect many times due to the continuous
time of working, hence, we adopt a lightweight solution
using meta-RL to solve the problem of dynamicity in the
environment, namely meta-RL. Meta-RL proves to be an
effective technique for handling dynamic environments and
learning optimal policies with fewer episodes compared to
traditional deep learning methods [10]. Given the dynamic
nature of the UAV swarm environment in post-disaster
scenarios, where UAVs can depart and join the swarm inter-
mittently (e.g., for recharging), our adopted approach needs
to exhibit flexibility in accommodating these unforeseen
changes while adhering to some critical constraints during
the process of delivering wireless power and collecting data
from IoT devices. Due to the complexity of the problem (23),
conventional RL algorithms are slow to converge again to
respect the constraints of path planning. Consequently, meta-
learning is adopted to quickly cope with new environments
efficiently across related tasks. Specifically, a model is
trained to acquire the capability to learn new tasks effectively
and converge rapidly, demonstrating superior efficiency in
handling a variety of related tasks compared to focusing
solely on a single task.
Meta-RL applies meta-learning to RL and aims to make

the agent learns the general policy of related tasks. A task
consists of a set of states and, actions and rewards [10]. In
particular, meta-RL agent does not aim to learn the optimal
policy of a specific task; instead, they aim to learn the general
policy that can be applied to new environments with the
same family of tasks. The benefit is that it enables the agent
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to quickly reach the optimal policy of new environments
with a minimum number of episodes.
In our approach, each episode encompasses a series of

time steps, representing a single time frame T , during which
the UAVs in the swarm depart from the central station and
complete one round. These time steps correspond to the
time slot t, and at each step, the algorithm has the task of
choosing the best positions for UAVs. The decision-making
process, aimed at selecting the optimal positions for UAVs
within the swarm, is guided by multiple considerations.
These include the imperative to maximize total EH while
adhering to constraints related to UAVs’ energy consumption
and ensuring successful data transmission from ground
IoT devices to UAVs within the allotted time duration of
the UAVs. Our approach is conceptualized as a Markov
Decision Process (MDP), denoted by (S,A,P,R, γ ). In this
framework, S encapsulates the environment state, A signifies
the action vector representing the path planning of the UAVs,
P characterizes the probability of possible transitions, R
denotes the rewards associated with each action taken by
the agent, and γ is dedicated to the discount learning factor.
This MDP formulation provides a structured framework for
decision-making within the dynamic environment of UAV
swarm navigation.

A. ENVIRONMENT MODELING
The environment in our approach is represented by a swarm
of UAVs navigating a designated area, with a specific
emphasis on strategic locations. Let us designate π as the
optimal stochastic policy that the agent endeavors to learn,
where π : S× A→ [0, 1]. The meta-RL algorithm receives
information from a centralized agent that interacts with the
environment, selecting action A, receiving either a reward
or penalty for that action, and incrementally refining the
optimal policy π∗ based on the accumulated reward R at
each time step t. The algorithm aims to attain the optimal
policy π∗ with maximum vπ

∗
(s) for all parameters s ∈ S.

The values within the set vπ (s) reflect the feedback from
the reward subsequent to executing action a in state s and
can be elucidated as:

vπ (s) = Eat,st+1

( ∞∑

k=1

γ k−tRk|St = s

)
, (25)

where E represents the expected value.

B. STATES AND ACTIONS
The RL agent requires informative cues about the environ-
ment to enhance the system’s performance. Our approach
employs a state vector encompassing pivotal parameters:
the positions of UAVs, strategic locations, the record of
visited cells in the grid, the number of IoT devices in each
cell, the index of the UAVs, and the energy consumption
of all next paths. The agent’s action involves determining
trajectory directions for UAVs, with a specific emphasis on
strategic locations. These actions are chosen to maximize the

FIGURE 2. System Model for A3C algorithm for a swarm of UAVs covering an area
with strategic locations. The UAVs mission is WPT in the downlink channel and WIT in
the uplink channel.

objective function defined in Equation (23). This function
seeks to optimize total EH, considering critical parameters
like UAV energy consumption, maximum duration time,
and minimum data rate for reliable packet transmission.
Figure 2 illustrates the asynchronous advantage actor-critic
framework. The adopted system is a centralized framework
where the agent receives the environment, state, and action
for processing them, facilitating fast convergence and rapid
learning of the optimal policy.
The state S contains the details that affect the movements

of UAVs in the grid and help the agent learns the optimal
policy by choosing the correct action. Therefore, at each
time step, the agent receives the information that contains
the following details:
• Qucu = {Quc1 , . . . ,Q

C
uu}: the position of UAVs in the

grid,
• Pu1 = {Pu1 , . . . ,Puu}: the UAVs paths in each time
frame T ,

• q = {q1, . . . , qn}: the position of strategic location in
the grid.

• Ni = {N1, . . . ,NC}: the number of IoT devices at each
cell in the grid.

• εtot = {ε1, . . . , ε8}: the energy consumption that the
UAV will consume in all neighboring cells,

where qn indicates the index of the strategic locations in the
grid.
Let us define the action taken by the agent to learn

the optimal policy of actions A∗(t) = {a∗1, . . . , a∗8}. The
action of UAV path planning at a time slot or time step t,
which represents the directions of UAVs that can take in
the neighboring cells, can be written as A(t) = {a1, . . . , a8},
which are up, down, left, right, up-right, up-left, down-
left, down-right. The selection of the optimal policy can be
expressed as:

A∗(t) = argmaxaiA(t) (26)
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C. REWARD FUNCTION
The reward function plays a pivotal role in guiding the
algorithm toward learning the optimal policy. In our algo-
rithm, the agent receives a positive reward when the UAV’s
direction is selected to maximize EH and an additional
reward when visiting one of the strategic locations. The
algorithm focuses on finding UAV paths that maximize EH
while adhering to the constraints outlined in Section IV.
Specifically, a positive reward is granted when all constraints
outlined in Equation (27) are respected. Conversely, the agent
incurs a negative reward if any of the constraints specified
in Equation (27) are not respected. The imperative for UAVs
is to traverse through strategic locations and provide better
services. The instantaneous reward function, encapsulating
the total reward for adhering to the constraints of our adopted
solution, can be expressed as follows:

Rt = C1× C2× C3× C4× C5 (27)

Equation (27) outlines the total rewards that the algorithm
aims to maximize by selecting the appropriate action for
the UAV swarm. The algorithm receives a positive reward
when all constraints are adhered to, and in case of any
violations, penalties are incurred. C1 represents the objective
function in equation (23), incentivizing the algorithm to
choose the direction that maximizes EH among all available
paths. C2 corresponds to the constraint in equation (23a),
ensuring the minimum data rate for transmitting data from
the IoT device to the UAV. C3 pertains to the constraint in
equation (23b), indicating the maximum duration of UAVs
in a one-time frame T . Therefore, if all maximum time Tmax
is consumed, i.e., violating this constraint, the UAV returns
back to the central station even if it has not completed its
maximum steps for the episode by the minimum energy for
safe return. The agent considers this violation, and a penalty
is received as feedback of this episode. The UAV, with
enough time, needs to traverse through this cell and provide
services to the IoT devices. C4 refers to the constraint
established in equation (23c), ensuring that UAVs operate
within their energy consumption capabilities, guaranteeing
they have sufficient energy to accomplish their mission.
Therefore, if any UAV does not have sufficient energy to
accomplish the mission, i.e., constraint violation, the UAV
returns to the central station even if it has not completed
its maximum steps for the episode, and the agent receives
a penalty pointing to energy constraint violation. The agent
will learn from this path that it needs more energy and causes
violation; hence, another UAV with strong energy traverses
through this cell and provides services. C5 addresses the
constraint in equation (23d), ensuring that UAVs maintain a
safe distance during navigation to prevent collisions. When
all these constraints are observed, the agent receives a
positive reward, signifying that a commendable action was
taken, encouraging UAVs to navigate within their capabilities
and aligning with practical considerations for flying UAVs.
The UAV swarm needs to traverse strategic locations,

deliver wireless power, and collect data from IoT devices.

Each strategic location carries various service demands based
on the number of IoT devices within the cell and its
importance. This demand service factor represents the QoS in
these strategic locations and signifies how satisfied strategic
locations are with the services coming from the UAV swarm.
As UAVs traverse a strategic location, they fulfill a portion
of the demand service, denoted by φq. Consequently, we
define the rewards for satisfying the number of visits to these
strategic locations, as done in [32], by:

Rq = 1

1+∑q
i=1 φq(t)

, (28)

where q is the set of strategic locations.

D. RL AGENT MODELING
The agent aims to maximize their rewards by experimenting
with multiple actions in the environment. Through the
interaction of actions and the environment, the agent learns
the optimal policy π∗ from their surroundings. The optimal
policy is achieved by formulating a strategy encompassing
the optimal sets of action-state values Q(St,At). These values
assist the agent in understanding how to anticipate future
rewards by selecting the best action from the available
optimal set of actions At. The action-value Q(St,At) of the
agent signifies the performance metrics of the chosen action
that the RL agent should take in the subsequent same states.
It can be represented as:

Q(st, at) = Eat,st+1

( N∑

k=1

γ kRt+k|St = s,At = a

)
, (29)

where γ denotes the discount factor and γ ∈ [0, 1] which
indicates the connection of the immediate reward to the long-
term rewards. The transitions between states-actions can be
calculated by [19]:

Q(s, r)← Q(s, r)+ α
(
Rt + γ max

a
Q̂(s, a)− Q(s, a)

)
, (30)

where α indicates the learning factor.
The agent is the combination of actor-critic algorithm

in which the actor learns the optimal policy through
dynamic interaction with the environment and the critic
learns to evaluate those actions to improve the performance.
The central agent exists at the central station that shares
information with the UAVs about the positions of other
UAVs, remaining energy and time, and the positions of the
IoT devices in the grid, leading to efficient performance
making sure that the UAVs work together to improve the
system’s performance.
Algorithm 1 delineates the steps of the meta-RL algorithm

to learn the optimal policy and respect the constraints related
to the objective function in (23). Each episode represents a
one-time frame T , which indicates the paths of all UAVs until
returning to the central station to upload the collected data
to the central station. Also, each time slot represents a one-
time step for the UAVs during one round of their mission.
The algorithm aims to select the action that maximizes the
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Algorithm 1 Meta-RL With Asynchronous Advantage
Actor-Critic Algorithm
1: Initialize: define empty set: Eharv
2: Initialize: Q-network parameters θ and θv.
3: Initialize: Tmax initial Time for the mission.
4: Initialize: old Q-network parameters θ ′ and θ ′v
5: Output: UAVs trajectory paths
6: for Each r ∈ R episodes do
7: Gradient initialization: dθ ← 0 and dθv← 0
8: Q-network initialization: θ ′ = θ and θ ′v = θv
9: for Each time slot t ∈ M do
10: for Each UAV uc ∈ {1, . . . ,U} do
11: S(u) = {QuC [t],Pu[t], quC ,N

C
i , ε

C
tot}

12: choose action Ai based on ε
13: if constraints in Equation (27) then
14: Rt+ = 1
15: else
16: Rt+ = 0
17: if Suc [t] ∈ qCu then
18: Eharv + = Pharvr,tot , Equation (23)
19: Rt = Rt + Rq, Equation (28)

20: UAV’s consumed time Equation (9)
21: UAV’s consumed energy Equation (18)
22: Update Tmax for the UAV uc

23: Observe Si+1
24: Observe Rt
25: System reset with new UAVs positions
26: Save (Si,Ai, ri, Si+1) in replay memory
27: Taking a mini-batch of (Si,Ai, ri, Si+1)

28: Gradient accumulation wrt θ ′ : dθ ← dθ+
∇θ ′ logπ(ai|si; θ ′)(R− V(si; θ ′v))

29: Gradient accumulation wrt θ ′v : dθ ← dθ+
∂(R− V(si; θ ′v))2/∂θ ′v

30: Asynchronous update of θ using dθ and θv
using dθv

total reward with the help of the details provided in the state
vector. If the agent chooses the right action that satisfies all
the constraints designed in equation (27), it receives a reward
of 1; otherwise if any constraint is not respected, a penalty
of 0 is added to the total reward function [lines 13-16]. Each
strategic location has a different demand service, indicating
the number of IoT devices inside it that need WPT to upload
their data to the UAVs. Hence, each UAV satisfies part of
this demand service each time it visits a strategic location
as indicated by equation (28), and the UAVs collaborate to
satisfy their demand services. If the agent traverses through
one of the strategic locations, the demand service it satisfies
is added as a reward to the total reward function, and the total
EH of the strategic location is calculated [lines 17-19]. Then,
the remaining time and energy of the UAVs are calculated to
be checked in the next movements as to whether the UAVs
have sufficient energy and time to deliver WPT and collect
data [lines 20-21]. The max time for UAV to provide services

is updated to respect the constraint of maximum duration
of UAVs [line: 22]. Then, the reward, action, and state are
observed as feedback to the agent to learn the optimal policy
that leads to the maximum reward. We emphasize that in
traditional RL algorithms, the agent receives the reward just
only as a reward at the end of each time step, while meta-RL
receives the action, state, and outcome reward, so it learns
faster and adapts itself to the new environments from the
same type quicker than traditional RL algorithms.

VI. SIMULATIONS AND ANALYSIS
This section details the simulations conducted to test and
evaluate the performance of the proposed system model.
We compute the maximum thresholds for rewards, EH, and
data rates as benchmarks to compare against the adopted
algorithm, enriching the comparative analysis. Assuming all
constraints are respected, i.e., the UAV swarm has sufficient
energy, time, and data rate to deliver wireless power and
collect data. The maximum threshold measures the maximum
EH, reward, and data rate that all UAVs

∑U
uc=1 u

c can
achieve in a one-time frame T . In particular, the maximum
threshold calculations are based on the number of UAVs
and IoT devices and the maximum values for rewards, EH,
and data rates. Our proposed meta-RL solution is compared
with one state-of-the-art RL-based algorithm represented
by the DQN algorithm. The DQN algorithm leverages a
replay buffer to determine the optimal policy from all
past experiences [33]. We also compare our adopted Meta-
RL algorithm with PSO and Greedy algorithms, outlined
in Algorithms 2 and 3, respectively. In the PSO solution,
the number of particles corresponds to the UAVs’ paths
within the grid, and it assesses paths that yield the best
EH among available solutions, as outlined in Algorithm 2.
Consequently, the PSO algorithm needs to examine all
positions and follow the position with higher EH to attain the
optimal solution. However, acquiring the optimal solution
through PSO is challenging and time-consuming, given that
UAVs depart from the central station via different particles,
covering the grid in 8 different directions. Therefore, the
number of expected paths they need to check for the one-
time frame is 8C×U possibilities, where C is the number of
cells, and U is the number of UAVs, resulting in an extensive
number of possibilities. To simplify, we considered 1000
different particle positions within the covered area for PSO
implementation. Conversely, the greedy solution examines
the best EH among neighboring cells as UAVs traverse the
grid, selecting the direction that yields the optimal result, as
depicted in algorithm 3 [lines: 8-13].

The simulation analysis commences by presenting the
total EH output of IoT devices from our adopted meta-
RL solution, compared with the three alternative solutions.
Subsequently, the total energy consumption of UAVs is
analyzed, and the percentage of satisfaction of demand
services is presented. The algorithm’s adaptability to
changes in the number of UAVs during training is also
tested.
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Algorithm 2 PSO Algorithm
1: Initialize: vel,Pos, iteration, pbest, gbest, bestfitness
2: Initialize: total EH Etot
3: Initialize: vector contains UAVs positions as Uuc
4: Initialize: vector contains strategic location positions

as q
5: Output: UAVs paths with highest EH
6: Generate random particles (P) with cell numbers
7: for Each itr ∈ 1000 do
8: for Each particle (i) do
9: Calculate fitness of Equation (23)
10: Update pbest, gbest
11: for Each time slot t ∈ M do
12: for Each UAV uc ∈ {1, . . . ,U} do
13: Update vel,Pos
14: if Pos > limit then
15: limit = pos
16: Calculate fitness of Equation

(23, bestfitness)
17: Update pbest, gbest
18: Uuc [t] = index(pbest)
19: if Uuc [t] ∈ q then
20: Etot+ = bestfitness
21: UAV’s consumed time Equation (9)
22: UAV’s consumed energy Equation (18)
23: Update Tmax for the UAV uc

24: system reset with new UAVs positions

Algorithm 3 Greedy Algorithm
1: Initialize: empty list of neighboring cells as Nne
2: Initialize: total EH Etot
3: Initialize: vector contains UAVs positions as Uuc
4: Initialize: vector contains strategic location positions

as q
5: for Each itr ∈ 1000 do
6: for Each time slot t ∈ M do
7: for Each UAV uc ∈ {1, . . . ,U} do
8: Nne = EH of neighboring cells of uc[t]
9: maxEH = 0
10: for i ∈ Nne do
11: if i ≥ maxEH then
12: maxEH = i
13: Uuc [t] = index(maxEH)
14: if Uuc [t] ∈ q then
15: Etot+ = maxEH
16: UAV’s consumed time Equation (9)
17: UAV’s consumed energy Equation (18)
18: Update Tmax for the UAV uc

19: system reset with central station UAVs positions

A. SIMULATION SETUP
In our approach, we conducted simulations on an area
measuring 480 m × 480 m, divided into 36 equal-sized cells,

TABLE 3. Simulation parameters.

to test the proposed system model. Within these 36 cells,
three strategic locations were positioned at different places on
the grid. In the simulation configurations, unless otherwise
specified, we employed 3 UAVs and 400 IoT devices
distributed randomly across the covered area. To ensure a
fair comparison of the algorithms used in the simulations,
we maintained consistent input configurations, including
the same number of episodes, UAVs, and hardware for
conducting experiments. The key parameters are summarized
in Table 3. Each experiment was conducted over 50,000
episodes and averaged over 50 episodes for robust evaluation.

B. NUMERICAL RESULTS AND SIMULATION ANALYSIS
Figure 3 illustrates the frequency of visits to strategic and
non-strategic locations within a single time frame T for
various algorithms. All approaches successfully encourage
UAVs to visit strategic locations more frequently, meeting
service requirements in those crucial areas. The meta-RL
solution in Figure 3(a) notably outperforms other solutions
by prioritizing visits to strategic locations. Conventional RL
solutions, represented by the DQN algorithm in figure 3(b),
achieve comparable results to the PSO algorithm presented in
figure 3(c). Both DQN and PSO algorithms show compara-
ble and superior results to the greedy solution in figure 3(d).
The key distinction lies in the fact that deep learning-based
solutions endow the agent with knowledge of the entire paths,
maximizing EH and thereby enhancing rewards and overall
system performance. The PSO solution requires the number
of participants to equal the number of cells; each participant
has eight paths, resulting in a challenging implementation
with 8C × U possibilities, where C is the number of cells,
and U is the number of UAVs. Therefore, we considered
1000 movements of C participants, showing results better
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FIGURE 3. Comparing the number of visits to strategic locations with nonstrategic locations in one time frame T for different algorithms. All the algorithms pass through the
strategic locations, providing better services than nonstrategic locations.

than the greedy solution. In contrast, the greedy solution
only possesses information about the next step, resulting in
inferior performance compared to competitive solutions.
Figure 4 compares the performance of different algorithms

in training and converging to the maximum demand service
for the deep learning-based solutions. Demand service
satisfaction evaluates how effectively the algorithms can
meet the diverse demands of strategic locations for visits
and service provision. As depicted in the figure, the meta-
RL algorithm demonstrates superior convergence compared
to the conventional RL algorithm. This outcome assesses
the agent’s ability to learn the optimal policy accurately,
maximizing rewards. Initially, the agent explores various
experiments and subsequently commences learning the
optimal policy until converging to the maximum expected
reward.
Figure 5 presents the outcomes of the total EH achieved by

different algorithms. The figure illustrates the results of the
objective function formulated in equation (23). During the
exploration phase, the agent explores different actions and
searches for actions that maximize the EH of IoT devices.
Subsequently, they converge into the optimal policy, meaning
UAVs have learned the optimal positions that maximize EH.
Figures 6 and 7 present a comparison of different algo-

rithms in terms of EH in strategic and nonstrategic locations
while varying the number of UAVs in the swarm. In
both cases, as the number of UAVs increases, EH at IoT
devices also increases. The maximum expected EH occurs

FIGURE 4. Demand service satisfaction comparison of different algorithms. The
convergence of the algorithms to the maximum expected value tests the ability of the
agent to learn the optimal policy of respecting the constraints. Meta-RL converges
with higher accuracy than the DQN algorithm.

when all IoT devices receive sufficient WPT from UAVs,
enabling them to transmit all their data to the UAVs.
Meta-RL demonstrates performance closer to the maximum
EH compared to competitive algorithms, aligning with the
primary objective of the problem. Specifically, Meta-RL
tends to harvest more energy than DQN, PSO, and the
greedy solution in strategic locations and less EH than
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FIGURE 5. Average total EH in strategic locations of different algorithms. The agent
spends a few episodes exploring different actions and then learn the optimal policy,
which is the maximum EH of IoT devices, which is the main objective of the
optimization in Equation (23).

FIGURE 6. Average total EH comparison of different algorithms in strategic
locations in terms of changing the number of UAVs. The meta-RL algorithm provides
better results regarding the IoT EH which is the highest among the competitive
algorithms, and closest to maximum EH. Also, more IoT EH is achieved when the
number of UAVs increases.

in nonstrategic locations. The DQN algorithm provides
comparable EH results to the PSO algorithm, outperforming
the greedy solution.
Similarly, figures 8 and 9 compare the meta-RL solution,

traditional RL algorithm, PSO, and greedy solution in terms
of UAVs’ energy consumption in strategic and nonstrategic
locations as the number of UAVs varies in the swarm. As
depicted in the figures, meta-RL tends to expend more energy
than others in strategic locations and demonstrates lower
energy consumption in nonstrategic locations. This behavior
aligns with its priority to serve strategic locations, which is
the main objective of the problem.
Figure 10 illustrates the average total rewards obtained

by the deep learning-based algorithms. The average total
rewards indicate the convergence of the agent to learn the
optimal policy, achieved when all the constraints outlined

FIGURE 7. Average total EH comparison of different algorithms in nonstrategic
locations in terms of changing the number of UAVs. The meta-RL algorithm provides
better results regarding the IoT EH, the lowest among the other algorithms. Also, more
IoT EH is achieved when the number of UAVs increases.

FIGURE 8. UAVs’ energy consumption comparison of different algorithms in
strategic locations in terms of changing the number of UAVs. The meta-RL algorithm
provides better results regarding the UAVs’ energy consumption, which is the highest
among the other algorithms, i.e., it is successfully exploiting their energy in strategic
locations. Also, more UAVs energy consumption is consumed when the number of
UAVs increases.

in equation (27) are satisfied. The agent explores different
states initially, progressively learning the optimal policy
that yields higher rewards. Our adopted meta-RL algorithm
demonstrates comparable convergence to the conventional
RL algorithm.
Figure 11 compares different algorithms in terms of

changing the UAV’s transmit power. As the UAV’s transmit
power increases, the EH of IoT devices also increases
proportionally. Higher UAV transmit power enhances the
resources available, leading to increased EH at IoT devices.
The meta-RL algorithm achieves results closer to the
maximum EH and outperforms all competitive solutions.
The conventional RL solution also outperforms the PSO
algorithm and the greedy solution, as the agent learns the
optimal policy of UAV trajectory paths that maximize EH.
The key distinction lies in the fact that the RL agent and
the PSO participant have knowledge about all paths that
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FIGURE 9. UAVs’ energy consumption comparison of different algorithms in
nonstrategic locations in terms of changing the number of UAVs. The meta-RL
algorithm provides better results regarding the UAVs’ energy consumption, which is
the lowest among the other algorithms, i.e., it is successfully exploiting their energy in
strategic locations. Also, more UAVs energy consumption is consumed when the
number of UAVs increases.

FIGURE 10. Episode reward comparison of different algorithms. The agent starts
exploring different actions until learning the optimal policy that increases the reward
designed in Equation (27).

maximize EH, while the greedy solution only has knowledge
about the next step.
Figure 12 compares various algorithms regarding their

success in collecting all data from IoT devices with varying
numbers of UAVs in the swarm. As the number of UAVs
increases, more data can be collected from IoT devices.
Meta-RL excels in data collection, surpassing traditional
RL, PSO, and the greedy solution. Specifically, with 7
UAVs, Meta-RL achieves approximately 90% data collec-
tion, outperforming DQN, PSO, and the greedy solution,
which achieve 85%, 78%, and 50%, respectively. Figure 13
compares different algorithms in terms of the total sum
rate achieved by each algorithm as the channel bandwidth
increases. The plot illustrates how the total sum rate changes
with varying channel bandwidths. As the channel bandwidth
increases, the total sum rate also increases, indicating

FIGURE 11. Average total EH comparison of different algorithms in terms of
changing the UAV’s transmit power. As the UAV’s transmit power increases, the IoT EH
increases simultaneously. Meta-RL solution achieves the highest EH of IoT among the
competitive algorithms, and closest solution to the maximum EH of IoT devices.

FIGURE 12. Comparing different algorithms based on the percentage of
successfully collecting data from IoT devices as the number of UAVs increases in the
swarm. The plot illustrates how well each algorithm performs in terms of data
collection efficiency as the number of UAVs varies in the swarm.

a stronger channel capable of collecting more data. For
instance, with a 3 MHz channel bandwidth. The maximum
threshold sum-data rate for 3 UAVs is 269.95 Mbpd.
Moreover, the average sum rate for Meta-RL and DQN is
246.39 Mbps and 243.04 Mbps, compared to 164.89 Mbps
and 111.94 Mbps for the PSO and greedy solution. Meta-RL
achieves comparable results to DQN across all bandwidth
scenarios. PSO consistently outperforms the greedy solution,
as UAVs in the greedy solution only have knowledge about
the next step of maximum total sum rate compared to deep
learning-based solutions and PSO algorithms.
Figure 14 compares different algorithms in terms of total

EH and total sum rate as the number of cell sizes increases.
The plot illustrates how these metrics change with varying
cell numbers in the grid. As the number of cells increases,
both total EH and total sum rate decrease, indicating the
need for more UAVs to enhance EH and data transmission
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FIGURE 13. Comparing various algorithms based on the total sum rate of
transmitting data to the UAVs as the channel bandwidth increases. The plot provides
insights into the performance of each algorithm in terms of the total data rate during
transmission.

rates. Meta-RL consistently outperforms DQN across all
cell number scenarios in both total EH and data rates.
DQN algorithm, in turn, surpasses PSO and the greedy
solution. Furthermore, PSO outperforms the greedy solution
in all scenarios. For instance, with a grid size of 7 × 7,
the maximum threshold of EH and sum-rate for 3 UAVs
are 14.83 mJ, 78.52 Mbps, respectively. Meta-RL achieves
12.79 mJ and 74.29 Mbps for total EH and total sum rate,
respectively. In the same scenario, DQN achieves 11.12 mJ
and 64.80 Mbps, PSO achieves 9.75 mJ and 50.84 Mbps,
and the greedy solution achieves 6.42 mJ and 38.01 Mbps
for total EH and total sum-rate, respectively.
Figure 15 demonstrates the results of the total EH of

the different algorithms when changing the number of IoT
devices in the grid. When the number of IoT devices
increases, the total EH increases, pointing out that UAVs can
deliver more wireless power to the increased IoT devices in
the grid. In particular, the total EH improves from 7.85 mW
to 19.05 mW when the number of IoT devices increases
from 200 to 500 IoT devices in the grid for the maximum
threshold when using 3 UAVs. Meta-RL outperforms the
competitive algorithms and achieves closer results to the
maximum threshold. More specifically, meta-RL outperforms
traditional RL represented by DQN, where meta-RL achieved
17.59 mW compared to 16.05 mW for the DQN algorithm,
14.65 mW, and 12.32 mW for PSO and greedy solution
when using 500 IoT devices. The DQN algorithm achieves
better results than PSO and is a greedy solution. Moreover,
the PSO algorithm achieves better results than the greedy
solution.
We explore a practical scenario where the number of UAVs

dynamically joins and disconnects from the swarm during
the learning process. Figure 16 illustrates the corresponding
implementation of average reward convergence. The simula-
tion begins with a swarm of three UAVs. Notably, meta-RL
exhibits rapid convergence to the maximum expected reward,
achieving convergence in 900 episodes. Subsequently, two

UAVs join the swarm, and meta-RL adeptly adapts to
these changes in the environment, quickly converging to
the maximum expected reward once again. Later in the
learning process, three UAVs depart the swarm, possibly
for recharging, and meta-RL demonstrates its adaptability
by converging efficiently to the maximum expected reward.
This capability showcases the resilience and flexibility of
meta-RL in handling dynamic changes within the learning
environment.

C. DISCUSSION AND LESSONS LEARNED
In this section, we delve into an insightful discussion and
interpretation of the findings detailed in Section VI-B. The
problem of using a swarm of UAVs to cover an area focusing
on providing better services to strategic locations is investi-
gated in this article. The strategic locations include an area
affected by natural disasters like earthquakes, hurricanes,
and floods in which the conventional communication system
collapses, and dynamic and quick solutions are required to
help people affected by the disaster. The services include
working with a swarm of UAVs to provide WPT and WIT.
We formulated the problem as an optimization problem that
seeks to maximize IoT devices’ EH in strategic locations.
The formulated optimization problem is an NLP problem,
which is challenging and time-consuming to solve using
conventional optimization techniques. An online and real-
time solution based on meta-RL is proposed using deep
learning techniques. The adopted solution is compared with
competitive solutions using conventional RL and also a
greedy algorithm to enrich the results.
The results in Figures 3 show that the algorithms navigate

the area, focusing on strategic locations that require better
services. Our adopted meta-RL solution provides better
results in which the strategic locations get more attention
by around 60% compared to nonstrategic locations, then the
traditional RL solution and PSO with around 50% more
attention, then the worst case with the greedy solution.
Figure 4 shows the results of satisfying the demand

services of strategic locations and makes a comparison with
different algorithms. Each strategic location has a different
demand service. When a UAV passes through one strategic
location, it satisfies part of the demand service. It is also clear
that meta-RL provides better demand satisfaction compared
to conventional RL algorithms of the DQN algorithm.
The results in Figures 5 indicate the main objective

function formulated in equation (23). In Figure 5, the IoT
devices EH in strategic locations started low, and then
the agent learned the optimal policy of maximizing it by
choosing the best trajectory paths of UAVs.
The results in Figures 6, 7, 8, and 9 compare our

adopted meta-RL algorithm with the competitive algorithms
regarding IoT energy consumption and the total UAV energy
consumption when the number of UAVs changes in the
swarm in strategic and nonstrategic locations. In strategic
locations, our adopted meta-RL algorithm provides IoT
devices EH and UAVs energy consumptions higher than
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FIGURE 14. Comparing various algorithms based on the total EH to the IoT devices and the total sum-rate of the communication channel as the number of cells increases. The
plot provides insights into the performance of each algorithm in terms of the total EH and total data rate during transmission.

FIGURE 15. Comparing various algorithms based on the total EH as the number of
IoT devices increases in the grid. The plot provides insights into the performance of
each algorithm in terms of the total EH.

the other algorithms as the main focus is to harvest more
energy and exploit the UAVs energy in strategic locations,
which achieves higher IoT devices EH by around 18% than
conventional RL algorithms and 32%. In contrast, meta-RL
achieves less IoT devices and UAV energy consumption in
nonstrategic locations as the main focus is to provide better
services to strategic locations.
The result in Figure 10 indicates the ability of the agent to

learn the optimal policy regarding respecting the constraints
formulated in equation (27). Initially, the agent explores
different actions and then learns the optimal policy to
maximize the EH of IoT in strategic locations. It is also clear
that our adopted meta-RL algorithm achieves better accuracy
than the conventional RL algorithms with faster convergence.
Figure 11 shows the effect of increasing the UAV’s transmit
power. When the UAV transmit power increases, the EH of
the IoT also increases simultaneously. Moreover, our adopted
meta-RL algorithm archives better IoT EH than the other
algorithms.

FIGURE 16. The adaptivity of Meta-RL and DQN algorithm to the environment
changes of the learning. The algorithm started with three UAVs, then two more UAV
joined the swarm, and after that, three UAVs left the swarm. Meta-RL algorithm learns
the optimal policy quickly and converges to its maximum expected reward compared
to DQN algorithm.

Figure 12 provides a comparison of algorithms regarding
their capability to collect data from IoT devices as the
number of UAVs increases. Our adopted Meta-RL solu-
tion provides better results among competitive algorithms.
Additionally, in Figure 13, we observe a comparison of
the maximum threshold of the total sum-rate across all
algorithms. Notably, Meta-RL achieves results closest to
the maximum threshold of the total sum-rate, further high-
lighting its effectiveness in optimizing the communication
channel’s data transmission rate.
In Figure 14, the comparison unfolds as the number of

cells in the covered area increases, impacting both the total
EH and total sum-rate. Notably, as cell sizes increase, there
is a simultaneous decrease in both total EH and total sum-
rate. In Figure 16, the adaptability of the adopted Meta-RL
solution to environmental changes is demonstrated. The
solution exhibits dynamic convergence after abrupt changes
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in the environment, showcasing its ability to adapt and
stabilize efficiently.
In summary, the lessons concluded from the experiments,

which answer the research questions presented at the
beginning of this article, are summarized as follows:
• Our adopted meta-RL algorithm successfully satisfies
the demand service of strategic locations better than the
other algorithms. Furthermore, the meta-RL algorithm
provides better results with higher accuracy compared
to the other algorithms when satisfying the demand
services of strategic locations. The convergence of
the algorithms to the maximum expected value tests
the ability of the agent to learn the optimal policy
of respecting the constraints. Meta-RL converges with
higher accuracy than DQN algorithms.

• The higher the number of UAVs, the higher the per-
centage of satisfaction of demand services in strategic
locations. The meta-RL algorithm provides better results
regarding the IoT EH, which is the highest among the
other algorithms. Also, more IoT EH is achieved when
the number of UAVs increases.

• Our adopted meta-RL algorithm achieves better results
than the other algorithms regarding the number of visits
to strategic locations, harvesting more energy, respecting
the designed constraints, and exploiting the UAVs’
energy consumption in strategic locations. The agent
spends a few episodes exploring different actions and
then learns the optimal policy, which is the maximum
EH of IoT devices, which is the main objective of the
optimization in equation (23).

• Increasing the UAV’s transmit power leads to higher IoT
device’s EH as the UAVs become more robust and can
increase the communication quality to deliver higher
WPT, hence increasing the WIT.

• As the channel bandwidth increases, the total sum-rate
of all algorithms increases, pointing that more data can
be uploaded for the IoT devices to the UAVs. Meta-RL
achieves a comparable result to the DQN algorithm and
is better than PSO and the greedy algorithm.

• Increasing the number of cells leads to decrease the
total EH and total sum-rate of data transmission.

VII. CONCLUSION AND FUTURE WORK
In this article, we investigated the problem of maximization
of EH of IoT devices while respecting significant constraints,
including the maximum UAV energy consumption, the
maximum time duration, and the minimum data rate for
successful data transmission. The UAVs navigate the area,
transferring wireless power and collecting data from the
distributed IoT devices on the ground. We formulated the
problem as NLP, and due to the high complexity of the
problem, we adopted a deep learning solution using meta-
RL as a real-time-based solution. We compared the adopted
solution with two state-of-the-art algorithms using RL and
PSO and one greedy solution. We demonstrated that our
solution outperforms the competitive solutions in terms of

coverage and satisfying the demand requirements of the
strategic locations.
In future work, we intend to enhance the resilience

and efficiency of communication networks by exploring
the impact of interference and the Doppler effect on
communication links and UAVs’ movements. Additionally,
we plan to incorporate crucial parameters that can sig-
nificantly affect the model’s performance efficiency, such
as mobile IoT devices and the integration of renewable
energy sources like solar power for EH. This expansion will
involve addressing more challenging parameters within the
optimization problem.
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