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ABSTRACT This research explores strategies to augment the connectivity among users within Hierarchical
Non-Terrestrial Networks (HNTNs) dedicated to Disaster Relief Services (DRS). The primary goal is to
optimize radio resources, computing capacities, and the trajectories of Unmanned Aerial Vehicles (UAVs)
at each time slot, aiming to maximize the number of satisfactory connections (NSCs). UAVs function as
aerial base stations (ABSs), establishing links for reduced capability (RedCap) user equipment (UE) using
power domain non-orthogonal multiple access (PD-NOMA). Given the potential inoperability of terrestrial
networks during disasters, swift data transmission is critical for mission-critical (MC) UEs. Therefore,
end-to-end (E2E) delay is a crucial quality of service (QoS) constraint. The proposed problem is solved using
a multi-agent recurrent deterministic policy gradient (MARDPG) algorithm, where the ABSs collaborate to
maximize the NSCs and determine their optimal policy by interacting with the environment. Additionally, a
sharing experience module (SEM) is incorporated, enabling agents to encode actions and observations using
long short-term memory (LSTM), allowing each agent to utilize the historical actions and observations of
other agents. To demonstrate the superiority of MARDPG, three algorithmic benchmarks and four different
system models are implemented. The numerical results demonstrate the impact of various parameters, such
as the number of subcarriers, users, and the maximum tolerable E2E delay on the NSCs. Furthermore,
different scenarios indicate that MARDPG outperforms the benchmarks, achieving approximately a 6
percent optimality gap and a 91 percent fairness for achievable rate among users.

INDEX TERMS HNTNs, DRS, UAVs, PD-NOMA, MARDPG.

I. INTRODUCTION
A. MOTIVATIONS AND STATE-OF-THE-ART

WIRELESS communication technologies have under-
gone significant advancements in recent years,

emerging as a critical facilitator for upcoming consumer
applications and services [2], [3]. The transition from the
fourth-generation (4G) to the fifth generation leads to a
categorizing of quality of services (QoSs), which are named

ultra-reliable low-latency communications (URLLC), mas-
sive machine-type communication (mMTC), and enhanced
mobile broadband (eMBB) [4], [5]. Accordingly, one of the
mMTC use cases is the Internet of Things (IoT), which
requires massive connections [6], [7]. Nonetheless, more
different and precise QoSs are involved in the six-generation
(6G) [8]. Indeed, new services are created by emerging
applications. For example, it can be a mixture of conventional
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QoSs, which is introduced in 3rd Generation Partnership
Project (3GPP) Release 17 (Rel-17) [9], named reduced-
capability (RedCap) user equipment (UE). A QoS category is
needed for industrial applications under the RedCap use case.
This category should take into account factors such as relia-
bility, latency, massive connectivity, and guaranteed bit rate.
Therefore, industrial IoT (IIoT) can be considered as one of
the use cases of RedCap UEs [10]. Accordingly, IIoT devices
monitoring industrial infrastructures, especially critical ones,
require a delay and connection-aware service [11]. This
means that radio and computational resources are required
to gurantee the associated services. Furthermore, preparing
coverage and local task processing could be challenging and
interesting due to some unique characteristics of required
IIoT services, such as being time-sensitive and requiring
massive connection [12].
Airborne communications will constitute a fundamental

element of the 6G architecture, playing a pivotal role in
the evolution of wireless communications. Their significance
lies in the distinctive attributes they possess, particularly the
capacity to extend coverage and reestablish connectivity in
Disaster Relief (DR) scenarios [13]. Specifically, DR is a
significant situation that requires innovative solutions [14].
Traditional terrestrial networks may not be functional during
catastrophic events like earthquakes, floods, and other non-
natural causes of disasters. As a result, DR paradigms are
being developed that do not rely on these networks [14].
Therefore, non-terrestrial networks (NTNs) can serve as
a viable option to provide coverage in disaster-stricken
areas. The 3rd Generation Partnership Project (3GPP)
Release 17 introduces new network structures for NTN,
including high-altitude platforms (HAPS) and low earth
orbit (LEO) satellites [10]. The elevated altitude of these
systems results in considerable path loss and extended round-
trip time (RTT) [10]. Thus, a hierarchical non-terrestrial
network (HNTN) that operates from lower to higher altitudes
emerges as a promising structure to address these challenges
effectively. Unmanned aerial vehicles (UAVs), commonly
known as drones, offer several critical potential wireless
communication applications with intrinsic characteristics
such as mobility and adaptive altitude [15]. In wireless
networks, UAVs can be used as aerial base stations (ABSs)
to improve reliability, capacity, coverage, and energy effi-
ciency [16], [17]. UAVs are used as enablers for various
applications consisting of military, surveillance, rescue,
telecommunications and medical equipment delivery [18],
[19], [20], [21]. Various HNTN structures can be exploited
according to the characteristics of the corresponding envi-
ronment and use case. Emerging technologies like Mobile
Edge Computing (MEC) [22], [23], [24], [25] enable
partial or complete processing of user data. Furthermore,
the integration of collaborative data computing (CDC),
combining MEC [26], fog [27], and cloud computing in
diverse configurations, presents a promising approach to
address prevalent data processing challenges in wireless
communication.

The mismatch between mathematical tractability and
the exponential complexity of wireless networks makes
traditional convex optimization approaches inefficient and
incapable of meeting the precise QoS requirements of
emerging applications [28]. To address this issue, machine
learning (ML) has emerged as a key enabler to manage high
complexity for real-time implementation. In this context,
deep Reinforcement Learning (DRL) has been investigated
for comprehensive inputs as well as more accurate results.
The use of deep reinforcement learning (DRL) algorithms
to solve optimization problems is increasingly controver-
sial [29]. Some claimed that these solutions could not meet
standards such as solid mathematical proofs of convergence
and suboptimal results compared to exact methods. Others,
however, argued that despite these weaknesses, they still
have some advantages [30]. In particular, they can be used
to solve large, NP-hard, online problems that are intractable
using standard algorithms [31]. Nevertheless, they should
be personalized by taking into account the characteristics of
each environment, the corresponding domain knowledge, and
problem instead of implementing the typical algorithm [32].

B. RELATED WORKS
The discussion of existing work related to our work is
included in this section. It is noticeable that related work can
be divided into three parts in terms of the areas involved.

1) NTN

Minimizing the age of information (AoI) in two subsequent
stages for an integrated terrestrial network (TN) and LEO
is investigated in [33]. In addition, non-orthogonal multiple
access (NOMA) is utilized in TN, and multiple satellites
supply orthogonal access for other users for status updates.
In [34], a solution is proposed to address the challenges
of using traditional terrestrial cellular technologies for time-
sensitive Internet of Things (IoT) applications. The solution
involves a combination of mobile edge computing (MEC)
and non-terrestrial networks (NTN), specifically unmanned
aerial vehicles (UAVs) and satellites. The aim is to minimize
latency in the complex propagation scheme. Similarly,
in [35], the authors suggest using UAV-based cloud services
for IoT nodes with a partially offloading scenario. They
focus on optimizing energy efficiency by reducing the
number of drones and minimizing costs for ground nodes
while maintaining quality of service (QoS) requirements.
Reference [36] analyzes data quantities and packet loss rates
by applying a Markov chain to illustrate the data collection’s
reliability and using AoI to represent the data freshness.

2) IIOT

When a catastrophe takes place, it can severely disrupt crit-
ical infrastructures like communication networks, leading to
significant problems and inconveniences. In order to address
these challenges, a study conducted by researchers in [37]
investigates the utilization of UAV-based telecommunications
infrastructure to fulfill the communication requirements of
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IoT nodes during natural emergencies like earthquakes.
The study aims to optimize various aspects such as UAV
trajectory, mission completion time, and energy consump-
tion simultaneously. Moreover, in rural areas and distinct
environments, mobile base stations are utilized as relays
and data collectors to accommodate the growing number of
IoT devices. Achieving lower delays between components
in IIoT is one of the important requirements. The authors
of [38], take into account the effect of constantly changing
environmental factors over time on data flow scheduling for
large-scale IIoT networks. They propose distributed optimal
transport (OT) algorithm to optimize the scheduling problem.
To enhance the safety and accuracy of IIoT networks,
controlling delay should be considered. A uRLLC-based
service with joint communication and delay control is
investigated in [39], in which the optimal block length of
codewords is selected for controlling IIoT devices’ delay.
In [40], device-to-device (D2D) link scheduling is studied
in UAV-aided IIoT networks, where robustness and low
complexity are considered. First, the geographical map of
transmission links is used as input to a sparse convolutional
neural network (SCNN). Second, in order to maximize
the achievable rate and optimize the D2D scheduling, the
output feature map from the SCNN is processed by a deep
deterministic policy gradient-based reinforcement learning
model. Joint trajectory design and data offloading in UAV-
assisted IIoT networks are studied in [41]. The authors use a
Bernstein-type inequality to reformulate the constraints in the
energy minimization problem and decompose two different
subproblems.

3) ARTIFICIAL INTELLIGENCE ACROSS WIRELESS
COMMUNICATION

In [42], multi-agent deep reinforcement learning (MADRL)
is utilized to tackle the difficulty of integrated UAV and
LEO, such as the trajectory of UAVs and LEO real-time
orbiting via the NTN. The main problem considered is how to
forward data between two distant ground terminals through
SAT and UAV relays to enhance efficiency. The uplink delay
of mission-critical users concerning keeping fairness among
them is studied in [43]. The author mixed long-short term
memory (LSTM) with Q-learning to solve the proposed
problem, which achieved higher performance than the tabular
Q-learning approach and Round Robin algorithms. In [44],
the authors investigate the maximization of the uplink
sum rate for NOMA-assisted IoT networks by adopting a
non-static method for clustering users. Furthermore, they
proposed a solution that combines the DRL algorithm
and SARSA, demonstrating better performance and lower
complexity compared to conventional DRL approaches.

C. NOVELTY AND CONTRIBUTIONS
The previous subsection explains the existing closest work.
However, there is a need for improvement in resource
allocation techniques, specifically for RedCap UEs, which

are the IIoT users discussed in this paper. These tech-
niques should incorporate a new QoS category that takes
into account reliability, latency, massive connectivity, and
guaranteed bit rate based on the specific requirements
of each use case. For instance, in disaster-stricken areas,
IIoT nodes require DR services that offer both massive
connectivity and end-to-end latency assurance. To the best of
the authors’ knowledge, the literature has not yet addressed
the problem of maximizing the number of satisfactory
connections (NSCs) in terms of end-to-end latency. The
conventional works are based on two common models. The
first is total or average delay minimization, which was
studied in [43], [45]. Secondly, minimizing the maximum
delay is considered in [23], [24], [25]. However, they did
not perform well because it is still possible for some users
to have an E2E delay greater than the threshold. This can
exacerbate the catastrophic situation. Apart from that, there
is still an open question as to which type of computing
method is better, solid MEC or collaborative computing
(COC). This paper bridges the existing gaps by focusing on
MEC-assisted joint resource allocation, task processing, and
trajectory design. We consider the constraints of end-to-end
delay and computational resources to maximize the number
of satisfactory connections (NSCs). The main contributions
of this paper are summarized as follows:
• To ensure satisfactory quality of service (QoS) for all
users, it is important to guarantee end-to-end (E2E)
delay for all covered users. Simply minimizing the aver-
age or maximum delay of users does not guarantee that
the QoS will be satisfactory for all users. There is still
a possibility that the latency experienced by some users
may be unacceptable and exceed the maximum tolerable
delay. To address this issue, we propose maximizing
the number of satisfactory connections (NSCs) in terms
of E2E delay, ensuring that all established connections
meet the desired QoS.

• To cover the disaster area, we used a temporary solution
by utilizing a hierarchical network of UAVs and HAPS
as an ABS and relay, respectively. As far as we know,
this approach of using such a structure to provide
coverage for the RedCap UEs in the disaster area is
both relevant and innovative.

• Instead of using algorithms that are centralized and rely
on a single agent, which can lead to increased signaling
overhead, we employ a decentralized approach using
a multi-agent recurrent deterministic policy gradient
(MARDPG) technique. As far as we know, this is the
first time MARDPG has been applied in this particular
area. Additionally, to improve collaboration among
agents, we utilize a sharing experience module (SEU)
that encodes each agent’s observations and actions
and facilitates their exchange using long-short term
memory (LSTM). The optimality gap, which measures
the difference between the best-known solution and
the best bound, is a key criterion for evaluating
algorithm performance. To determine the optimality gap
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of MARDPG, we employ the Exhaustive Search (ES)
algorithm. Thanks to its outstanding performance and
lower complexity, MARDPG achieves an optimality
gap of 6.67%, which can be justified regarding its
performance.

• The simulation outcomes indicate that MARDPG out-
performs other algorithms such as multi-agent deep
deterministic policy gradient (MADDPG), distributed
soft actor-critic (DSAC), and Greedy. Additionally,
the results suggest that maximizing NSCs is a more
effective approach than minimizing average delay or
minimizing maximum delay. We also examined the
impact of increasing the number of subcarriers, users,
and maximum tolerable E2E delay, and found that our
proposed method obtained more satisfying connections
compared to minimizing average delay and maximum
delay.

• The simulation results also show that MEC performs
better than COC (MEC and Fog) when most of the
data is processed in MEC. As the proportion of data
offloaded to fog increases, the performance of COC
increases dramatically due to the higher computational
resources available to fog.

It is noteworthy that a portion of this work was previously
published in the 2022 IEEE Conference on Standards
for Communications and Networking (CSCN) [1]. The
differences between the conference version and this iteration
are outlined below. Firstly, in the system model, we
incorporated a precise energy model for UAV movement
and imposed constraints on UAV velocity and energy
consumption. Additionally, we introduced UAV velocity
optimization, treating velocity as an optimization variable.
Furthermore, we included the computational resources allo-
cated in the prior time slot as a state, extending beyond the
Context Information Service (CIS). The analysis of signaling
overhead and computational complexity of the proposed
algorithm is of high importance, and we have included it
in this version. In the simulation, we introduced DSAC and
Greedy as algorithmic benchmarks, alongside MADDPG.
Subsequently, we added a comparison between Mobile Edge
Computing (MEC) and Collaborative Computing (COC).
The examination of the optimality gap of the proposed
algorithm is crucial, and we addressed it in this version
by implementing the exhaustive search algorithm. Lastly,
we computed the fairness score among users in terms of
transmission rate in this version.

D. PAPER ORGANIZATION
The rest of this paper is organized into five parts as
follows: In Section II, we explain the system model. Next,
the proposed solution is explained in Section III, and the
convergence is analyzed in Section III-A of this Section.
After that, the computational complexity and signaling
overhead are studied in Section IV. In addition, simulation
results are illustrated in Section V, which consists of seven
scenarios. Indeed, the simulation environment, comparison

between different DRL algorithms, comparison between
different objective functions, the performance of COC,
trajectory design, optimality gap and exhaustive search,
and fairness analysis are explained in Sections V-A–V-G,
respectively. Eventually, the conclusion and future works are
expressed in Section VI.
Symbol Notations: To denote the vector A and the i-th

element of this vector, we use the bold upper symbol as A
and ai, respectively. Likewise, ai,j define the i, j element of
matrix A. In addition, B and bj denote the set B and the j-th
element of it, respectively. We use |c| to define the absolute
value of c. To define the expectation of d, we use E[d]. Also,

we define the norm of vector X, as ‖X‖ =
√∑n

i=1 |xi|2.

II. SYSTEM MODEL
In this paper we consider the HNTN that supports IIoT
nodes spread out through the disaster area in the uplink
scenario, consisting of UAVs and monitoring IIoT nodes
as users as shown in Fig. 1. We have two types of NTN
components: the first is considered as an aerial base station
(ABS) to provide links and MEC for nodes. Secondly,
a HAPS is a communication component that relays the
messages between ABSs in the disaster area and outside.
Let U = {1, . . . , u, . . . ,U} denote the set of IIoT nodes
where U shows the total number of nodes. Furthermore, B =
{1, . . . , b, . . . ,B} is considered as the set of ABSs where B
represents the total number of ABSs and a denotes HAPS. In
particular, the total operating time is 100 s, which is divided
into 2000 slots. The time slot is represented by t, and its
length is 50 ms, denoted by �. Moreover, the structure of
each timeslot is depicted in Fig. 2. It is noteworthy that � is
the length of the time slot, and δ is the length of the traveling
(trajectory) part. First of all, the CSIs are gathered. Then,
the problem is solved. Eventually, UAVs start to move to
the next location. It is noticeable that during CSI gathering
and problem-solving, UAVs hover. For CSI gathering, we
assumed that IIoT nodes send known pilot signals to UAVs,
and UAVs use these known signals to estimate the channel
response and calculate the CSI. The resource allocation and
the role of each component are provided as follows [46],

• IIoT nodes: They gathered the required information
from the environment. They request to connect to ABS
and send their data.

• UAVs: They have the aerial base station roles of pro-
viding communication resources (power and subcarrier)
and computational resources (CPU cycle) for IIoT
nodes. They also move to new locations in each time
slot to find the best location (trajectory design) [47].

• HAPS: In the main scenario of the paper in Section II,
it only has the role of the relay to receive controlling
data from the UAV and send it to the outside. We did
not consider any resources for it in this Section [47].
However, the reason for considering HAPS in our paper
is to investigate and compare two different computing
models, MEC and collaborative computing (MEC and
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FIGURE 1. Proposed System Model with IIoT Nodes Throughout Disaster Area, UAVs Layer as MECs and ABSs, and HAPS Layer as Fog. Disasters can be earthquake, tornado,
flooding, and fire, respectively.

FIGURE 2. Frame structure with three phases: gathering channel state information, allocating resources, and trajectory travel.

Fog). To this end, we considered computational com-
puting for HAPS in Section V-D. Indeed, HAPS has
computational resources, and a portion of IIoT nodes’
data are offloaded to it for processing [47].

Let us consider the locations of IIoT nodes, ABSs, and
HAPS as lu = [xu, yu, zu], ltb = [xtb, y

t
b, z

t
b], and lta =

[xta, y
t
a, z

t
a], respectively. Therefore, the distance between

node u and ABS b and ABS b and a by using a 3D Cartesian
coordinate system in unit of [m] can be written as:

dtb,u = ‖ltb − lu‖ =
√(

xtb − xu
)2 + (ytb − yu

)2 + (ztb − zu
)2
,

∀u ∈ U ,∀b ∈ B,∀t,
dtb,a = ‖ltb − lta‖ =

√(
xtb − xta

)2 + (ytb − yta
)2 + (ztb − zta

)2
,

∀b ∈ B,∀t.
(1)

The computation task of node u is represented by �u, which
consists of DLu bits. For processing each bit of this task, �u

CPU cycles are needed [1], [48]. PD-NOMA allows more
users to be served with linked resources compared to other
multiple access (MA) techniques. Accordingly, bandwidth
W is divided into several orthogonal subcarriers that can be
represented by K = {1, . . . , k, . . . ,K} where K is the total
number of subcarriers and the bandwidth of each one is
Ŵ = W/K. We define the binary variable ψ t

u,b,k ∈ {0, 1} to
indicate that subcarrier k is allocated to node u in time slot t
or not. gtu,b,k and ptu,b,k denote the Rayleigh fading channel
gain with the reference-distance unit power gain 1.4× 10−4

and transmission power on the k−th subcarrier from node
u to ABS b at time slot t, respectively. Consequently, the
average signal-to-interference-plus-noise ratio (SINR) for
node u and ABS b on the k-th subcarrier is expressed
as [1], [49],
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γ tu,b,k =
ptu,b,k

(
dtb,u

)−ζ
gtu,b,k

Iintra,tu,b,k + Iinter,tu,b,k + σ 2

(
PrLoSu,b,k

ηLoS
+ 1− PrLoSu,b,k

ηNLoS

)
,

∀u ∈ U ,∀b ∈ B,∀k ∈ K,∀t, (2)

where ζ is the path loss exponent coefficient, σ 2 denotes
the receiver noise variance at the ABS, and ηLoS(ηNLoS) is
the (non-) line of sight excessive path loss value. PrNLoSu,b,k and
PrLoSu,b,k are the NLoS and LoS probabilities according to

PrLoS, tu,b,k =
1

1+ α exp
(
−β
[
arcsin

(
ztb/d

t
b,u

)
− α
]) , (3)

∀u ∈ U ,∀b ∈ B,∀k ∈ K,∀t,
PrNLoS, tu,b,k = 1− PrLoSu,b,k,∀u ∈ U ,∀b ∈ B,∀k ∈ K,∀t, (4)

where factors α and β are determined based on the conditions
of the environment as an example, α = 4.88 and β =
0.43 for the suburban ecosystem [49]. Also, the intra-cell
interference can be calculated by,

Iintra,tu,b,k =
∑
j∈Jb,c

ψ t
j,b,kp

t
j,b,kg

t
j,b,k,∀u ∈ U,∀b ∈ B,∀k ∈ K,∀t, (5)

where Jb,c = { j | j ∈ Jb,c, γu,b,k > γj,b,k} represents the
set of users that are served by ABS b and contains the
users within Jb,c with worse channels. The ABS decodes
user messages using successive interference cancellations
(SIC) [1], [50]. At the ABS, decoding is always conducted
from the node with a better channel quality and SINR to
the node with a worse channel quality and SINR, or else a
significant amount of power will be required by the node
with a worse channel quality and SINR to offset the path
loss [1], [51]. In addition, inter-group interference can be
characterized by

Iinter,tu,b,k =
B∑
j=1,
j �=b

U∑
o=1

ψ t
o,j,kp

t
o,j,kg

t
o,j,k∀u ∈ U ,∀b ∈ B,∀k ∈ K,∀t.

(6)

As a result, the transmission rate between node u and ABS
b is computed by

Rtu,b,k = Ŵψ t
u,b,k log2

(
1+ γ tu,b,k

)
,∀u ∈ U ,∀b ∈ B,

∀k ∈ K,∀t. (7)

The ABS moves to the new locations with constant velocity
vb by lt+1

b = ltb + l̃tb, l̃tb ∈MA, where l̃tb = vtbδ in [m] and
δ in [s] denote the UAV’s distance and travel time within a
given time slot t, respectively. Then, MA represents the set
of all possible drone movements that consists of all hovering
and all other movements in the direction of x, y, z that can
be expressed as follows:

MA =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡
⎢⎢⎣

0

0

0

⎤
⎥⎥⎦

T

︸ ︷︷ ︸
hover

,

⎡
⎢⎢⎣
l̃tb
0

0

⎤
⎥⎥⎦

T

︸ ︷︷ ︸
+x-axis

⎡
⎢⎢⎣
−l̃tb

0

0

⎤
⎥⎥⎦

T

︸ ︷︷ ︸
-x-axis

,

⎡
⎢⎢⎣

0

l̃tb
0

⎤
⎥⎥⎦

T

︸ ︷︷ ︸
+y-axis

,

⎡
⎢⎢⎣

0

−l̃tb
0

⎤
⎥⎥⎦

T

︸ ︷︷ ︸
-y-axis

,

⎡
⎢⎢⎣

0

0

l̃tb

⎤
⎥⎥⎦

T

︸ ︷︷ ︸
+z-axis

,

⎡
⎢⎢⎣

0

0

−l̃tb

⎤
⎥⎥⎦

T

︸ ︷︷ ︸
-z-axis

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

(8)

where l̃tb ∈ R. Power consumption by the UAVs is influenced
by kinetic energy and telecommunication power [52]. While
the power consumed by receiving and sending messages is
negligible compared to the energy used for moving [52]. We
consider the movement of ABS with constant velocity vb
for all actions. Based on the tasks that are performed, the
ABS consumption model has two components: movement
and processing as Emov,t

b and Eproc,t
b , respectively. According

to [53], at a speed of vtb, the power consumption of the ABS
can be calculated as follows:

Pkinetic,tb

(
vtb
) = P0

(
1+ 3|vtb|2

M2
tip

)
+ 1

2
d0�ϑArotor|vtb|3

+Pi

√√√√
√

1+ |v
t
b|4

4v4
0

− |v
t
b|2

2v2
0

, (9)

where P0 and Pi represent the vane profile power and the
hovering power, consecutively. d0, �, Mtip, v0, ϑ , |vtb|, and
Arotor denote the fuselage drag ratio, the air density, the tip
speed of the rotor vane, the mean rotor induced velocity in
hovering status, rotor solidity, the speed vector size of ABS,
and the rotor disc area, respectively [53]. Next, movement
requires the following amount of energy:

Emov,t
b = Pkinetic,tb · δ, (10)

where δ is the traveling time (a part of the time slot that the
UAV moves from one point to another. Please look at Fig. 2)
with the speed of vtb between two time slots. Additionally,
the processing energy is

Eproc,t
b = κb ·

(
f tb
)3
, (11)

here κb is CPU switched capacitance of ABS b and f tb
indicates ABS u frequency at time slot t. Therefore, we can
define the total energy consumption of ABS as ETotal,t

b =
Emov,t
b + Eproc,t

b . The nodes offload their data to ABSs for
processing. Due to the significance of this information for
proactively relieving the disaster, the end-to-end (E2E) delay
imposed on each node’s data should be taken into account.
Therefore, the E2E delay consists of transmission, queueing,
and processing delays in our system. It is worth noting that
we do not consider propagation delay because of a negligible
amount compared to other types. The transmission delay
between node u and ABS b is given by,

Dtran,t
u,b =

DLu∑K
k=1 R

t
u,b,k

,∀u ∈ U ,∀b ∈ B,∀t. (12)

We consider a buffer with limited capacity for each ABS.
An M/M/1 queuing system is a single-queue single-server
queuing system. As each user can also link with one ABS (as
a MEC server), M/M/1 model is appropriate to be used for
the queueing delay [1], [54]. Also, the packet (task) arrival
rate based on Poisson process at time slot t for ABS b is
DLtb in packet per second ([pps]). Also, μb is the service
(computational) rate of ABS b in [pps]. Thus, the average
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queuing delay in [s] (as we consider each user has one
packet, the unit of it is second) for node u’s data is given
by,

Dqueu,t
u,b = 1

μb − DLtb
,∀u ∈ U ,∀b ∈ B,∀t. (13)

In ABS b, the processing delay that is associated with
computational tasks on data node u can be calculated by

Dproc,t
�u,b
= (1− ε)DLu�u

f t
�u,b

,∀u ∈ U ,∀b ∈ B,∀t, (14)

here f t
�u,b

indicates the computational resources that are
allocated to task �u that is pertained to node u data
which is provided by ABS b in (CPU cycle/s). Additionally,
ε represents the amount of data offloaded to the next
computing layer, such as fog, whereas in this paper, we only
consider the MEC layer. Therefore, ε = 0 means that all
data are computed in MEC (as we mentioned, COC (MEC
and fog) is implemented as one of our benchmarks, and ε
is defined for simplicity in V-D). Now, the E2E delay can
be calculated by,

DE2E,t
u = Dtran,t

u,b + Dqueu,t
u,b + Dproc,t

�u,b
,∀u ∈ U ,∀b ∈ B,∀t.

(15)

Under critical circumstances, particularly when infrastruc-
tures are monitored by IIoT nodes, fast detection of the
system’s fault is essential for proactively preventing or reliev-
ing the disaster, which motivates us to consider maximizing
the NSCs. To this end we introduce χ tu,b as an indicator of
NSC which shows that the node u under coverage of ABS
b receives at least one subcarrier (ψ t

u,b,k = 1,∀k ∈ K), and
the E2E delay of this node is less than the threshold. The
NSCs maximization problem can be expressed as follows
for all t

OP : max
P,�,L,F,V

� =
B∑
b=1

U∑
u=1

χ tu,b (16a)

s.t. C1 : ‖lt+1
b − ltb‖ < vtbδ

t,∀b ∈ B, (16b)

C2 : dmin < dt
b,b̂
,∀b, b̂ ∈ B, (16c)

C3 : zmin < ztb < zmax,∀b ∈ B, (16d)

C4 :
U∑
u=1

ψ t
u,b,k ≤ CTh,∀b ∈ B,∀k ∈ K, (16e)

C5 : pmin ≤
B∑
b=1

K∑
k=1

ψ t
u,b,kp

t
u,b,k ≤ pmax,∀u ∈ U ,

(16f)

C6 :
J∑
j=1

f t�j,b ≤ fmax
b ,∀b ∈ B (16g)

C7 : DE2E,t
u ≤ DTh, (16h)

C8 : ψ t
u,b,k ∈ {0, 1},∀u ∈ U ,∀b ∈ B,∀k ∈ K,(16i)

C9 : χ tu,b ∈ {0, 1},∀u ∈ U ,∀b ∈ B, (16j)

C10 :
∑
b∈B

ψ t
u,b,k ≤ 1, (16k)

C11 : χ tu,b ≤ ψ t
u,b,k, (16l)

C12 : ETotal,t
b < Emax,∀b ∈ B,∀t, (16m)

C13 : vtb < vmax,∀b ∈ B,∀t, (16n)

where P indicates the uplink power allocation and [P]u,b,k =
ptu,b,k. Similarly, [�]u,b,k = ψ t

u,b,k represents the uplink
subcarrier allocation matrix. [F]u,b = f t

�u,b
is CPU cycle

allocation matrix, and [L]u = ltb are the locations matrix of
ABSs. In addition, the V indicates the matrix of all ABSs’
velocity. Accordingly, (16b) ensures that the velocity of ABS
b does not exceed the limits of UAVs in time slot t. To avoid
the collision between the ABSs, the distances between them
should be greater than the limit in (16c). Each type of UAV
has a height limitation in (16d). (16e) indicates the subcarrier
allocation for the PD-NOMA scheme which is restricted
to CTh. The practical limitation of IIoT node’s battery size
leads to limit the transmission power of each node between
minimum pmin and maximum pmin that (16f) assures it. (16g)
shows the computational resource of ABSs are limited,
and the total CPU cycles that are allocated to the nodes’
processing task should be less than the ABS maximum
resource, i.e., fmax

b . Also, (16h) ensures that the E2E delay
of node u is less than the threshold (DTh) to count it as a
satisfying connection. Indeed, we ensure E2E delay instead
of restricting each of the involved delays. Our intention is
that if we put constraints on each delay component, ABS
does not have enough flexibility to solve the problem. (16i)
and (16j) indicate the subcarrier assignment and number of
satisfactory connections indicators are binary variables. (16k)
represents that each user is assigned only to one ABS.
Finally, (16l) indicates that maximum value of χ tu,b is
limited to ψ t

u,b,k. Moreover, (16m) ensures that the energy
consumption of ABS is always bounded and less than the
maximum. Apart from that, the velocity of a UAV can not
be any amount, and it should be limited due to the inherent
restriction of flying. Thus, (16n) ensures that the velocity of
the UAV at each time slot is less than the maximum.

III. PROPOSED ALGORITHM
Channel estimation is performed to obtain channel gains.
However, it is impractical to move each UAV to all possible
locations to acquire perfect CSI since such a sweeping
search will consume significant power and time [1], [55].
Due to the necessity of an online algorithm for solving
our formulated complex optimization problem in (16a),
MARDPG is proposed to tackle this issue. As a modifi-
cation of the Deterministic Policy Gradient (DPG) method,
the MARDPG is intended to manage situations involving
numerous interacting agents in a sequential decision-making
setting [56]. Agents in multi-agent systems frequently have to
cooperate to accomplish a shared or personal objective, and
MARDPG tackles the difficulties these situations present.
The main features of MARDPG are as follows
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• Recurrent Neural Networks (RNNs): RNNs are fre-
quently used in MARDPG’s architecture. RNNs are
employed to capture the temporal dependencies in each
agent’s observations and actions since they are well-
suited for processing sequential data. This is especially
crucial in situations where it is not possible to fully
observe the state of the environment at any given time.

• Deterministic Policy Gradient (DPG): The DPG frame-
work, a model-free, off-policy actor-critic method for
continuous action spaces, provides the foundation for
MARDPG. In contrast to stochastic policies, which are
more difficult to optimise, deterministic policies, which
map states to certain actions, are the main emphasis of
DPG.

• Multi-Agent Method:MARDPG takes agent interactions
into account in a multi-agent setting. Based on its own
observations, actions, and maybe the observations and
acts of other agents, each agent develops its own policy.
The algorithm considers the influence of an action by
one agent on the state observed by other agents as well
as the joint action space.

• Centralized Training, Decentralized Execution (CTDE):
MARDPG frequently adheres to the CTDE model.
The algorithm may use centralised training during
training, in which the learning process is enhanced
by taking into account data from all agents. However,
the necessity for communication during execution is
minimised since, during execution, each agent takes
decisions in a decentralised manner based on its local
observations [57].

• Collaboration: We developed a sharing experience
module (SEM), which enables agents to encode
actions and observations using long short-term memory
(LSTM), allowing each agent to utilise the historical
actions and observations of other agents.

In this study, the ABSs are agents, and each takes action
based on its policy. Agent b at time slot t observes state st,
and takes the action at, correspondingly. The environment
then shifts into the next state st+1, and the agent b receives a
reward for choosing that action. Regarding our system model,
the state space, action space, and reward function represented
by A, S , and rt, respectively, and are characterized as
follows:

• State: The observed state by agent b (ABS b) at time
slot t consists of the channel state information (CSI)
between node u and ABS b, gtu,b,k∀k ∈ K and the
preliminary information about computational resources
that are allocated to task �u that is pertained to node
u data, which is provided by ABS b, f t−1

�u,b
. Thus, the

state can be characterized as follows

stb =
[
gtu,b,k, f

t−1
�u,b

]
, b ∈ B, u ∈ U ,∀t. (17)

For sake of simplicity, we denote the whole state matrix
at time slot t with St, which contains the states of all
agents.

• Action: The uplink power allocation matrix, Ptb, uplink
subcarrier allocation matrix, � t

b, computational resource
allocation matrix, Ftb, and location selection of ABS, ltb
are the agent’s b actions at time slot t. Hence, the action
space of agent b at time slot t is atb = {Ptb,� t

b,F
t
b, l

t
b}.

Moreover, we denote the whole action matrix with At,
which contains the actions of all agents.

• Reward: Regarding the multi-agent algorithm DRL,
each agent (ABS) receives its rewards, rtb based on
its action atb, and the total reward is the sum of
all agents’ rewards. Specifically, if the agent does an
appropriate action that satisfies constraints (16b), (16c),
(16d), (16e), (16f), (16g), (16h), (16i), (16j), (16k),
(16l), (16m) and (16n), it gets a positive reward,
rtb = �t

b. Otherwise, it receives a negative reward,
rtb = −10, as a punishment to let it know that it made
a mistake in choosing an action. Recall that the goal
of the optimization problem is to maximize NSCs,
�. Therefore, the total reward function is rt = �.
Accordingly, agents cooperatively try to maximize �.
Indeed each agent maximizes the objective function via
its covered nodes, rtb = �t

b, and the total reward can
be expressed by rt =∑B

b=1 r
t
b.

Regarding the deep deterministic policy gradient (DDPG)
model [58], [59], the actor-critic model is used to develop
our approach. Our model considers three components: a
critic, actors, and experience sharing. Typical actor-networks
model each agent using deterministic policy to map states to
corresponding actions. In addition, the critic seeks to reveal
the expected future rewards actions by assessing the action-
value function. Note that, instead of each agent utilizing a
history of its observations and actions, it can use others’
observations and actions. For this purpose, the SEU is used to
get all agents’ observations and actions and encode them by
exploiting long-short term memory (LSTM) [60]. Notably,
in this multi-agent DRL, the state of the environment, st

is shared between all agents. In contrast, the reward, rt =
r(st, atb), actions atb, and observations, otb, are all locally
chosen by actors (agents), ∀b ∈ B. Particularly, agent b takes
action atb due to its policy, ϕtb(s

t), and receives a reward
rtb = r(st, atb). The action-value function at the critic is
Qπ (st, at1, . . . , a

t
B) that is utilized for calculating the total

future reward and return. It is based on all agents’ actions.
Moreover, agent b observes the environment at time slot t, otb.
The state of the environment is an experience of observations
and all agents’ actions, st = f (o1, a1, . . . , at−1, ot) based
on partially observed Markov decision process (POMDP).
As we mentioned, we consider the LSTM-based experience
sharing encodes all previous observations and actions from
the agents’ whole system transactions history. Denote Ht−1

as a system history vector that can be expressed by Ht−1 =
fLSTM(Ht−2, [ot−1

b , at−1
b ];φ) for all agents b ∈ B. By using

Ht−1, the environment state can be rewritten st � {Ht−1, otb},∀b ∈ B. Recall that we have the continuous actions, agent’s
action can be defined as a vector of real values (we use semi-
equal instead of equal because observations are not exact).
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Since deterministic policy is used instead of stochastic policy,
the actor’s policy can be parameterized by ωb, ϕtb(s

t;ωb), and
each agent can exploit other ones actions and observations,
Ht−1. Considering these factors, the agent’s action is, atb =
ϕtb(s

t) � ϕtb(Ht−1, otb;ωb). In the rest of paper, we express
ot = {ot1 . . . otB} and at = {at1 . . . atB}. Thus, the action-value
and policy function can be rewritten as Qπ (Ht−1, at, ot; θ)
and ϕtb(Ht−1, ot;ωb), respectively. According to the Bellman
equation in Q-learning [61], the critic can be learned by
minimizing the following loss,

�(θ) = Eot,Ht−1

[(
Qπ
(
Ht−1, at, ot; θ

)
− ϒ t

)2
]
, (18)

where ϒ t = rt + κQπ (Ht, ot+1, ϕt+1
b (Ht−1, ot+1); θ). The

parameters of each actor are taken into account when
maximizing expected total rewards. The target func-
tion at time slot t can be expressed by �(ωb) =
Eot,Ht−1 [Qπ (Ht−1, ot, ϕtb(Ht−1, otb;ωb); θ)]. The gradient
with respect of parameters are calculated by utilizing chain
rule as

∇ωb�(ωb) � Eot,Ht−1

[
∇ωbQπ

(
Ht−1, ot, ϕtb

(
Ht−1, otb;ωb

)
; θ
)]
,

(19)

that can be rewritten as,

∇ωb�(ωb)
= Eot,Ht−1

[
∇ϕbt (Ht−1,otb;ωb)Q

π
(
Ht−1, ot, ϕtb

(
Ht−1, otb;ωb

)
; θ
)

∇ωbϕtb
(
Ht−1, otb;ωb

)]
. (20)

Furthermore, the SEU based on LSTM can be trained with
respect to the following loss function minimization as

�(�)

= Eot,Ht−1

[(
Qπ
(
fLSTM

(
Ht−2,

[
ot−1
b , at−1

b

]
;φ
)
, at, ot; θ

)
− ϒ t

)2
]

− Eot,Ht−1

[
Qπ
(
fLSTM

(
Ht−2,

[
ot−1
b , at−1

b

]
;φ
)
, at, ot; θ

)]
. (21)

The proposed solution is summarized in Algorithm 1.
Instead of updating online, all trajectories are saved in replay
buffer D in order to learn with the minibatch updating [62].
Further, a minibatch of episodes is randomly selected and
simultaneously evaluated at each training step to update the
parameters of the actors and critic networks. Apart from
MARDPG, we implemented some other DRL algorithms
as a benchmark. First, the MADDPG is implemented [63].
The only difference between MADDPG and our proposed
solution is that MADDPG utilizes a fully connected deep
networks for optimizing actor-critic parameters. In con-
trast, this aim uses a recurrent neural network (RNN) in
MARDPG. SAC is also a DRL algorithm for continuous
action space maximum entropy RL based on off-policy actor-
critic parameters [64]. Therefore, the optimal policy focuses
on maximizing the entropy-regularized reward instead of
maximizing the discounted cumulative reward. On the other
hand, the actor aims to maximize the expected reward and
entropy [64]. In this work, we utilize the distributed SAC,

Algorithm 1: Multi-Agent RDPG Algorithm

1 Run the environment simulator and generate IIoT nodes’
locations and UAVs’ initial positions

2 Initialize the actors’ parameters ω1, . . . , ωB for B actor
networks and critic parameters θ

3 Initialize the replay buffer D
4 for episodes e = 1 to E do
5 for each timestep t and ot �= terminal do
6 Initialize the SEU H0, t = 1
7 for agent b = 1 to B do
8 The agent chooses an action based on its policy:

atb = ϕtb
(
Ht−1, otb

)

9 The agent receives its reward rbt , and the global
reward is calculated as rt

10 The agent derives a new observation ot+1
b , t = t + 1

11 Save the episode
{
H0, o1, a1, . . .

}
in D

12 Sample a random minibatch of episodes G from D
13 for each episode e in G do
14 for t = T downto 1 do
15 Update the critic with respect to loss function

minimization:

16 �(θ) =
(
Qπ
(
Ht−1, at, ot; θ

)
− ϒ t

)2
, where

ϒ t = rt + κQπ
(
Ht, ot+1, ϕt+1

b (Ht−1, ot+1); θ
)

17 Update target parameter: θ ′ ← τθ + (1− τ)θ ′
18 Update actor b by maximizing the following

target function:
19 �(ωb) =

(
Qπ
(
Ht−1, ot, ϕtb

(
Ht−1, otb;ωb

)
; θ
))

20 Update the SEU with respect to the following
loss minimization:

21 �(�) =(
Qπ
(
fLSTM

(
Ht−2, [ot−1

b , at−1
b ];φ

)
,at,ot; θ

)
−ϒ t
)2

− Qπ
(
fLSTM

(
Ht−2, [ot−1

b , at−1
b ];φ

)
, at, ot; θ

)

22 Update target parameters:
23 � ′ ← τ ′� + (1− τ ′)� ′
24 ω′b ← τ ′ωb + (1− τ ′)ω′b

the multi-agent version of which the actors do not share
the policy. Moreover, a greedy algorithm is implemented
as another benchmark along with MADDPG and DSAC.
According to this algorithm, each action is chosen based on
a greedy policy [13], [65].

A. CONVERGENCE ANALYSIS
In this subsection, the convergence of MARDPG and other
DRL-algorithmic benchmarks are analyzed. Considering the
principles of the Q-learning algorithm [66], as t→∞, the
Q-function converges to the optimal value if the following
constraints,

∞∑
t=0

ε = ∞,
∞∑
t=0

ε2 <∞,
∞∑
t=0

ε̂ = ∞,
∞∑
t=0

ε̂2 <∞, (22)

lim
t→0

ε

ε̂
= 0, (23)
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TABLE 1. The computational complexity and signaling overhead of proposed MARDPG and algorithmic benchmarks.

FIGURE 3. Reward function convergence of MARDPG, MADDPG, DSAC, and Greedy.

are satisfied and the learning rate of actor (ε) and critic
(ε̂) networks are deterministically increased. Moreover,
the results and reward function can meet the conver-
gence requirements because the reward function, |r(st, atb)|,
is bounded. The convergence analysis of MARDPG,
MADDPG, DSAC, and greedy are illustrated in Fig. 3. Our
proposed solution achieves higher performance over episodes
than other benchmarks.

IV. COMPUTATIONAL COMPLEXITY AND SIGNALING
OVERHEAD ANALYSIS
Computational complexity (CC) is an important criterion
to indicate how our approach is computed and how many
resources are required. Indeed, CC indicates how many
resources are required to implement this algorithm [67]. A
higher CC means that this algorithm is more expensive and
complicated to implement. The CC of neural networks with
N layers and k̃n neurons can be calculated by CCneural =∑N−1

n=1 k̃nk̃n+1 [68]. As a result of utilizing the neural
network, the number of input layers equals the size of the
state, |St|, while the number of neurons in the output layer
equals the number of actions, |At|. Therefore, the CC of
MARDPG is CCMARDPG = O((E × Hbatch × HLSTM ) ×
CCneural × B), where Hbatch , HLSTM , E, and B represent
the size of the batch memory, the size of LSTM memory,
number of episodes, and number of agents, respectively.
The CC of the other algorithmic benchmarks can be found
in Table 1. It is noticeable that the CC of DSAC needs
some explanations. Regarding those agents in the distributed
DRL algorithm trying to solve the problem parallelly, the

CC, in this case, is equal to the maximum CC of agents
as follows:

O
(

max
((
E × H1

batch

)
× CC1

neural

)
×

· · · ×
((
E × HB

batch

)
× CCBneural

))
(24)

However, when the agents are the same and their actions
are equal, the maximum CC is equal to the CC of each one.
Therefore, we can simplify the CC by following:
(
E × H1

batch

)
× CC1

neural = · · · =
(
E × HB

batch

)
× CCBneural ,

(25)

O
(

max
(((

E × H1
batch

)
× CC1

neural

)
× . . .

×
((
E × HB

batch

)
× CCBneural

)))

= O
((
E × Hb

batch

)
× CCbneural

)
,∀b ∈ B. (26)

Furthermore, each algorithm requires Information to solve
the problem, known as signaling overhead (SO). In fact, SO
helps us measure how much data is needed to solve the
specific problem with a given algorithm [67]. Furthermore, a
higher signaling overhead implies the necessity to coordinate,
manage, or control a greater amount of information to
address the problem. In the case of reinforcement learning,
this Information is divided into three categories. We need
three groups of Information to solve the problem. Firstly,
information about the state that is represented by |St| = |gt|.
Secondly, the required data for actions, which is indicated
by |At| = |Pt| + |� t| + |Ft| + |L| (it consists of four
parts: the uplink power allocation matrix, uplink subcarrier
allocation matrix, computational resource allocation matrix,
and location selection of ABS, respectively). Thirdly, the
number of agents, B, presents the Information needed for
reward. Last but not least, we presume that each resource
matrix element is modeled by “Float 16” bits. Hence, the
SO for multi-agent algorithms, MARDPG and MADDPG,
is 16× (|St| + |At| + B). However, for the greedy algorithm
that is not multi-agent, SO is 16 × (|St| + |At|). Unless
the CC for the DSAC, SO is just like other multi-agent
algorithms because DSAC is a multi-agent approach, where
the only difference is that the agents do not share the policy.
Accordingly, the data for solving the problem is similar
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TABLE 2. Learning and environmental parameters.

to MADDPG and MARDPG. The SO of these methods is
summarized in Table 1.

V. SIMULATION
In this section, we present numerical results to evaluate
the performance of the multi-agent DRL algorithm in
joint resource allocation and trajectory design in a non-
terrestrial network-enabled IIoT nodes for disaster relief. We
consider seven scenarios. First, the considered environment is
described. Second, a comparison is made between MARDPG
and other algorithmic benchmarks. In fact, we want to
find out which algorithm performs better in our case [69].
Next, two conventional objective functions are implemented
with the same algorithm (MARPDG) in order to prove the
superiority of the proposed objective function. This scenario
aims to understand the performance of objective functions,
not algorithms. Next, the performance of MEC is compared
to COC (MEC and Fog). In fact, it helps to determine which
computational structure is better for our case [70], [71].
After that, the trajectory design of the UAVs is provided
to realize that the UAVs operate correctly without collision.
Then, solving optimization problems with non-exact methods
is useful in many cases, as long as the optimality gap is
determined and ensured to be acceptable. Therefore, we
implemented the exhaustive search algorithm to determine
the global optimum [72]. Then, we measured the MARDPG
optimality gap using the result of the exhaustive search
algorithm as a reference. Finally, in the last scenario, by
calculating the fairness score, we can realize how much
resources are fairly distributed among the users [73].

A. SIMULATION ENVIRONMENT
We consider that 30 (U = 30) IIoT nodes randomly spread
out through the squared disaster zone of size 2000 m ×
2000 m. Additionally, 3 UAVs (B = 3) can fly from
the minimum height of zmin = 20 m to the maximum
height of zmax = 100 m. In addition, the minimum dis-
tance between two ABS to prevent a collision is dmin =
2 m [50]. Moreover, we consider K = 8 subcarriers for
each ABS, and each subcarrier has bandwidth Ŵ = 120 kHz
bandwidth. Accordingly, each subcarrier can be assigned
to a maximum of two nodes, CTh = 2. Furthermore, the
minimum and maximum uplink data transmission powers
are pmin = 100 mW and pmax = 800 mW, respectively.
The additive white Gaussian noise (AWGN) variance is
σ 2 = −90 dB [74]. Furthermore, the LoS and the NLoS
mean excessive path loss values are ηLoS = 0.1 dB and
ηNLoS = 21 dB. We consider each user’s packet (task) to be
100 kbits. Apart from that, the computational resource of
each MEC (ABS) is fmax

b = 4× 109 CPU cycle/second (the
MEC’s service rate is equal to the computational resource
of MEC). In addition, the computational resource of each
Fog (HAPS) is fmax

b = 4 × 1010 CPU cycle/second (the
Fog’sservice rate is equal to the computational resource of
Fog). Eventually, the maximum tolerable E2E delay for each
node is DTh = 100 ms. In addition, all the learning and
environmental parameters can be found in Table 2, [75].
Additionally, we consider 2000 timeslots, each of which has
a length of 50 ms. Therefore, in each episode, the problem
is run for 2000 timeslots. Hence, the average reward in last
100 timeslots is considered as the reward of one episode. It
is noticeable that the config of the computer that was used

VOLUME 5, 2024 1837



MOHAMMADISARAB et al.: RESILIENT DISASTER RELIEF IN INDUSTRIAL IoT

FIGURE 4. Performance analysis of MARDPG, MADDPG, DSAC, and Greedy.

for running the simulations is: It has 48 gigabytes (GB) of
random-access memory (RAM), Intel Core i5–11400F up
to 4.5 GHz, one terabyte (TB) of hard disk drive (HDD),
two 500 GB solid state drives, and NVIDIA GeForce RTX
2080. Learning networks are also implemented in Python
3.7, Tensorflow 2.6 library, and Keras 1.7 library. Also, all
the source codes related to this paper can be found in [76].

B. COMPARISON BETWEEN DIFFERENT DRL
ALGORITHMS
In this Subsection, we aim to compare three algorithmic
benchmarks whose environment and parameters are the
same, which can be observed in Figure 4. Increasing the
number of subcarriers grows the NSCs until it reaches
K = 16, as can be observed in Fig. 4(a). After that, the
total number of connections remained unchanged because
of E2E delay not only depends on the radio resources
(subcarriers), but also on the computational resources and
buffer throughput. As a result, the NSCs would not increase
even though more bandwidths are added to the system. The
effect of raising the IIoT nodes is studied to provide more
justification for assuring the efficiency of our architecture.

FIGURE 5. Performance analysis of MARDPG, MADDPG, DSAC, and Greedy by
increasing the number of UAVs.

As observed from Fig. 4(b), the capacity of the system
to admit more E2E delay-aware connections is limited,
and it is significantly increased from U = 10 to U =
30. Nevertheless, NSC moderately increased and remained
unchanged when the number of IIoT nodes expanded from
50 to 60. Moreover, NSC is substantially affected by the
maximum tolerable E2E delay for each IIoT node, DTh.
Accordingly, Fig. 4(c) shows that with increasing DTh from
10 ms to 100 ms, the NSCs also increases. The NSCs first
raises until DTh = 90 ms and then saturates. Significantly,
MARDPG achieves higher performance than MADDPG,
DSAC, and Greedy, which can be a result of LSTM and SEU.
For example, in Figure 4(a), MARDPG has 13.3%, 26.6%,
and 33.3% better gain than MADDPG, DSAC, and Greedy,
respectively. According to Section IV and Table 1, though
MARDPG is more complex than others, it has a significant
performance gap between other methods and MARDPG,
whereby more complexity can be justified (SO of all multi-
agent approaches are similar, and just Greedy is less than
other algorithms).
In addition, to show the scalability of the proposed

method, we examine the effect of increasing the number
of UAVs. When the number of UAVs are increased, NSCs
are increased. Indeed, by increasing the number of UAVs,
we raise the amount of resources. As a result, NSCs are
incremented, as seen in Fig. 5. Similarly, when the number
of UAVs are increased from two to five (we did not consider
one UAV because we want to be still multi-agent and also
more than five UAVs cannot be operational for the dimension
of our environment), MARDPG achieves better performance
than MADDPG, DSAC, and Greedy.

C. COMPARISON BETWEEN DIFFERENT OBJECTIVE
FUNCTIONS
The reasons why NSCM is more efficient than the two
conventional methods are given in this subsection. The first
approach minimizes the average delay that the model can
be found [43], [45]. Secondly, minimizing the maximum
delay that the model is considered in du2017computation,
li2018min, li2022min. Indeed, the algorithm (MARDPG) and
problem in (16a) (constraints and optimization variables)
are similar, and just the objective is changed. As can be
seen in Fig. 6(a), NSCs reached a maximum when K
increased to 16, followed by saturation from K = 16 to
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FIGURE 6. Performance analysis of NSCM, Min-Max delay, and Min-Average delay
that are implemented with MARDPG.

K = 32. The reason for this is that other resources are
limited, and NSCs cannot be constantly increased by the
increase in radio resources alone. This pattern is also true
for Figure 6(b) and 6(c). Obviously, the results indicate
that NSCM is superior to the two other models. Although
objective functions differ in these three dissimilar models,
their CC and SE are equal to the MARDPG calculated in
the first row of Table 1 because all algorithm specifications
(actions, state, and reward) remain unchanged. As a result,
it is notable that our proposed method (NSCM) with the
same CC and SE showed a better performance. For instance,
NSCM has roughly 13% better gain than minimizing
maximum delay and 20% than minimizing average delay
in Figure 6(b).

D. THE PERFORMANCE OF COLLABORATIVE
COMPUTING
In this scenario, the main goal is to compare the performance
of MEC and COC with three different ε, 0.2, 0.5, and
0.7. Again our algorithm remains unchanged, and only the
computing model changes, which can be found in [25], [26].

When the computation model is changed, the structure of
the problem in (16a), moderately differs. Assuming that
transmission and propagation delays in offloading data from
each UAV to HAPS are negligible, only the processing and
queuing delays of HAPS to compute the portion of tasks
are needed to be defined. According to the equations (14)
and (13), the queuing (Dqueu,t

u,a ) in [s] and processing (Dproc,t
�u,a )

delays of HAPS in [s], a are by follows

Dqueu,t
u,a = 1

μa − DLta
,Dproc,t

�u,a =
εDLu�u

f t
�u,a

, (27)

where DLmax,t
a , μa, and f t

�u,a represent packet arrival rate
at time slot t for HAPS a, service rate of HAPS a, fmax

a in
CPU cycle per second, and computational resources that are
allocated to task �u that is pertained to node u data which
are provided by HAPS a, respectively. As a result, the E2E
delay for the COC scenario can be as follows,

DE2E,t
u = Dtran,t

u,b + Dqueu,t
u,b + Dproc,t

�u,b
+ Dqueu,t

u,a + Dproc,t
�u,a ,

∀u ∈ U ,∀t. (28)

Next, three changes were made to modify the problem (16a)
for implementing COC. Firstly, the optimization variable
F changed to [F]u,b,a = ( f t

�u,b
, f t

�u,a), means that HAPS
now is an agent in addition to three UAVs, and try to
allocate CPU cycle ( f t

�u,a) to a portion of data that is
offloaded to it. Secondly, one constraint should be added
that is

∑J
j=1 f

t
�j,a ≤ fmax

a . Thirdly, the state in III, cannot
only be channel information, and those about prior CPU
cycle allocation are needed. Thus, the state should be altered
to stb,a = [gtu,b,k, f

t−1
�u,b

, f t−1
�u,a], b ∈ B. The CC and SO of

MEC and COC are in Table 3. It is obvious that COC is
more complex than MEC because of the number of agents;
therefore, the number of neurons is more in it. Furthermore,
due to the size of the state, action space, and the number of
agents being more than MEC, COC imposes higher signaling
overhead. As evident from Figure 7(a), MEC showed a better
performance than COC (20% better) when most data was
still processed in MEC. As ε = 0.5, NSCs of COC started
from 5 (1 less than the NSCs of MEC) and steadily soared
until it intersected the MEC’s graph in Figure 8(a). Finally,
it finished with a 10% gain over MEC. When ε increased
to 0.7, the NSCs reflected the same pattern, and COC’s
performance gap leveled to around 13% in Figure 9(a).
Increasing ε from 0.2 to 0.7 leads to dramatic growth in the
performance of COC. In Figure 7(b) MEC has roughly 13%
better gain when N = 60. However, COC bridges this gap
and achieved higher NSC, which is about 16% and 20% more
than MEC in Figures 8(b) and 9(b). This trend is similar
in Figures 7(c), 8(c), and 9(c). However, these achievements
cost more CC and SO, as shown in Table 3. To sum up,
in the case of mission-critical IIoT, lower CC and SO are
more crucial, which can be attained with acceptable lower
performance. Based on that, MEC is a better computing
model.
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TABLE 3. The computational complexity and signaling overhead of MEC-MARDPG and collaborative computing-MARDPG.

FIGURE 7. Performance analysis of MEC and COC with ε = 0.2. (a) The effect of
increasing subcarriers on the NSCs with DTh = 100 ms, B = 3, and U = 30 (b) The effect
of increasing IIoT nodes on the NSCs with DTh = 100 ms, B = 3, and K = 8 (c) The
effect of increasing the maximum tolerable E2E delay on the NSCs with U = 30, B = 3,
and K = 8.

E. TRAJECTORY DESIGN
In this part, the result of the trajectory design of UAVs is
provided. Figure 10 illustrates the trajectories of UAVs and
the IIoT node locations in 3D. As can be seen, the UAVs try
to find and move to the locations that lead to more NSCs.
The shorter distance between the node and the ABS means
that less transmission power is required to send data to the
ABS. On the other hand, the optimal allocation of power
is linked to the way in which UAVs move. As a result, the
UAVs tried to keep these distances as short as possible. This
tended to result in more UAV paths overlapping.

FIGURE 8. Performance analysis of MEC and COC with ε = 0.5. (a) The effect of
increasing subcarriers on the NSCs with DTh = 100 ms, B = 3, and U = 30 (b) The effect
of increasing IIoT nodes on the NSCs with DTh = 100 ms, B = 3, and K = 8 (c) The
effect of increasing the maximum tolerable E2E delay on the NSCs with U = 30, B = 3,
and K = 8.

F. OPTIMALITY GAP AND COMPARISON TO
EXHAUSTIVE SEARCH
It is generally accepted that determining how far the
proposed algorithm is from the global optimal value can help
to understand the optimality of the algorithm. Nonetheless,
the actions in reinforcement learning are taken with noise,
and exploration and exploitation are involved, so it seems
impossible to reach a global optimum. In other words,
achieving global value cannot be guaranteed for most DRL
algorithms with common reinforcement learning structures.
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FIGURE 9. Performance analysis of MEC and COC with ε = 0.7. (a) The effect of
increasing subcarriers on the NSCs with DTh = 100 ms, B = 3, and U = 30 (b) The effect
of increasing IIoT nodes on the NSCs with DTh = 100 ms, B = 3, and K = 8 (c) The
effect of increasing the maximum tolerable E2E delay on the NSCs with U = 30, B = 3,
and K = 8.

TABLE 4. Determining the optimality gap of proposed solution by comparing to
exhaustive search method.

Furthermore, our proposed problem is NP-hard, mixed-
integer, online, and large, which makes it difficult, if not
sometimes intractable, for conventional solution approaches.
However, DRL algorithms are still promising for solv-
ing such problems, despite their suboptimal value and
performance. But, the optimality gap should be defined
to determine its amount. To this end, we exploited an
exhaustive search (Brute-force search) algorithm to deter-
mine this gap due to its capability to solve the online
problem [77], [78], [79]. The simulation setup is just like
the mentioned initialization in Section V-A (K = 8,U =
30,B = 3,DTh = 100 ms). As can be observed in Table 4,
MARDPG roughly has a 6% gap compared to the exhaustive
search. Although the exhaustive search algorithm has a better

performance than MARDPG, its running time is dramatically
high (80 times higher than MARDPG), and it has a higher
complexity in terms of CC. On the basis of this, we conclude
that it is perfect for the solution of small scale problems,
not large scale problems like the one we are proposing. As
a result, MARDPG may be a better choice as the main
solution. It is worth mentioning that as the optimality gap
increases, the efficiency of the algorithm decreases. In terms
of disaster relief, it will be a more promising system if
your method can provide more NSCs. More NSCs mean
more IIoT nodes can send their control information. It will
lead to better disaster management, resource allocation, and
the prevention of further infrastructure damage. Otherwise,
a lack of information can cause the situation to get out
of control. In a disaster relief scenario, we need to protect
critical infrastructure that is monitored by IIoT nodes. To
do this, we need to establish communication in disaster
areas [80]. Considering the scalability and flexibility of non-
terrestrial networks, they are suitable for this scenario [10].
In addition, it is better to process data locally than to
use other options far from the disaster area due to the
additional transmission delay. For this reason, we used non-
terrestrial networks with hierarchical structures equipped
with computing resources.

G. FAIRNESS ANALYSIS
Analyzing the system model in aspects of fairness in the
transmission rate of users is within the scope of this
Subsection. Until now, we considered various examinations
to evaluate and compare our performance with other bench-
marks. Although the user’s transmission rate is involved
in (7) and indirectly guaranteed in constraint (16h), it is
crucial to determine how it is fairly allocated to users. In
other words, we want to evaluate the power and subcarrier
allocations in terms of fairness. As mentioned, the set of
users is denoted by U = {1, . . . , u, . . . ,U}, where U is the
total number of IIoT nodes. In addition, the maximum uplink
achievable rate represented by Rtu,b,k in equation (7), in which
the average rate of each user on all subcarriers during time
slots can be presented by E[

∑K
k=1 R

t
u,b,k]. Hence, according

to [81], the fairness score (FS) can be formulated as follows,

FS =
(∑

u∈U E

[∑K
k=1 R

t
u,b,k

])2

|U | ·∑u∈U E

[∑K
k=1 R

t
u,b,k

]2 . (29)

Considering this formula, we analyze the FS in terms of
rate with a different number of users from 10 to 60. As
can be seen in Table 5, the FS score gradually decreased
from around 98% to approximately 70% when U = 60.
This decreasing trend is a result of resource limitations.
Nevertheless, it is noticeable that for our simulation setup
(U = 30), the acceptable FS is achieved (91%).

VI. CONCLUSION
In this paper, a MARDPG-based resource allocation and
trajectory design in HNTN-enabled IIoT networks was
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FIGURE 10. The trajectories of UAVs in the proposed scheme.

TABLE 5. The fairness score among IIoT nodes.

developed to maximize NSCs in a disaster area, taking
into account computational resources and E2E delays. The
proposed MARL algorithm utilizes an LSTM-based SEU to
enhance the collaboration between agents where a group of
UAVs (as agents) were continuously trying to learn total and
individual rewards. In addition, the impact of increasing the
number of subcarriers, IIoT nodes, and maximum tolerable
E2E delay on NSCs were considered as three main criteria.
Simulation results demonstrated that not only MARDPG had
a better convergence as compared to MADDPG, DSAC, and
Greedy, but also achieved a higher performance in NSC
maximization. Furthermore, it is noteworthy that NSCM
achieved a higher gain for the same CC and SO than two
conventional objective functions, minimizing the maximum
delay and the average delay minimization in terms of NSCs.
Additionally, the results revealed that the MEC structure
is superior to COC with lower CC and SO, provided that
most data are processed in it. Besides that, exhaustive search
algorithm was exploited as an indicator for the optimality
gap, showing that MARDPG had a gap of approximately
6 %. Finally, 91% FS was achieved in terms of achieved
uplink transmission rates.
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