
Received 7 February 2024; accepted 27 February 2024. Date of publication 5 March 2024; date of current version 26 March 2024.

Digital Object Identifier 10.1109/OJCOMS.2024.3373177

TinyML Empowered Transfer Learning on the Edge
ALI M. HAYAJNEH 1, MARYAM HAFEEZ2 (Member, IEEE), SYED ALI RAZA ZAIDI 2,

AND DES MCLERNON 2

1Department of Electrical Engineering, Faculty of Engineering, The Hashemite University, Zarqa 13133, Jordan

2School of Electronic and Electrical Engineering, University of Leeds, LS2 9JT Leeds, U.K.

CORRESPONDING AUTHOR: S. A. R. ZAIDI (e-mail: S.A.Zaidi@leeds.ac.uk)

This work was supported in part by the Engineering and Physical Sciences Research Council (EPSRC) CHEDDAR under Grant EP/X040518/1;
in part by the UK Research and Innovation (UKRI) under Grant EP/X039161/1; in part by MSCA Horizon EU under Grant 101086218;

and in part by the Abdul Hameed Shoman Foundation under Grant 230800328.

ABSTRACT Tiny machine learning (TinyML) is a promising approach to enable intelligent applications
relying on Human Activity Recognition (HAR) on resource-limited and low-power Internet of Things (IoT)
edge devices. However, designing efficient TinyML models for these devices remains challenging due to
computational resource constraints and the need for customisation to unique use cases. To address this,
we propose a novel approach that utilises transfer learning (TL) techniques on edge micro-controller units
(MCUs) to accelerate TinyML development. Our strategy involves pre-training generalised ML models
on large-scale and varied datasets and fine-tuning them on-device for specific applications using TL. We
demonstrate the effectiveness of our approach for HAR by experimenting with a convolutional neural
network, long short-term memory TL (CNN-LSTM-TL) model architecture and visualisation techniques
like t-distributed stochastic neighbour embedding (t-SNE) for dimensionality reduction. To further validate
our model’s proficiency and adaptability, we conducted extensive testing using two distinct datasets:
MotionSense and UCI. This dual-dataset approach allowed us to assess the robustness of our model across
different data domains, showcasing its versatility and effectiveness in various HAR scenarios. Our results
show significant model accuracy and reduced training time while maintaining high inference rates and
low MCU memory footprint. We also provide insights into best practices for implementing TL on edge
MCUs and evaluate classification performance metrics such as accuracy, precision, recall, F1 score, and
categorical cross-entropy loss. Our work lays a solid foundation for faster and more efficient TinyML
deployments through TL framework across different application domains and types of edge IoT devices.

INDEX TERMS TinyML, transfer learning, machine learning, deep neural networks.

I. INTRODUCTION

HUman activity recognition (HAR) systems and tech-
niques are essential for safety and efficiency in various

modern day settings like public transport, supermarkets,
sports, medical care and factories. HAR normally uses sensor
data for automatically recognizing and classifying human
actions [1]. They reduce risks to personal and property
safety through anomaly detection as well as enhance real-
time surveillance to reduce the need for manual analysis.
Additionally, HAR aids behavior analysis and user experi-
ence, as well as providing guidance, tracking progress, and
preventing failures.
Using machine learning (ML) approaches for HAR has

become increasingly popular in recent years [2]. The

complex pattern recognition capabilities inherent in ML
algorithms can significantly enhance the performance of
HAR. In HAR, these patterns correspond to the distinctive
movements, behaviors, or signals associated with different
human activities. ML utilizes data driven approaches lever-
aging integration of multimodal data from multiple sources,
for example, sensors like accelerometers, gyroscopes, etc.,
providing a more comprehensive and accurate understanding
of activities. The efficiency, scalability, and ability to adapt
to user-specific behavior makes ML an increasingly powerful
tool for HAR.
Existing HAR implementations using ML techniques have

some drawbacks. Various sensors on smart devices, which
are the primary source of HAR data, lack the intelligence
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to extract valuable information from acquired data and learn
from it. Typically, data collected by current sensors must be
transmitted to the cloud for further ML processing, leading
to increased energy consumption, communication latency,
and potential security and privacy risks. Designing truly
intelligent nodes for such tools presents challenges in size
and lifespan, mainly due to limited batteries powering these
smart microcontroller unit (MCU) powered sensor nodes.
The limited battery life significantly limits the widespread
adoption of smart sensor nodes for tool monitoring, impact-
ing usability due to the difficulty, cost, and time involved
in replacing batteries. Achieving a satisfactory lifespan
necessitates meticulous low-power system design, including
the careful selection of components to meet the small battery
size requirements and ensure long operational periods lasting
months or years.
In order to overcome the above challenges, edge process-

ing for HAR has become increasingly popular as it bypasses
the need for data to be relayed to the cloud [3]. This tactic
not only enhances privacy and expedites response times
but also alleviates network bandwidth pressures, introducing
an additional degree of efficiency to IoT infrastructures.
Moreover, to truly benefit from such edge-based solutions,
it is important to devise learning algorithms that are energy
and resource efficient. In this context, transfer learning (TL)
proves to be an advantageous strategy for edge devices
by facilitating the efficient and successful implementation
of machine learning models [4]. It enhances performance,
optimizes resource utilization, and effectively deals with
the unique challenges inherent to edge architectures. This
approach empowers edge devices to harness the advantages
of deep learning while adhering to their specific limitations
and needs.
With these developments, a crucial area of interest

has formed around the requirement for reliable tools to
implement ML models on edge IoT devices. To further
optimise the edge-based HAR implementations, light-weight
ML solutions are the key and are referred to as Tiny
Machine Learning (TinyML) approaches [5], [6]. TinyML
specifically addresses space and computational constraints
in low-end smart devices and presents a framework of
implementing ML solutions for operation on the edge. As
a result, frameworks like TFLite-μ, PyTorch mobile, and
Edge Impulse have emerged as important facilitators in
this area [7], [8], [9]. TinyML Foundation recently appeared
and is working to promote the development of ultra-low-
power ML technology, that complements these tools [10].
Their cumulative use in the field of edge computing serves
as an example of how ML models can be significantly
more effective and useful in environments with limited
resources. By enabling effective ML model execution on
low-power micro-controller units (MCUs) and fostering the
quick adaption of pre-trained models to address specific use
cases, TFLite-μ in particular synergistically empowers this
integration. This harmonious interplay significantly mitigates
the complexity of deploying intricate ML models on edge

devices, paving the way for a progressively intelligent IoT
landscape.
The fusion of TinyML and TL presents itself as a

promising solution [5], [6]. In fact, the joint implementation
of TinyML and TL brings a robust approach that seamlessly
balances model performance and energy efficiency. This
opens up new ventures for the integration of the ML
capabilities for edge IoT devices which as a result leads to
smarter and more responsive IoT ecosystems.
The focal point of this study is an in-depth analysis and

development of a TinyML-as-a-service (TinyMLaaS) frame-
work. Our focus is centred around the ML development and
operations (MLDevOps) workflow of TL for edge devices,
where our objectives lie in expediting model deployment and
enabling smooth integration within IoT systems. Also, we
address the progress of TinyML development in conjunction
with TL for edge MCUs. By harnessing TL techniques,
our ambition is to facilitate a streamlined implementation
of resource-demanding ML models, such as long short-
term memory (LSTM) and convolutional neural networks
(CNNs), on edge devices. This will trigger a rapid model
deployment, thereby boosting the overall performance of
IoT applications from multiple performance aspects. Finally,
we aim to explore the effectiveness of TL in augmenting
the precision of HAR models that are trained on limited
labelled data. In conjunction with this, we aim to address how
edge computing can be harnessed to improve the efficiency
of HAR models deployed on resource-constrained devices.
We believe that this research offers invaluable insights into
the potential of TL and edge computing in amplifying the
performance and practicality of HAR systems and other edge
inference and classification tasks.

A. RELATED WORKS
Human activity recognition (HAR) has captivated research
interest for more than a decade, owing to its applications
across various domains such as healthcare, sports, and
security. HAR encompasses the identification of human
activities grounded in sensor data gathered from wearable
gadgets, smartphones, or cameras [11], [12], [13], [14], [15].
Starting with the traditional transformation approaches,

methods utilising Two-Dimensional Fast Fourier Transform
(2-D FFT) and Wigner-Ville Transform (WVT) for time-
frequency representations have been proposed [16]. These
approaches utilise CNNs to achieve exceptional performance
in HAR tasks. In the age of deep learning (DL), a significant
shift has been observed. For example, an adaptive batch
size-based CNN-LSTM model has been developed for
efficiently handling imbalanced classes and non-normalised
data was introduced in [17]. Another paper presents the
CapsLSTM model, a framework which leverages spatiotem-
poral information to recognise multiple human activities [18].
This method displays resilience in data-scarce situations and
offers more reliable performance even with a smaller fraction
of training data.
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Another work proposed a semi-supervised DL framework,
which efficiently employs weakly labelled sensor data with
a deep Q-network (DQN) based intelligent auto-labelling
scheme and a multi-sensor data fusion mechanism in a
reinforcement learning (RL) approach [19]. Taking a step
further, a temporal-aware and modality-aware (TAMA) atten-
tion mechanism has been proposed in [20], which highlights
the importance of varying temporal steps or modalities,
increasing the interoperability of HAR tasks without any
additional computational burdens.
A shift in the HAR tasks involves the use of wireless

fidelity (WiFi) channel state information (CSI) by utilising
the orthogonal frequency division multiple access (OFDMA)
sub-carriers CSI. The approach in this domain is the
deployment of a DL-based model called attention-based bi-
directional LSTM (ABLSTM) [21]. This model, utilising
CSI measurements, exhibits superior performance in HAR
tasks. It assigns varying weights to learned features, leading
to substantial improvements in recognition performance.
Further to this, the challenge of non-uniformly distributed

unlabelled data has been addressed through the application
of a generative adversarial network (GAN) integrated with a
multi-modal generator [22]. This innovative approach aug-
ments the diversity of generated data, thereby enhancing the
recognition of specific activities across diverse environmental
settings. Thus, the application of CSI in HAR signifies a
promising direction in the field, showing the potential for
future advancements.
Finally, the importance of survey-oriented studies in

this field is well recognised. Comprehensive reviews have
been conducted, covering sensor-based activity recognition,
challenges, future research directions, and multi-sensor
applications [11], [12], [13].
Hence, the domain of HAR has seen a remarkable

progression from traditional transformation approaches to
modern DL-based techniques. However, with the growing
complexity of these ML models, there emerges a substantial
need for lightweight frameworks capable of executing on-
board computations, especially on-edge devices. This is
where TinyML comes into play, providing a new frontier
for developing and deploying lightweight ML models.
The dynamic nature of HAR research and the continual
emergence of innovative approaches, including TinyML,
testify to the vast potential and exciting future prospects of
this field.
Transitioning to TinyML: TinyML technologies have

brought a fresh perspective to edge computing, with a
particular focus on HAR [23], [24], [25]. Several innovative
techniques have emerged to balance the use of the available
resources with the need for data bearing in mind the inherited
challenges from the conventional ML task [3], [26], [27],
[28], [29].
The study in [26] shows a binarized neural network

that successfully reduced the memory requirements and
inference time. Another work introduced an adaptive neural
network, capable of modifying its structure according to

available resources and increasing efficiency across different
HAR scenarios [27]. On the other hand, advancements
were made by designing CNNs specifically for HAR,
considering aspects such as the influence of hyper-parameters
on performance and the energy efficiency of the models by
assessing the inference time and memory footprint [3], [28].
These efforts were further emphasised by a proposal

for lightweight and energy-efficient DL models suitable
for wearable devices in [29]. Another work introduced a
framework called BandX, which utilised DL inference on the
edge using TinyML and shows how the network traffic can
be reduced [30]. These advancements also include extraction
techniques for stride-specific information from accelerometry
data [31].
Moving forward, studies are exploring how to deploy effi-

cient deep-learning models on resource-constrained devices.
Notably, one study demonstrated the potential of TensorFlow
Lite compression techniques on CNNs and LSTM networks,
yielding considerable improvements in energy savings and
inference latency [32].
A shift in research direction was observed towards inte-

grating TinyML and edge computing for HAR using various
sensing techniques and solutions like presence detection with
ultra wideband radar technology [33]. Another work also
emphasises the utilisation of a TinyML-based radar solution
for sensing and detecting human activity [34].
Despite the strides in TinyML for HAR, challenges like

data scarcity and privacy concerns persist. The laborious and
costly process of gathering annotated data sets in various
deployment scenarios, especially in edge computing, prompts
an interest in techniques like TL. TL effectively utilises
limited labelled data by leveraging knowledge from related
tasks, making it increasingly vital in HAR applications.
Bridging these domains is TL, offering an effective solu-

tion for HAR in edge computing scenarios. By leveraging
pre-existing knowledge from related tasks, TL reduces the
necessity for a large volume of labelled data—an often
expensive and labour-intensive process, thereby reducing the
cost of collecting a large volume of labelled data [35], [36],
[37], [38], [39], [40].
TL is an ML technique where a model developed for one

task is reused as the starting point for a model on a second
task. This approach is particularly beneficial in scenarios
where labeled data is scarce or expensive to obtain. TL
involves two main phases: pre-training and fine-tuning. In
the pre-training phase, a model is trained on a large, often
generic dataset to learn a wide range of features. This model
is then fine-tuned by re-training it on a smaller, task-specific
dataset, allowing the model to adapt these learned features
to the new task. This methodology not only accelerates the
training process but also enhances the model’s performance,
especially in specialized applications like HAR where data
collection can be challenging. The efficiency of TL lies in its
ability to leverage learned patterns and knowledge from one
domain and apply them to another, thereby reducing the need
for extensive training. In the context of our work, we apply
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TL to expedite the development of TinyML applications on
edge MCUs. This is achieved by first training our models on
extensive datasets and then adapting them to specific tasks
in edge computing, ensuring efficient performance despite
the limited computational resources of MCUs. Our focus on
TinyML further emphasizes the need for optimized models
that can operate within the constraints of edge devices,
making TL an ideal approach for developing sophisticated
yet resource-efficient applications.
Several methods apply to this concept. For instance, one

uses a three-phase framework with a CNN and LSTM [35].
Another study combined TL with WiFi’s CSI for activity
recognition, emphasising TL’s potential in HAR [36].

Furthermore, TL can improve cross-domain activity recog-
nition, as seen in the stratified TL framework [37]. The Deep
Multi-scale TL (DMSTL) model and class augmentation
method further develop TL’s capabilities [38], [39]. TL
also has applications in privacy-focused environments, as
exemplified by the FedHealth framework for wearable
healthcare [40], and the subject adaptor GAN (SA-GAN) for
wearable sensor-based HAR [41].
On the algorithmic front, ensemble models have proven

to be promising for TL. For example, a study inte-
grated AdaBoost with CNN to design an ML method
that could handle large imbalanced datasets with high
accuracy [42]. The AdaBoost-CNN method significantly
reduced computational costs compared to classical AdaBoost
and achieved better accuracy on various datasets. Another
work presents the adaptive spatial-temporal TL (ASTTL)
approach that addresses challenges in cross-dataset activity
recognition [43]. This approach leverages spatial-temporal
features for cross-dataset HAR and can be utilised for source
domain selection and accurate activity transfer.
In summary, TL has proved to be an indispensable tool

for HAR, offering potential solutions to the challenges of
data collection and annotation, data privacy, and accurate
knowledge transfer across various domains. The continued
exploration and advancement in TL methodologies are
paving the way for enhanced HAR in various real-world
scenarios.
In this paper, we seek to develop an approach for

accelerating TinyML development with TL on-edge MCUs,
addressing key aspects such as inference rate, model adap-
tation, and rapid deployment. By leveraging TL techniques,
we aim to simplify the implementation of resource-intensive
ML models, like LSTM and CNNs, on edge devices,
promoting rapid model deployment and enhancing the overall
performance of IoT applications. Furthermore, we investigate
the potential of TinyML, emphasising the role of TFLite-μ
in empowering this paradigm shift.
In conjunction with examining the establishment of a

TinyML-TL infrastructure, our investigation seeks to expand
upon preceding efforts in HAR and scrutinise the efficacy
of TL in enhancing the precision of HAR models trained
on scarce labelled data, as well as its influence on edge
inference performance.

B. CONTRIBUTIONS AND ORGANISATION
This paper makes significant strides in the domain of
HAR using DL, particularly suited for resource-limited
edge devices. We utilise an advanced CNN-LSTM deep
neural network (CNN-LSTM-DNN) TL model architecture,
demonstrating enhanced feature extraction and classifica-
tion performance. Furthermore, a comparative analysis of
the model’s edge inference footprint is provided, offering
insights into the model’s real-time processing capabilities
and low-latency requirements. Our main contributions in this
paper are as follows:

• Advanced Model Architecture: This study presents an
efficient deep-learning model for motion classification,
leveraging a CNN-LSTM-DNN architecture for superior
feature extraction and classification performance.

• Denoisng and Dimensionality Reduction: The research
employs principal component analysis (PCA) to reduce
the dimensionality of the problem space. This not only
improves computational efficiency but also enhances the
model’s edge inference potential for TinyML applica-
tions using TFLite-μ.

• Transfer Learning: The use of TL in the model design
leverages its adaptability to new data, addressing over-
fitting issues and reducing the computational resources
needed for training. This makes the model suitable for
deployment on edge devices with limited processing
power, such as MCUs.

• Comparative Analysis of Edge Inference Footprint: This
paper includes a comprehensive comparative analysis
of the model’s inference footprint on edge devices. The
results highlight the model’s effectiveness and efficiency
in real-time processing and low-latency requirements
of motion classification tasks, thereby showcasing its
suitability for implementation on resource-restricted
edge devices.

• Pathway for Future Research: By demonstrating the
effectiveness of sophisticated DL models and dimen-
sionality reduction methods for motion classification
tasks, this work paves the way for future research
into further optimisation strategies, alternative model
architectures, and broader application areas within the
domains of motion classification and edge computing.

The rest of this paper is organised as follows: In Section II,
we describe the methodology employed, including data pre-
processing, model development, and evaluation metrics used
in our study. The results and discussion of the performance
of various models are presented in Section III, highlighting
the strengths and weaknesses of each approach. Finally,
Section V concludes the paper, summarising our findings and
providing insights into future research directions in this field.

II. DL MODEL FOR MOTION CLASSIFICATION ON EDGE
DEVICES
A. THE DATASET
In this study, we designed a DL model for motion classifi-
cation using the MotionSense dataset, which includes a set
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of inertial signals essential for understanding the motion and
orientation of a device [44]. The dataset consists of twelve
time-series inertia signals collected from a smartphone worn
by 24 volunteers, with diverse demographic distribution in
terms of age, gender, and weight. The participants performed
various activities, such as walking, climbing stairs, running,
lying, and sitting, while carrying an iPhone in their front
pocket.
The smartphone’s inherent sensors, encompassing the

accelerometer and gyroscope, were employed to capture
the data at a sampling frequency of 50 Hz. These signals
(features) exemplify diverse facets of the device’s motion,
including its orientation (attitude), the influence of gravity
on its movement, its rotational velocity (rotation rate), and
the acceleration perceived by the user, each spanning three
spatial dimensions. In this investigation, we utilise 50Hz
2-second samples to categorise five selected labels for our
classification task. The dataset is partitioned into 100 × 12
time series samples for every activity.
One of the challenges in motion classification using the

MotionSense dataset is the variability in how individuals
perform activities, which can result in different motion
patterns. This will be tackled by the sophisticated DNN
architecture that we will be using, as described in the
subsequent sections. Furthermore, the dataset is imbalanced,
with some activities having fewer samples compared to
others. Hence, before performing any pre-processing or
training we balance the dataset to have a similar probability
of occurrence for each of the five chosen classes for our
task.
Dataset for TL workflow: In the context of setting up

the MotionSense dataset for the TL workflow, we harness
data augmentation strategies. The primary objective here
is to boost the diversity and volume of our training data
by introducing minor changes, thereby bolstering our DL
model’s generalizbility.
Considering the data in our study exhibits a time-

series character, a range of time-series data augmentation
techniques are relevant. These methodologies include time
warping which either expands or shrinks the series; jittering
which introduces mild noise to the series; scaling which
alters the time series’ amplitude; and window slicing which
generates new instances from diverse time windows. Each
augmentation technique engenders fresh and varied motion
patterns. Moreover, given the dataset’s imbalanced nature as
mentioned before, data augmentation can also contribute to
further balancing the dataset. Additional samples of the less-
represented activities can be artificially generated employing
the data augmentation strategies, thereby guaranteeing an
equal chance of occurrence for every activity class.
Given our training data sample X of size M × N, our

objective is to jointly augment the data to produce Xaugmented.
The augmentation process comprises two main steps: first,
we manipulate the time axis either by oversampling or
downsampling and subsequently, we slice the data by
extracting random consecutive samples of length M.

FIGURE 1. Class Distribution Comparison: Before and After Balancing.

Initially, we modify the time axis. Depending on whether
we wish to elongate or condense the time duration, we can
opt for oversampling (increasing data points) or downsam-
pling (decreasing data points). This results in the modified
data sample Xmod = [xmod,1, xmod,2, . . . , xmod,N] of the size
(M×R)×N, where R is the oversampling or downsampling
ratio.
Post to the time-axis modification, we proceed to slice

the data. To extract slices, we pick a random starting point
j and retrieve M consecutive samples from xmod,i. This
procedure is encapsulated in the following mathematical
representation1:

xslice,i[j] = xmod,i[j : j+M], (1)

Xaugmented = [xslice,1, xslice,2, . . . , xslice,N], (2)

where, j is randomly chosen for each slice from the interval
[0, (length of xmod,i - M)] ensuring that the extracted slice
originates entirely from the same data sample and does not
overlap with other samples in the time series data stream.
Here, xslice,i[j] represents the i-th sliced data sample starting
at the j-th position within xmod,i, where xmod,i denotes the
i-th sample of the modified data Xmod. This slicing process
is captured in (1), where xslice,i[j] is defined as the subset of
xmod,i starting from index j and extending for M elements.
Subsequently, Xaugmented in (2) is constructed by assembling
these sliced samples xslice,i[j] across all N modified data
signals, thus creating the augmented dataset. The notation
xslice,i in the context of Xaugmented implies a collection of such
slices for the i-th sample, all starting at the same randomly
chosen index j.
Subsequent to the slicing process, we need to synchronise

the labels to the newly formed slices. Given that every slice
has a direct correlation to its original sample, the label of
the source sample is replicated for each corresponding slice.
The results of the dataset augmentation using slicing

window and time axis modifications (i.e., downsampling or
oversampling) are illustrated in Figure 1. The Figure shows
how the number of samples of each class is increased. This

1In the subsequent discussions, we will slightly abuse the notation X to
refer to the augmented data sample Xaugmented.
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will allow for a more generalisation accuracy. In the TL
phase, the same augmented dataset will undergo a more
augmentation process by squeezing and stretching the motion
window and by also adding some noise, to make sure that a
relatively new dataset is generated to test the TL framework
against. This augmentation process in the TL phase will be
performed on portions of the test dataset that are not seen
in the initial training phase.
TL with the UCI dataset: In addition to the TL workflow

that emphasizes data augmentation on the MotionSense
dataset, as mentioned earlier, it is crucial to test the fluency
of the TL workflow on a new dataset. Another dataset that
shares similar HAR activities is the UCI HAR dataset [45],
which presents an ideal opportunity to assess the adaptability
and generalizability of our deep learning model.
The UCI dataset, while similar in its focus on HAR

activities, introduces a distinct set of challenges compared
to the MotionSense dataset. These differences primarily
manifest in sensor configurations, data collection protocols,
and participant demographics. Understanding and accounting
for these variations is critical in ensuring that our model,
trained initially on MotionSense, can effectively transfer its
learned knowledge to the UCI dataset.
A key step in this process involves aligning the datasets

for the TL workflow. From the UCI dataset, we have
selected six activities that are analogous to those in the
MotionSense dataset, ensuring a consistent basis for activity
recognition. Additionally, while the MotionSense dataset
comprises twelve inertial signals, the UCI dataset contains
nine corresponding signals. This overlap forms the basis of
our TL model’s training, focusing exclusively on these nine
matching signals.
The application of our model to the UCI dataset aims

to test the model’s fluency in adapting to new data char-
acteristics. To accommodate the reduced number of signals,
we will perform PCA as will be discussed in the following
section. This step is critical in ensuring that the model not
only adapts to the structural differences between the datasets
but also efficiently processes the available data for optimal
performance.
This involves evaluating how effectively the model can

apply its pre-learned patterns and behaviors to a dataset
with a different structure and distribution while maintaining
or improving its performance metrics. The result of this
tailored TL approach will provide valuable insights into the
model’s versatility and generalizability across different HAR
scenarios.

B. PRE-PROCESSING AND FEATURES EXTRACTION
The MotionSense dataset, comprising 12 distinct signals
(features), presents a multidimensional feature space that
requires a systematic approach to extract the most pertinent
components for ML modelling. The PCA algorithm is
employed for both feature extraction and dimensionality
reduction [46], [47]. The algorithm begins its process by
standardising the data. Let X be the original data matrix

(i.e., a one-time series sample of the entire dataset of 12 ×
100 times series readings of the motion signals). The
standardisation ensures each feature i has zero mean and
unit variance:

xsi = xi − mean(xi)
std(xi)

, for i ∈ {1, 2, . . . , 12}, (3)

where xsi is the standardised feature, mean(xi) represents the
mean of the feature, and std(xi) denotes the standard devia-
tion of the feature. Then by concatenating the standardised
features we build the standardised data sample as:

Xs = [xs1 , xs2 , . . . , xsN ], (4)

for N = 12 the total number of the data sample features.
Thereafter, the covariance matrix � is computed to encap-
sulate the interrelationships between the features:

� = 1

M − 1
XT
s Xs, (5)

where M stands for the number of readings for each feature.
The eigenvectors vi and eigenvalues λi of the covariance

matrix, defining the principal directions and their signifi-
cance respectively, are then deduced:

�vi = λivi (6)

Following the computation, the eigenvectors are ordered
in descending fashion based on the magnitude of their cor-
responding eigenvalues. The top k eigenvectors, signifying
the most substantial directions of data variance, are cherry-
picked. Subsequently, the data undergoes transformation to
yield the transformed data matrix XPCA:

XPCA = XsWk (7)

where Wk = [v1, v2, . . . , vk] is the matrix formed by the
k eigenvectors corresponding to the k largest eigenvalues
in (6).

Applying PCA to both the MotionSense and UCI datasets
facilitates the extraction of the most significant information
while compressing the data. This reduction in dimensionality
is crucial in streamlining the complexity of the problem for
both datasets and mitigates concerns such as overfitting and
computational demands, especially when adapting the ML
model from one dataset to the other in the transfer learning
workflow. Evaluations of the ML model’s performance pivot
around various iterations of the selected PCA components,
ensuring that the model efficiently captures the essential
features from both datasets.
Figure 2 illustrates the proportion of the dataset’s total

variance as represented by each of the top k principal
components that is illustrated in the previous discussion. The
graphic employs a bar plot; the x-axis signifies the principal
components, whereas the y-axis correlates to their explained
variance ratios.
The paramount value of PCA within this context is

underscored by its potential to amplify edge inference,
especially when integrated with TinyML via TensorFlow Lite
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FIGURE 2. Explained Variance Ratio of the Top N Principal Components.

Micro (TFLite-μ). Diminishing the data’s dimensionality
paves the way for the generation of compact, efficient
models demanding minimal memory and computational
resources. Such enhancements facilitate swifter inference
rates, energy efficiency, and a reduced memory footprint,
proving invaluable for the integration of sophisticated ML
paradigms on edge devices bounded by resource constraints.
Particularly for tasks like motion classification, where
immediate processing and minimal latency are indispensable.

C. CNN-LSTM-DNN-TL MODEL ARCHITECTURE
As illustrated in Figure 3, the neural network design begins
with a Conv1D layer (N1 filters, kernel size of 3, rectified
linear unit (ReLU) activation, and L2-regularisation) to
uncover local patterns within the input data. Following this,
a Normalisation layer is employed to enhance the model’s
training speed and stability. Subsequently, a second Conv1D
layer with N2 filters, a kernel size of 3, ReLU activation,
and L2-regularisation delves into extracting advanced feature
sets. This is paired with another Normalisation layer.
To mitigate overfitting, a Dropout layer with a rate of

0.2 is employed. The features are then reshaped using a
Reshape layer to prepare them for the subsequent LSTM
layers. The first LSTM layer, having N3 hidden units
and configured to return sequences, is key to recognising
temporal relationships. A subsequent LSTM layer with N4
hidden units condenses these sequences into a more compact
representation. Another Dropout layer with a rate of 0.2 is
utilised post the LSTM layers to further avert overfitting.
The output of the LSTM is processed by a Dense layer

with N5 hidden units, ReLU activation, and L2-regularisation
to learn a nonlinear transformation. Finally, a Dense layer
with 5 units equipped with a soft-max activation function
discerns the ultimate output classifications.
We also extend the evaluation of the implications of

modifying the number of Conv1D layers (N1 and N2),
the hidden units in the LSTM layers (N3 and N4), and

the units in the Dense layer (N5). The goal here is to
show the interplay between model performance metrics and
resource demands, especially with an emphasis on edge
computing applications with TinyML. Hence, tuning these
hyper-parameters, can compile trade-offs between the model
complexity and computational limits.
LSTM Layers Architecture: Following the model architec-

ture we discussed in Figure 3, it is noteworthy to highlight
that we only utilise unidirectional LSTM layers which is
designed to process the input sequence in the forward
direction only. The choice of unidirectional LSTMs (but
not bi-directional) is to facilitate inference on edge devices
using TinyML and TFLite-μ, since TFLite-μ only supports
unidirectional LSTM layers as bi-directional architectures
require multiple graphs which are not yet supported. For a
given time step t, the LSTM equations are as follows [48]:

ft = σ(Wf · [ht−1, xt] + bf ), (8)

it = σ(Wi · [ht−1, xt] + bi), (9)

C̃t = tanh(WC · [ht−1, xt] + bC), (10)

Ct = ft � Ct−1 + it � C̃t, (11)

ot = σ(Wo · [ht−1, xt] + bo), (12)

ht = ot � tanh(Ct), (13)

where xt represents the input vector at time step t. The hidden
state vector is denoted by ht, and the cell state vector is
represented by Ct. The functions σ and tanh are the sigmoid
and hyperbolic tangent activation functions, respectively. ft,
it, and ot are the forget, input, and output gates of the LSTM
layer, which control the flow of information through the
cell state. C̃t is the candidate cell state, a temporary value
that assists in updating the cell state. The weight matrices
Wf , Wi, WC, and Wo correspond to the forget, input, output,
and candidate cell state, while the bias vectors bf , bi, bC,
and bo are the learnable parameters associated with these
gates in the LSTM layer. The symbol � denotes element-
wise multiplication, while the symbol (·) represents the dot
product operation between vectors.
The unidirectional LSTM model captures the past

information effectively by maintaining the cell state vector,
which helps in mitigating the vanishing gradient problem to
some extent. However, it does not take into account future
information as bidirectional models do. Nevertheless, the
unidirectional LSTM is suitable for deployment on edge
devices due to its lower complexity, and its compatibility
with TFLite-μ makes it an attractive option for real-world
applications that require on-device processing. To gain a bet-
ter understanding, consider that, while bidirectional LSTMs
have the potential to provide greater contextual information
by processing data from both past and future states, their
adoption in edge environments is limited due to higher
computational demands and increased model complexity
(i.e., they require double the number of parameters compared
to unidirectional LSTMs, leading to a larger model size
and more memory consumption. Additionally, bidirectional
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FIGURE 3. CNN-LSTM-DNN network architecture.

LSTMs necessitate the processing of data in both directions,
which can result in the need for multiple graphs and a more
complex control flow, further straining the limited resources
of edge devices). This makes them less appropriate for
configurations with strict resource constraints. Our focus on
unidirectional LSTMs is thus an intentional choice, aiming
at combining the demand for temporal data processing
efficiency with the practicalities of deployment on edge
devices.
During the initial training phase, the entire architecture is

trained on the HAR motion sense dataset to learn the feature
extraction capabilities. While in the TL workflow, the model
is fine-tuned on the target task or domain by re-training the
model to result in new model weights for certain number
of the ML model layers (e.g., we may choose to train the
LSTM layers and dense layers next to them will and keep
the CNN layers weights untouched). This fine-tuning process
allows the model to adapt to the specific characteristics of
the new data, mitigating the risk of overfitting and reducing
the computational resources required for training, making
it particularly well-suited for edge devices with limited
processing capabilities, such as TL training with Raspberry
Pi4. Overall, the combination of an advanced DL model
and the benefits of dimensionality reduction through PCA
provides a powerful solution for motion classification tasks,
particularly when deployed on resource-constrained edge
devices using TFLite-μ.
Our model architecture, while seemingly a straightforward

fusion of CNN and LSTM, is tailored for the specific
requirements of motion classification in edge computing
environments. The integration of CNN and LSTM is

deliberate, leveraging the strengths of both architectures:
CNNs for their superior feature extraction capabilities,
particularly in handling spatial data, and LSTMs for their
effectiveness in processing time-series data, crucial for
understanding temporal dynamics in motion. This strategic
combination allows our model to efficiently capture both
spatial and temporal features, a necessity for accurate motion
classification. Moreover, the model is designed with a focus
on lightweight and efficient computation, making it suitable
for deployment on edge devices with limited processing
power. In this context, ‘advanced’ refers not just to the
complexity of the model, but also to its optimization for
specific use-cases, balancing performance and computational
efficiency, which is a significant consideration in the field
of edge computing and TinyML. By fine-tuning this hybrid
model through TL, we ensure it remains adept at handling
the nuances of motion data while being deployable in
resource-constrained environments, a key contribution in our
approach.

D. CLASSIFICATION PERFORMANCE METRICS
In this article, we measure multiple classification
performance metrics to evaluate the classification
performance of the adopted DNN model:
1) Accuracy: the accuracy is the ratio of correctly

predicted instances to the total instances in the dataset:

Accuracy = TP + TN

TP + TN + FP + FN
(14)

where TP is the true positive rate, TN is the true
negative rate, FP is the false positive rate, and FN is
the false negative rate.
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2) Precision: is the ratio of correctly predicted positive
instances to the total predicted positive instances:

Precision = TP

TP + FP
(15)

3) Recall: also known as sensitivity or true positive rate,
is the ratio of correctly predicted positive instances to
the total actual positive instances:

Recall = TP

TP + FN
(16)

4) F1 Score: is the harmonic mean of precision and recall:

F1 Score = 2 × Precision × Recall

Precision + Recall
(17)

5) Categorical cross-entropy loss (CCEL): measures
the dissimilarity between the predicted probability
distribution and the true probability distribution of the
target classes. The categorical cross-entropy loss can
be measured by:

CCEL = −
N∑

i=1

C∑

j=1

yij log(ŷij) (18)

where N is the number of samples, C is the number of
classes, yij is the true probability of sample i belonging
to class j, and ŷij is the predicted probability of sample i
belonging to class j. Lower values of categorical cross-
entropy loss indicate better classification performance.

By considering accuracy, precision, recall, F1 score and
the categorical cross-entropy loss, we can better assess the
model’s ability to classify instances while minimising false
positives and false negatives correctly. These metrics together
will be able to provide a general and deeper view of the
ML model performance and hence help in overcoming any
overfitting issues or biases towards any of the selected HAR
classes.

E. DEVELOPMENT METHOD FOR MODEL TUNING WITH
TL
In our proposed framework, we utilize a Raspberry Pi as an
intermediary edge platform for fine-tuning the pre-trained
CNN-LSTM models using TL before deploying them on
the edge MCU (i.e., ESP32S3). This approach aims to
efficiently optimize the model while minimizing the resource
constraints typically faced by edge IoT devices. Post-fine-
tuning, the optimized model is transferred to the ESP32S3
MCU for low-power, on-device inference, enabling real-time
performance and responsiveness across various application
domains.
To facilitate seamless model deployment and integration

into the IoT edge devices, we employ the message queuing
telemetry transport (MQTT) protocol. MQTT, a lightweight
and efficient messaging protocol, is widely adopted in IoT
applications for its low bandwidth usage and ease of imple-
mentation, making it particularly suitable for constrained
environments like edge devices (see [49] for a detailed

discussion on MQTT). It is publish/subscribe model ensures
efficient and reliable communication between the Raspberry
Pi and the edge MCU for model updates.
It is important to note that in our work, the process of

updating the TL model via MQTT is streamlined through the
use of a custom-developed pipeline. This pipeline facilitates
the transfer of TFLite-μ DNN model hex files. The procedure
involves sequentially numbering the characters in the hex file
and orchestrating their collection by the edge device. This
approach is complemented by an integrated model version
control mechanism. This method is especially beneficial for
edge controllers with limited bandwidth, as it optimizes data
transmission and provides precise model version control.
While this method proves effective, it is worth mentioning
that alternative approaches exist. One such approach is the
implementation of over-the-air (OTA) updates, which can
be used to update the entire firmware of the ESP32S3.
Additionally, MQTT file uploads can be managed more
directly, as exemplified by the methods detailed in the
repository [50].

With this pipeline, we enable continuous adaptation and
improvement of TinyML models as new data becomes
available, further enhancing the performance and flexibility
of the proposed TL-based TinyML development method.
As a result, we aim to combine the strengths of the
Raspberry Pi as an average edge computer and the ESP32S3
MCU (or any IoT MCUs) to accelerate TinyML model
development. This ensures efficient power consumption and
real-time performance, making it a promising solution for
a wide range of edge applications that are not limited to
HAR.
Figure 4 shows the comprehensive pipeline employed for

harnessing the MotionSense dataset. The journey starts with
raw data undergoing a standardisation process, setting the
groundwork for the subsequent PCA for dimensionality
reduction without sacrificing crucial information. This pro-
cessed data is then fed onto the initial phase of model
training. Once this model finishes, we augment the dataset,
to make sure that the model will be able to distinguish
classes from new unseen datasets, and utilise it in the TL
process executed on a Raspberry Pi. The result of these
processes is a fine-tuned model, which can be seamlessly
transferred to the ESP32S3 MCU via MQTT IoT protocol.
The final stage then is to collect the inference metrics
from the ESP32S3 MCU and build our conclusions on
the framework parameters for successful and efficient edge
deployment.

III. RESULTS AND DISCUSSION
This section provides a detailed evaluation of our model’s
performance during both the training and TL stages, as well
as the appraisal of the resource-constrained edge devices. In
the initial training phase, the model is trained and tested on a
powerful computing setup that includes an 11th Generation
Intel Core i7-11800H CPU operating at a 2.30GHz clock
speed and supporting 8 cores, a substantial 16.0 GB of
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TABLE 1. Model classification test results with TL test results for different network architectures.

FIGURE 4. End-to-End Workflow from Data Collection to Inference on ESP32S3
using the MotionSense Dataset and TL.

RAM, and an Nvidia RTX 3050 Ti graphics processing
unit equipped with 4GB of memory. For the TL phase, as
mentioned earlier, we carry out the training on a Raspberry
Pi 4 device equipped with a 4GB RAM variant, underlining
the feasibility of our approach even on devices with limited
computational resources.

A. VISUALISING FEATURE REPRESENTATIONS WITH 3D
T-DISTRIBUTED STOCHASTIC NEIGHBOUR EMBEDDING
(T-SNE)
Here, we use t-distributed stochastic neighbour embedding
(t-SNE) which is a nonlinear dimensionality reduction
technique to visualise the high-dimensional information in
lower dimensions (i.e., 3D space). We utilise t-SNE to
diminish the dimensionality of the feature representations
from the final dense layer of our CNN-LSTM-DNN model
to three dimensions. We aim here to examine the ML
model’s capacity to differentiate between distinct classes
within the dataset. By doing this, we add an extra layer
in the pipeline for testing the model’s immunity against

overfitting. With only 3D space, we can show the degree of
separation between data points related to the different classes.
Thus, we provide extra evidence of the model’s proficiency
in learning discriminative features. The t-SNE algorithm
accomplishes this by keeping the local structure of the data in
the high-dimensional space while minimising the divergence
between pairwise similarities in both high-dimensional and
low-dimensional spaces. With this visualisation technique,
we prove the performance of our CNN-LSTM-DNN model
and impart insights into its capability to accurately classify
the data.
As illustrated in Figures 5 and 6, we show the features

of the test dataset derived from the final dense layer. These
representations in 2D and 3D allow an intensive examination
of the class separation within the test dataset. It is evident
from the figures that the CNN-LSTM-DNN model has a
significant ability to distinguish between the classes, thus
signifying the measured accuracy of data classification.
In addition, sub-figures (a) in Figures 5 and 6 illustrate the

interplay of components 0 and 1. The distinct class separation
resonates with the model’s capacity to recognise varying
types of motion patterns and its readiness to accurately
categorise them in real-life scenarios. Also, sub-figures (b) in
Figures 5 and 6, present the t-SNE components 0 and 2
of the 3D dimensional T-SNE dimensionality reduction,
where the formed clusters further endorse the model’s effec-
tiveness in classifying individual motion types. Sub-figures
(c) in Figures 5 and 6 showcase the interaction between
components 1 and 2, once again revealing the model’s
strong classification performance, capable of handling the
interplay of these specific components. Also, sub-figures
(d) in Figures 5 and 6 render a 3D perspective of the
last dense layer features, maintaining the clarity of cluster
separation even in this expanded view. This persistence
of distinct classification across dimensions solidifies the
model’s classification capabilities.

B. ML-TL MODEL EVALUATION
1) TL WITH DATA AUGMENTATION

Table 1 presents a comparative analysis of various CNN-
LSTM-DNN architectures and their performance in initial
and TL training scenarios. The analysis includes five config-
urations of CNN 1D and LSTM layers. In the initial training
phase, the models were trained for 75 epochs. Remarkably,
the architecture with Conv1D(64), Conv1D(32), LSTM(32),
LSTM(16), and Dense(16) layers demonstrated the highest
accuracy, recall, precision, and F1 score of approximately
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FIGURE 5. T-SNE visualisation of the last dense layer features. (a) Components 0 and 1, (b) components 0 and 2, (c) components 1 and 2. (d) 3D visualisation of the last dense
layer features. Summarised network architecture: Conv1D(64), Conv1D(32), LSTM(32), LSTM(16) and Dense(16).

FIGURE 6. T-SNE visualisation of the last dense layer features. (a) Components 0 and 1, (b) components 0 and 2, (c) components 1 and 2. (d) 3D visualisation of the last dense
layer features. Summarised network architecture: Conv1D(20), Conv1D(10), LSTM(12), LSTM(6) and Dense(4).

0.98 but with most trainable parameters (19,397). These
results show the correlation between the complexity of the
model and its performance and hence provide more insight
into the performance of the chosen model against overfitting
or under-fitting. Also, the architecture with Conv1D(40),
Conv1D(20), LSTM(18), LSTM(9), and Dense(8) layers
achieved almost similar performance, despite having signif-
icantly fewer trainable parameters (8,105). This could be an
indication that further refinement of the model configuration
could yield similar performance with fewer parameters and
hence improve the efficiency.
In the TL training phase, the models were trained for

only 15 epochs with dataset augmentation using both time
stretching and additive white Gaussian noise of 0.01 vari-
ance. The Conv1D(40), Conv1D(20), LSTM(18), LSTM(9),
and Dense(8) architecture again demonstrated outstand-
ing performance, maintaining accuracy, recall, precision,
and F1 scores close to the initial testing phase, even
though the number of trainable parameters was dramatically
reduced (3,719). This highlights the effectiveness of TL
in maintaining high performance with fewer epochs and
parameters. Also, it is important to emphasise that the
model with the most minor complexity (i.e., Conv1D(20),
Conv1D(10), LSTM(12), LSTM(6), and Dense(4)) has
the lowest scores in both the initial and TL training
phases. This again reinforces the notion that a cer-
tain level of model complexity is necessary for optimal
performance.

The findings in this section are pivotal in the context
of TinyML. That is, despite the performance edge of more
complex models, it is evident that well-structured and
efficient models can achieve comparable results. This is a
critical observation in the context of TinyML, where the
computational capacity and power availability are typically
limited. Also, the effectiveness of TL as shown earlier
in maintaining high performance with fewer epochs and
parameters is particularly relevant. TL reduces the need for
extensive training, thus improving the efficiency of the ML
process and more widely for the ML MLOps and accelerates
the operation in our framework. This is again pivotal for
TinyML applications, where minimising computational load
and memory footprint without compromising on performance
is our primary objective.
As demonstrated in Figures 8 and 9, specifically within

sub-figure (a) in both of them, we witness the customary
progression during the training process. With the advance-
ment of epochs, there is a concurrent enhancement in
the model’s training accuracy and a decrease in training
loss. In parallel, we note an enhancement in validation
accuracy and a decrease in validation loss, underscoring
the model’s capacity to extend its learning to unseen data.
When we turn our attention to the training and validation
curves following TL training shown in sub-figures (b) of
Figures 8 and 9, a similar trend is observed. However, what
is noteworthy here is the rapid convergence of the curves,
signifying faster learning and generalisation capabilities. The
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FIGURE 7. TL-Test accuracy for different augmentation stretching values and
varying numbers of non-trainable TL layers, using 6 PCA components. Parameters:
N1 = 64, N2 = 32, N3 = 32, N4 = 16, and N5 = 16.

FIGURE 8. Accuracy and loss for pre-trained model and TL training (a) initial model
training, (b) TL model training. TL dataset augmentation with 1.2 times stretching
factor and 0.02 additive white Gaussian noise variance. Summarised network
architecture: Conv1D(64), Conv1D(32), LSTM(32), LSTM(16) and Dense(16).

rapid convergence is indicative of the accelerated training
process that TL brings about due to the utilisation of
previously learned features. This also implies that the model
equipped with TL reaches a state of balanced bias-variance
trade-off faster, ultimately leading to computational
efficiency.
Moreover, the proximity of the training and validation

curves after convergence suggests that the model is not
overfitting the training data, thus maintaining a commendable
level of generalisation. This convergence, coupled with the
notable performance metrics shown in Table 1, affirms the
efficacy of TL in maintaining robust performance whilst
reducing the computational resources needed for training. In
essence, the convergence of training and validation curves for
both pre and post-TL reinforces the argument that our model
achieves a harmonious blend of efficiency and effectiveness.
It presents an appealing case for deploying such models in
resource-constrained environments, such as those typically
found in IoT applications.
Figure 7 illustrates the performance of the TL model under

different configurations of non-trainable layers, specifically
for sets of 2, 4, 6, and 8 layers made non-trainable starting
from the initial layers of the model to study the effect of
data augmentation (i.e., time axis stretching in particular).
The depicted model is comprised of a series of layers: two
convolutional layers each followed by batch normalization,
then dropout and reshaping operations, subsequently two

FIGURE 9. Accuracy and loss for pre-trained model and TL training (a) initial model
training, (b) TL model training. TL dataset augmentation with 1.2 times stretching
factor and 0.02 additive white Gaussian noise variance. Summarised network
architecture: Conv1D(20), Conv1D(10), LSTM(12), LSTM(6) and Dense(4).

LSTM layers, another dropout, and finally two dense layers.
This structure forms the basis for our TL experiments.
From the curves, we observe a trend of robust performance

when the first 2, 4, or 6 layers are rendered non-trainable.
The performance degradation is subtle across these con-
figurations, indicating the model’s resilience in preserving
accuracy despite fewer trainable parameters. This suggests
that in applications where computational efficiency is crucial,
one might choose to train fewer layers without a significant
compromise in accuracy. However, the curve corresponding
to 8 non-trainable layers exhibits a pronounced drop in
accuracy. This scenario leaves only the final dense layers
for training. This decline in the performance emphasises
the importance of the preceding layers in capturing relevant
features and patterns in the data hence selecting the trainable
layers in the TL phase has a strong implication on the overall
performance. This understanding informs our subsequent
investigation into the TL efficacy from the MotionSense
dataset to the UCI dataset, providing a nuanced perspective
on the adaptability of our model across diverse data domains.
By examining the transition in performance through the lens
of TL layer selection, we aim to shed light on the strategic
nuances of optimizing model architectures for enhanced
TL outcomes, especially in contexts where the balance
between computational efficiency and predictive accuracy is
paramount.

2) TL FROM MOTIONSENSE TO UCI DATASET

In this subsection, we extend the TL evaluation to assess
the fluency of the TL framework for classification tasks
on a similar yet distinct dataset. Specifically, we focus on
the evaluation of the MotionSense-UCI TL workflow. It
is pertinent to note the differences in this task compared
to previous classification tasks. For this analysis, the time-
series HAR activity signals from both datasets have been
extended to encompass 128 data points, maintaining the
same sampling rate of 50 Hz. This adjustment effectively
translates to classifying activities based on a task length of
2.6 seconds.
Additionally, we limit the analysis to the first six PCA

components for both datasets. This approach is chosen to
ensure a consistent and streamlined dimensionality reduction

VOLUME 5, 2024 1667



HAYAJNEH et al.: TinyML EMPOWERED TRANSFER LEARNING ON THE EDGE

TABLE 2. Model classification test results for MotionSense-UCI TL.

TABLE 3. Performance metrics and inference details of models with varying architecture configurations and PCA components, tested on ESP32S3.

process across the datasets, thereby facilitating a more direct
comparison in the TL context. By doing so, we maintain
the integrity of the data and maximize the efficiency of our
model in extracting relevant features for classification.
In the examination of the TL efficacy from the

MotionSense dataset to the UCI dataset, as shown in
Table 2, we observe a notable paradigm of performance
variation across different architectures of a CNN-LSTM-
DNN model. Initially, the model exhibits high proficiency
on the MotionSense dataset, with F1 scores and accuracy
rates indicating robust learning and generalization capa-
bilities. This is particularly evident in the larger model
configuration (with higher N values), which demonstrates
marginally superior performance compared to the smaller
configuration. Such results underscore the initial training
phase’s effectiveness and set a benchmark for the model’s
learning capacity, crucial for subsequent TL applications.
Upon transitioning the model to the UCI dataset during

the TL phase, a noticeable decline in performance metrics,
including F1 scores and accuracy, is evident across all
configurations and layers, as illustrated in the table. This
decrease should not be interpreted solely as a shortfall in the
TL process but rather as indicative of the unique challenges
posed by the UCI dataset. Literature suggests that the UCI
dataset typically results in lower accuracies, ranging from
0.8920 to 0.95, in comparison to the MotionSense dataset.
For instance, several studies employing the UCI dataset,
including [51] with a gated recurrent neural network, [52]
with an inception network architecture, and [53] with
a residual bi-directional LSTM, have observed similar
performance trends. While these studies achieve results

comparable to our findings, they concurrently underscore
the inherent intricacies and limitations of the UCI dataset.
Particularly noteworthy is the relevance of these findings to
the deployment of such models in edge computing scenarios.
The architectural complexity and memory demands of these
sophisticated models often pose significant challenges for
practical applications on edge devices.

C. EDGE INFERENCE PERFORMANCE EVALUATION
1) EDGE INFERENCE RESULTS

Table 3 sheds light on the compromises and challenges
associated with deploying various DNN architectures on edge
devices, using the ESP32S3 controller as a reference.
At first glance, the use of PCA serves to reduce input

data’s dimensionality. However, the relationship between
PCA components and performance isn’t straightforward due
to the choice of the model complexity trade-off. For instance,
with 6 PCA components, the model with N1 = 40, N2 = 20,
N3 = 18, N4 = 9, N5 = 8 achieved a higher accuracy
of 0.9853 compared to the model with more complex
architecture (N1 = 64), which had an accuracy of 0.9733.
This suggests that simply adding more components doesn’t
guarantee superior performance and the choice needs to be
jointly with deep measures from the complexity of the model
and hence optimisation is required.
In terms of model complexity, while intuition might

suggest that a higher number of trainable parameters should
result in better performance, the results provide some
anomalies. For instance, for 4 PCA components, the model
with N1 = 20, N2 = 10, N3 = 12, N4 = 6, N5 = 4 has only
3,599 trainable parameters, yet its accuracy, at 0.9547, isn’t

1668 VOLUME 5, 2024



drastically lower than the model with 19,013 parameters,
which achieved an accuracy of 0.9722. This discrepancy
emphasises that more isn’t always better and highlights the
importance of efficient parameter usage.
The inference rate, a crucial metric for real-time appli-

cations, presents some notable findings. With 3 PCA
components, the simpler model (N1 = 20) achieved a rate of
50.00 Hz, significantly outpacing the complex model (N1 =
64) with a rate of just 5.88 Hz. This underscores the potential
advantages of smaller models in real-time scenarios. This
also required attention to the other edge inference metrics
like the required tensor arena size.
The ‘Min Arena Size’ is a red flag for certain models.

Several models marked ‘N/A’ are not deployable on the
ESP32S3 and thus lead to a severe limitation. For instance,
three out of three models with 6 PCA components cannot be
used on the ESP32S3 due to this constraint. This highlights
that, in edge computing, deployability can overshadow raw
performance. This can be referred to the more HAR array
size (sequence length and size) that is required when using
6 PCA components at which the memory of the controller
cannot help to host at the run-time.
In summary, the table presents a critical lesson: While

increasing complexity and PCA components can enhance
performance metrics like accuracy, these improvements
might come at tangible costsslower inference rates and,
crucially, non-deployability on certain platforms. Balancing
these factors is essential for effective TinyML deployment.

2) TRADE-OFFS IN SEQUENCE SIZE, SAMPLING RATE,
NUMBER OF PCA COMPONENTS, AND ARENA SIZE

In the context of inference on edge devices, key parameters
that impact both the model performance and computational
feasibility are the sequence size, sampling rate, and the
number of PCA components. The sequence size corresponds
to the multiplication of the number of PCA components and
the window size, where the window size refers to the time
steps the model utilises to make a prediction.
Sequence Size: A larger sequence size could potentially

capture more intricate and subtle temporal patterns in the
data, improving the prediction performance. However, this
will be on the account of the computational complexity of
the model and may lead to a critical issue on resource-
constrained edge devices. In particular, if the sequence
size surpasses the available memory, it could result in
stack overflow errors. Conversely, a smaller sequence size
is computationally efficient and feasible for edge devices
but limits the model’s ability to capture complex temporal
patterns and affects the prediction performance.
Sampling Rate: The sampling rate of the data is another

critical parameter. In our particular investigation, we used
a time series of 50 Hz sampling rate which is sufficient
to capture the HAR patterns. However, a higher sampling
rate provides more data points for the model to learn from
and potentially improves the performance. However, this
also increases the sequence size and the computational

complexity. Decreasing the sampling rate reduces sequence
length and makes the model more computationally efficient
but possibly at the cost of model performance because of
the potentially removed information from the time-series
sequence.
Number of PCA Components: The number of PCA

components pertains to the count of different principal
components at each time step. While a greater number
of PCA components could potentially provide the model
with more information for making predictions, it increases
the computational complexity. Additionally, it is worth
emphasising the that the number of PCA components that is
chosen for the model training at the dataset preparation phase
is a key parameter in optimising the edge TL workflow.
Trade-off: Therefore, a trade-off exists between model

performance and computational feasibility. The ideal
sequence size is one that balances these two factors - it
should be small enough to prevent stack overflow errors and
other computational issues on the edge device, but also large
enough to enable the model to capture necessary temporal
patterns for accurate prediction. One approach to manage
this trade-off is to commence with a smaller sequence size
and a lower sampling rate that are computationally feasible
for your edge device, then gradually enlarge the size and
increase the rate until computational issues, such as stack
overflow errors, begin to emerge.
Arena Size: The arena size pertains to the memory

pool that TensorFlow Lite for MCUs uses. It needs to be
sufficiently large to accommodate the model’s weights, input,
output, and intermediate arrays. If the model requires more
memory than what’s allocated to the arena, it can result
in a stack overflow or out-of-memory errors. By increasing
the arena size, these errors can be mitigated. However,
this also consumes more of the device’s limited memory
resources.
To summarise, designing ML models for edge devices

requires careful consideration of the trade-offs between
model performance and computational feasibility. The
sequence size, sampling rate, number of PCA components,
and the arena size are all crucial factors in these trade-offs.

IV. SUMMARY OF KEY FINDINGS AND DISCUSSION
In our study of employing CNN-LSTM networks for HAR
classification tasks and TL for TinyML applications on edge
devices, several key findings have emerged that highlight
the role of TL in studying the computational constraints of
edge computing and the ways of pushing the boundaries for
practical usage through model and workflow tuning.
At the center of our work is the strategic use of TL,

which significantly enhances model adaptability and compu-
tational efficiency. By pre-training models on comprehensive
datasets and fine-tuning them for specific HAR tasks, we
observed notable improvements in both performance and
training efficiency. This approach is particularly beneficial
for edge devices, where computational resources are limited,
underscoring TL’s potential to streamline the deployment of
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effective models in resource-constrained environments. Thus
paving the way for more edge real-time applications beyond
the HAR.
Also, our work presents a balance between model

complexity and computational efficiency achieved through
TL by focus for practical deployment on edge devices.
Future investigations could address optimizing this balance,
examining how adjustments in the architecture and TL’s
application impact model performance on edge devices
as vital direction for advancing TinyML’s practicality and
effectiveness.
The application of our model across diverse datasets,

including MotionSense and UCI, demonstrates TL’s con-
tribution to enhancing model robustness and versatility.
This broad assessment suggests avenues for future research
focused on extending TL’s benefits to a wider array of
HAR tasks and datasets, potentially exploring untapped areas
within real-world applications.
Lastly, Addressing the inherent challenges of deploying

sophisticated ML models on highly constrained edge devices
remains a key area for innovation. Future work could
explore more TL techniques that further reduce computa-
tional demands, including innovative fine-tuning approaches
or specialized architectures designed for edge computing’s
unique requirements.

V. CONCLUSION
In conclusion, this paper showcases an efficient deep-
learning model for motion classification utilising the
MotionSense dataset. Combining CNN, LSTM, and DNN
layers in our CNN-LSTM-DNN-TL model architecture, we
attain powerful feature extraction and enhanced classification
performance. Employing PCA for dimensionality reduction
streamlines the problem while addressing overfitting and
computational efficiency concerns.
Furthermore, the dimensionality reduction bolsters edge

inference potential in TinyML applications using TFLite-
μ, enabling the implementation of advanced ML algorithms
on resource-restricted edge devices. This is particularly
advantageous for motion classification tasks necessitating
real-time processing and minimal latency.
The TL approach adopted in this study allows the

model to adapt to new data, mitigating overfitting and
lessening computational resources needed for training.
This renders the proposed model apt for deployment
on edge devices with limited processing abilities, such
as MCUs.
In summary, our research exhibits the promise of DL

models and dimensionality reduction methods in effec-
tively tackling motion classification tasks, particularly when
deployed on resource-limited edge devices. This work
lays the groundwork for future investigations into further
optimisation strategies, alternative model architectures, and
diverse application areas within motion classification and
edge computing realms.

REFERENCES
[1] Z. Sun, Q. Ke, H. Rahmani, M. Bennamoun, G. Wang, and

J. Liu, “Human action recognition from various data modalities: A
review,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 45, no. 3,
pp. 3200–3225, Mar. 2023.

[2] E. Ramanujam, T. Perumal, and S. Padmavathi, “Human activ-
ity recognition with smartphone and wearable sensors using deep
learning techniques: A review,” IEEE Sensors J., vol. 21, no. 12,
pp. 13029–13040, Jun. 2021.

[3] N. Rashid, B. U. Demirel, and M. A. Al Faruque, “AHAR:
Adaptive CNN for energy-efficient human activity recognition in
low-power edge devices,” IEEE Internet Things J., vol. 9, no. 15,
pp. 13041–13051, Aug. 2022.

[4] B. Yang et al., “A joint energy and latency framework for trans-
fer learning over 5G industrial edge networks,” IEEE Trans. Ind.
Informat., vol. 18, no. 1, pp. 531–541, Jan. 2022.

[5] S. A. Zaidi, A. M. Hayajneh, M. Hafeez, and Q. Z. Ahmed,
“Unlocking edge intelligence through tiny machine learning
(TinyML),” IEEE Access, vol. 10, pp. 100867–100877, 2022.

[6] A. M. Hayajneh, S. Aldalahmeh, S. A. R. Zaidi, D. McLernon,
H. Obeidollah, and R. Alsakarnah, “Channel state information
based device free wireless sensing for IoT devices employing
TinyML,” in Proc. 4th IEEE Middle East North Afr. Commun. Conf.
(MENACOMM), 2022, pp. 215–222.

[7] “PyTorch mobile.” 2023. Accessed: Jun. 11, 2023. [Online]. Available:
https://pytorch.org/mobile/home/

[8] “Edge impulse documentation.” Edge Impulse. 2023. Accessed:
Jun. 11, 2023. [Online]. Available: https://docs.edgeimpulse.com/docs/

[9] “TensorFlow lite for microcontrollers.” TensorFlow Team. 2023.
Accessed: Jun. 11, 2023. [Online]. Available: https://www.tensorflow.
org/lite/microcontrollers

[10] “TinyML foundation.” TinyML foundation. 2023. Accessed: Jun. 11,
2023. [Online]. Available: https://www.tinyml.org/

[11] K. Chen, D. Zhang, L. Yao, B. Guo, Z. Yu, and Y. Liu, “Deep learning
for sensor-based human activity recognition: Overview, challenges,
and opportunities,” ACM Comput. Surveys, vol. 54, no. 4, pp. 1–40,
2021.

[12] S. R. Ramamurthy and N. Roy, “Recent trends in machine learning for
human activity recognition—A survey,” Wiley Interdiscip. Rev. Data
Min. Knowl. Disc., vol. 8, no. 4, 2018, Art. no. e1254.

[13] S. Qiu et al., “Multi-sensor information fusion based on machine
learning for real applications in human activity recognition: State-of-
the-art and research challenges,” Inf. Fusion, vol. 80, pp. 241–265,
Apr. 2022.

[14] E. Ayodele et al., “Grasp classification with weft knit data glove
using a convolutional neural network,” IEEE Sensors J., vol. 21, no. 9,
pp. 10824–10833, May 2021.

[15] E. Ayodele et al., “A weft knit data glove,” IEEE Trans. Instrum.
Meas., vol. 70, pp. 1–12, 2021.

[16] S. Zebhi, “Human activity recognition using wearable sensors
based on image classification,” IEEE Sensors J., vol. 22, no. 12,
pp. 12117–12126, Jun. 2022.

[17] N. A. Choudhury and B. Soni, “An adaptive batch size-based-CNN-
LSTM framework for human activity recognition in uncontrolled
environment,” IEEE Trans. Ind. Informat., vol. 19, no. 10,
pp. 10379–10387, Oct. 2023.

[18] P. Khan, Y. Kumar, and S. Kumar, “CapsLSTM-based human activity
recognition for smart healthcare with scarce labeled data,” IEEE Trans.
Comput. Social Syst., vol. 11, no. 1, pp. 707–716, Feb. 2024.

[19] X. Zhou, W. Liang, K. I.-K. Wang, H. Wang, L. T. Yang, and
Q. Jin, “Deep-learning-enhanced human activity recognition for
Internet of Healthcare Things,” IEEE Internet Things J., vol. 7, no. 7,
pp. 6429–6438, Jul. 2020.

[20] C. Han et al., “Understanding and improving channel attention for
human activity recognition by temporal-aware and modality-aware
embedding,” IEEE Trans. Instrum. Meas., vol. 71, pp. 1–12, 2022.

[21] Z. Chen, L. Zhang, C. Jiang, Z. Cao, and W. Cui, “WiFi CSI based pas-
sive human activity recognition using attention based BLSTM,” IEEE
Trans. Mobile Comput., vol. 18, no. 11, pp. 2714–2724, Nov. 2019.

[22] D. Wang, J. Yang, W. Cui, L. Xie, and S. Sun, “Multimodal CSI-
based human activity recognition using GANs,” IEEE Internet Things
J., vol. 8, no. 24, pp. 17345–17355, Dec. 2021.

[23] L. Dutta and S. Bharali, “Tinyml meets IoT: A comprehensive
survey,” Internet Things, vol. 16, Dec. 2021, Art. no. 100461.

1670 VOLUME 5, 2024



[24] R. Sanchez-Iborra and A. F. Skarmeta, “Tinyml-enabled frugal smart
objects: Challenges and opportunities,” IEEE Circuits Syst. Mag.,
vol. 20, no. 3, pp. 4–18, 3rd Quart., 2020.

[25] P. P. Ray, “A review on TinyML: State-of-the-art and
prospects,” J. King Saud Univ.-Comput. Inf. Sci., vol. 34, no. 4,
pp. 1595–1623, 2022.

[26] F. Luo, S. Khan, Y. Huang, and K. Wu, “Binarized neural network for
edge intelligence of sensor-based human activity recognition,” IEEE
Trans. Mobile Comput., vol. 22, no. 3, pp. 1356–1368, Mar. 2023.

[27] X. Wang et al., “Deep convolutional networks with tunable
speed–accuracy tradeoff for human activity recognition using wear-
ables,” IEEE Trans. Instrum. Meas., vol. 71, pp. 1–12, 2021.

[28] T. Zebin, P. J. Scully, N. Peek, A. J. Casson, and K. B. Ozanyan,
“Design and implementation of a convolutional neural network on an
edge computing smartphone for human activity recognition,” IEEE
Access, vol. 7, pp. 133509–133520, 2019.

[29] Y. L. Coelho, F. D. A. S. dos Santos, A. Frizera-Neto, and T. F. Bastos-
Filho, “A lightweight framework for human activity recognition on
wearable devices,” IEEE Sensors J., vol. 21, no. 21, pp. 24471–24481,
Nov. 2021.

[30] B. Saha, R. Samanta, S. Ghosh, and R. B. Roy, “BandX: An intelligent
IoT-band for human activity recognition based on TinyML,” in Proc.
24th Int. Conf. Distrib. Comput. Netw., 2023, pp. 284–285.

[31] R. Jain, V. B. Semwal, and P. Kaushik, “Stride segmentation of
inertial sensor data using statistical methods for different walking
activities,” Robotica, vol. 40, no. 8, pp. 2567–2580, 2022.

[32] C. Contoli and E. Lattanzi, “A study on the application of TensorFlow
compression techniques to human activity recognition,” IEEE Access,
vol. 11, pp. 48046–48058, 2023.

[33] M. Pavan, A. Caltabiano, and M. Roveri, “TinyML for UWB-radar
based presence detection,” in Proc. Int. Joint Conf. Neural Netw.
(IJCNN), 2022, pp. 1–8.

[34] S. S. Yadav, R. Agarwal, K. Bharath, S. Rao, and C. S. Thakur,
“tinyRadar: MmWave radar based human activity classification for
edge computing,” in Proc. IEEE Int. Symp. Circuits Syst. (ISCAS),
2022, pp. 2414–2417.

[35] Y. Abdulazeem, H. M. Balaha, W. M. Bahgat, and M. Badawy,
“Human action recognition based on transfer learning approach,” IEEE
Access, vol. 9, pp. 82058–82069, 2021.

[36] S. Arshad, C. Feng, R. Yu, and Y. Liu, “Leveraging transfer learning in
multiple human activity recognition using WiFi signal,” in Proc. IEEE
20th Int. Symp. World Wireless, Mobile Multimedia Netw. (WoWMoM),
2019, pp. 1–10.

[37] J. Wang, Y. Chen, L. Hu, X. Peng, and S. Y. Philip, “Stratified transfer
learning for cross-domain activity recognition,” in Proc. IEEE Int.
Conf. Pervasive Comput. Commun. (PerCom), 2018, pp. 1–10.

[38] Y. Zhu, H. Luo, S. Guo, and F. Zhao, “DMSTL: A deep multi-
scale transfer learning framework for unsupervised cross-position
human activity recognition,” IEEE Internet Things J., vol. 10, no. 1,
pp. 787–800, Jan. 2023.

[39] K. Kondo and T. Hasegawa, “Deep transfer learning using class
augmentation for sensor-based human activity recognition,” IEEE
Sens. Lett., vol. 6, no. 10, pp. 1–4, Oct. 2022.

[40] Y. Chen, X. Qin, J. Wang, C. Yu, and W. Gao, “FedHealth: A federated
transfer learning framework for wearable healthcare,” IEEE Intell.
Syst., vol. 35, no. 4, pp. 83–93, Jul./Aug. 2020.

[41] E. Soleimani and E. Nazerfard, “Cross-subject transfer learning
in human activity recognition systems using generative adversarial
networks,” Neurocomputing, vol. 426, pp. 26–34, Feb. 2021.

[42] A. Taherkhani, G. Cosma, and T. M. McGinnity, “AdaBoost-CNN:
An adaptive boosting algorithm for convolutional neural networks
to classify multi-class imbalanced datasets using transfer learn-
ing,” Neurocomputing, vol. 404, pp. 351–366, Sep. 2020.

[43] X. Qin, Y. Chen, J. Wang, and C. Yu, “Cross-dataset activity
recognition via adaptive spatial-temporal transfer learning,” Proc.
ACM Interact., Mobile, Wearable Ubiquitous Technol., vol. 3, no. 4,
pp. 1–25, 2019.

[44] M. Malekzadeh, R. G. Clegg, A. Cavallaro, and H. Haddadi, “Mobile
sensor data anonymization,” in Proc. Int. Conf. Internet Things Design
Implement., 2019, pp. 49–58.

[45] D. Anguita, A. Ghio, L. Oneto, X. Parra, and J. L. Reyes-Ortiz,
“A public domain dataset for human activity recognition using
smartphones,” in Proc. Esann, vol. 3, 2013, p. 3.

[46] G. T. Reddy et al., “Analysis of dimensionality reduction techniques
on big data,” IEEE Access, vol. 8, pp. 54776–54788, 2020.

[47] S. Ayesha, M. K. Hanif, and R. Talib, “Overview and comparative
study of dimensionality reduction techniques for high dimensional
data,” Inf. Fusion, vol. 59, pp. 44–58, Jul. 2020.

[48] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Comput., vol. 9, no. 8, pp. 1735–1780, 1997.

[49] A. Banks and R. Gupta. “MQTT version 3.1.1: OASIS
standard.” Oct. 2014. [Online]. Available: http://docs.oasis-
open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html

[50] V. Alkılıç. “MQTT-file-uploader.” 2023. Accessed: Dec. 22,
2023. [Online]. Available: https://github.com/volkanalkilic/Mqtt-File-
Uploader

[51] Y. Wang et al., “A novel deep multifeature extraction framework
based on attention mechanism using wearable sensor data for human
activity recognition,” IEEE Sensors J., vol. 23, no. 7, pp. 7188–7198,
Apr. 2023.

[52] M. Ronald, A. Poulose, and D. S. Han, “iSPLInception: An
inception-ResNet deep learning architecture for human activity recog-
nition,” IEEE Access, vol. 9, pp. 68985–69001, 2021.

[53] Y. Zhao, R. Yang, G. Chevalier, X. Xu, and Z. Zhang, “Deep
residual bidir-LSTM for human activity recognition using wearable
sensors,” Math. Problems Eng., vol. 2018, pp. 1–13, Dec. 2018.

ALI M. HAYAJNEH received the B.Sc. and M.Sc.
degrees from the Jordan University of Science
and Technology, Irbid, Jordan, in 2010 and
2014, respectively, and the Ph.D. degree from
the University of Leeds, Leeds, U.K. He is
an Assistant Professor with the Department of
Electrical Engineering, Faculty of Engineering,
The Hashemite University, Zarqa, Jordan, where
he also serves as the Director of the Innovation
and Entrepreneurial Projects Center. His research
has been supported by the Royal Academy of

Engineering under two programs: the Transfer Systems through Partnerships
and the Distinguished International Associate, focusing on smart agriculture,
drone-assisted micro-irrigation, and tiny machine learning on edge IoT
devices. Additionally, his work has received funding from the Abdul
Hameed Shoman Foundation, Jordan, further enabling his research pursuits
in AI driven digital twins for smart agriculture applications. His research
interests include edge computing, drone-assisted wireless communications,
public safety communication networks, backscatter communication, deep
learning, power harvesting, stochastic geometry, device-to-device and
machine-to-machine communications, modeling of heterogeneous networks,
and reinforcement learning.

MARYAM HAFEEZ (Member, IEEE) received the
Ph.D. degree in electrical engineering from the
University of Leeds, U.K., in 2015. From 2015 to
2018, she was a Research Fellow with the Institute
of Robotics, Autonomous Systems and Sensing,
University of Leeds, U.K, where she is cur-
rently an Associate Professor of Communication
Networks and Systems with the School of
Electronic and Electrical Engineering. Her current
research is funded by the EU Horizon 2020
programme. Her research interests include the

design and analysis of protocols for next generation green intelligent
wireless networks by employing tools from game theory and stochastic
geometry along with Internet of Things and industry 4.0 related research.
She has worked in the area of dynamic spectrum access had received the
best paper award at the IEEE International Conference on Communications.
She is also serving as a member of the Editorial Board for Frontiers in
Communications and Networks.

VOLUME 5, 2024 1671



HAYAJNEH et al.: TinyML EMPOWERED TRANSFER LEARNING ON THE EDGE

SYED ALI RAZA ZAIDI received the Doctoral
degree from the School of Electronic and Electrical
Engineering. He is an Associate Professor with the
University of Leeds in the broad area of commu-
nication and sensing for robotics and autonomous
systems. Earlier from 2013 to 2015, he was asso-
ciated with the SPCOM Research Group working
on US ARL funded project in the area of network
science. From 2011 to 2013, he was associated
with the International University of Rabat working
as a Research Associate. He was also a Visiting

Research Scientist with Qatar Innovations and Mobility Centre from October
to December 2013 working on QNRF funded project QSON. He has
published 90+ papers in leading IEEE conferences and journals. His
current research interests are at the intersection ICT, applied mathematics,
mobile computing, and embedded systems implementation. Specifically,
his current research is geared towards: (i) design and implementation
of communication protocols to enable various applications (rehabilitation,
healthcare, manufacturing, and surveillance) of future RAS; and (ii) design,
implementation and control of RAS for enabling future wireless networks
(for, e.g., autonomous deployment, management, and repair of future cellular
networks). He was awarded the G. W. and F. W. Carter Prizes for best
thesis and best research paper. He has been awarded COST IC0902, Royal
Academy of Engineering, EPSRC, Horizon EU, and DAAD grants to
promote his research outputs. From 2014 to 2015, he was an Editor of
IEEE COMMUNICATION LETTERS and also a Lead Guest Editor for IET
Signal Processing Special Issue on Signal Processing for Large Scale 5G
Wireless Networks. He is also an Editor of IET ACCESS, Front haul and
Backhaul books. He is currently serving as an Associate Technical Editor
for IEEE Communication Magazine.

DES MCLERNON received the B.Sc. degree in
electronic and electrical engineering and the M.Sc.
degree in electronics from the Queen’s University
of Belfast, Ireland, and the Ph.D. degree in signal
processing from the Imperial College, University
of London, U.K. He was working on radar systems
research with Ferranti Ltd., Edinburgh, U.K. He is
currently a Reader of Signal Processing with the
University of Leeds, U.K. His research interests
are broadly within the domain of signal processing
for wireless communications, in which field he

has around 350 research publications and also supervised over 50 Ph.D.
students. Finally, in the little spare time that remains, he plays jazz piano
in restaurants and bars.

1672 VOLUME 5, 2024



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Helvetica
    /Helvetica-Bold
    /HelveticaBolditalic-BoldOblique
    /Helvetica-BoldOblique
    /Helvetica-Condensed-Bold
    /Helvetica-LightOblique
    /HelveticaNeue-Bold
    /HelveticaNeue-BoldItalic
    /HelveticaNeue-Condensed
    /HelveticaNeue-CondensedObl
    /HelveticaNeue-Italic
    /HelveticaNeueLightcon-LightCond
    /HelveticaNeue-MediumCond
    /HelveticaNeue-MediumCondObl
    /HelveticaNeue-Roman
    /HelveticaNeue-ThinCond
    /Helvetica-Oblique
    /HelvetisADF-Bold
    /HelvetisADF-BoldItalic
    /HelvetisADFCd-Bold
    /HelvetisADFCd-BoldItalic
    /HelvetisADFCd-Italic
    /HelvetisADFCd-Regular
    /HelvetisADFEx-Bold
    /HelvetisADFEx-BoldItalic
    /HelvetisADFEx-Italic
    /HelvetisADFEx-Regular
    /HelvetisADF-Italic
    /HelvetisADF-Regular
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryITCbyBT-MediumItal
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Recommended"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


