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ABSTRACT In this paper, we discuss and examine the concept of Midpoint Optimization (MO) for
Segment Routing (SR). It is based on the idea of integrating SR policies into the Interior Gateway
Protocol (IGP) to allow various demands to be steered into them. We discuss the benefits of this approach
when compared to end-to-end SR and potential challenges that might arise in deployment. We further
develop a Linear Program-based optimization algorithm to assess the Traffic Engineering capabilities of
MO for SR. Based on traffic and topology data from a Tier-1 Internet Service Provider as well as other,
publicly available data, we show that, for most problem instances, this algorithm is able to achieve (close
to) optimal results with regards to the maximum link utilization, that are on par with state-of-the-art
end-to-end SR approaches. However, our MO approach requires substantially less policies to do so. For
some instances, the achieved reduction ranges up to more than 99%. Furthermore, we show that latency
bounds for individual demands can be incorporated into our algorithm without significantly worsening the
quality of solutions. This is a crucial finding as the inclusion of latency bounds is a basically mandatory
requirement for traffic engineering algorithms to be used in many real-world networks.

INDEX TERMS Segment routing (SR), traffic engineering, midpoint optimization.

I. INTRODUCTION

TOCOPE with the continuous growth of Internet traffic,
many Internet Service Providers (ISPs) deploy some

form of Traffic Engineering (TE) to utilize existing infras-
tructure more efficiently. A recent approach to TE that
received a lot of attention is based on SR. SR allows for
precise steering of a packets path through a network by
applying waypoints, so called segments, to a packet, that
have to be visited in a specific order before heading for the
original destination. Segments are applied to a packet via so
called SR policies that are configured on a per-node basis.
They can be interpreted as some form of rules that specify
which segments have to be added to a packet that is steered
into them [2].
Various research (e.g., [3], [4], [5]) has shown that SR is

able to achieve (near) optimal results with regards to several
TE objectives. However, to the best of our knowledge, all
publications focus solely on what we refer to as “end-to-end”
SR. This means that each SR policy is dedicated to route the

traffic between just one pair of nodes, namely its respective
start- and endpoint. Other demands that do not originate/end
at these nodes but just visit them in transit will not be steered
into the policy. This allows for precise traffic control on an
individual, per-demand basis but also has its downsides.
In this paper, we show that using end-to-end SR can result

in a high number of policies, especially in larger networks
like ISP backbones. Even though SR introduces much lower
overhead than, for example, Multiprotocol Label Switching
(MPLS) tunnels, network operators still prefer solutions with
low policy numbers for reasons of clarity, manageability,
and robustness. We also demonstrate that current SR TE
algorithms can heavily underestimate the number of policies
if solutions are computed based on preprocessed topology
information.
To tackle these problems, we pursue the idea of steering

multiple different demands into a single policy by inte-
grating them into the IGP. Contrary to current end-to-end
SR approaches, this allows for a single policy to route
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multiple demands at once. Therefore, it has the potential to
substantially reduce the number of policies to be configured
in a network. We refer to this idea as MO because traffic
is detoured (or “optimized”) at arbitrary midpoints along
its path through the network, instead of its ingress node.
Furthermore, we propose a Linear Program (LP)-based
optimization algorithm that utilizes the MO concept and
takes further important practical requirements (e.g., latency
bounds) into consideration. Based on the example of the
backbone network of a globally operating Tier-1 ISP as well
as other, publicly available network data, we show that it
is able to achieve virtually optimal1 results with regards
to the Maximum Link Utilization (MLU), that are on par
with state-of-the-art end-to-end SR algorithms. However, our
approach requires substantially (sometimes up to 99%) less
SR policies, which is a major improvement over the current
state-of-the-art.
We further believe that MO is of great interest for SR

research and TE in general. This is backed up by the fact
that several large routing vendors are working on proprietary
approaches that could be classified as some form of MO.
The remainder of this paper is structured as follows.

In Section II, we briefly introduce mandatory background
information, followed by a discussion of related work
(Section III). Based on this, we then introduce and discuss
the concept of MO for SR in Section IV and present our
LP-based optimization algorithm in Section V. After this, we
describe our evaluation setup (Section VI) before presenting
and discussing our evaluation results in Section VII. In
Section VIII, we introduce another, practically motivated
constraint (latency bounds for individual demands) into the
optimization problem and discuss how our algorithms can
be extended to also take this new constraint into account.
Finally, Section IX concludes this paper by recapitulating on
the most important findings and contributions and discussing
possible future work.

II. BACKGROUND
Before further discussing the concept of MO, we first need
to provide some more information on three relevant topics:
The integration of MPLS TE tunnels into the IGP, the SR
architecture, and its applications for TE. In the following, the
term demand refers to the amount of traffic that is exchanged
between two nodes in the context of an Ingress-Egress (IE)
traffic matrix as described in [6].

1In the context of this paper, the term “virtually optimal” refers
to solutions that might not be absolutely optimal regarding the strict
mathematical definition of the term “optimal” as there is another, ever so
slightly better solution. However, the difference in solution quality to the
true optimal solution is negligibly small. As a result, for any practical
real-world application, there is basically no detectable quality difference
between the two solutions. For example, imagine a TE scenario where the
truly optimal solution has an Maximum Link Utilization (MLU) of 0.9
but our algorithm “only” finds a solution with an MLU of 0.905. Then
this solution is, strictly speaking, not optimal but for every reasonable
application scenario, it can be considered basically as good as the truly
optimal solution, since such subtle differences are lost in the general noise
and variation of traffic anyway.

A. INTEGRATION OF MPLS TUNNELS INTO IGP
ROUTING
Before SR was developed, MPLS Label Switched Paths
(LSPs) were often used for TE purposes. Besides their use
as simple end-to-end tunnels, there are some approaches
to incorporate them into the IGP routing (cf. [7], [8], [9])
and, thus, make them usable by more than one demand.
A rather simplistic approach, often referred to as Basic
IGP Shortcut, is to steer a packet into a tunnel starting
at the current node if the tunnel endpoint corresponds to
the packets destination. This way, a tunnel between nodes
X and Y can route every packet that is addressed to Y
and passes over X. A more sophisticated version of this
strategy is IGP Shortcut. Here, packets are steered into a
tunnel if the respective destination is a downstream router
of the tunnel endpoint [10]. In general, the term downstream
denotes a router lying “behind” the tunnel endpoint with
respect to Shortest Path Routing (SPR), but exact definitions
can vary [7]. The definition followed in this paper is this one
(cf. [7]): A packet is only steered into a tunnel if the tunnel
endpoint lies on the shortest path from the tunnel startpoint
to the packets destination. The rationale behind this choice
is further explained in Section V-A.
Basic IGP Shortcut and IGP Shortcut are both only locally

significant. The existence of a tunnel is only known at its
respective startpoint. Hence, it can only influence the routing
decisions at this node. However, there also exist globally
significant approaches in which tunnels are advertised to the
IGP just like normal links [7]. This enables the IGP and,
thus, all nodes to consider these tunnels in their shortest path
computations. While this can be beneficial to some extent, it
also introduces problems similar to the limitations of metric
optimization TE approaches (cf. e.g., [11], [12]).

B. SEGMENT ROUTING
Segment Routing (SR) [13] is based on the source routing
paradigm and commonly implemented using either MPLS
or a dedicated IPv6 extension. In general, different types of
segments can be used depending on the intended action (e.g.,
routing to a specific node, using an adjacency, or applying
a service). However, in this paper, we only consider node
segments. Each segment is identified by a specific Segment
Identifier (SID). Combining multiple SIDs into a so called
segment list that has to be processed in the given order allows
for a precise control of a packet’s path through the network.
The respective sub-paths between individual segments are
determined by the IGP. Segment lists are defined within SR
policies that can be configured on each SR-capable node. A
policy can basically be interpreted as a rule specifying which
segments to apply to a packet that is steered into it [2].
Another network tunneling technique that provides even

better traffic steering capabilities is Resource Reservation
Protocol (RSVP)-TE [14] in combination with MPLS.
However, this comes at the cost of significant signaling
overhead because an RSVP-TE tunnel has to be set-up
and maintained on every associated node. This has negative
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impact on the scalability of this approach. In contrast, the
information required for SR is encoded in the packet itself.
Therefore, an SR policy just needs to be configured on
the respective ingress node but not along the actual path,
significantly reducing the introduced control-plane overhead.
However, there is some (data-plane) overhead resulting from
the segment list that is appended to a packet (see, e.g., [15]
or [16]).

C. SEGMENT ROUTING-BASED TRAFFIC ENGINEERING
SR-based TE is a topic that recently received a lot of
attention. There are several publications that deal with its
applications for various use-cases and objectives (cf. [16])
but a large portion focuses on the minimization of the MLU.
This objective will also be the main focus of this paper.
One of the first publications regarding SR TE is [3]. It

proposes an LP-based optimization algorithm called 2SR
and demonstrates that two segments are often sufficient
to achieve near-optimal results. The respective optimization
problem can be formulated as follows2:

P1 : min θ (1a)

s.t.
∑

k

xkij = 1 ∀ij (1b)

∑

ij

tij
∑

k

gkij(e )xkij ≤ θ c(e) ∀e (1c)

xkij ≥ 0 ∀ijk (1d)

The objective is to minimize the MLU denoted by θ . The
variables xkij indicate the percentage share of the demand tij
between nodes i and j, that is routed over the intermediate
segment k. Equation (1b) ensures that each demand is
satisfied. Equation (1c), together with the objective function,
minimizes the MLU. For every edge e, gkij(e) indicates the
load that is put on e if a uniform demand is routed from
i to j over the intermediate segment k. These values are
constants and can be efficiently precomputed. All in all,
the left side of the constraint denotes the traffic that is
put on e by the SR configuration represented by the xkij.
This is then limited to the edges capacity c(e) scaled by θ .
By minimizing this scaling factor, a SR configuration with
minimal MLU is computed. We note that all constraints are
of linear nature. Hence, P1 is an LP and can be efficiently
solved with software like CPLEX [17].
A major issue of the above 2SR algorithm as proposed

in [3] is the fact that it does not take into account
crucial real-world constraints that result from either hard-
and software limitations or other important operational
requirements. Thus, the results computed with this algorithm
are basically of theoretical nature only and (in most cases)
do not yield practically usable SR configurations. One of
those crucial operational requirements is the minimization
of the number of SR policies required to implement a

2A list of the most important notations used throughout this paper is
given in Table 5 in Appendix C.

TE solution. Due to the overhead induced by the added
segment lists (cf. Section II-B) and for the general sake
of clarity, maintainability, and robustness network operators
often aim to deploy SR configurations with as few policies
as possible [5], [18]. The original 2SR algorithm of [3],
however, often uses multiple thousands of SR policies in
its solutions (cf. [18]). These issues are addressed in [18]
where the original 2SR algorithm of [3] is extended to also
consider those additional real-world requirements that are
necessary to allow for an effective deployment of SR in
practice. In particular, to address the objective of minimizing
policy numbers, the Tunnel Limit Extension (TLE) concept
is proposed that can be used as a follow up optimization
step to an MLU optimization. It pursues the objective of
minimizing the number of policies while not surpassing the
optimal MLU of the previous optimization by more than
a predefined margin. In the context of 2SR, the resulting
algorithm is called 2TLE.

III. RELATED WORK
In this section, we discuss related work regarding the concept
of MO for SR and also present a short primer on why most
SR TE algorithms in literature (most likely) underestimate
required policy numbers on certain datasets.

A. MIDPOINT OPTIMIZATION-LIKE CONCEPTS
As mentioned in Section II-A, there already are approaches
to incorporate MPLS tunnels into the IGP routing. This
can basically be interpreted as MO for MPLS. Ben-
Ameur et al. [7] propose an offline TE methodology for
computing MPLS tunnel configurations when utilizing IGP
Shortcut. In [19], a simulated annealing heuristic using
Basic IGP Shortcut is presented which is able to achieve
near-optimal MLU with only a rather small number of
tunnels. In [8], multiple heuristics for computing MPLS
tunnel configurations for various hybrid IGP/MPLS routing
schemes, such as IGP Shortcut and Basic IGP Shortcut,
are proposed. In an exemplary evaluation, they come to the
conclusion that IGP Shortcut tends to perform best regarding
MLU minimization.
Contrary to the above approaches that all rely on standard

MPLS tunnels, we implement MO with SR policies. MPLS
tunnels can follow virtually arbitrary paths through the
network, while SR is limited to concatenations of shortest
paths when only using node segments. Hence, the traffic
steering capabilities of SR are more restricted (when lim-
iting the segment number) but it offers significantly better
scalability.
The general possibility of steering multiple different

demands into a single SR policy is already briefly men-
tioned in some RFCs or Internet drafts (e.g., [20], [21],
or [22]) and in [23, Ch. 5, Ch. 11] it is discussed from
a technical perspective. Furthermore, multiple vendors of
routing equipment (e.g., Cisco [24] and Juniper [25]) offer
support for integrating SR policies into the IGP. Depending
on the respective vendor, such approaches also go under the
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name of IGP Shortcut or autoroute features. However, the
publicly available information on this topic is rather sparse.
It mostly consists of brief notes of the new MO features
in the respective user guides or product documentations.
Information on how MO is implemented in detail or the
MO optimization algorithm in Cisco’s commercial WAN
Automation Engine (WAE) [24] are not provided.
To the best of our knowledge, there are no scientific

publications that explicitly deal with MO or a similar concept
for SR and examine its use for TE purposes, apart from our
own work [26], [27] building up on the original conference
version of this paper [1].

B. A PRIMER ON ISSUES REGARDING SR POLICY
NUMBER CALCULATION ON CERTAIN DATASETS
TE optimization for large topologies, like ISP backbones, are
rarely carried out on the original topology due to scalability
issues. Especially approaches that try to solve for optimality
(e.g., LP-based ones) scale rather poorly with network size.
For this reason, the data used for optimization purposes often
undergoes a compression or virtualization process. Those
utilize the fact that inter-Point of Presence (PoP) routing in
the network core is of most interest for TE while intra-PoP
routing is of lesser relevance. Therefore, the edge routers at
a PoP are often aggregated into a single virtual node (see,
e.g., [18] or [28]), which can significantly reduce the network
size. In the ISP backbone considered later in this paper, for
example, a similar preprocessing reduces the network size
from over 3000 nodes to less than 200.
Publicly available datasets (e.g., Repetita [29] or the

Topology Zoo [30]) that are commonly used for TE research,
often feature network data that is processed in similar
fashion. Especially information on larger networks, like ISP
backbones, is often only available on a PoP-level. While the
use of this data for theoretic evaluations of TE algorithms is
reasonable, it can result in a significant underestimation of
the number of policies that are required to transfer solutions
into practice. The reason for this is as follows. If a SR
policy featuring a virtualized node as its start- or endpoint is
chosen in a TE solution, most algorithms (e.g., [18]) count
this policy as just a single one. In a practical deployment,
however, the number of real policies required to implement
such a “virtual” policy can be much higher. The reason
for this is that the respective virtual start- or endpoint
corresponds not to a single but to multiple real routers in
practice and the respective policy needs to be installed on
each of those individually. For large ISP backbones with
multiple tens of edge-routers per PoP, this can result in a
single policy between two virtual nodes corresponding to
multiple hundred policies in practice, increasing the total
number of policies to multiple thousands in the worst case
(see Section VII-B).
To the best of our knowledge, this problem has not

been addressed in literature so far. Hence, current SR TE
algorithms do not offer support for assessing the true number
of policies when using virtualized data and, thus, feature

the risk of heavily underestimating the actual number of SR
policies required to implement a TE solution into practice.
Therefore, we propose an adaption for the 2TLE algorithm,
that allows for a more accurate assessment of the required
number of policies for end-to-end SR (Section VI-A).

IV. MIDPOINT OPTIMIZATION
In this section, we introduce and discuss the concept of
MO for SR and provide a general mathematical problem
formulation. Furthermore, we explain what benefits MO can
offer compared to current end-to-end SR approaches and
discuss potential challenges that need to be considered when
implementing MO in practice.

A. THE GENERAL MIDPOINT OPTIMIZATION CONCEPT
Before formulating a mathematical model, a general under-
standing of the MO concept is required. Overall, the idea
of MO for SR can be summed up as stepping away from
the end-to-end nature of conventional SR and “freeing up”
SR policies from being bound to a specific demand, thus
enabling them to influence the paths of multiple demands
at once. This is done by changing the mechanism of how
a demand is steered onto a SR policy. In the conventional,
end-to-end SR case, a demand is only steered onto a policy
if the policy is configured on the source-node of the demand
and ends at its destination node. So, here, SR policies always
function like some form of end-to-end tunnels for a specific
demand. In the context of MO, however, different approaches
can be used to determine whether a demand is steered onto
an existing SR policy. As a result, policies basically are no
longer bound to specific demands. Instead, they just “exist”
within the network together with a given rule-set on how
to determine whether a demand that passes over the start
(headend) of a policy is steered onto it. If a demand is not
eligible to be steered onto the respective policy or if there are
no policies configured at the respective node, it is forwarded
to the next hop based on the standard IGP routing (i.e., SPR).
The selected rule-set distinguishes the different variations or
implementations of the more abstract general MO concept.
An example for possible MO variations and the resulting
traffic steering decisions is depicted in Figure 1. Assuming
the given topology where a simple hop-count metric is used
and a SR policy configured between nodes B and D using
node G as intermediate segment (indicated in red). In the
case of end-to-end SR, only the demand B → D would be
steered onto this policy. In the context of MO, a rule-set
could be used that steers a demand onto a policy only if
the policy end-node (tailend) corresponds to the demands
destination. We refer to this MO variation as destination-
bound. In this scenario, the demands B → D and A → D
would both be steered onto the policy as they both pass
over the headend (node B) and have D as destination. When
using the IGP Shortcut rule-set (cf. Section II-A), even more
demands can be detoured with this single policy.
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FIGURE 1. Example for different MO rule-set variations and the resulting routing
(listed in the table).

MATHEMATICAL PROBLEM FORMULATION

With the general concept of MO being established, we
can now formulate the respective mathematical optimization
problem. Given a directed graph G = (V,E) where V is
the set of nodes and E the set of edges, representing the
network’s routers and edges, respectively. Each edge e ∈ E
is associated with a capacity c(e) and an IGP metric value
m(e). Additionally, for each pair of nodes (i, j) ∈ N × N
a traffic demand of size tij is given that has to be routed
from node i to node j. R defines the rule-set that is used
to determine whether a demand that passes over the start
(headend) of a policy is steered onto it. The objective is
to find a set of SR policies P that, when deployed in the
network, minimizes the MLU when routing the given set of
traffic demands while adhering to the given MO rule-set R.
This can be formulated as follows:

P2: min θ (2a)

s.t. load(e) ≤ θ c(e) ∀e (2b)

where θ denotes the MLU and load(e) the traffic load on
edge e which is made up of the traffic put on the respective
edge by each individual demand:

load(e) =
∑

i,j

tij FPij(P, e) (2c)

In this context, FPij(P) denotes the forwarding path
(including Equal Cost Multipath (ECMP)) of the demand
from i to j when using the policy configuration P under
the given MO rule-set R. Analogously, FPij(P, e) denotes
the share of traffic that is put on edge e when routing a
uniform traffic flow from i to j according to the respective
forwarding path (similar to the gkij(e) in problem P1).
While the former problem formulation might look rather

simple, it inherits one major issue when it comes to actually
solving it in practice. We further elaborate this in the
following section.

POLICY DEPENDENCIES AND RESULTING
COMPUTATIONAL PROBLEMS

As shown in Equation (2c), the utilization of each edge
depends on the share of traffic that is routed over it. To deter-
mine which demand is steered over which edges, information

FIGURE 2. Simplified example for policy dependency when deploying MO-capable
SR policies (inspired by [27]).

on the respective forwarding path FPij is required. These
forwarding paths depend on the set of policies P that are
configured in the network. This information, however, is
not known prior to optimization. In fact, it is what we
want to compute in the first place. For end-to-end SR, this
issue can be circumvented since a demand is only steered
onto policies configured between its respective source and
destination node. Hence, the forwarding path for a demand
i → j only depends on policies starting at node i and ending
at node j, but is completely independent of further policies
configured between other nodes in the network. This can be
exploited to efficiently precompute the required information
on how adding or removing a policy changes link utilizations
(i.e., the gkij(e) values of problem P1) and, thus, allows for
an efficient LP formulation.
This, however, is no longer possible when using MO

instead of end-to-end SR. Now, policies are no longer bound
to a specific demand and, as a result, various demands
can be routed through a single policy, depending on the
respective MO rule-set R. Furthermore, packets might be
routed through multiple policies on their way to their
destination. This introduces some kind of dependencies
between policies (or at least their related link utilizations).
Installing or removing a policy can impact the routing of
various demands and, hence, alter the set of demands that is
routed through other policies. For example, a policy might
be configured that (normally) qualifies for routing a specific
demand. However, if this demand’s traffic never reaches the
policies startpoint due to other policies deviating it from its
original path, traffic will not be routed through the former
policy. This is exemplary depicted in Figure 2. If only the
red policy is installed at node C (the colored node marks
the respective intermediate segment), the traffic of demand
A → D will be routed through it. However, if the blue policy
is installed on node B as well, the traffic will be routed
through it instead. As a result, the link utilizations induced by
a specific policy cannot be computed without knowledge on
what other policies are installed in the network. However, this
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information is what we want to obtain from the optimization
in the first place. Hence, it is not available at optimization
time. This renders an (efficient) LP formulation (like, for
example, 2TLE for end-to-end SR) virtually impossible. Note
that end-to-end SR TE without any additional constraints
is already NP-hard [31]. Introducing MO with its policy
dependencies makes the optimization problem even harder.
Similar observations are made in [8] with regards to an

IGP Shortcut approach for MPLS tunnels. There, a heuristic
approach is chosen instead. The same holds true for other
publications regarding the integration of MPLS tunnels into
the IGP (cf. Section III-A). All utilize some form of heuristic.

B. BENEFITS OF MO COMPARED TO E2E SR
In the following, we discuss several use cases in which
the use of MO for SR holds the potential to overcome
shortcomings and limitations of end-to-end SR.

1) POLICY NUMBER REDUCTION

While the end-to-end nature of conventional SR enables
a very precise, per-demand traffic control, it is also the
cause for its main issue: The rather high policy numbers
required to implement TE solutions. Since each end-to-end
SR policy is designated to only route one specific demand
(the one between its start and endpoint), this means that a
TE solution requires at least as many policies as there are
demands to be detoured. Especially for larger networks (e.g.,
ISP backbones or large WANs) that often feature several
tens of thousands of demands, this can result in rather
high policy numbers even if only a small fraction of those
demands needs to be detoured (cf. Section VII-B). However,
deploying MO in the context of ISP backbone networks
does not only offer benefits because of their high demand
numbers, but also because of their rather distinct topological
structure, originating from common network design patterns.
The network core consists of high-capacity and high-speed
but lower connectivity routers, accompanied by hierarchical,
high-connectivity node structures at the edges of the network,
which aggregate the traffic (cf. [32] or [33, Ch. 2.3]). As
a result, ISP backbones often feature so called Edge PoPs.
They consist of a set of edge routers that are redundantly
connected to two or more core routers which, in turn, connect
the PoP to the rest of the network. To redirect the traffic
that enters the network at a specific PoP onto a predefined
TE path, individual policies need to be installed for many of
these edge routers when using end-to-end SR. Often, multiple
of these policies follow basically the same path through the
network. When using MO instead, the same routing can often
be achieved by installing only a few policies between the
respective core routers, that each detour multiple demands
at once. For a better understanding, the previously described
general ISP topology structure is depicted in Figure 3(c),
together with illustrations of exemplary policy configurations
using either end-to-end SR or MO. It can be seen that
deploying just a couple of MO policies between core routers
holds the potential of reducing the number of policies to

FIGURE 3. Illustration of the capability of MO to reduce policy numbers in ISP
backbone-like structured networks.

configure in the network while achieving comparable traffic
steering. This is only a scaled down example, but it is easily
imaginable that, for larger ISP backbones with multiple tens
of edge routers per PoP, the reduction in policy numbers
can be substantially larger. Finally, we want to stress again
that the topology structure depicted in Figure 3(c) is not
a constructed, theoretical example. It, in fact, results from
common network design principles. Hence, most modern ISP
backbones probably feature comparable topology structures
which, in turn, allows them to benefit from the use of MO
over end-to-end SR when it comes to reducing the number
of SR policies required to implement TE solutions. This is
also confirmed in our following evaluations (cf. Section VII).

2) TACTICAL TE

As already pointed out, a major advantage of MO compared
to end-to-end SR is its ability to greatly decrease the number
of policies that need to be configured in a network to
implement TE solutions. This is of great interest for ISPs and
operators of other large networks as it reduces configuration
effort and improves clarity, maintainability, and robustness
of the network (cf. Section II-C). However, what has not
been discussed yet, is the fact that being able to compute
TE solutions with small policy numbers could be especially
beneficial in the use case of tactical TE. In this branch of
TE, the main objective is to provide and roll out reasonably
good TE solutions within rather tight time constraints to
quickly fix bad network states (i.e., resulting from failures
or unexpected traffic changes) [34], [35]. In such scenarios,
substantially reducing the number of policies that need to be
configured to “repair” the network could be of great benefit.
Configurations with lower numbers of policies are (most
likely) also faster to roll out into the network and, thus, can
reduce the overall “time-to-repair”.
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FIGURE 4. Simplified example for a scenario in which the use of MO instead of end-to-end SR results in a more “stable” TE configuration that does not require reconfiguration
even if the ingress point of traffic changes (within a reasonable extent, e.g., due to peering or BGP changes outside of the network). The MO policy C → D → F would steer the
traffic away from the bottom path, irrespective of whether it enters the network at node A or B.

3) SR PATH ENCODING

Each SR label in the segment list takes up additional space
(e.g., 32bit for SR via MPLS). As a result, the longer
the segment list, the larger the overhead added to each
packet. There is a whole subfield of SR research focusing
on efficient SR path encoding and reducing segment list
sizes (cf. e.g., [16]). MO, however, might offer a somewhat
implicit solution to this problem as it is no longer required
to push the full segment list onto a packet at the ingress
node, as it is done by end-to-end SR. Instead, we can use a
concatenation of multiple MO policies, each adding just one
or two labels after the previous ones are already handled and
removed. This can be utilized to lower the maximum number
of segments added to a packet along its path, reducing the
size of the SR header and, this, also the overhead resulting
from it. So instead of, for example, adding a large 6-label
long list as a whole at the ingress node, we can iteratively
add labels at later stages of the path. This could keep the
maximum size of the segment list along the whole path at
just three segments. So instead of reserving 6 × 32bit for an
SR header with six labels, we only need to reserve 3×32bit
instead, basically cutting the overhead more or less in half.

4) SOLUTION LONGEVITY AND ROBUSTNESS

Lastly, we expect that using MO can also have beneficial
effects on the longevity of TE configurations. Some operators
run their networks in a highly dynamic and automated
fashion, changing and adapting TE configurations every
couple minutes. Others, however, are more hesitant when
it comes to continuously changing network configurations,
especially in fully automated fashion (cf. e.g., [26], [35]).
Instead, they prefer more stable configurations lasting longer
periods of time (i.e., multiple days or even weeks) that will
be tweaked and adapted only when necessary. Deploying
MO policies instead of conventional, end-to-end SR holds
the potential to further improve the longevity and robustness
of TE configurations which we hope to demonstrate with
the following example scenario. As most traffic traversing
a carrier or ISP network is transit traffic originating and
ending in other autonomous systems, interdomain-routing
decisions (influenced by e.g., BGP or peering) can have a
non-negligible impact on the resulting traffic matrix that an

ISP network has to handle [36], [37]. For example, large
traffic portions (i.e., originating from large content providers)
might normally enter the ISP network at a certain PoP B.
The ISP knows this and installs dedicated TE policies on
this PoP (i.e., based on SR) to send this traffic on the
desired intra-domain path. If now, due to changes in the
inter-domain routing (BGP), the traffic no longer enters the
ISP network at PoP B but instead at another (geographically
probably still rather close) PoP A, the aforementioned TE
configurations on PoP B are bypassed and traffic no longer
follows the desired route. As a consequence, reconfiguration
is required. For a better understanding, such a scenario
is schematically depicted in Figure 4. With end-to-end SR
policies, every change in the ingress node requires an
adaption or reconfiguration of the network. When deploying
MO, however, a configuration can be found that sends the
traffic along the desired path, irrespective of it entering the
network at node A or B. As a result, the configuration is
more robust against certain traffic changes and its general
longevity is improved.

C. POTENTIAL CHALLENGES OF MIDPOINT
OPTIMIZATION
After having discussed the benefits that MO can offer
compared to end-to-end SR, we now take a look at problems
and challenges that have to be taken into account when
implementing MO in practice, together with suggestions on
how those can be circumvented.

1) POLICY NESTING

For standard end-to-end SR, a demand follows a policy from
the ingress to the egress node. It is technically not possible
that it is affected by another policy along its path. This
changes for MO. Here, traffic that already follows a policy
might reach a node at which another applicable policy is
configured. If that is the case, the traffic will be also routed
through this policy. In theory, this policy nesting can occur an
arbitrary number of times. This might not seem problematic
at first glance. However, in practice, the maximum number
of segments that can be applied to a packet is limited by
the Maximum Segment Depth (MSD) of the used routing
hardware. If a packet exceeds the MSD the resulting behavior
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is undefined and depends on the used hard- and software.
However, the packet will most likely be dropped. Hence, it
should always be ensured that a SR configuration does not
violate the MSD as this could substantially degrade network
performance. For end-to-end SR, the MSD limitation is
practically irrelevant since virtually optimal results can often
be achieved with a very low number of segments (cf. [3]).
However, this does not hold true for MO in the presence of
policy nesting. The number of segments added by each policy
varies depending on the exact MO implementation, but is
always at least one. As a result, the MSD represents an upper
limit for the feasible policy nesting depth that must not be
exceeded. This could theoretically be ensured by explicitly
checking the maximum nesting depth of computed solutions.
However, such checks are probably not sufficient as long as
they only consider the current network state. Any link or
router failure can potentially alter the forwarding paths of
packets inside and outside of policies. Such a change might
result in a SR configuration previously complying with the
networks MSD to now violate it. Thus, solutions do not only
need to be checked to comply to the MSD for the current
network state, but also for any possible failure scenario.
This, however, is probably not feasible as the number of
possible failure scenarios grows exponentially with network
size. A more practical approach to resolve these issues is
to simply prohibit policy nesting. This can, for example, be
done with so called Strict Labels [25, p. 634ff.] [38]. This
is a special type of label that guarantees a packet is routed
to the interim-destination referenced by the respective label
strictly via the shortest path. Other policies along the path
will be ignored.

2) ROUTING LOOPS

When configuring a network, operators need to make sure
there are no routing loops since those can significantly
deteriorate performance. For end-to-end SR, infinite loops
are basically no issue and can be easily prevented. When
using MO, however, it becomes possible to build policy
(mis-)configurations that result in routing loops, permanently
trapping packets of certain demands. Such loops can be
configured in two different ways. The first one is rather
straight forward and can only occur, if an MO rule set R is
used that allows packets to be steered onto policies whose
endpoints are further away from the packets destination
(w.r.t. the IGP metric distance) than the respective policy
startpoint. This enables the (accidental) configuration of
policies that route a packet back to a node on the path
it already traversed earlier (on the way from its source to
the respective policy startpoint). From there, it follows the
same forwarding path as before until it reaches the respective
policy’s startpoint again. There it is, again, routed back on
its path, effectively closing a loop. While this first type of
loop is rather easy to detect and prevent (e.g., be choosing
a well-suited MO rule set R), the second class of loops is
more complex. It can only occur if policy nesting is allowed.
If that is the case, there are scenarios in which a packet

that already is inside of a policy p1 is steered onto another
policy p2 whose associated SR path traverses the startpoint
of p1 again. There the packet is steered onto p1 again that
brings it back to the startpoint of p2, and so on. As a result,
the packet keeps nesting deeper and deeper between those
two policies, effectively being trapped in an infinite loop.
Similar has also been described in [25, p. 634f.] together
with a simple example for such a policy (mis-)configuration.
It should also be noted that the resulting loops are no

temporary or transient loops that can, for example, occur
during the network convergence stage (e.g., after a failure of
IGP weight reconfiguration) and basically resolve themselves
after the network converged. Instead, they are permanent
and need to be manually resolved. Thus, their impact on
the network performance can be expected to be substantially
more severe as basically all packets of the impacted demands
will be trapped in the loop (and eventually be dropped) until
the issue is resolved by altering the SR configuration. Hence,
routing loops are a serious issue that has to be considered
and dealt with when deploying MO in practice.
Similar to checking SR configurations for MSD violations,

using dedicated loop-checks to ensure a given SR configura-
tion does not contain loops is not viable in practice, as such
a check would not only need to be carried out for the current
network state, but for all possible failure scenarios, as well.
Therefore, it is desirable to use MO implementations (or
rule sets) which implicitly guarantee to never create loops.
Fortunately, this is rather easy to ensure. For this, basically
only two properties are required: First, policy nesting needs
to be prohibited3 and, second, an MO implementation (with
a rule set R) has to be used, that ensures that a packet
will only be steered onto a policy if the policy endpoint is
closer to the packets destination than its startpoint. The IGP
Shortcut approach (cf. Section II-A), for example, inherits
this property. Prohibiting policy nesting ensures that a packet
entering a policy is guaranteed to also always leave it again.
The second property ensures that a packet will always be
closer to its destination after exiting a policy. The same holds
true for SPR. Consequently, if a packet is guaranteed to not
be “trapped” inside a policy and each step (either SPR or
a SR policy) brings it closer to its destination, the packet
will reach it in a finite number of steps since the original
distance to the destination is also finite. Thus, permanent
loops are effectively prevented.

3) TRAFFIC STEERING CAPABILITIES

One of the biggest advantages of end-to-end SR is the
detailed per-flow traffic control it offers. Since each policy
is dedicated to route exactly one demand, end-to-end SR
offers the possibility to individually optimize the routing path
of each demand, often enabling near perfect routing. When
using MO, however, policies are no longer dedicated to route
just a single demand but, instead, potentially influence the
path of multiple demands at once. Intuitively, one would

3This is also suggested in [25, p. 634f].
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expect that this results in a deterioration of the overall
traffic steering capabilities and thus also the achievable TE
solution quality, as demands can no longer be individually
controlled with dedicated policies. This intuition, however, is
misleading. From a theoretical perspective, there is actually
no deterioration in traffic steering capabilities when using
MO instead of end-to-end SR. The reason for this is that,
if needed, the routing of every end-to-end SR solution can
be mimicked with a respective MO policy configuration
if policy nesting is prohibited. Then, a “full-mesh” policy
configuration that installs a MO policy between each pair of
nodes in the network can be deployed. This results in each
demand being steered onto an (implicitly “dedicated”) MO
policy between its source and destination. Of course, such a
full-mesh configuration would require an immense number
of MO policies (O(|V|2)) to be configured. This (at least to a
certain extent) contradicts the general idea of MO being able
to reduce policy numbers compared to end-to-end SR (cf.
Section IV-B). However, this shows that, from a theoretical
perspective, using MO instead of end-to-end SR does not
result in a deterioration of traffic steering capabilities, per
se. As a result, solutions of similar quality are achievable
when using MO (also shown in Section VII-A).

In fact, MO actually even offers the possibility to improve
solution quality when it comes to practical implementations
of SR. In current state-of-the-art SR TE algorithms (e.g., [39]
or [18]) the number of segments is often limited to two
or three. This is either done due to practical constraints
(i.e., MSD) or optimization-related reasons. While it has
been shown multiple times that, in practice, three or even
just two segments are often sufficient to obtain virtually
optimal results, this is not always guaranteed. There are
scenarios for which higher segment numbers can be required
(cf. [18, Fig. 2]). For end-to-end SR, this can result in
infeasibly high computation times or resource demands of
the respective optimization algorithms. It might even be
impossible to sufficiently increase the segment number due
to the respective MSD limit. MO, however, can benefit from
the fact that it is able to mimic higher segment paths via a
concatenation of multiple policies with fewer segments.
An example for such a scenario is given in Figure 5. The

topology contains two types of edges. The thinly drawn edges
denote links that have a low metric and low capacity and the
thick edges denote links that have high capacity but also a
high metric. Assume that a traffic flow has to be routed from
node A to node C and that this flow is at least more than
twice as large as the capacity of the thin edges. To prevent
congestion, it has to be rerouted over the thick edges instead,
which offer sufficient capacity. With conventional SR limited
to policies with at most two segments (2SR), every possible
policy configuration would still result in overutilization, since
traffic will always pass over at least one of the low-capacity
edges (assuming link metrics are not adopted). However,
when using MO, a concatenation of two 2SR MO policies
(A → D → B and B → E → C) can be used to ensure
that the traffic flow is routed only over the high-capacity

FIGURE 5. Example for a simple topology where the optimal routing can be achieved
with a concatenation of MO-capable 2SR policies, but not with conventional 2SR.

edges. As a result, the optimal MLU can only be achieved
when using MO, while the conventional SR solution can be
arbitrarily worse depending on the chosen link capacities and
traffic volumes. This worst-case example can be extended for
k-SR with arbitrary many segments by simply concatenating
more triangles to the above topology.

V. LP-BASED OPTIMIZATION ALGORITHM
In this section, we propose a new LP-based SR TE
optimization algorithm that utilizes the MO concept and
aims at minimizing the network MLU while simultaneously
minimizing the number of MO policies required to do so.

A. SELECTING AN MO IMPLEMENTATION
There are various possibilities to integrate TE tunnels (or
policies) into the IGP. To not exceed the scope of this paper,
we focus on just one of them for now: The IGP Shortcut
approach as defined for MPLS in [7]. The respective rule set
R for deciding whether a packet that traverses a router on
which an MO policy is configured will be steered onto the
respective policy comprises of just one rule: A packet will be
steered into the policy if the policy endpoint lies on the IGP
shortest path from the policy startpoint to the destination
of the packet. Our reasoning for choosing this specific MO
variation is explained in the following.
First, a crucial advantage of this approach is the fact that

it makes it impossible to configure policy-induced loops4

if policy nesting is prohibited, as already discussed in
Section IV-C. Second, IGP Shortcut strikes a good balance
between other approaches like Basic IGP Shortcut or the
advertisement of policies as IGP links. A policy can still
be used by multiple demands with varying sources and
destinations. And since it is only locally significant (cf.
Section II-A), it can only influence traffic flows traversing
the start-node of the policy. It will not draw additional traffic
from nearby paths. Third, a similar approach was found to
perform best with regards to the integration of MPLS tunnels
into the IGP [8]. And lastly, according to the respective
documentations (e.g., [25]), the IGP Shortcut approach seems
to be the standard MO approach that is supported in recent
routing hard- and software by some of the large vendors.
This makes our optimization algorithms actually usable in
practice.

4While this prevents policy-induced routing loops, it still allows for
structures referred to as weak-loops [40]. While those can still result in
traffic visiting nodes multiple times, packets are not trapped infinitely in
these loops but still reach their destination. Hence, those weak-loops are far
less detrimental than standard routing loops. In fact, it was shown in [40]
that they can even offer actual benefits with regards to certain TE objectives
(e.g., MLU or policy number minimization).
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FIGURE 6. A worst-case example in which the best MLU obtained with the SC2SR
algorithm is arbitrarily worse than the actual optimal MLU that is theoretically
achievable with MO, resulting from the prohibition of “influencing” policies.

B. CIRCUMVENTING THE POLICY DEPENDENCY
PROBLEM
As already explained at the end of Section IV-A, solving
the general MO optimization problem (cf., problem P2)
optimally with linear programming is not feasible due to
the policy dependency issue. Therefore, in this section, we
present a new algorithmic approach that aims to circumvent
this issue by adding additional restrictions to the explored
solution space, enabling the use of linear programming to
solve a slightly more restricted version of the problem. The
general idea is to limit the explored solution space to those
solutions that do not incorporate policies that influence each
other. For this, we add a constraint to our LP that prohibits
the installation of policies that influence the amount of
traffic that passes through already installed ones. By doing
so, we circumvent the above mentioned issues regarding
policy dependencies and make an efficient precomputation
of resulting link loads feasible.
The general idea for computing the set of influencing

policies for a specific policy p starting at node pstart and
ending at node pend is rather straight forward. For every
other configurable policy x we compute the amount of
traffic reaching pstart from every demand that is eligible
for being steered into p according to the IGP Shortcut
rules. If this traffic changes when x is installed, then x
is an influencing policy for p. It is important to not take
traffic into account while it is inside of a policy. Since
policy nesting is prohibited, traffic that already is inside
of a policy is not eligible to be steered into another one.
Hence, the overall traffic that reaches pstart might be the
same, but if portions of this traffic already are inside of
a policy, they will not be steered into it anymore. As a
result, the traffic passing through this policy and, hence,
the resulting link utilizations will change. A useful property
that can be exploited for a faster computation is the fact
that the set of influencing policies only depends on the
policy start- and endpoints due to the prohibition of policy
nesting.
The above limitation of the solution space allows for

an efficient problem formulation. However, the downside
of such an approach is that it, strictly speaking, makes
our algorithm a heuristic one as solutions can (in theory)
become arbitrarily worse than solutions to the unrestricted
MO optimization problem (problem P2). An example for
such a worst-case scenario is given in Figure 6. It depicts an

exemplary topology for which the MLU obtained with our
algorithm can be arbitrarily worse than the actual optimal
MLU achievable with the MO approach. Analogously to the
previous examples, the thinly drawn edges denote links with
low metric and capacity while the thicker ones denote links
with high metric and capacity. Assume that two traffic flows
have to be routed: One from A to C and one from B to C.
Further assume that each of these flows is larger than the
capacity of the thin edges. Hence, we need to detour these
flows from their standard shortest paths in order to prevent
congestion. When utilizing MO with at most two segments
per policy, the only way of doing this is installing the policy
A → D → C to reroute the traffic flow between A and C
over the two upper thick-drawn links, and also installing the
policy B → E → C to reroute the traffic flow between B
and C over node E. However, since, without the policy A →
D → C the traffic between A and C would also be routed
over policy B → E → C, the former policy “influences” the
traffic that passes through the latter. Hence, it is included in
its set of influencing policies IBC. As a result, our algorithm
is prohibited to configure both policies at the same time
and, therefore, would not be able to find the above optimal
solution. For this example, this configuration is also the
only one to obtain the optimal MLU. Thus, our algorithm
finds a sub-optimal solution. By setting the respective traffic
and capacity values accordingly, the difference between the
optimal solution and the solution obtained by our algorithm
can be made arbitrarily large.
While the above considerations are very important for a

theoretical, worst-case analysis of our algorithm, we believe
that they are of lesser relevance in practice. This is backed
up by the fact that we are able to show that our algorithm
is still able to obtain virtual optimal MLUs on nearly all
of our (real-world) evaluation instances (see Section VII-A),
irrespective of these theoretical limitations.

C. SC2SR OPTIMIZATION MODEL
Since link loads can now be precomputed in reasonable
time, this enables the formulation of an LP. We refer to
it as Shortcut 2SR (SC2SR) because it is based on IGP
Shortcut and utilizes policies with up to two segments. The
optimization problem is expressed as follows:

P3 : min θ (3a)

s.t.
∑

l

xlkm = ykm ∀km (3b)

ykm + yij ≤ 1 ∀km
∀ij ∈ Ikm (3c)⎛

⎝
∑

ij

tij
∑

klm

diff klmij (e) xlkm

⎞

⎠ ∀e

+ spr(e) ≤ θ c(e) (3d)

xlkm ∈ {0, 1} ∀klm (3e)

ykm ∈ {0, 1} ∀km (3f)
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The objective still is the minimization of the MLU θ .
However, when compared to the 2SR formulation (problem
P1), completely different types of variables are used since
policies are not bound to specific demands anymore. The
binary decision variables xlkm indicate whether a 2SR policy
from node k over intermediate node l to m is installed.
Similarly, the variables ykm indicate whether there is any
policy installed between the nodes k and m, regardless of
the respective intermediate segment.5 The first constraint
(Equation (3b)) connects the xlkm to the corresponding ykm
variable, while also limiting the number of policies that
can be installed between any pair of nodes to at most one.
With Equation (3c), we ensure that if a policy between two
nodes is set, none of its influencing policies Ikm is installed
as well. Finally, Equation (3d) together with the objective
function is responsible for minimizing the MLU. Its general
idea is similar to Equation (1c) of problem P1 (2SR). For
each edge, we compute the amount of traffic that results
from the current policy configuration and ensure that it does
not exceed θ times the respective capacity. In this context,
spr(e) indicates the traffic load that is put on edge e when
standard SPR is used and no policies are deployed. The
diff klmij (e) values indicate the difference in the share of the
demand from i to j that is put on edge e in the case of
SPR and when a policy from k over l to m is installed.
For example, if 70% of the demand from i to j would be
routed over edge e if a policy is installed between nodes
k and m with intermediate segment l, but in the SPR case
(without this policy) it would only be 30%, then the diff klmij
value would be 0.4 (or 70% − 30% = 40%). If there is no
difference between SPR and the use of the respective policy
then the diff klmij value is zero. Again, all constraints of the
optimization problem are of linear nature, allowing it to be
solved with commercial LP solver like CPLEX [17].
The LP as presented in problem P3 does not consider

any limitations regarding the configuration of policies on
or towards specific nodes. For input data where each node
just corresponds to exactly one router in practice this is
fine. However, if we deal with virtualized topologies (cf.
Section III-B) in which (virtual) nodes correspond to many
routers in practice, using these nodes as start- or endpoints
or intermediate segments should be avoided as, otherwise,
we run into the same policy multiplication problem. This
can be done either explicitly via a dedicated constraint that
fixes the corresponding xlkm to zero, or implicitly by only
setting up variables for non-virtual nodes. We implemented
the second option because it reduces the number of variables
and, hence, the overall problem size and computation times.
To allow for an effective minimization of the number

of deployed policies, we developed an LP extension called
SC2TLE. It is inspired by the TLE concept proposed in [18].

5Technically, the LP could also be formulated without the ykm variables
using only xlkm. However, utilizing the former allows for a smaller LP and,
hence, a faster solving, at least with regards to the CPLEX solver used
here.

The general idea is to first compute the optimal MLU and
then minimize the number of policies required to obtain it
in a second, follow-up optimization step. The algorithm also
allows for the specification of a maximum percentage MLU
deterioration that is acceptable to further reduce the number
of policies. This value is specified by the trade-off coefficient
λ. The structure of the SC2TLE LP is similar to problem
P3, apart from two adaptions. First, the objective is changed
from MLU to policy number minimization. This is done by
replacing Equation (3a) with the following one.

min
∑

km

ykm (4)

Second, the following constraint is added to the LP to limit
the MLU deterioration of the newly computed solution.

θ ≤ λθ ′ (5)

It ensures that the MLU θ of the newly computed SC2TLE
solution does not surpass the optimal MLU θ ′ of the
preceding SC2SR optimization by more than the user-defined
trade-off coefficient λ. If the MLU is not allowed to worsen
at all, a trade-off coefficient of 0% (λ = 1.0) can be used.

VI. EVALUATION SETUP
This section introduces the algorithms and datasets used
for the following evaluation. Computations are done on a
computer with two AMD EPYC 7452 CPUs, 512GB of RAM
and 64-bit Ubuntu 20.04.1. LPs are solved using CPLEX
version 20.1.0 [17].

A. ALGORITHMS
To assess the quality of SC2SR and SC2TLE, we use
different algorithms depending on the examined objective.
The first algorithm used for assessing the quality of the
achieved MLUs is SPR. It is used to reflect the current state
of routing in many networks that we want to improve on with
our TE approaches. The second algorithm is Multicommodity
Flow (MCF) [41, Ch. 4.4]. It can be used to compute the
theoretically best achievable MLU that can be realized with
any kind of traffic steering. However, it has to be noted
that MCF solutions are generally not really deployable in
practice since it ignores indispensible real-world constraints
and restrictions (e.g., the infeasibility of splitting traffic flows
into arbitrary fractions). Nonetheless, MCF is useful in that
sense that it allows to obtain a lower bound for the best
achievable MLU that we can compare our algorithms against.
If they achieve solution qualities comparable to MCF, we
know that these solutions are virtually optimal. Finally, to
compute the MLU achievable with end-to-end SR we use
the 2SR algorithm (problem P1).
To assess the minimal number of policies required by

end-to-end SR it would be optimal to compute solutions on
unvirtualized data. However, as mentioned in Section III-B,
this is often not feasible for larger networks for reasons
of scalability. To nonetheless get a better approximation of
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the minimal number of required policies, we developed an
adaption of the 2TLE algorithm, called Router-Level 2TLE
(RL2TLE), that allows to split virtual demands into equal
sub-demands according to the actual number of edge routers
grouped into the respective virtual node(s). The LP of the
first optimization step is formulated as

P4 : min θ (6a)

s.t.
∑

k

xkij = Zij ∀ij (6b)

∑

ij

tij
Zij

∑

k

gkij(e )xkij ≤ θ c(e) ∀e (6c)

xkij ∈ N0 ∀ijk (6d)

The Zij values denote the number of sub-demands in which
the demand between nodes i and j can be split. For example,
a demand between two virtual nodes corresponding to four
real routers each, would get a Z-value of 16 because it
resembles 16 real demands (one for each pair of nodes). For
each of them a dedicated policy can be installed. The second
optimization step uses a TLE similar to the one described
in [18]. This approach assumes that traffic is distributed
equally across the edge routers of a PoP. While this might
not always be true in practice, we still believe that it is a
valid assumption since it is in the interest of operators to
connect customers in a way that the traffic is distributed
more or less equally.

B. DATA
We carry out evaluations on three sets of data. The
first consist of real topology and traffic data collected
in the backbone network of a globally operating Tier-
1 ISP. Snapshots of the respective network topology and
the measured traffic matrix are provided on a quarter-hour
basis. IGP metrics are set according to a preceding metric
optimization carried out by the operator. For our evaluations,
we were given 19 snapshots from between March 2017
and January 2021 with traffic matrices located in the daily
peak-hour (generally between 9 and 10 o’clock in the
evening). Due to continuous expansions of the network,
the respective topology varies between snapshots but, on
average, it comprises around 143 nodes and 900 edges and
has a diameter of about 7 (see Table 1 for more topology
characteristics).
It is common knowledge that ISPs generally tend to over-

provision their networks in order to preemptively account
for changes in traffic characteristics or other unexpected
events (cf. e.g., [42]). As a result, overutilization rarely
occurs even when not using sophisticated TE approaches
but solely relying on SPR. The same can be observed for
our aforementioned ISP dataset. Hence, while they represent
real use cases in a real ISP backbone, it could be argued
that, from a more theoretical perspective, these instances
might not be that challenging since overutilization can be
prevented without using SR at all. Therefore, with our second
dataset, we aim to adapt and alter problem instances from

our aformentioned ISP dataset to create TE instances that
are more challenging to optimize. The basic idea is to map
back more recent traffic matrices (e.g., from 2021) to older
expansion states of the network (e.g., 2020). Since network
traffic is generally increasing over the years [43], this forces
more traffic through a network with lower capacity. For this,
topology information is again taken from different network
snapshots of the ISP backbone network between 2017 and
2021, but we change the related traffic matrix to a more
recent one. We carried out this operation for a large number
of instances. Out of the resulting instances, we discarded
all those for which the SPR MLU was still below 100%
and those for which the MCF MLU was above 100%, as
for those TE would be either not (strictly) necessary or
not particularly helpful, respectively. Out of the remaining
instances, we selected 10 to evaluate our algorithms on. Both
of the ISP datasets feature data that is virtualized in a similar
fashion as described in Section III-B. Here, a single virtual
node corresponds to 50 to 150 edge routers in practice.
While our first two datasets feature different expansion

states of the ISP backbone, they are nonetheless both based
on the same singular network. To also evaluate MO on
a plethora of different networks, our third dataset features
instances from the publicly available Repetita dataset [29].
This dataset contains topologies of real-world networks
(mostly WANs or ISP backbones) collected in the Internet
Topology Zoo [30] and artificially generated6 traffic matrices
for each topology. All of these traffic matrices are intention-
ally designed in a way that the optimal MLU (e.g., obtainable
with MCF) for each instance is always 0.9 (corresponding
to 90% utilization). Most instances also feature SPR MLUs
grater than 1.0, corresponding to network overutilization.
This is done to create especially challenging instances for
the evaluation of TE approaches. However, it has to be
noted that such high utilization scenarios very rarely occur
in practice (basically only in the case of multiple crucial
hardware failures or outages or unexpected traffic surges).
Hence, these instances (similar to our backmapped ISP
dataset) can be considered “harder” than most TE scenarios
that are encountered in a practical, real-world deployment.
The Repetita dataset contains a large portion of rather small
topologies with just a couple of nodes, mostly from fairly old
networks like the Arpanet. Since we see the main use case of
MO and related approaches in substantially larger networks
(e.g., modern ISP backbones and WANs), we argue that such
small instances are of lesser interest for us and modern TE
in general. Therefore, we limit our evaluations to networks
that have at least 40 nodes.7 Furthermore, we also exclude
those instances that are already solved optimally by SPR as
they are of no interest for more sophisticated TE approaches.
Overall, this leaves us with a total of 72 instances in this
dataset. Those instances are often provided on a PoP-level
and, thus, likely also feature virtual nodes. However, there is

6Traffic matrices were generated using a random gravity model [44].
7Similar was, for example, also done in [39] or [40].
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TABLE 1. Graph properties of the topologies in the three datasets used for evaluation.

no information on which nodes are virtualized and how many
edge routers are grouped into them. Hence, we just ignore
possible virtualizations and treat every node as a normal,
single router. This also allows us to evaluate the performance
of our MO algorithm for smaller, “unvirtualized” networks.
Table 1 lists the most important graph properties across

the respective topologies for each of the three dataset used in
our evaluation. Regarding the number of edges, parallel links
are counted as just one edge and the density characterizes
the ratio of (non-parallel) edges in the graph relative to a
complete graph with the same number of nodes.

VII. EVALUATION RESULTS
In this section, we evaluate the performance of our newly
developed MO algorithm with regards to the achievable MLU
and the number of required policies.

A. MAXIMUM LINK UTILIZATION
To assess the MLU optimization capabilities of our new
SC2SR algorithm we optimized each instance from our
reference datasets with it. The results for the original ISP
instances are depicted in Figure 7(a) together with the MLU
values obtained with our reference algorithms (SPR, MCF,
and 2SR). It can be seen that for nearly all of the 19
evaluation instances SC2SR performs as good as 2SR and
is able to provide solutions of virtual optimal quality (as
it matches MCF results). Only for instance M SC2SR
is not able to achieve the optimal MLU. However, it is
still rather close to the optimum and also performs better
than 2SR.
Similar results can be observed for the backmapped

ISP dataset (see Figure 7(b)). The substantially higher
SPR MLUs indicate that our traffic backmapping approach
seems to have indeed created more challenging instances.
Nonetheless, SC2SR is still able to achieve optimal results
for 8 out of the 10 instances. For one of the two instances (G)

that were not solved optimally, 2SR is able to achieve a better
MLU, possibly due to its superior per-flow traffic control.
However, it could also be a result of the limitations regarding
influencing policies implemented into our algorithm (cf.
Section V-B) that limit the explored solution space. Other
MO algorithms without this constraint might be able to
achieve the optimal MLU. For the second suboptimal
instance (F), 2SR is not able to achieve a better MLU
than SC2SR. Maybe, in this specific scenario, the theoretical
lower bound that is presented by MCF is not reachable with

TE approaches that have to adhere to practical limitations.
Even though there are two instances for which SC2SR is
not able to achieve the proven optimum, it is still able to
substantially reduce the MLU when compared to SPR and
prevents overutilization in all cases.
Results for the Repetita instances are depicted in

Figure 7(c). Since the Repetita dataset features substantially
more instances than the other two, visualizing results for
each individual instance is not really feasible anymore.
Hence, for the sake of readability, Figure 7(c) instead depicts
the distributions of the MLUs across all instances for the
respective algorithms. The dashed green line marks the
theoretical optimal solution value of 0.9 obtained by MCF.8

It can be seen that 2SR as well as SC2SR are able to obtain
(near-)optimal MLUs close to 0.9 for nearly all instances,
apart from a few outliers. Nonetheless, it also has to be
noted that SC2SR tends to generally achieve slightly worse
MLUs than 2SR. However, most of the latter differences
are marginally small (often < 1%). In fact, such subtle
differences are probably not even noticeable in a practical
deployment. Traffic, while mostly being quite stable and
predictable, is still subject to small ongoing variations which
(most likely) cover up such marginal MLU differences.
Furthermore, it has to be remembered that the Repetita
instances resemble intentionally challenging TE scenarios
that are (most likely) harder than most scenarios that would
occur in a practical deployment (cf. Section VI-B). And even
in such worst-case scenarios, our SC2SR algorithm is able
to find near-optimal solutions and prevent overutilization in
virtually all cases. Overall, the evaluation on the Repetita
dataset confirms our previous findings that our MO algorithm
is able to find (near-)optimal solutions comparable to those
of 2SR, for a wide range of different networks.
All in all, this evaluation shows that, regarding MLU, our

SC2SR algorithm is able to keep up with end-to-end SR
approaches. This is rather surprising because, as mentioned
in Section IV-C, MO lacks the fine-grained, per-demand
traffic control of end-to-end SR. While this can be a limiting
factor in theory, it does not appear to be of much relevance
in practice. It further needs to be remembered that SC2SR
does not utilize the capabilities of the IGP Shortcut MO
approach to their full extent. In order to enable an efficient
LP formulation, we had to limit the explored solution space

8The traffic matrices of the Repetita dataset are all designed in a way
that for each instance the optimal MLU obtained by MCF is exactly 0.9.
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FIGURE 7. MLUs achieved with different algorithms.

FIGURE 8. Number of SR policies required by different algorithms.

(cf. Section V-B). Theoretical examples can be constructed
for which these limitations can result in arbitrarily bad
results. However, these examples are carefully hand-crafted
and far from a realistic network design. In our real-world
evaluation instances, we are able to obtain optimal results
in nearly every scenario.

B. NUMBER OF REQUIRED POLICIES
Following the evaluation of the primary objective of MLU
minimization, we now take a look at how many SR policies
are required to implement these solutions. We compare the
number of policies required by our SC2TLE algorithm to the
ones required by RL2TLE that utilizes end-to-end SR. This
is done for a trade-off coefficient of 0% which resembles
the number of policies required to obtain the best possible
solutions as they were shown in Section VII-A, and also
for a trade-off coefficient of 5%. The latter can be loosely
understood as an upper bound of the MLU deterioration
that is acceptable in practical scenarios to further reduce the
number of policies.
The distributions of the results for the original ISP dataset

are depicted in Figure 8(a). First of all, it can be seen that the
number of policies required by RL2TLE varies drastically
between instances. Some can be solved with as little as 8
policies while others require multiple thousands. The reasons
for this are those explained in Section IV-B. As soon as the
optimal solution requires detouring demands between edge-
PoPs (virtual nodes), the number of policies often increases
drastically because individual policies need to be configured

for most of the edge routers. By using a trade-off coefficient
of 5%, the number of policies can be further reduced but
there are still instances that require hundreds and, in one
case, more than 2800 policies. It has to be remembered that
RL2TLE is no heuristic but provides the lowest possible
number of policies required to obtain the respective MLUs
when using end-to-end 2SR. With MO and our new SC2TLE
algorithm, significant reductions in the number of policies
can be achieved. Even for a trade-off coefficient of 0% it
requires at most 33 policies and in most cases less than ten.
When comparing these numbers to the ones of end-to-end
SR the reductions are enormous. For some instances, they
range up to more than 99% (e.g., instance B). Even for
instances for which end-to-end SR requires rather low policy
numbers, SC2TLE is often still able to undercut this number.
In fact, it never requires more policies than the end-to-end
approach. For the backmapped ISP instances (Figure 8(b)),
the number of policies required by RL2TLE is even higher
but the performance of SC2TLE and the qualitative results
are similar to the ones obtained on the original ISP instances.
Since we assume that the Repetita data does not feature

virtual nodes, we use 2TLE [18] to calculate the number of
policies required by end-to-end SR. The respective results
are depicted in Figure 8(c). It can be seen that, even without
virtual nodes, our SC2TLE algorithm is still able to achieve
a substantial reduction in the number of required policies,
from multiple hundreds or even thousands to less than 50
for nearly all instances. For example, for the Cogentco
instance (the largest instance in the Repetita dataset) 2TLE
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requires over 1400 policies, even when used with a trade-
off coefficient of 5%, while SC2TLE achieves an optimal
MLU of around 0.9 with just 19 policies. This impressively
illustrates that the benefits of our SC2TLE algorithm or MO
in general are not limited to large networks and virtualized
data, but apply to smaller, unvirtualized networks as well.
Since the respective topology and traffic data of our

ISP datasets cannot be made publicly available, we instead
provide detailed information on policy numbers for each
of our ISP instances in Table 4 in Appendix A. For better
readability, they are sorted in descending order with respect
to the number of policies required by RL2TLE. It also
features information on the actual number of policies that
would be required to implement solutions that were obtained
with the standard 2TLE algorithm. Those are computed by
applying a weighting to virtual policies corresponding to the
actual number of policies required to implement them in a
practical deployment. The respective LP formulation is given
in problem P5 in Appendix B and the results are listed in
the column labeled “w2TLE” (weighted 2TLE).

C. IMPACT OF THE POP VIRTUALIZATION FACTOR
As shown in the previous section, SC2TLE is able to
substantially reduce the number of policies required for
TE solutions. An interesting question that remains to be
answered, however, is how the number of edge routers per
PoP influences the overall reduction of policies. For our
ISP instances, a single virtual node corresponds to 50 to
150 edge routers in practice (cf. Section VI-B). This is a
quite high number as we are dealing with the backbone
network of one of the world’s largest ISPs. In other, smaller
networks this virtualization factor might be much lower with
a virtual node corresponding to just a couple edge routers.
Hence, the number of policies required by end-to-end SR
will (presumably) be lower as well.
To a certain extent, this is already covered by the

evaluations carried out on the Repetita instances. For those,
a virtualization factor of 1 was assumed (meaning that each
node in the topology does correspond to just one router
in practice). The results show that even for very small
virtualization factors (or in this case no virtualization at all)
SC2TLE is still able to achieve substantial reductions in
policy numbers compared to end-to-end SR approaches.
Nonetheless, to allow for a more substantiated conclusion,

we conduct further evaluations based on our ISP data. For
this, we repeat the RL2TLE computations for these instances
with a variety of different virtualization factors ranging from
1 to the original value of 50 to 150 edge routers per virtual
node. The results are depicted in Figure 9. Each subplot
shows the distribution of the number of policies required by
the RL2TLE algorithm across all instances of the respective
dataset for different virtualization factors. For reference,
each plot also contains the distribution of the number of
policies required by SC2TLE (blue boxplot). Since this
number is independent of the virtualization factor it stays the
same across all runs and is, therefore, only included once.

Across all four evaluations (irrespective of the used dataset
and trade-off coefficient), it can be seen that, as expected,
the number of policies required by RL2TLE decreases if
we lower the virtualization factors. However, even if we
compare it to the policy numbers of these lower virtualization
factors, SC2TLE is still able to achieve substantial reductions
for many of them. For example, even if we reduce the
virtualization factor to just a tenth of its original value (5–
15 edge routers per virtual node), RL2TLE still requires
substantially more policies than SC2TLE, especially on the
backmapped ISP instances. In fact, even for a virtualization
factor of just 1 (meaning no virtualization at all) the number
of policies required by SC2TLE is either basically on-par
with end-to-end SR (Figures 9(a) and 9(b)) or already quite
a bit lower (Figures 9(c) and 9(d)). Together with our results
obtained on the Repetita instances, this further supports the
observation that, while SC2TLE (and MO in general) are
most beneficial in larger networks with many edge routers
per PoP, they can also provide substantial benefits for smaller
networks with less hardware at the edge as well.

D. COMPUTATION TIMES AND RESOURCE DEMANDS
Like most LP-based approaches, SC2TLE is quite demanding
with regards to resources and computation times. While for
smaller to medium sized networks, optimization can still
be done within seconds or at most a couple of minutes,
for some of the largest networks, it can take multiple
hours and require a couple hundred gigabytes of RAM
to find the optimal solution. This is perfectly acceptable
when planning to use this algorithm as intended by us,
namely to optimize a network on a weekly (or daily) basis.
Additionally, we recently were able to show that a large
portion (up to over 97%) of the theoretically configurable
SR policies can be ruled out prior to optimization without
resulting in a substantial deterioration in solution quality [45]
and that this can be utilized to reduce the computation
time of LP-based optimization algorithms (including SC2SR)
by a factor of ten or more. However, while this further
facilitates the applicability of our algorithm for different
scenarios, the latter is still not suited for quick, tactical re-
optimizations (e.g., in failure scenarios) that require solutions
to be computed within seconds. For such scenarios, dedicated
heuristics need to be developed. For completeness, it should
be noted that we propose such a heuristic in [26], showing
that MO configurations of very good quality can also
be computed in substantially less time (i.e., a couple of
seconds). While this, in our opinion, further emphasizes the
usability of MO for SR for various use cases, reporting on
these results in detail would exceed the scope of this paper.
Hence, we refer the interested reader to [26] for detailed
information, instead.

VIII. INTEGRATION OF LATENCY BOUNDS
As seen in the previous sections, our MO-based optimization
algorithm is able to achieve exceptional results regarding
MLU and the number of policies. However, in practice,
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FIGURE 9. Evaluation of the impact of the virtualization factor on the number of policies required by the RL2TLE algorithm on the two ISP datasets (original at the top and
backmapped at the bottom). Policy numbers of SC2TLE are also included for reference (blue boxplot). For better readability, the smaller inset plots show the same results with a
logarithmic scale.

there often are further requirements arising from the side of
network operation and management that TE solutions must
adhere to (see e.g., [18]). Often, contracts between ISPs
and their business customers feature so called Service Level
Agreements (SLAs), in which the ISP guarantees a certain
quality of service regarding various aspects like availability
or time-to-repair.9 A crucial TE-related requirement in many
of these SLAs is the fulfillment of certain delay constraints
or latency bounds for specific traffic demands. With these
the ISP guarantees to deliver traffic within a certain specified
timelimit. They can range from quite loosely requirements
(e.g., a certain average network delay) to very rigorous
ones like guaranteeing that traffic between two sites will
always be transferred within a certain maximum delay. For
ISPs, it is of utmost importance to fulfill these agreements,
as otherwise they violate their contracts, resulting in a
potential loss of reputation and money. Hence, in order to
provide practically deployable solutions, TE algorithms have
to incorporate additional constraints resulting from SLAs into
their computations. Therefore, in the following, we present
and evaluate an approach to incorporate latency bounds
into our optimization algorithm to prevent the computed SR
detours to exceed such bounds.

9e.g., https://www.verizon.com/business/terms/us/products/internet/sla/

A. PROBLEM STATEMENT
Before talking about minimizing path delays or ensuring that
path delays adhere to certain latency constraints, we first
need to define the term path delay for a demand. When
there are only simple shortest path (i.e., no ECMP), this
definition is rather straightforward. We simply sum up the
individual link delays10 across all the links traversed by the
path from the demand’s source to the sink. In the context
of ECMP and multi-path, however, this becomes a bit more
complicated. Here, we potentially have multiple different
equal-cost shortest paths between two nodes. This is no
issue if the metric based on which the shortest paths are
computed corresponds to the link-delays. In this case, all
resulting individual simple paths, by definition, have the
same delay. If, however, the used metric does not resemble
the link-delays, the simple paths in the ECMP forwarding
multi-graph between two nodes might all have different
delays. Hence, the definition of the end-to-end delay for a
demand is not that straightforward anymore. Depending on
the use case, arguments can be made for various kinds of
delay definitions. For this paper, the objective is to make sure

10For simplicity, we assume that the delay assigned to a link already
incorporates all relevant delay factors (e.g., processing or queuing delays
arising on router-level, etc.). Hence, those are not taken into account
individually in our calculations.
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FIGURE 10. Example for the policy dependency problem with respect to delay changes. Intermediate segments of policies are not relevant here and, hence, omitted for clarity
of presentation.

that our SR solutions do not exceed certain latency bounds.
In this context, the most sensible definition for the delay of
an ECMP path between two nodes is using the maximum
delay across all the simple paths in the respective ECMP
forwarding graph. If this maximum adheres to the latency
bounds, we can be sure that irrespective of which specific
simple path traffic will be routed over, it will never exceed
the specified bound.
Now that we have defined a demand’s delay in the context

of ECMP, we can finally provide a proper definition of
the latency bound problem. Assume that for each link in
the network we have information on its delay and for each
demand d ∈ D we are given a latency bound lbd. Now, the
objective is to ensure that with our computed TE solutions
the selected forwarding path for each demand complies with
these bounds, meaning that the end-to-end delay of demand
d is at most lbd:

delay(i → j) ≤ lbd ∀d = (i, j) ∈ D (7)

In the context of end-to-end SR, this can be implemented
into an LP in a rather straightforward fashion. A demand
is either routed via the shortest path whose delay can be
easily precomputed or via a configured end-to-end policy. If
the number of intermediate segments is limited and traffic
splitting over multiple policies is prohibited (like it is for
the 2TLE LP), the delay resulting from such a policy can
also be precomputed. The constraint that has to be added to
the 2TLE LP could then, for example, look like this:

∑

k

delay(i, j, k) xkij ≤ lbd ∀d = (i, j) ∈ D (8)

Here, delay(i, j, k) denotes the end-to-end delay of the
demand between i and j if node k is used as intermediate
segment. These values can be efficiently precomputed as they
are independent of other policies configured in the network
due to the end-to-end nature of conventional SR policies.

B. COMPUTATIONAL CHALLENGES IN THE CONTEXT
OF MO
Unfortunately, computing the impact of a policy on a
demand’s delay is significantly more complicated in the
context of MO. To correctly compute the delay changes
resulting from inserting/removing a policy, we need to
compute the delay difference relative to the maximum delay

subpath. This subpath, however, can be changed by other
policies configured in the network. As a result, we run
into a similar problem as the policy dependency problem
discussed earlier in Section IV-A. To be able to precompute
the delay changes resulting from individual policies for using
them in our LP formulation, information on (potentially
all) other configured policies is required. However, since
this information is not available prior to optimization and
iterating over all possible policy variations is not feasible,
we cannot efficiently precompute these values to use them
in our LP formulation.
For a better understanding, an example for these issues

is given in Figure 10. On the left, the ECMP forwarding
graph for the demand A → F is depicted. For this demand,
there are two equal-cost shortest paths that can be used for
routing. The upper path has a delay of 30ms and the lower
one a delay of 40ms. As explained earlier, the overall path
delay for the demand A → F is the maximum delay value
across all simple forwarding paths, in this case 40ms (the
respective path is indicated in red). Now assume we want to
add a SR policy to the network, e.g., between nodes B and
C (see Figure 10(b)). To determine the impact of this policy
on the end-to-end delay of demand A → F, the first intuition
might be to simply subtract the delay of the sub-path that
is “bridged” by the policy (in this example the path from B
to C with a delay of 10ms) and to then add the path delay
resulting from the new policy (15ms). This, however, is not
correct as it would yield a delay increase of 5ms to a total
delay of 45ms instead of the correct value of still 40ms.
To correctly compute the resulting delay changes, we need
to compute the delay difference relative to the maximum
delay subpath, not to the subpath the policy is added to. This
is more complex but still doable in reasonable time when
focusing on individual policies and their differences to the
maximum delay subpaths resulting from SPR.
However, in the context of MO, a demand might not only

be routed through a single policy but through multiple ones.
As as result, the current maximum delay subpath might not
correspond to the one from the SPR “base case”, since it can
be altered by other, already installed policies. An example
for this is given in Figure 10(c). Here, we want to add the
red policy between nodes B and C with a delay of 25ms.
Compared to the standard SPR case (cf. Figure 10(a)) this
would normally increase the overall delay of the demand
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A → F by 5ms. However, in this case there already is another
policy installed (indicated by the orange arrow) that further
increased the delay of the lower, maximum delay subpath.
Thus, adding the red policy does not increase the overall
delay for demand A → F, but would do so if the orange
policy was not there.
In the above examples, we assumed that the metric used

for SPR calculations does not correspond to the link delays.
However, even if those two are equivalent, scenarios can be
constructed for which we run into the same problems as
depicted in Figure 10. For example, as soon as there is at
least one policy configured on one of the ECMP paths, we
potentially have different delays across them, even though
link metrics correspond to the delay. This basically leads to
the same “starting situation” as it is depicted in Figure 10(a).
The only difference is the higher delay of the bottom path
does not result from link D → E having a higher delay by
default. Instead, it comes from an already configured policy
between nodes D and E that increases the delay between
these two nodes from 10 to 20. Then, we can basically
follow the same argumentation as earlier even though now
we actually fulfilled the premise of having the link metrics
correspond to the delays.

C. INCORPORATING LATENCY BOUNDS INTO THE
SC2TLE ALGORITHM
As seen above, incorporating latency bounds into the SC2SR
LP is no trivial task. In fact, it (most likely) is not possible
to fully incorporate them in an efficient way for reasons
similar to those that prevent an efficient LP formulation of
the complete IGP Shortcut optimization problem in the first
place (cf. Section IV-A). Since both problems suffer from the
same underlying issue (i.e., dependencies between policies),
a straightforward approach would be to also circumvent
this issue in similar fashion. If we, again, prohibit the
simultaneous configuration of policies that influence the
delay changes resulting from one another, we would prevent
all issues arising from policy dependencies. As a result, we
could efficiently precompute the delay changes that arise
from individual policies and use them in our LP without
having to consider the sideeffects of other policies in the
network. Such an approach, however, would further limit the
searched solution space by prohibiting even more technically
feasible solutions for the sake of efficient computation. We
have shown in Section VII-A that the first set of artificial
limitations does not seem to have a significant impact on
the overall solution quality in practice. However, imposing
further limitations onto the searched solution space might
“push things over the limits”, resulting in a deterioration of
solution quality. This assumption is further backed up by
the fact that the set of influencing policies with respect to
the delay computations is somewhat complementary to the
set of influencing policies with respect to link utilization.
While the latter basically consists of policies that lie “on
the same path” (cf. Figure 2), the newly added set of
influencing policies mostly consists of “parallel” policies

that lie on different ECMP sub-paths (e.g., like the red and
orange policies in Figure 10(c)). As a result, both sets are
probably mostly disjoint and, hence, adding this second set
of prohibitory constraints would impose a substantial number
of new restrictions onto the problem. For these reasons, we
decided to, instead, follow a different approach to incorporate
latency bounds into our LP formulation.
This approach is based on the observation that the main

problem is as follows: Without knowledge of the other
policies in the network, we do not know whether a policy
is added into the simple ECMP (sub-)path with maximum
delay across all alternative ECMP paths for a demand or
into one of the other paths with lower delay. Hence, we
also do not know the effect of the policy onto the overall
end-to-end delay for the demand. However, exact knowledge
on this is actually not strictly necessary for our use case.
We do not need solutions that minimize demand delays.
Instead, it is sufficient to find any solution that adheres to
the specified latency bounds. Therefore, we decided to not
rely on exact delay computations, but to simply use an upper
bound estimation of the delay changes instead. For every
policy for which we cannot exactly determine its impact on
the end-to-end delay for a demand because of dependencies
towards other policies, we simply assume that this policy is
actually added to the current maximum delay ECMP path.
Hence, we can simply add the resulting delay difference
between the path of the newly added policy and the “bridged”
subpath between its start- and endpoint to the current end-
to-end delay of the respective demand. This way, we might
overestimate some of the demand delays, but if a solution is
found for which even those potentially overestimated delays
adhere to the latency constraints, the actual delays will do
so, too.
For a better understanding of this upper bound estimation,

we can go back to the example shown in Figure 10(b). The
blue policy is not added on the maximum delay ECMP path
(with a delay of 40ms) but on a path with lower delay
(30ms) instead. The former delay between nodes B and C
(the policies start- and endpoint) is 10ms but the newly
added policy has a delay of 15ms. Hence, the overall delay
of the top path increased by 5ms, but the maximum demand
delay between nodes A and F stayed the same because the
delay increase actually happened on a non-maximum ECMP
path. However, without information on other policies in the
network, we cannot know this. Hence, we have to assume
that the delay increase actually happened on the maximum
delay ECMP path. Therefore, we add the 5ms increase to
the previous demand delay of 40ms. This results in a new
upper bound estimation of the demand delay of 45ms, even
though the actual delay still is 40ms.
All in all, we add the following constraint into our SC2SR

formulation (problem P3) to incorporate latency bounds.

delayd +
∑

klm∈Ed
delay_diff klmd xlkm ≤ lbd ∀d ∈ D (9)
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Here, delayd corresponds to the SPR delay of demand d,
if no SR policies are installed. For each MO policy that
is in the set Ed of eligible policies for demand d (i.e.,
those policies that are eligible to route the demand with
respect to the IGP Shortcut rule given in Section V-A), the
respective upper bound estimation of the delay difference
(delay_diff ) resulting from the respective policy is added.
This delay difference can be calculated in two different ways
depending on the scenario. The first scenario is the one
explained earlier, in which the exact influence of a policy on
a demand’s delay cannot be computed without the knowledge
of other policies in the network. In this case, we use the
upper bound estimation for the delay. However, there is a
second scenario in which we are actually able to exactly
compute the influence of certain policies on a demand’s
delay, even potential delay reductions. This is feasible for
all those policies between nodes that route 100% of this
demands traffic as this implicates that there is no other
parallel ECMP path that needs to be taken into account.
Hence, the resulting delay change is not dependent on other
policies (apart from those influencing ones that are already
prohibited in the original SC2SR formulation) and can be
efficiently precomputed. This leaves us with the following
equation for calculating the delay differences in which �l

km
denotes the delay difference between the SPR path from k
to m and the 2SR path from k over l to m.

delay_diff klmd =
{
max(0,�l

km) if klm 	∈ Pd
�l
km if klm ∈ Pd (10)

D. EVALUATION RESULTS
Unfortunately, we have to limit the evaluation of our SC2SR
algorithm with latency bounds to the original ISP data (cf.
Section VI-B). For the other two datasets we were not able
to obtain the respective latency bound information. For the
same reason, instance Q of the original dataset has to be
omitted as for this instance latency bound information was
also not available. This leaves us with a total of 18 instances
to evaluate our adapted algorithm on. Furthermore, the main
objective of the latency constraint is to prevent the SR
detours introduced by MO from increasing the normal SPR
delays to more than the specified limit. It is not designed to
“repair” latency bounds that are already violated by standard
SPR as this is a different problem that is beyond the scope
of this paper. For this reason, in the following evaluations
all latency bound constraints are set to the maximum of
the specified latency bound and the SPR path delay of the
respective demand.
In a first step, we assess to what extent the original

SC2SR algorithm without the new latency constraint violates
these bounds. For this, we simply take the computed SR
configurations and compute for each demand the resulting
end-to-end delay and compare it to the respective bound.
The results of this evaluation are shown in Table 2. For
each instance, it lists the number of latency bounds violated
by the SC2SR solution as well as the average percentage

TABLE 2. Overview over the number of latency bound violations after optimization
and the average latency-bound exceeding per ISP instance for the SC2SR algorithm
when latency-bound constraints are not included in the LP.

value by which each bound is exceeded to assess the severity
of the violation. The first row in Table 2, for example,
shows that for instance A a total of 98 latency bounds were
violated and on average each bound is exceeded around
25%. Overall, it can be seen that the results tend to vary
quite heavily. For some instances only a few or even no
bounds are violated. For others there are close to 100
violations of quite significant severity (e.g., instance D with
an avg. exceeding of nearly 400%). These results show that,
in order for our algorithm to be usable in practice, the
addition of a latency bound constraints is, in fact, required.
Otherwise important operational requirements are not met
by the solutions, rendering them basically undeployable.
However, adding the latency bound constraint

(Equation (9)) to the LP further restricts the set of feasible
solutions and, hence, might have a negative impact on the
achievable solution quality. To evaluate this, we ran the
SC2SR optimizations once with latency bounds disabled
and once with them being enabled to compare the achieved
MLUs. The results are depicted in Figure 11. It can be seen
that for all but two instances (C and F) basically the same
MLUs are achieved. For the latter two instances, the MLU
worsens slightly but they are still quite close to the optimal
MCF value and, in the case of instance F, still offer a
substantial improvement compared to SPR. This shows that
adding these latency constraints to the optimization problem
can have a slightly negative impact on the solution quality
in rare occasions but for the majority of instances the results
remain virtually optimal.
One further aspect we evaluate is whether the addition of

the latency constraint has a negative impact on the number
of required policies when used with the SC2TLE extension.
So far we have shown that it (mostly) does not impact the
achievable MLU, but it might results in a significant increase
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TABLE 3. Comparison of the number of policies required by the SC2TLE algorithm
(λ = 1.0) with and without enforcement of latency bounds. The lowest number of
policies for each instance is highlighted.

FIGURE 11. Comparison of the MLUs achievable with the SC2SR algorithm with and
without enforcing latency bounds.

in the number of policies. To analyze this, we reran the
SC2TLE optimization with added latency constraints and
compare them to the policy numbers of standard SC2TLE.
The results are shown in Table 3. It can be seen that, while
there are slight variations, on the greater scale the policy
numbers stay more or less the same with a variance of
just one or two policies for most instances. An interesting
observation is that for instance F (and on a smaller scale
for some other instances as well) the number of policies
decreases when adhering to the latency bounds. On the first
look, this is somewhat counterintuitive as these presumably
“better” solutions should have also been found by the original
algorithm without latency bounds as it is less restricted.
However, the rather simple explanation for this is that these
solutions have an (at least slightly) worse MLU than their

TABLE 4. Number of SR policies required by different algorithms for the two ISP
datasets. (Policy numbers for the Repetita dataset had to be omitted for the sake of
readability, since the number of featured instances is too large.).

counterparts that do not have to respect latency bounds and,
hence, also tend to use fewer policies. This can be seen best
at the example of instance F. Here, the solution with latency
bounds requires six less policies. However, if we go back to
Figure 11, we see that for this instance the achieved MLU
is noticeably higher than the MLU of the solution that does
not respect latency bounds. Hence, it is expected that it also
requires fewer policies.
All in all, these evaluations have shown that it is possible

to incorporate latency bound constraints into the SC2SR
and SC2TLE algorithms without significantly impacting
the solution quality. This is an important finding as these
constraints often are a crucial operational requirement that
has to be respected for solutions to be actually deployable in
practice. Hence, this can be seen as an important extension
of these algorithms that facilitates their use in a practical
deployment.

IX. CONCLUSION
In this paper, we discussed the concept of MO for SR. It
is based on the idea of integrating SR policies into the IGP
to steer traffic into them. Contrary to the current end-to-
end SR approaches in which a dedicated policy has to be
installed for each demand that needs to be detoured, MO
allows a single policy to route multiple different demands.
This enables TE solutions with a substantially lower number
of policies.
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TABLE 5. Summary of important notations (for details, we refer to the respective
in-text problem descriptions).

Besides a formal description of the MO concept and a dis-
cussion of implementation related challenges, we developed
an optimization algorithm to assess the TE capabilities of
MO. Based on data from a Tier-1 ISP and the publicly
available Repetita [29] dataset, we showed that our MO
algorithm is able to achieve virtually optimal MLUs that
are on par with current end-to-end SR approaches. However,
while the latter often require multiple hundreds (if not
thousands) of policies, our algorithm achieves solutions
of similar quality with a single-digit number of policies
in many cases, sometimes corresponding to a reduction
of more than 99%. This impressively demonstrates the
capabilities and benefits of MO for SR. Furthermore, we
have shown that latency bounds for individual demands
can be integrated into the optimization algorithms without
significantly deteriorating the quality of solutions. This is
an important finding since these bounds often are important
practical requirements that need to be respected by TE
solutions.
In the future, we plan to implement other approaches to

the MO concept to compare them to the one proposed here.
Furthermore, it might be worthwhile to examine the potential
of hybrid approaches that allow for a local activation of
MO capabilities on a per-router basis. This way, it might be
possible to combine the per-demand traffic control of end-
to-end SR with the exceptional low policy numbers of MO.

APPENDIX A
See the Table 4.

APPENDIX B
Weighted 2TLE (w2TLE) problem formulation (adapted
form the 2TLE LP formulation of [18]):

P5 : min θ ′ 1

2 λ θ
+

∑

k 	=j
wijkx

k
ij (11a)

s.t.
∑

k

xkij = 1 ∀ij (11b)

∑

ij

tij
∑

k

gkij(e) x
k
ij ≤ θ ′ c(e) ∀e (11c)

θ ′ ≤ λθ (11d)

xkij ∈ {0, 1} ∀ijk (11e)

APPENDIX C
See the Table 5.
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