
Received 5 January 2024; revised 30 January 2024; accepted 15 February 2024. Date of publication 19 February 2024; date of current version 1 March 2024.

Digital Object Identifier 10.1109/OJCOMS.2024.3367461

Attribute-Based Management of Secure
Kubernetes Cloud Bursting

MAURO FEMMINELLA 1,2 (Member, IEEE), MARTINA PALMUCCI3,
GIANLUCA REALI 1,2, AND MATTIA RENGO1

1Department of Engineering, University of Perugia, 06125 Perugia, Italy

2Consorzio Nazionale Interuniversitario per le Telecomunicazioni, 43124 Parma, Italy

3Consortium GARR, 00185 Rome, Italy

CORRESPONDING AUTHOR: M. FEMMINELLA (e-mail: mauro.femminella@unipg.it)

This work was supported in part by the European Union - NextGenerationEU under the Italian Ministry of University and Research (MUR) National Innovation
Ecosystem under Grant ECS00000041 (VITALITY), and in part by the MUR Extended Partnerships under Grant PE0000001 (RESTART).

ABSTRACT In modern cloud computing, the need for flexible and scalable orchestration of services,
combined with robust security measures, is paramount. In this paper, we propose an innovative approach
for managing secure cloud bursting in Kubernetes, combining Attribute-Based Encryption (ABE) with
Kubernetes labeling. Our model addresses the challenges of complexity, cost, and data protection
compliance by leveraging both Kubernetes and ABE. We introduce an attribute-based bursting component
that uses Kubernetes labels for orchestration, and an encryption component that employs ABE for data
protection. This unified management model ensures data confidentiality while enabling efficient cloud
bursting. Our approach combines the strengths of label-based orchestration with fine-grained encryption,
providing a technologically advanced yet user-friendly solution for secure cloud bursting. We present a
proof-of-concept implementation that demonstrates the feasibility and effectiveness of our model. Our
approach offers a unified solution that complies with security and privacy laws while meeting the needs
of contemporary cloud-based systems.

INDEX TERMS Cloud bursting, orchestration, attribute-based encryption, Kubernetes.

I. INTRODUCTION

IN RECENT years, the proliferation of virtualization and
containerization technologies has led to a significant

increase in the complexity of distributed systems, as cloud
computing systems. As organizations strive to achieve
efficient resource management and scalability, Kubernetes
(K8s) [27] has emerged as the most popular solution
for orchestrating resources in such complex systems. For
example, it is integrated into platforms such as Amazon
Elastic Kubernetes Service (EKS) [1], Google Kubernetes
Engine (GKE) [2], Azure Kubernetes Service (AKS) [50],
IBM Cloud Kubernetes Service [3], and Oracle Container
Engine for Kubernetes (OKE) [5].
This paper aims at exploring the challenges associated

with cloud bursting, which allows private cloud services
to use public cloud resources when local resources are
exhausted or for any other reasons. Specifically, we address

the configuration issues associated with service request load
management over a hybrid cloud system including both
private and public components. The orchestration of such
a heterogeneous system presents a number of challenges,
such as optimal management of typically large volume of
resources, variable operating conditions, security issues, and
compliance with local regulations. In order to address these
challenges, resorting to attribute-based management policies
is regarded as a valid approach [9].
Attributes are intrinsic characteristics or properties related

to the entities, workload, or resources to manage. They
can refer to different aspects, such as computational
requirements, security levels, data location, and other
relevant information. Recent findings indicate that the
related management challenges can be effectively addressed
through the utilization of an attribute-based approach, which
has been found to be preferred over the conventional

c© 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

1276 VOLUME 5, 2024

HTTPS://ORCID.ORG/0000-0002-6695-5956
HTTPS://ORCID.ORG/0000-0002-8567-5917


role-based methods. Rather than depending solely on pre-
defined roles, attributes can include a broader array of
qualities and attributes associated with users, resources, or
data. This level of flexibility, adaptability, and precision
in access control renders them more suitable for scenarios
characterized by a diverse, dynamic, and intricate range of
access requirements [16], [62]. In particular, in this paper,
we leverage the attribute-based approach to easily orchestrate
load distribution and resource allocation between private and
public clouds during the cloud bursting process.
Attribute-based policies can be enforced by different

technologies. In this paper we make use of Kubernetes, since
today it is one of the most appreciate tools for managing
distributed systems, especially in the context of cloud
computing. It provides flexibility though different built-in
components and tools. Among them, the usage of labels and
label selectors can be exploited to simplify cloud bursting
operations. While Kubernetes best practices recommend that
labels be assigned semantic meanings before being used [9],
there is currently no standardized method for enforcing this
practice. Our goal is to develop a systematic approach in
the context of cloud bursting that ensures semantic meaning
associated with the generic Kubernetes label concept.
Furthermore, it emerged that Kubernetes management

does not suitably address all the security aspects related to
data confidentiality and access controls, which are central in
cloud bursting [6]. Kubernetes incorporates access manage-
ment, but it requires separate configuration processes that
are decoupled from the logic of the orchestrated functions.
Moreover, the existing access management mechanisms in
Kubernetes have certain limitations in terms of managing
complex authorization scenarios and are constrained by their
policy scope. Hence, these limitations are challenging for
achieving comprehensive and secure resource management
in the context of cloud bursting. To overcome these limi-
tations, in this paper we propose an architectural solution
to address the security challenges of cloud bursting that
integrates the Kubernetes orchestration with attribute-based
encryption.
In more detail, our specific contributions are as follows:
1) Association of semantic meaning with key labels,

giving them the role of attributes. This approach
adds context to the cloud bursting configuration and
improves label comprehension.

2) Leveraging the Attribute-Based Encryption (ABE)
technology, deployed through a cloud service, to
improve security levels, in terms of data pri-
vacy, confidentiality, and access control, through
fine-grained policies. This ABE component works
seamlessly within the Kubernetes environment, align-
ing with attribute logic and improving overall system
security.

3) Simplification and speed-up of configuration based on
a unified management layer that handles holistically
all attributes, including the ones directly used by
Kubernetes and by the ABE module. This unification

ensures transparency and ease of use for administra-
tors, eliminating the need for separate configurations
and additional harmonization functions, as well as a
streamlined experience.

In synthesis, we propose a secure cloud bursting scheme
that improves both efficiency and security in resource
management over legacy solutions by incorporating semantic
labels, cryptographic technology, and a unified attribute
configuration approach.
The organization of the paper is outlined as follows. In

Section II, we delve into an examination of the existing liter-
ature within the domain. Moving on to Section III, we furnish
a comprehensive introduction to the foundational concepts.
Our proposed methodology is detailed in Section IV. The
outcomes of the validation of the proposed approach carried
out through a proof of concept implementation are presented
in Section V. Finally, Section VI includes our closing
remarks and conclusions.

II. RELATED WORKS
A. SECURITY SERVICES FOR CLOUD SYSTEMS
When it is necessary to move data to the cloud, it is critical
to ensure security and flexible, granular control over file
access. This can be efficiently done through ABE. However,
user revocation is a significant issue in ABE. In [47], the
authors propose a ciphertext-policy ABE (CP-ABE) scheme
with efficient user revocation for cloud storage system. User
revocation is handled by introducing the concept of user
group, with the rule of updating private keys of the users
remaining in the group when any other user leaves it. In
addition, since the computation cost of CP-ABE grows
linearly with the complexity of the access structure, in order
to mitigate it they propose to offload high computation
demand to cloud service providers without leaking file
content and secret keys. They prove that the proposed
scheme can withstand collusion attack performed by the
revoked users cooperating with the remaining ones. A similar
approach, which requires the update of the unrevoked users’
keys, is proposed in [66]. It is based on the use of a group
manager to accomplish this task. It also applies re-encryption
technology to prevent the revoked users from decrypting
ciphertexts.
However, since the correctness of outsourcing computing

results is difficult to guarantee, this approach often requires
resorting to the blockchain technology for obtaining such
guarantees [53]. Blockchain is used also in [41] to solve the
key escrow problem by replacing the traditional key authority
with a blockchain. Keys are generated collaboratively by
users and the blockchain, thus preventing the latter from
obtaining them alone. Alternatively, multi-authority solutions
can be used to securely delete data in cloud [48], where data
sharing policies can be a challenging issue.
The recent proposal by Chen et al., RABE-DI [33], is

an ABE scheme capable of addressing a different problem,
namely protecting data integrity after user revocation, ensur-
ing better efficiency compared to state-of-the-art proposals.

VOLUME 5, 2024 1277



FEMMINELLA et al.: ATTRIBUTE-BASED MANAGEMENT OF SECURE KUBERNETES CLOUD BURSTING

The proposal in [44] is based on a different approach.
It consists of an efficient and provably secure cloud data
sharing scheme (ABEDS-RR) using CP-ABE. The scheme
makes use of a semi-trusted proxy party to transform part of
the ciphertext with a conversion key. Compared with most
existing schemes, when the attributes of a user are changed,
only the private key and conversion key of that user need to
be modified, leaving the other users’ keys and all ciphertext
unchanged. This improves efficiency of attribute revocation
and update. ABEDS-RR eliminates key escrow by generating
keys for users jointly by the key authority and the cloud
service provider. Hence, neither party can obtain the private
key of the user without collusion with each other. In addition,
the weight attributes are also used to enhance the expression
ability of attributes. However, this approach seems to be
more suitable to a resource-constrained environment.
In order to address the timely decryption of data stored

in cloud servers, the authors in [32] propose a cooperative
approach based on CP-ABE to decrypt the ciphertext.
Semi-authorized users cooperatively perform decryption task,
making the scheme very efficient in term of computing
resources and storage cost.
Bera et al. [22] propose an approach named Attribute-

Based verifiable Data Storage and data Retrieval Scheme
(ABDSRS) for cloud environments. It employs an attribute-
based online-offline mechanism, in which only authorized
data owners can anonymously upload data to the cloud. In
addition, a data user can perform searching operations over
encrypted data by using keyword policy. ABDSRS allows a
user to verify the correctness of the search results in cloud
without interacting with any authority. Thus, in addition of
being lightweight, provably secure, and guaranteeing fine-
grained access control, it offers further functions in terms of
anonymity, privacy, secure search and verification of results.
Ahuja and Mohanty [15] propose an extension of CP-ABE

in order to provide shared access privileges among users and
delegation of access privileges in a flexible manner, without
sacrificing scalability and fine-grained access control. The
proposed solution merges CP-ABE with a hierarchical
structure [64] to achieve scalability by decentralizing the key
issuing authority at different levels of hierarchy. In more
detail, lower level users get secret keys from the users that
have a higher position in the hierarchy. The scheme results
to be resistant to cheating and collusion attacks.
Repetto et al. [55] proposed a methodological approach

for designing and implementing heterogeneous security
services for distributed systems. The framework utilizes a
hybrid architecture based on Attribute-Based Access Control
(ABAC), ABE, and blockchain technology to provide secure
and efficient access control in decentralized and distributed
environments. ABE cryptographic primitives are specifically
used to extend the ABAC functions. They implement an
online authorization procedure, support time-limited autho-
rization, protect against collusion attacks, and protect user
privacy. Such features had previously been investigated by
Sciancalepore et al. in the paper [59].

Lu et al. [49] propose a policy-driven approach to secure
data sharing using an integration of ABAC and ABE. Private
data is shared in ciphertext form between edge nodes to
mitigate potential security problems such as privacy leakage.
All the papers [49], [55], [59] propose integrating ABE

and ABAC to improve security of existing solutions.
However, none of them fits into the context of resource and
service orchestration.
Finally, Chiquito et al. in [34] survey attribute-based

approaches for access control to data, focusing on policy
management and enforcement. The paper aims at identifying
the key properties provided by ABAC and ABE that can be
used to control data access to prevent leakage to unauthorized
users while providing easy-to-manage policies. To achieve
this goal, they identify knowledge gaps. As for ABE,
the main identified limitations consist in implementation
difficulty and lack of expressive and easy-to-manage access
structures. Covering these gaps with pure cryptographic
approaches is challenging due to the limited information and
mechanisms that can be embedded in ciphertext and keys. To
address these gaps, an integration with ABAC is considered
with a policy decision point, in order to take advantage of
flexibility and expressiveness of the ABAC policy languages.
In this case, the main issue results in the technical limitations
of translating more complex policies into the ABE access
structures, beyond other technical weaknesses. In addition,
also in this case, no direct mapping with service and resource
orchestration exists.

B. CLOUD BURSTING
A number of proprietary solutions for cloud bursting are
made available by vendors. However, most of them just focus
on integration between on-premise Kubernetes clusters and
elastic public computing services provided by the vendor,
mainly dealing with configuration issues [10], [39], [67]. All
these solutions, which clearly suffer from vendor lock-in
issues, overlook some of the main security issues, especially
related to data privacy and protection. Most of them provide
basic yet effective solutions for securing the communication
between on-premise and public clouds. A popular approach
consists of using the TLS-based encryption of transmitted
data in both user and control plane (see, e.g., [13]). An
interesting add-on for hybrid deployment is represented by
Aporeto [12], now integrated in the Prisma Cloud [8]. It
proposes a Zero Trust security solution based on Kubernetes
Network Policies and Role-Based Access Control (RBAC).
Even the whitepaper by Forrester [28], which addresses
security issues and best practices for Kubernetes, focuses
on identity, network, and container security, neglecting other
security weaknesses on data management. The key point
is that Kubernetes is not secure by design, but security
is supported through the collaboration across cloud-native
ecosystems.
Below, we examine the approaches used by the vendors

for implementing cloud bursting in Kubernetes. Virtual
Kubelet [14] is an Open Source project within the Cloud

1278 VOLUME 5, 2024



Native Computing Foundation (CNCF)’s sandbox project. It
provides a Kubernetes Kubelet that masquerades a remote
cloud provider, thus extending the computing capacity of
the on-premise cluster as a virtual worker node. When a
pod is scheduled onto this virtual worker node, Virtual
Kubelet makes a public cloud instance available on-demand
to run it. This workaround is necessary since most on-
premise enterprise Kubernetes platforms do not implement
nor support the capabilities of Cluster Autoscaler [11], used
to dynamically add or remove worker nodes or node pools
for matching the current cluster utilization. As such, manual
operation for adding a worker node in a public cloud provider
to an on-premise Kubernetes cluster often does not match the
requirements of cloud bursting operations. Virtual Kubelet
allows enforcing access control rules with RBAC, whereas
security of communications depends on capabilities of public
cloud providers.
A different approach is followed by KubeSlice [57], which

creates a virtual cluster across multiple clusters (on-premise
and public clouds). This is realized by creating logical
application slice boundaries, which allow pods and services
to seamlessly communicate. It provides centralized control
management through KubeSlice Hub, and communications
between remotes pods of the same slice are encrypted by
the KubeSlice gateways running on different clusters. Access
control is enforced via RBAC.
A fully centralized management is provided by Alibaba

Cloud through its Distributed Cloud Container Platform
for Kubernetes (ACK One) [67]. It is a distributed cloud
container platform able to jointly control on-premise clusters,
Alibaba Cloud resources, and third party resources. The
management platform runs in the ACK cloud. It makes use
of RBAC for access control and encrypted communications
between clusters, in both control and user plane.
CloudBees Build Acceleration follows a different

approach. Although it relies on centralized management
of all clusters, including those on-premise and in public
clouds, the Cluster Manager can be installed in any server.
Computing clusters are called cloudburst agents, over which
resources are deployed on demand (agent cloud bursting
operation). Each worker in the cluster has to run an Electric
Agent to correctly execute bursting operations. It supports
access control via RBAC and TLS-based encryption between
agents.
Finally, Anthos [7] is a solution provided by Google which

can integrate multiple clusters. It is based on the GitOps con-
cepts, which is an operational framework that takes DevOps
best practices, developed for application development, such
as version control, collaboration, compliance, and CI/CD,
and uses them for infrastructure automation. As such, it
synchronizes cluster configurations via a component named
Anthos Config Management, which can manage bursting
operations. Anthos makes use of RBAC for managing access
control to resources. Communication security of both control
and user plane is enforced by encrypted service mesh via
TLS.

As a final note, commercial solutions for cloud bursting
typically rely on a limited set of monitored metrics like
CPU/RAM occupation, and are actionable when one or
more of them exceeds user-defined thresholds. This aspect
is addressed in the literature related to cloud bursting in
Kubernetes, which is mainly focused on the criteria used to
offload workload to public clouds [17]. This decision can
be based on either heuristic procedures, or the solution of
a specific optimization problem, even found by a machine
learning engine, or pre-determined criteria. In any case,
a portion of the critical workload is handled on-premise,
and the other is assigned to a public cloud [18], [56].
Significant results have been achieved in task scheduling,
specifically in the allocation of computing resources among
various Kubernetes clusters. Although most approaches have
been designed according to the edge-to-cloud offloading
paradigm, many of these proposals can be applied also to
cloud bursting operations between on-premise and public
clouds. The most relevant proposals about Kubernetes
scheduling in these multi-clusters scenarios can be classified
in two main categories: a) proposals based on machines
learning/artificial intelligence, used to take decisions about
the replicas or the portion of workload to be offloaded
to the public cloud, and b) proposals based on classic
optimization algorithms. An interesting example of the
first category is taken from mobile networks, in particular
the edge-to-cloud deployment in 5G networks [36]. In
this paper, Faticanti et al. make use of machine learning
techniques to realize a proactive offloading of tasks by
anticipating peak utilization of Kubernetes pods based on
pattern recognition from historical data. Also reinforcement
learning can be used to anticipate overload conditions
and schedule further replicas in advance [20]. As for the
second category, Carmona-Cejudo et al. [29] address the
offloading of computing tasks in Kubernetes in a multi-tier
architecture through the solution of an optimization problem.
The recent survey in [43] provides a systematic overview of
offloading solutions using both traditional optimization and
machine learning techniques. Finally, the interested reader
can find further details on different approaches in Kubernetes
scheduling in the survey [30].
To sum up, a crucial step towards achieving a secure

orchestration approach that covers both resource orchestra-
tion and enhanced security is the development of a solution
that combines these two topics. Our contribution aims at
filling the gap in achieving both aspects. This can be
done by integrating the two topics through a solution that
leverages Kubernetes labeling and ABE. In particular, access
to resources and services is granted by using the same
attributes that are used for their orchestration.

III. BACKGROUND
In this section, we illustrate three fundamental components
of our proposal. The first component pertains to Ciphertext-
Policy Attribute-Based Encryption (CP-ABE), which is a

VOLUME 5, 2024 1279



FEMMINELLA et al.: ATTRIBUTE-BASED MANAGEMENT OF SECURE KUBERNETES CLOUD BURSTING

cryptographic primitive that allowed us to provide confi-
dentiality of data related to services deployed in the cloud.
The second component concerns Cloud bursting, which is a
technique that allowed us to increase the available computing
capacity in the primary cloud environment by resorting to
public cloud resources. Finally, we discuss K8s, which is
a platform designed for automating deployment, scaling,
and management of containerized applications. Collectively,
these three technologies form the knowledge foundation for
our model.

A. CIPHERTEXT-POLICY ATTRIBUTE-BASED
ENCRYPTION
ABE [58] is an extension of the public key encryption
that allows for precise control over access to encrypted
data. By ABE, access policies are established based on user
attributes or characteristics, which are usually represented
as sets of attributes instead of individual user identities.
These attributes can consist of any information regarding
users, including their position, membership, or clearance
level. For example, only users with the correct combination
of attributes that satisfy the established access policy can
be allowed decrypting and accessing data. ABE provides
fine-grained access control based on user attributes. Unlike
other access control mechanisms, ABE ensures confiden-
tiality of data through the use of encryption. Consequently,
ABE requires less reliance on third parties data storage
services. Moreover, ABE functions enables a high level of
user independence, as authorized users can independently
obtain access by decrypting ciphertexts once they possess
the appropriate secret key. In this way, users can avoid
interacting further with any policy-enforcing entities that may
be unavailable at the time of an access request [63].
CP-ABE [23] is one of the two main types of ABE. In

CP-ABE, access structures are integrated into the ciphertexts,
with the encrypting user being in charge of defining the
access structures. The Key Generation Authority (KGA)
generates secret keys that are linked to specific user
attributes. Decrypting users can decrypt a ciphertext only if
they possess an authorized secret key. If the set of attributes
associated with a secret key satisfies the access policy
attached to the ciphertext, then the set is authorized.
Alternatively, in key-policy ABE (KP-ABE) [45] data

are encrypted over a set of attributes and user keys allow
accessing a tree which can distinguish attributes. However,
since in KP-ABE data include only user attributes, anyone
can access data, whereas CP-ABE have a direct control of
data access. Given that our application scenario involves the
association of attributes with users and access policies to
cloud resources, our focus is on CP-ABE.
In spite of its advantages, ABE has the limitation

of high computational complexity. In order to mitigate
this limitation, a hybrid mode can be implemented using
CP-ABE. In this approach, the message is initially encrypted
with a randomly generated symmetric secret key. Only this
session key is then encrypted using CP-ABE under the access

policy. This technique aims at minimizing the computational
complexity of the overall encryption process while still
enabling fine-grained access control.
In conclusion, it is clear that, by leveraging the ABE

technology, it is possible to improve security levels in
various aspects. Specifically, ABE provides enhanced data
privacy by allowing fine-grained access control based on
user attributes, ensuring that only authorized users can
access encrypted data. Additionally, ABE ensures data
confidentiality by protecting sensitive data from unauthorized
access, even when they are stored or transferred through
untrusted media. Moreover, ABE attribute-based access
control enables dynamic and flexible access management,
allowing administrators to define complex access policies
that can adapt to variable user attributes and security
requirements. Deploying an ABE module as a cloud service
allows its seamless interworking within Kubernetes clusters,
aligning with attribute logic and improving overall system
security.

B. CLOUD BURSTING
Cloud bursting is a popular strategy used to manage
a significant increase in the demand for computational
resources. The primary components of a cloud bursting
solution include:
• a local environment, also referred to as local or on-
premise (on-prem) cloud, which hosts the organization’s
resources;

• one or more secondary clouds, that are typically public
clouds, providing on-demand, additional resources to
expand the local environment when overloaded;

• a decision engine that autonomously manages cloud
bursting while adhering to the company’s policies.

The need of service flexibility and scalability in response to
changes in cloud capacity requirements is the major driver
of cloud bursting. Cloud bursting has to be executed in
background, so that users do not encounter any service
disruptions.
Some milestone papers [40], [42], [61] illustrate the evo-

lution of cloud bursting. However, the solutions therein
proposed became rapidly obsolete as they essentially rely
on virtual machines, whilst current approaches have evolved
to the use of containers and functions. Although their
limitations, those pioneering papers still offer a robust logical
foundation for the development of novel solutions.
Due to its capabilities in resource orchestration [24], cloud

bursting strategies may include Kubernetes as a flexible and
scalable solution to handle the process of expanding service
deployment to the cloud as well as dynamically assigning
resources in response to changing requirements [60]. A
number of Web resources and technical reports clearly
describe cloud bursting operations using Kubernetes (see,
e.g., [37], [38]. Most of them discuss the general features
that a cloud bursting solution should offer and relevant
issues, which are typically related to networking and security
aspects.

1280 VOLUME 5, 2024



C. KUBERNETES
Kubernetes, also referred to as K8s, is an open-source
platform for container orchestration. It was developed by
Google based on its internal system Borg [27]. The aim
was to simplify the deployment, scaling, and management of
containerized applications. Users utilize declarative configu-
ration files to specify the state of their application, and K8s is
in charge of maintaining the desired state. In this way, by the
use of Kubernetes, several management issues of complex
and distributed applications have reduced significantly.
A K8s cluster is a distributed set of master and worker

nodes. One or more master nodes manage the cluster’s state
and configuration, while worker nodes run containerized
applications. Due to its flexibility, Kubernetes has emerged
as the most popular and widely used orchestrator among
numerous alternatives.
In addition, to ensure compliance with the user-defined

cluster state, specified in the architectural YAML manifest
files or blueprint, Kubernetes also includes a centralized
management interface for managing regular orchestrator
tasks. The process is divided into some steps, such as
setting up the required network and storage resources,
deploying service containers, monitoring their health, and
replacing the compromised ones. Furthermore, Kubernetes
offers automatic load balancing, service discovery, and
horizontal scaling capabilities, which allows it to seamlessly
route external traffic to the appropriate services within the
cluster.

IV. ATTRIBUTE-BASED MANAGEMENT OF SECURE
KUBERNETES CLOUD BURSTING
Our research targets the development of a service orches-
tration model using Kubernetes, which involves two key
innovative aspects. First, we use Kubernetes labeling to
design and implement an attribute-based orchestration system
for cloud bursting. Labels, which are associated with
services, are used to orchestrate service deployment in
cluster nodes. Some nodes may have multiple labels with
preferred policies to run multiple services; others may have
just one label, while others may not even have any at
all. This approach shapes a cloud bursting policy tailored
to each service, which can make an optimal use of the
local cluster resources before requesting additional paid
resources in external secondary clouds. Second, we use
ABE policies defined by referring to the same labels, as
mentioned above. By using the different labels as attributes
in ABE, we have improved security without adding any
extra complexity and also obtained a more refined and
selective cloud bursting. This approach not only provides
confidentiality, but also enables seamless integration of ABE
with the existing label-based orchestration system. The final
result is a sophisticated orchestration system that conforms
to data protection regulations and relies on attributes as the
basis of its operations, which we denote Attributed-Based
management of secure K8s cloud bursting.

FIGURE 1. High-level diagram that illustrates the primary stakeholders and their
interconnections of our model.

It is worth highlighting that K8s access control, which
is the basic element of K8s security, includes both RBAC
and ABAC. However, although the ABAC’s flexibility is
appealing in different contexts, RBAC is typically preferred
over ABAC. The main reason for this is that ABAC
is difficult to manage and understand in very complex
distributed environments. Our proposal, which has simplicity
of implementation as its key element, allows us reintroducing
the flexibility of using attribute-based management in a
context managed mainly with RBAC.
Below, we illustrate the structure of our proposed model,

capable of achieving the aforementioned objectives.
Figure 1 depicts a high-level diagram that illustrates

the primary elements of the system considered and their
interconnections:

• Users. They access services through the K8s Ingress
API and are represented by the user icon on the left side
of Figure 1. Further, each user has a set of attributes
that enable them to access only specific services, which
will be discussed in what follows.

• Clouds. A cloud is any distributed and virtualized
networked computing infrastructure that allows mak-
ing use of shared pools of reconfigurable computing
resources on-demand, which can be easily provisioned
and withdrawn. Clouds integration within K8s provide
the capability to deploy and manage containerized
applications in various public cloud environments,
such as Amazon Web Services (AWS), Google Cloud
Platform (GCP), and Microsoft Azure. By leveraging
cloud-native services, Kubernetes facilitates seamless
scaling, high availability, and the efficient utilization of
underlying infrastructure resources.

• Kubernetes. As mentioned above, this open-source and
flexible platform for container orchestration is efficient
for automating container operations and simplifies the

VOLUME 5, 2024 1281



FEMMINELLA et al.: ATTRIBUTE-BASED MANAGEMENT OF SECURE KUBERNETES CLOUD BURSTING

orchestration of multi-container applications, ensuring
that they are always running and matching the desired
state. For this reason, it is a central component of our
solution. Below, we outline a step-by-step workflow of
how our proposed system interacts with key Kubernetes
and ABE components:
– Label Assignment and Management: Labels, as

key-value pairs, are assigned to resources (nodes
and services) in Kubernetes clusters. Such
labels are used not only for resource grouping
and management but also play a crucial role
in the attribute-based bursting and encryption
process.

– Kubernetes Metrics Server: This component pro-
vides real-time data on resource usage by pods and
nodes. It acts as the primary source of information
for the HPA to make scaling decisions.

– HorizontalPodAutoscaler (HPA). It monitors
resource usage and performance metrics of pods.
Based on these metrics and the labels assigned,
it makes informed decisions about scaling pod
replicas up or down. This is where our attribute-
based approach intersects with the Kubernetes
native scaling mechanism that adjusts the number
of replicas in a Deployment or ReplicaSet
to meet the required performance. HPA analyzes
the metrics provided by the Metrics Server or
external monitoring systems in order to determine
whether the current resource allocation aligns with
the configured scaling thresholds.

– Ingress. It acts as an application-level load balancer
that manages external access to services deployed
over a cluster. Specifically, it runs an HTTP
and HTTPS reverse proxy service that routes
network traffic from clients to the appropriate
backend services. By using Ingress APIs, complex
network configurations can be managed easily,
since numerous routing rules can be combined
into a single resource. Ingress resources utilize an
ingress controller, such as NGINX or HAProxy,
to manage the routing of HTTP and HTTPS
requests to backend services. Additionally, the
introduction of the Ingress resource simplifies the
implementation of features like SSL termination,
load balancing, and name-based virtual hosting.

– ABE Policy Enforcement: For each service request
routed through the ingress to services inside pods,
the ABE module checks the attributes (aligned with
the Kubernetes labels) against the defined ABE
policies. This step ensures that only authorized
users or services can access or interact with the
data, thus maintaining data confidentiality.

– Key Management and Data Encryption: The Key
repository plays an essential role in managing
the encryption keys used in the ABE scheme. It
interacts with the ABE module to provide keys for

encrypting and decrypting data, thus securing the
data at rest and in transit.

– Data Flow and Access Control: In summary,
request routing within Kubernetes Ingress adheres
to the K8s’s label-based rules, while data access
security is managed by the ABE module leveraging
the label based attributes. This dual application of
labeling enhances the overall operation efficiency,
In fact, while the Ingress effectively manages
routing of requests, ensuring they reach the correct
service endpoints, the ABE module, using these
same labels, determines whether a request should
be granted access to the data based on the attributes
of the requesting entity. This ensures that each
service and the information within are accessible
only under the appropriate conditions, adhering to
both performance and security requirements.

• ABE module. This custom cloud service implements
the ABE scheme in the proposed solution. It handles
all the functions of an ABE scheme and manages the
necessary attribute-based encryption keys. Furthermore,
it establishes communication with the key repository.

• Key repository. It maintains the keys used to protect
the volumes of services. It communicates with the ABE
module.

In the subsequent sections, we describe the two primary
components of our proposed solution: attribute-based burst-
ing and encryption components.

A. ATTRIBUTE-BASED BURSTING COMPONENT
In complex systems, multiple service layers are typically
involved. Their management often requires cross-cutting
operations that can disrupt their strict hierarchical structure,
particularly when that structure is rigidly determined by
the underlying infrastructure rather than by user needs.
Kubernetes uses labeling to manage such systems. Our model
leverages Kubernetes labeling not just as mere identifiers,
but as pivotal elements in orchestrating resource allocation
and managing service demands. Labels are assigned to both
services and nodes, and dictate how resources are allocated
and managed within our cloud bursting ecosystem. Labeling
is particularly important when it refers to autoscaling
and load balancing. It allows the HPA to differentiate
between resources and apply scaling policies based on the
characteristics of the labels assigned to each resource.
In our proposal, the labels used in the HPA are also used

as user attributes by the ABE module. In order to guarantee
that services fulfill their requirements, both HPA and cloud
nodes are configured with the same label values. For this
purpose, it was necessary to take advantage of the concepts
of affinity and anti-affinity in Kubernetes, as they influence
scheduling of pods on cluster nodes:
• Affinity refers to the preference for scheduling pods
on nodes that meet certain criteria. For example, a
particular pod could have affinity to nodes with specific
labels or that are located in a particular availability zone.

1282 VOLUME 5, 2024



FIGURE 2. Attribute-based bursting and encryption components.

• Anti-affinity, on the other hand, refers to the preference
for pods not to be scheduled on nodes that meet certain
criteria. For example, it may be desirable that two
replicas of a pod are not scheduled onto the same node
for availability purposes.

Kubernetes allows setting affinity and anti-affinity values to
express these types of preferences.
With reference to our system, a node with a specific label

(e.g., ‘On-Prem’, as in Figure 2) is selected by the HPA to run
the deployed services until there are no resources left in the
local cloud environment, ensuring application demands are
met while keeping operational expenses as low as possible.
In our proposal, the labels used for configuring Kubernetes

orchestration for cloud bursting are also used as attributes
used for defining ABE policies. Understanding the QoS
needs for each service is crucial in any orchestration model,
and in our case the Kubernetes labels are strategically used
to manage both the QoS and security aspects of each
service. Labels dictate not only allocation and management
of resources according to QoS requirements but also form the
basis of the corresponding ABE policies. This ensures seam-
less integration of performance management and security.
For example, if two services, namely Service S1 and Service
S2, are designed with distinct QoS and security requirements,
this is reflected in their respective HPA labels and ABE
policies.
This concept can be better illustrated by referring to

Figure 2. In this scenario, two services are designed with
variable bursting and replication requirements: service S1,
with loose requirements, and service S2, with more strict
requirements. The system setup includes one local and one
external cloud, namely On-prem cloud and Burst cloud. The
latter is utilized for cloud bursting. The HPA is configured
to meet the specific requirements of each service, which is
achieved by associating labels with each service based on
their requirements. It is important to note that multiple labels
may be applied to each service in practical scenarios. Label
a is applied to service S1, labels a and b to service S2. In

order to guarantee that services meet their requirements, it
is necessary to configure pod affinity and anti-affinity on
nodes within the cluster. In Figure 2, the nodes in the local
cloud are assigned both labels, namely a and b, to enable
all services to run on local nodes with affinity to every
label in the system. On the other hand, nodes in Burst cloud
are only assigned the label b, indicating that the nodes in
Burst cloud are configured with affinity to the label b. As
a result, a service that matches the required affinity only
with labels assigned to local nodes can only scale out using
local resources without any bursting. In contrast, a service
deployment that matches affinity with both labels can be
executed, duplicated and possibly leverage cloud bursting. It
is worth noting that anti-affinity is not used in this example.
From a different perspective, we can say that S1 has

the strong requirement of being run only in the on-prem
cloud, even at the cost of potentially degraded performance.
By operating exclusively within the on-prem cloud environ-
ment, S1 benefits from inherently enhanced security, as its
data remain in the controlled on-prem environment. This
service is tailored for operations where data security and
sovereignty are paramount. Its ABE policy is accordingly
structured to leverage the inherent security benefits of the
on-prem environment, using a set of attributes optimized for
controlled access while maintaining operational efficiency.
Service S2, on the other hand, is designed with a focus
on providing superior scalability in order to keep its
performance compliant with its requirements. Thus, this
service is capable of operating not just on-prem, but also in
external cloud environments, allowing it to scale resources
dynamically based on demand. Its ABE policy is more
complex, incorporating a wider range of attributes to ensure
secure access across diverse environments while maintaining
high availability and performance standards. This approach
allows orchestration and authorization to share the same
attributes and solve the issues caused by managing multiple
sets of attributes. Thus, usage of labels allows implementing
sophisticated and heterogeneous service policies.
As mentioned above, one of the main features of our

solution is the introduction of a semantic meaning to be
associated with a set of labels used in Kubernetes. In
this way, these labels can be used also as ABE attributes.
Clearly, it is not necessary for all labels used in Kubernetes
to be used as attributes in ABE. Our system is designed
to leverage such mapping onto labels whose meaning is
relevant to both security and orchestration management.
For example, consider a Kubernetes label called a “node-
type”. This label can take values like “on-prem”, “burst”,
“a”, “b” and so on. These values can be used directly as
attributes in the ABE system. This approach enables the
formulation of ABE security policies in accordance with
the Kubernetes orchestration context. This mapping between
selected Kubernetes labels and ABE attributes enables
simplified management of both resource orchestration and
data security, giving system administrators integrated control
of these aspects.

VOLUME 5, 2024 1283



FEMMINELLA et al.: ATTRIBUTE-BASED MANAGEMENT OF SECURE KUBERNETES CLOUD BURSTING

By using the example of S1 and S2 above and Figure 2, we
detail how our cloud-bursting architecture with ABE-based
security works:

1) A user requests access to a service through the
Kubernetes Ingress.

2) The Ingress controller routes the request to the appro-
priate service based on its label.

3) The ABE policy associated with the service label is
used to authorize the user access. If the service is
scaled to the burst cloud, the HPA scales the service
based on its label and the current resource utilization.
The ABE policy associated with the service label is
used to authorize the user access.

4) The Kubernetes Ingress continues routing the user to
the correct services regardless of whether it is deployed
within the hybrid cloud, in the on-prem cloud or in
the bust cloud.

Our cloud bursting architecture with ABE-based security
offers several advantages, including:

• Performance and scalability: By dynamically scaling
resources to the burst cloud, our architecture can
improve performance and scalability of applications
with fluctuating workloads.

• Enhanced security: ABE policies enable fine-grained
access control to services, even across multiple clouds,
protecting sensitive data from unauthorized access.

• Simplified management: By leveraging joint labeling for
both orchestration and authorization, our architecture
simplifies management and reduces complexity.

• Increased flexibility: Labels provide a versatile mecha-
nism for implementing sophisticated and heterogeneous
service policies, meeting the diverse needs of modern
cloud-based applications.

B. ATTRIBUTE-BASED ENCRYPTION COMPONENT
In the previous sections, we mentioned that our objective
is not only to propose a unified orchestration, but also to
offer a solution able to address some security issues, such
as confidentiality, access control, and compliance to General
Data Protection Regulation (GDPR) rules [35]. For example,
when bursting is carried out using the infrastructure of a
public cloud provider, it is important to protect user data, in
order to avoid privacy issues for those services that require
them. In this regard, ABE natively supports the decoupling
of encryption keys from third parties (i.e., the infrastructure
provider), thus ensuring that only users with the right
attributes can access the protected service data, even if hosted
on public clouds and regardless of local regulations that may
affect the cloud service provider policies. Thus, the joint
management of labels for both security and orchestration
management can help mitigating confidentiality leakage
for critical data. In addition, since ABE allows accessing
contents through policies based on the owned attributes and
not on the identity, the proposed approach can be used not

only to ensure confidentiality, but also to protect anonymity
while accessing data outside the private cloud deployment.
The level of this protection depends on several factors, such
as user population, number of attributes, derived policies,
and so on.

1) HYBRID CP-ABE FOR SECURE AND EFFICIENT
CLOUD VOLUME ENCRYPTION

To address this objective, we propose utilizing CP-ABE in
a hybrid mode in order to secure sensitive volumes. CP-
ABE offers advantages such as fine-grained access control
and adaptable policies. The hybrid mode balances security
and efficiency by combining asymmetric and symmetric
encryption, providing robust data protection while minimiz-
ing computational overhead.
In simple terms, the process illustrated below is followed.

Managers of a specific service encrypt the entire volume or
a portion of the associated volume. This encryption employs
a symmetric cipher, with the encryption key referred to as
the data encryption key (DEK). The service provider then
securely stores the DEK in a designated key repository.
Importantly, the DEK is not stored in plain text; rather,
it is encrypted using CP-ABE. The policy selected during
DEK encryption dictates who can decrypt the key, thereby
obtaining access to the corresponding service.
On the user side, system participants possess various

attributes. Utilizing these attributes, the system provides them
with distinct decryption keys — referred to as user keys —
enabling access to specific portions of the key repository.
Essentially, only users possessing attributes that satisfy the
encryption policy are authorized to access the DEK and
subsequently retrieve data from the volumes.
The sequence diagram of ABE setup and operation

is depicted in Figure 3. This protocol facilitates secure
communication and information exchange among users, the
ABE module, the key repository, and services. It serves as a
safeguard, shielding users from untrusted service solutions.
In fact, the only entity with which the user interacts and
shares sensitive information is the ABE module — a trusted
party.
Users must recover the DEKs stored in the key repository

to access encrypted data within service volumes. This process
consists of three phases: service setup, user registration, and
service data access.
During the service setup phase, the service first generates

a DEK, encrypts it using ABE, and stores it securely in the
Key Repository within the ABE cloud service. Concurrently,
the user setup phase consists of user registration, during
which the user provides the attributes obtained from a system
authority. The service may perform some operational actions
that we call generic AAA actions, indicated as Admission
control in the figure. They are additional security related
actions that do not fall in the scope of our proposal, but often
used in operation. For example, some preliminary traffic
filtering can be used to mitigate potential attacks, such as

1284 VOLUME 5, 2024



FIGURE 3. Sequence diagram of ABE setup and operation.

Denial of Service (DoS). Then, the service sends the ABE
module URL to the user for subsequent exchanges.
Assuming the service has encrypted its data with a DEK,

the subsequent service data access phase follows. In this
phase, when a user requests data, the service provides
encrypted data. Having a valid User Key, obtained during
the User setup phase, the user can request the DEK from the
Key Repository using the ABE module URL received earlier.
The ABE module decrypts the DEK, allowing the user to
decrypt and access the requested data. Once successfully
decrypted, users can proceed retrieving data from services.
This integrated process ensures secure and controlled data
access within the cloud environment.
Moreover, cost-effectiveness is achieved by predominantly

employing symmetric encryption for data encryption, which
is notably faster and less computationally demanding than
asymmetric encryption.

2) UNIFIED ATTRIBUTE MATCHING: SIMPLIFYING
CONFIGURATION AND MANAGEMENT OF CLOUD
SECURITY

Referring back to Figure 2, we can delve into another
concept for further clarification. Let us turn our attention
to the ABE module, the key repository, and the attribute

values assigned to users. As previously mentioned, the DEKs
encrypted with a specific policy find their place in the key
repository. In accordance with our proposed approach, these
policies are not composed of arbitrary attributes; instead,
they consist of specific attributes values that match with the
same set of values of the labels in the HPA.
Examining Figure 2, we observe that the policies within

the key repository are formed exclusively with attributes a
and b. Notably, these same attributes assigned to users also
possess values within the same set. Remarkably, these are
the same values employed earlier for the HPA labels.
This concept is a pivotal aspect of our proposal. Matching

of label values with attribute values is essential, since
this matching streamlines and expedites configuration and
management. By introducing a unified management layer
that comprehensively handles all attributes, including those
from Kubernetes, and integrating it with the ABE module,
we achieve transparency and ease of administration. This
integration eliminates the need for distinct configurations and
additional harmonization processes, resulting in a stream-
lined user experience.

3) EXPANDING POLICY EXPRESSIVENESS WITH ABE

The third key concept is related to the type of policy that
can be expressed using ABE. In contrast to simple label-
based policies, the ABE schema can be selected to articulate
policies with greater expressive capacity. This enables the
inclusion of logical expressions involving conjunctions,
disjunctions, and negations. This expanded capability is
outlined in the taxonomy of ABE schemes presented in [63].
The most sophisticated policies fall under the category of

Non-Monotone Span Program (NMSP). For example, basic
policies could be represented as follows:

• Policy = a
• Policy = b

Alternatively, more complex policies can encompass con-
junctions, disjunctions, and/or negations:

• Policy = NOT a
• Policy = a OR b
• Policy = a AND b
• Policy = a OR NOT b
• Policy = NOT a AND b

and so forth, encompassing all feasible combinations. These
expressive capabilities enable ABE to accommodate a diverse
range of policies, enhancing its versatility and applicability.

4) THE OPERATIONAL ASPECTS OF THE ABE SCHEME
FOR CLOUD SECURITY

Finally, we outline the ABE scheme selected for our
experiments. We opted for the well-known scheme proposed
by Lewko and Waters [46]. Our decision was guided
by the scheme flexibility in adapting to the dynamic
nature of cloud environments, allowing for the integration
of multiple authorities in a decentralized system without
requiring coordination between them. Nonetheless, it is

VOLUME 5, 2024 1285



FEMMINELLA et al.: ATTRIBUTE-BASED MANAGEMENT OF SECURE KUBERNETES CLOUD BURSTING

TABLE 1. Symbols.

worth noting that this choice is not a constraint, and any
other ABE scheme can be adapted in our system and
procedures.
Lewko and Waters’ Multi-Authority ABE scheme [46]

eliminates the need of a central authority. Decentralizing key
generation and issuance allows users to encrypt data by using
boolean equations based on attributes received from different
authorities. The key idea presented in [46] consists of using
a hash function H(·) on the user’s global identity, GID.
This allows handling collusion resistance across multiple
key generations by different authorities. In more detail,
H(·) hashes each identity to a bilinear group element (for
details see Appendix A and [25], [26]). H(GID) is used
to link together keys issued to the same user by different
authorities [31]. Although this way is more challenging
than the single authority case, it has the great advantage of
avoiding relying on a single entity.
We now consider the distinct functions constituting a

multi-authority scheme, as demonstrated by Lewko and
Waters [46]. The following description is not a detailed
explanation of all the mathematical details of the LW-ABE
scheme, which are available in the original document, but
it serves to contextualize the functions of this scheme in
the proposed application environment. Figure 4 shows a
visual representation of the key functions of ABE within the
context of our application although, for the sake of clarity, the
figure includes a single authority. It is essential to note that
multiple authorities can also be involved in providing users
with private key. We clarify this concept below. Additionally,
Table 1 reports the symbols utilized in what follows and their
meaning. The Appendices contain the essential mathematical
background to understand the basic operation of the functions
used.
The fundamental function initiating the process is the

global system setup. This step establishes the global parame-
ters (GP), serving as the basis for the subsequent operations.
Step 0: Global Setup(λ)→ GP. The global setup algorithm

receives the λ security parameter as input and outputs global
parameters for the system. In the global setup, a bilinear
group G of order N = p1p2p3 is selected, where N is the
product of 3 primes. The output GP consists of N and a

generator g1 of Gp1 .
1 In addition, the hash function H(·)

that maps GID to elements of G is published.
Once the global parameters are established, one or more

authorities can be set up. Each of them is responsible for an
attribute or a set of attributes.
Step 1: Authority Setup(GP) → SK, PK. Each authority

runs the authority setup algorithm with GP as input to
produce its own secret key (SK) and public key (PK) pair.
For each attribute i belonging to an authority, it selects
two random numbers αi, yi ∈ ZN and publishes PK =
{e(g1, g1)

αi , gyi1 ∀i}, keeping secret SK = {αi, yi∀i}. The
authorities independently generate portions of a user private
key in a multi-authority system. Each user holds attributes
from distinct authorities, and the absence of the need for
coordination between them is a noteworthy characteristic.
The user global identity (GID) ties together the portions of

the secret key generated by different authorities [31]. This is
related to two crucial functions: (1) ensures that a user must
use all the pieces of the private key together for successful
decryption, (2) prevents users from exchanging key portions,
thus mitigating collusion attacks [63].
Step 2: KeyGen(GID, GP, i, SK) → Ki,GID. The key

generation algorithm receives as inputs an identity GID, the
global parameters, an attribute i belonging to some authority,
and the secret key SK for this authority. Then, it produces
a key Ki,GID = gαi

1 H(GID)yi for this attribute-identity pair.
A data owner can encrypt a message or plaintext M by

using a policy expressed as a (A, ρ)-pair. A is an n × l
matrix, defined as the share-generating matrix for the linear
secret-sharing scheme, which is the mathematical theory
underlying the overall machinery.2 ρ denotes a mapping
function associating each row of A with a specific attribute.
In our application, which uses ABE in hybrid mode, the
plaintext M assumes the role of the DEK, and the data owner,
represented by the service, can encrypt content using a DEK.
This encrypted content is then made exclusively available to
specific users who meet the criteria outlined in the selected
policy.
Step 3: Encrypt(M, (A, ρ), GP, {PK}) → CT. The

encryption algorithm takes in a message M, an access matrix
(A, ρ), the set of public keys for the relevant authorities,
and the global parameters GP. It outputs a ciphertext CT.
In more detail, the encrypter selects a random s ∈ ZN and
a random vector v ∈ ZN with s as its first entry. We let
λx = Ax · v, where Ax is row x of A. It also selects a random
vector w ∈ ZN with 0 as its first entry. We let ωx = Ax · w.
For each row Ax of A, it selects a random rx ∈ ZN . The
ciphertext is computed as:

- C0 = Me(g1, g1)
s,

- C1,x = e(g1, g1)
λxe(g1, g1)

αρ(x)rx ∀x,
- C2,x = grx1 ∀x,
- C3,x = g

yρ(x)rx
1 gωx

1 ∀x.
1. The interested reader can find details and references about bilinear

groups in Appendix A.
2. The interested reader can find the basic concepts on the underlying

theory of linear secret-sharing schemes in the Appendix B.

1286 VOLUME 5, 2024



FIGURE 4. ABE scheme functions.

The successful decryption of a ciphertext depends on whether
all the key shares of a user adhere to the policy linked
to the ciphertext. In our application, DEKs are stored in
the Key Repository of the ABE cloud service. As depicted
in Figure 4, access to a particular ciphertext is granted
exclusively to users who meet the specified policy criteria.
Step 4: Decrypt(CT, GP, {Ki,GID}) → M. The decryption

algorithm takes in the global parameters GP, the ciphertext
CT, and a collection of keys {Ki,GID} corresponding to
pairs (attribute, identity), all with the same identity GID. It
outputs the message M when the collection of attributes i
satisfies the access matrix A corresponding to the ciphertext.
Otherwise, decryption fails. From a mathematical viewpoint,
the decryptor first obtains H(GID). If the decryptor has the
secret keys {Kρ(x),GID} for a subset of rows Ax of A such
that f = (1, 0, . . . , 0) is in the span of these rows, then it
proceeds according to the following steps. For each such x,
the decryptor computes:

C1,x · e(H(GID),C3,x)/e(Kρ(x),GID,C2,x) =
= e(g1, g1)

λxe(H(GID), g1)
ωx .

Then, it selects constants cx ∈ ZN |∑x cxAx = f and com-
putes:

∏

x

(e(g1, g1)
λxe(H(GID), g1)

ωx)cx = e(g1, g1)
s.

In fact, λx = Ax · v and ωx = Ax · w, where v · f = s and
w · f = 0. Consequently, the message can then be obtained
as M = C0/e(g1, g1)

s.

5) SECURITY ASPECTS OF THE ABE SCHEME: MODEL
DEFINITION AND FORMAL SECURITY ANALYSIS

The schema preserves security and resilience through a game
played between a challenger and an attacker. The assumption

here is that adversaries can only corrupt authorities statically,
but key queries can be made adaptively. This slightly deviates
from the standard static model, allowing an adversary to
independently choose the public keys of corrupted authorities
instead of having them initially generated by the challenger.
For the sake of clarity, consider the steps of the challenge,

as illustrated in Figure 5. In this context, the set of authorities
is represented as S, and the universe of attributes as U, with
each attribute assigned to a specific authority. The security
game unfolds as follows:

1) Global Setup: The global setup algorithm is initiated.
The attacker designates a set S′ of corrupt authorities
out of the total set S. For non-corrupt authorities in
S−S′, the challenger generates public-private key pairs
by using the authority setup algorithm. The public keys
are provided to the attacker.

2) Key Query Phase 1: The attacker makes key queries,
submitting pairs (i, GID) to the challenger, where i is
an attribute from a non-corrupt authority, and GID is
an identity. The challenger responds by providing the
corresponding key Ki,GID.

3) Challenge Phase: The attacker specifies two messages,
M0,M1, and an access matrix (A, ρ). The matrix must
satisfy constraints to ensure that the attacker cannot
construct a set of keys allowing decryption in conjunc-
tion with keys obtained from corrupt authorities. The
challenger encrypts Mβ under access matrix (A, ρ),
where β is a random coin flip (β ∈ {0, 1}).

4) Key Query Phase 2: The attacker may submit addi-
tional key queries (i, GID), adhering to constraints on
the challenge matrix (A, ρ).

5) Guess: The attacker submits a guess β ′ for the coin
flip β. The attacker wins if β = β ′. The attacker’s
advantage in this game is defined to be Pr[β = β ′]− 1

2 .

VOLUME 5, 2024 1287



FEMMINELLA et al.: ATTRIBUTE-BASED MANAGEMENT OF SECURE KUBERNETES CLOUD BURSTING

FIGURE 5. Security game sequence diagram.

A Multi-Authority CP-ABE system is secure (against static
corruption of authorities) if all polynomial time attackers
have at most a negligible advantage in this security game.
In order to prevent collusion, the main strategy consists

of using a hash function on the user’s global identity. The
output of this function H(GID) is the element of a bilinear
group (see Appendix A) that ties keys together. Based on
the theory of the linear secret-sharing schemes (introduced
in Appendix B), the key idea is to handle the decryption
process on the nodes x of the access tree, such that it is
possible for a user to recover a group element of the form
e(g, g)λx · e(g,H(GID))wx . The first element of this group
element is a share λx of the secret s to recover. Thus, these
shares need to be combined for deciphering the message.
However, they are masked by a share wx of the 0 element in
the exponent of the second factor, that is the one with base

e(g,H(GID)). The algorithm in [46] allows simultaneously
reconstructing the secret s and unblinding it. In fact, if a user
identified by GID satisfies the access tree, he can obtain s by
reconstructing it in the exponent by raising group elements
to the proper base. At the same time, this operation will also
reconstruct the shares of 0 and thus, in the end, the terms
e(g,H(GID)) will disappear. In particular, the encryption
algorithm ciphers the message M with e(g1, g1)

s, where g1 is
a generator of the subgroup Gp1 , and s is a randomly selected
value in ZN , with N = p1p2p3. The value s is then split
into shares λx through the A matrix, and the value 0 is split
into shares wx. Hence, in order to recover the information
message M, the decryption algorithm has to recover the
blinding factor e(g1, g1)

s, so introducing terms in the form
e(g1,H(GID))wx . If the decryptor has a satisfying set of key
s with the same identity GID, these additional terms will
cancel from the final result, since the wx elements are shares
of 0. Instead, if two users with identities GID and GID’
attempt to collude and combine their keys, then there are
two types of terms, those of the form e(g1,H(GID))wx and
others of the form e(g1,H(GID′))wx′ . These different types
of terms do not cancel with each other, thereby preventing
to recover e(g1, g1)

s and thus to decipher the message M.
The formal proof of security of this model against

collusion attacks, making use of the dual system encryption
methodology, is quite lengthy, and it is given in [46,
Secs. IV-A and 4.2, Appendix C]. Here, we provide an
outline of the strategy adopted, inviting the interested reader
to refer to the original document for all the details, as well as
to [65]. By employing a form of the dual system encryption
technique, the authors of [46] address the challenges specific
to the multi-authority setting. In this framework, keys and
ciphertexts can be either normal or semi-functional, with
distinct decryption capabilities. The security proof involves
a series of games employing a hybrid argument, where
the challenge ciphertext is first transformed into a semi-
functional form, followed by a gradual transformation of the
keys to a semi-functional state. The key challenge lies in
ensuring indistinguishability between these games, preventing
the simulator from discerning the transformation of keys
from normal to semi-functional during the testing process. To
tackle this, the authors adopt an approach involving nominal
semi-functionality, where both key and ciphertext have semi-
functional components that cancel out upon decryption.
Moreover, in the presence of multiple authorities lacking
coordination, the authors introduce innovative solutions, such
as the use of temporary “blinding factors” to conceal nominal
semi-functionality. These factors, active for one key at a
time, are strategically switched between two subgroups in
the multi-authority case, preserving semi-functionality while
averting information leakage about the subgroup in which
the semi-functional components operate.
In conclusion, this section highlights our dual objective,

consisting in both unified management system for orches-
tration services and a robust security solution addressing
confidentiality and compliance concerns. To achieve the

1288 VOLUME 5, 2024



TABLE 2. Comparison with other Kubernetes cloud bursting solutions.

latter, we advocate for employing CP-ABE in a hybrid mode,
providing fine-grained access control, adaptable policies, and
an optimized balance between security and efficiency. This
approach, as depicted in Figure 3, enables authorized users
to access encrypted data stored within service volumes,
streamlining data retrieval.
We have explored the correlation between attribute values,

label values, and encryption policies, highlighting the critical
role of congruence for streamlined configuration and man-
agement. This unification enhances transparency and user
experience by eliminating redundant configurations and
harmonization processes.
Furthermore, the discussion on the expressive power of

ABE policies, encompassing logical expressions, underlines
the versatility of ABE schemes and their potential to
accommodate a broad spectrum of access control scenarios.
Finally, we describe the ABE scheme used in our

research, motivated by its features, and analyzed its security.
Importantly, we emphasize again that the selection of this
specific scheme is not a rigid constraint. This flexibility
reflects the dynamic nature of the security solutions, allowing
for adaptation to different requirements. For these reasons,
we believe that these concepts can improve security, effi-
ciency, and versatility in the considered framework.

C. COMPARISON WITH OTHER CLOUD BURSTING
APPROACHES
In this section, our proposal is compared with available
counterparts presented in Section II. A schematic comparison
is reported in Table 2. This table summarizes the main
features of cloud bursting solutions of interest for our
purposes, i.e., support by public cloud vendors, strategic
approach, and security features. Whilst different solutions
follow different approaches, all of them seem suitable to
offload computing workload in public clouds. However,
for what concerns security, it is handled separately from

orchestration functions. In fact, whereas communications
security is typically handled via TLS-based encryption,
access control is enforced only via RBAC, which suffers
from known limitations. Finally, none of the considered
solutions natively supports strong data encryption, which is
a significant shortcoming. Although it is possible to add
encryption modules for handling data security as additional
services in virtual clusters running on public resources, they
have to be managed manually by developers. This increases
the complexity of service management when cloud bursting
is necessary. Instead, by jointly carrying out orchestration,
including bursting, and data protection through labeling,
which is supported natively by K8s, this feature comes for
free, without any additional burden for developers.

V. VALIDATION
In this section, we present the findings from our proof of
concept (POC) for the proposed attribute-based management
model for secure K8s cloud bursting. The main research
question addressed by this POC is: Can attributes be used
to establish a centralized system capable of simultaneously
providing data confidentiality and facilitating efficient cloud
bursting?
We evaluated the feasibility and effectiveness of this

attribute-based management model through a specific proof
of concept. To showcase the achievable performance, we
produced a POC available on our GitHub repository [54].
This POC offers a straightforward scenario for assessing our
proposal.

A. PROOF OF CONCEPT SET UP
The experimental setup included two interconnected clouds.
It emulates a system either where a service is hosted on a
local cloud only or where a local cloud connects to a public
cloud through a dedicated virtual connection service, such
as Azure ExpressRoute. The ABE service, crucial to our

VOLUME 5, 2024 1289



FEMMINELLA et al.: ATTRIBUTE-BASED MANAGEMENT OF SECURE KUBERNETES CLOUD BURSTING

FIGURE 6. Test-bed components.

approach, is hosted within this cluster. It serves to encrypt,
decrypt, and store data of string type, illustrating the core
functions of our model.
The POC environment was hosted on a personal computer

featuring an Intel i7-8700 CPU, 32GB RAM, and a 1TB
SSD. The test environment is illustrated in Figure 6.
It encompassed two distinct Ubuntu 22.04 LTS virtual
machines (VMs), each one running a DevStack instance, thus
effectively creating two separate cloud deployments (On-
prem and Burst cloud). Each VM was allocated 6 virtual
cores (vCPU), 12GB RAM, and 64GB SSD, ensuring a
balanced testing environment. In turn, each DevStack cloud
instance ran two Debian Cloud VMs, each one equipped
with 2 vCPUs, 4GB RAM, and 20GB SSD. Each Debian
VM ran a Kubernetes instance using K3s multi-cloud, one
acting as both cluster master and worker node, and the other
three as worker nodes. Thus, all Kubernetes instances were
able to run application pods. Figure 6 shows the label (in
brackets) of all Kubernetes nodes. In more detail, in order to
configure the on-premise/burst attribute on the Kubernetes
nodes, we labeled each node using kubectl by the label
a for the on-premise nodes inside the first cloud and by
the label b for the burst nodes running inside the second
cloud, respectively. The commands used for labeling nodes
as on-premise and burst are as follows:

kubectl label nodes <nn> node-type=a
where nn="master1a worker1a"

kubectl label nodes <nn> node-type=b
where nn="worker2b worker2b1"

These labels are then used in the affinity section of
the Kubernetes Deployment manifest to automatically guide
scheduling of pods.
We produced some YAML manifest files to configure the

Kubernetes orchestration in the proposed scenario.

FIGURE 7. Yaml of Kubernetes Service.

The first manifest file, shown in Figure 7, defines a
Kubernetes Service of type NodePort. The Service is named
kaboom and is labeled with app: kaboom. Its purpose
is to expose the application to the external. In particular,
this Service exposes port 8000 and maps it to the node port
30800 and targets Pods labeled app: kaboom. When a
user’s request accesses the node on port 30800, the Service
forwards the traffic to one of the pods listening on port 8000.
The second manifest file, shown in Figure 8, defines

a Kubernetes Deployment. It creates a pod labeled
with app: kaboom, runs the container mrcolorrain/
kaboom:latest, and exposes port 8000 on the container.
The Readiness Probe is used to check the health

of the application. The resources section sets resource
requests for the pod. The affinity section specifies that
the pod is expected to be scheduled on the nodes labeled
with node-type: a, i.e., on-premise nodes. The strategy
is set to Rolling Update, which means that the old pods
are gradually replaced with new pods. This strategy ensures
that there is no downtime during the update process and that
the application remains available to users.
The last manifest file, shown in Figure 9, defines an

autoscaler for the kaboom deployment. The autoscaler
targets the kaboom deployment and scales between a
minimum of 1 and a maximum of 40 replicas. It scales based
on CPU utilization, targeting an average of 50%. The scale-
down stabilization window is set to 90 seconds. Note that the
horizontal pod autoscaler targets a maximum of 40 replicas
for the kaboom deployment. This is due to an important
aspect of resource utilization: considering that each kaboom
pod consumes 0.128 CPU, a maximum of 40 replicas would
require up to 5.12 CPUs in total. Given that the two VMs
hosting the on-prem worker nodes are configured with only
2 vCPUs each, and one of them also runs the Kubernetes
master, any deployment beyond 32 replicas would certainly
trigger cloud bursting to meet the resource requirements.
By using the manifest files shown, we created a test

computing environment where the kaboom application is
exposed to the external world, automatically scales based on

1290 VOLUME 5, 2024



FIGURE 8. Yaml of Kubernetes Deployment.

CPU utilization, and is preferably scheduled on nodes on-
premise labeled as a. This is actually the cloud architecture
characterizing the POC scenario illustrated above, enhanced
by the integration of the Kubernetes management functions
with ABE for secure cloud bursting.
This implementation can be regarded as the starting

point for additional research in a more complex situations,
such as strengthening security of multi-tenant Kubernetes
environments loaded with multiple applications. In these
challenging situations, it is critical to achieve a fine control
of application deployment which is compliant with policies
and regulations. Our approach, based on node affinity and
pod anti-affinity rules combined with ABE policies, can help

FIGURE 9. Yaml of Autoscaler.

to achieve this control. In fact, it allows protecting access
to data and isolating target applications from both specific
nodes and other services. For instance, if certain applications
should be prevented from being scheduled on cloud nodes
or near another specific application, it is possible to use
the manifest files shown as blueprint to include a node
affinity rule and a pod anti-affinity rule for comprehensive
scheduling control, as shown in Figure 10.
In this example, the node affinity rule confines the

kaboom application to on-premises nodes, while the pod
anti-affinity rule guarantees that kaboom pods do not
share an environment with anti-kaboom pods. This dual-
layered approach offers robust isolation and fine-grained
control over Kubernetes deployments.

B. ANALYSIS OF ABE FUNCTIONS
The ABE critical components were developed by using the
Rust programming language. Specifically, the ABE module
was crafted by using the Rocket framework version 5.0 [21].
Cryptographic primitives integral to the AW11 scheme
implementation are based on the Rabe library version
0.2.7 [4]. We emulated user interactions through both the
Web interface and the API calls issued through a terminal.
The ABE components run as Kubernetes pods, as shown in
Figure 6. The ABE module can be accessed either through
the Web interface or the terminal, and it presents a menu
comprising the following options:

1) Show encrypted storage
2) Decrypt storage
3) Update storage

1) OPTION 1: SHOW ENCRYPTED STORAGE

The first option, accessible to anyone, allows accessing and
viewing the encrypted storage. As shown in Figure 11,

VOLUME 5, 2024 1291



FEMMINELLA et al.: ATTRIBUTE-BASED MANAGEMENT OF SECURE KUBERNETES CLOUD BURSTING

FIGURE 10. Example showing the use of affinity and anti-affinity to change cloud
bursting and apps deployment behavior.

FIGURE 11. Example of encrypted storage (screenshot of the Web interface).

which presents a screenshot of the Web interface, this list
reveals the number of encrypted entries within the ABE
volume. Additionally, it provides an instructive glimpse into
the associated policies for each entry.
In Figure 11, the example showcases the dynamic interplay

of policies. The first two entries are linked to simple policies
encompassing a single system attribute. In contrast, the
subsequent entries are tied to slightly more intricate policies
that incorporate not only attributes but also logical operators.

FIGURE 12. Example of user key.

This visual demonstration underscores the ABE potential
to extend policy complexity, enhancing the expressive
capabilities of the protection system.

2) OPTION 2: DECRYPT STORAGE

The second option, labeled as Decrypt Storage, requires the
introduction of a user key before the decryption process can
proceed.
In Figure 12, we can observe an example of a user key

utilized in our tests. This private key is formatted in JSON,
containing references to the key owner, in this case, bob,
and the attributes associated with it. In this instance, it holds
a single attribute b, defined with specific coordinates. This
key functions as a passkey, instructing the system on what
content to decrypt and what to keep concealed.
Once the user key has been entered, the screen depicted

in Figure 13 is displayed. In accordance with the policies
outlined in Figure 11, the user possession of the b attribute
grants him access solely to the second and fourth entries.
Consequently, the user can retrieve two DEKs (see also
Figure 3), providing him with the means to securely interact
with data services within the cluster.

3) OPTION 3: UPDATE STORAGE

The third option concludes the menu by enabling the addition
of a new entry to the encrypted storage. This procedure
involves supplying two crucial pieces of information: the
plaintext content and the policy used for encryption. Once

1292 VOLUME 5, 2024



FIGURE 13. Example of decrypted storage (screenshot of the Web interface).

TABLE 3. Performance of ABE-related functions.

these details are provided, the system undertakes the encryp-
tion process automatically, followed by the seamless storage
of the encrypted entry within the ABE volume.

C. ABE-FUNCTIONS PERFORMANCE
This section presents the performance results obtained by
using the ABE scheme. Experiments have been carried out on
one of the Ubuntu VMs used in the POC (see Section V-A).
We used the Rabe library, which is a Rust-based library
implementing ABE. We selected the AW11 scheme [4], [46],
as mentioned above. The encryption process converts 256-bit
plaintext segments, managed as a symmetric key, according
to Section IV-B. We collected the performance metrics
related to the four main functions of an ABE scheme:
authority setup, user private key generation, encryption, and
decryption. All of them are sketched in Figure 4.
In performance evaluation, We varied the number of

attributes used in the policy and the user’s secret key.
In particular, we used 2 and 3 attributes. The experiment
was repeated 100 times for each attribute count. Numerical

FIGURE 14. Box plot of the authority setup time as a function of the number of
attributes. The green asterisk indicates the average value.

FIGURE 15. Box plot of the user private key generation time as a function of the
number of attributes. The green asterisk indicates the average value.

results are reported in Table 3, in terms of average latency,
its standard deviation, minimum and maximum values. All
results are expressed in seconds. In addition, for each
of these functions, we included a box plot diagram, in
order to better appreciate their statistical properties. These
diagrams also show the average value, marked by a green
asterisk. All latency values are grouped in a quite compact
range (interquartile range), showing only a few significant
outliers for encryption (Figure 16) and decryption (Figure 17)
functions. Differently, authority setup times (Figure 14) and
key generation times (Figure 15) show more grouped values.
Observing Table 3 and box plots diagrams, it can be

observed a generalized increase of the processing time when
switching from 2 to 3 attributes, which indicates an increase
in complexity. Notably, the increase with the number of
attributes in the authority setup time (+48.9% on average),
user private key generation (+48.9% on average), and
encryption (+31% on average) functions is more pronounced
compared to the decryption function, where it is less steep
(+0.66% only on average).

VOLUME 5, 2024 1293



FEMMINELLA et al.: ATTRIBUTE-BASED MANAGEMENT OF SECURE KUBERNETES CLOUD BURSTING

FIGURE 16. Box plot of the encryption time as a function of the number of
attributes. The green asterisk indicates the average value.

FIGURE 17. Box plot of the decryption time as a function of the number of
attributes. The green asterisk indicates the average value.

In order to evaluate the average payoff due to the presence
of ABE, we evaluated the added latency per user session,
depicted in Figure 3 (service data access). In that figure
it appears that, in general, only the decryption function
is invoked for completing a new session by the user,
whereas the other functions are used only occasionally
(setup and encryption of the DEK). Thus, in order to
evaluate the average added latency, we measured the added
contribution due to the decryption function as well as
the protocol used for interacting with the ABE module,
which is accessible through a REST API. Figure 18 shows
these results, identifying the two above delay contribution:
DEK decryption and REST interaction. The overall added
latency due to our solution is slightly less than 0.6 seconds,
with a negligible 95% confidence intervals. This latency is
essentially due to the DEK decryption, and does not depend
in a significant way from the number of attributes used to
implement the policy. It seems to be a reasonable price to
obtain an improved security.

FIGURE 18. Latency associated with ABE function with the relevant 95% confidence
intervals. Relative weights of decryption function and REST calls contributions are
highlighted.

Although we explored some key use-cases, an exhaustive
exploration of attribute usage is beyond the scope of this
paper. Mosteiro-Sanchez et al. [51] have already conducted
comprehensive experiments in this regard. Our emphasis lies
in the broader applicability of the insights obtained. While
we specifically implemented the AW11 scheme, [51] serves
not only to deepen the performance understanding of AW11,
but is a rather valuable reference also for assessing the
performance of different ABE libraries.

D. DISCUSSION
We validated through a POC the system’s ability to adjust
cloud resources based on computational requirements using
the cluster setup described in previous blueprints, which is
critical in cloud bursting scenarios.
The ABE module revealed its capabilities through the

menu options. Show Encrypted Storage illustrated the poten-
tial of the module to manage intricate access policies,
Decrypt Storage emphasized secure data access through
user keys, and Update Storage showcased the seamless
integration of encryption processes. The ABE user-centric
module design promotes secure data interaction. It aligns
with modern data security paradigms, maintaining data
privacy even during burst operations. The visual policy
representation empowers administrators with effective access
control.
In summary, the usage of labels common to Kubernetes

configuration (nodes and app pods) and ABE policies
allows jointly configure cloud bursting and security features,
leveraging the potential of the attribute-based approach.
In terms of implications and future prospects, our

experiments validate the viability of our attribute-based
management model for secure cloud bursting. The con-
vergence of Kubernetes and ABE presents a promising
solution for organizations seeking secure and scalable cloud
deployments. Future work can address scalability challenges
and explore advanced security layers.

1294 VOLUME 5, 2024



VI. CONCLUSION
In this paper, we introduce a robust orchestration scheme
tailored for secure cloud bursting. This scheme addresses
the complexities, cost challenges, and stringent data protec-
tion compliance requirements by harnessing the combined
capabilities of K8s and ABE.
By incorporating ABE, our approach achieves granular

encryption and provides cloud resources with suitable con-
fidentiality. At the same time, cloud bursting empowers
the extension of computational tasks beyond the scope
of a local primary cloud environment. The synergy of
these two technologies establishes a cohesive management
framework, guaranteeing secure access to bursting services
and streamlined deployment of excess workloads to the
cloud, all facilitated by Kubernetes.
Significantly, our contributions encompass the design

blueprint for an attribute-based cloud bursting authorization
system within Kubernetes. Through the application of ABE,
we enhance data security to adhere to regulatory mandates
and mitigate data-related apprehensions. By bridging this
critical gap, our approach stands as a holistic solution that
aligns with both security and privacy regulations, meeting
the contemporary requisites of cloud-driven systems.
Practical feasibility of our proposal is demonstrated by the

implementation of a proof of concept, that shows its potential
to be seamlessly integrated into real-world scenarios.
Future research will consider the integration of the

proposed solution with artificial intelligence algorithms to
proactively infer the need of resorting to bursting operations.
In fact, purely relying on a reactive approach the latency of
the process can either lead to temporary violation of service
level agreements - loose approach - or allocation of excessive
resources - conservative approach.

APPENDIX
In these appendices, we report some useful definitions, some
notions about bilinear groups as well as the very basics of
linear secret-sharing schemes. These concepts are used in
the paper of Lewko and Waters [46], and are instrumental
for a better understanding of the mathematics about ABE
used in this manuscript.

A. BILINEAR GROUPS
Bilinear groups of composite order are groups with an
efficient bilinear map where the group order is a product of
two large primes. Such groups are constructed from pairing
friendly curves over a finite field [25], [26]. The following
assumptions are formulated for a bilinear group G of order N,
where N = p1p2p3 is the product of 3 different primes. Now,
let e : G×G −→ GT denote a bilinear map, that is a function
with the following properties:

1) ∀g, h ∈ G, a, b ∈ ZN , e(ga, hb) = e(g, h)ab (bilinear),
2) ∃g ∈ G|e(g, g) has order n in GT (non-degenerate).

A group generator G is an algorithm which takes a security
parameter λ as input and produces a description of a bilinear

group G, i.e., (p1, p2, p3,G,GT , e), where both G and GT
are cyclic groups of order N, and e is a bilinear map. It
is assumed that the group operations in G and GT and the
map e can be computed in polynomial time with respect to
λ, and that the group descriptions include generators of the
respective cyclic groups, according to the above definition.
Let Gp1 denote the subgroup of order p1 in G. If gi ∈ Gpi
and gj ∈ Gpj for i �= j, then e(gi, gj) = 1. The construct

g1
R←− Gp1 , indicates that g1 is a random generator of Gp1 ,

Thus, it is not the identity element. The interested reader can
found additional details on composite order bilinear group
in [46, Appendix A] and references therein.

According to the class of General Subgroup Decision
Assumptions described in [19], in a bilinear group G of order
N = p1p2 . . . pn, a subgroup of order

∏
i∈S pi exists for each

subset S ⊆ {1, . . . , n}. Let S0, S1 denote two distinct subsets,
assuming that it is hard to distinguish a random element
from the subgroup associated with S0 from another of the
subgroup associated with S1. This is true even though it is
possible to have random elements from subgroups associated
with several subsets Zi, which satisfy one of the following
two mutually exclusive conditions: S0 ∩ Zi = S1 ∩ Zi = ∅,
or S0 ∩ Zi �= ∅ �= S1 ∩ Zi.
In [46], the entire system is confined to the subgroup Gp1

in G except H(·), which instead maps identities onto random
group elements in G. The subgroups Gp2 and Gp3 are used
in the security proof, which makes use of the dual system
encryption technique, where keys and ciphertexts can be
either normal or semi-functional. In the approach proposed
in [46] and used in this work, normal keys and ciphertexts
are contained in the subgroup Gp1 , while semifunctional keys
and ciphertexts use elements of Gp2 and Gp3 . Thus, Gp2 and
Gp3 form the semi-functional space orthogonal to Gp1 .

B. LINEAR SECRET-SHARING SCHEME
Given a set of parties P = {P1, . . . ,Pn}, a collection is
defined as A ⊆ 2{P1,...,Pn}. An access structure is a collection
A of non-empty subset, i.e., A ⊆ 2{P1,...,Pn} − ∅. The sets
in A are called authorized sets, those outside A are called
unauthorized sets.
A Linear Secret-Sharing Scheme (LSSS) [52] can be

defined as follows. Given a set of parties P , a secret sharing
scheme � is defined linear over P (over Zp) if

• The shares of each party form a vector in Zp.
• An l×n matrix A exists with the role of share-generating
matrix for �. Given a function ρ(x) : x ∈ {1, .., l} −→
P , each row x of A is labeled by it. If the secret to
be shared is s ∈ Zp and r2, . . . , rn ∈ Zp are random
values, then it is possible to obtain the column vector
v = (s, r2, . . . , rn) such that the product Av is the vector
of l shares of the secret s according to �. The x-
th share of Av, denoted as (Av)x = Axv, belongs to
party ρ(x).

From this definition, the linear reconstruction property
follows. Under the assumption that � is an LSSS for A, if S

VOLUME 5, 2024 1295



FEMMINELLA et al.: ATTRIBUTE-BASED MANAGEMENT OF SECURE KUBERNETES CLOUD BURSTING

is an authorized set, it is possible to define I = {x|ρ(x) ∈ S},
with I ⊆ {1, . . . , l}. Thus, the vector f = (1, 0, . . . , 0) is in
the set of rows of A indexed by I. Furthermore, a set of
constants {ωx ∈ Zp}x∈I exists such that s = ∑

x∈I ωxλx for
any valid shares {λ}x of the secret s according to �. The
above constants {ωx ∈ Zp} can be found in polynomial time
with respect to the size of A. This also means that λx = Ax ·v
where v · f = s.

For the construction of the composite order group, given
an LSSS matrix A over ZN , where N = p1p2p3 is the
product of 3 different primes, S is an authorized set if the
rows of A that are labeled by the elements in S through
the function ρ have the vector f as defined above in
their span modulo N. The access policies can be described
through monotonic boolean formulas and there are standard
techniques to derive a LSSS matrix from any monotonic
boolean formula. The boolean formula can be represented
as an access tree, where interior nodes consists of AND
and OR gates, whereas the leaves correspond to attributes.
Clearly, the number of rows in a LSSS matrix is equal to
the number of leaves in the access tree. Additional details
can be found in [46, Appendix G].

ACKNOWLEDGMENT
The authors acknowledge Università degli Studi di Perugia
and MUR for support within the projects VITALITY and
RESTART.

REFERENCES
[1] (Amazon Web Serv., Inc., Seattle, WA, USA). Amazon Elastic

Kubernetes Service (Amazon EKS). Accessed: Jun. 8, 2023. [Online].
Available: https://aws.amazon.com/eks/?nc1=h_ls

[2] (google, Mountain View, CA, USA). Google Kubernetes Engine.
Accessed: Jun. 8, 2023. [Online]. Available: https://cloud.google.com/
kubernetes-engine

[3] (Int. Bus. Mach. Corp., Armonk, NY, USA). Ibm Kubernetes Service.
Accessed: Jun. 8, 2023. [Online]. Available: https://www.ibm.com/
cloud/kubernetes-service

[4] “Module aw11 rabe.” Accessed: Jan. 5, 2024. [Online]. Available:
https://docs.rs/rabe/latest/rabe/schemes/aw11/index.html

[5] (Oracle Comput. Softw. Co., Austin, TX, USA). Oracle Cloud
Native Services—Container Engine for Kubernetes. Accessed:
June 8, 2023. [Online]. Available: https://www.oracle.com/cloud/
cloud-native/container-engine-kubernetes/

[6] “Security best practices for Kubernetes deployment.” Mar. 2019.
[Online]. Available: https://kubernetes.io/blog/2016/08/security-best-
practices-kubernetes-deployment/

[7] “Anthos.” Dec. 2023. [Online]. Available: https://cloud.google.com/
anthos

[8] (Palo Alto Networks, Inc., Santa Clara, CA, USA). Cloud-
Native Applications Protection Platform. Dec. 2023. [Online].
Available: https://www.paloaltonetworks.com/prisma/cloud/cloud-
native-application-protection-platform

[9] “Configuration best practices: Using labels.” Jul. 2023. [Online].
Available: https://kubernetes.io/docs/concepts/configuration/overview/
#using-labels

[10] (CloudBees Softw. Co., San Jose, CA, USA). Configuring
Cloudbees Build Acceleration for Agent Cloud Bursting. (Dec. 2023).
[Online]. Available: https://docs.cloudbees.com/docs/cloudbees-build-
acceleration/latest/configuration-guide/config-accelerator-agents-for-
cloud-burst

[11] “Kubernetes autoscaler.” github. Dec. 2023. [Online]. Available: https:
//github.com/kubernetes/autoscaler

[12] (Microsoft Corp. Technol. Corp., Redmond, WA, USA). Securing
Kubernetes Workloads In Hybrid Settings With Aporeto. (Dec. 2023).
[Online]. Available: https://cloudblogs.microsoft.com/opensource/
2018/08/31/securing-kubernetes-workloads-hybrid-cloud-aporeto/

[13] (Amazon Web Serv., Inc., Seattle, WA, USA). TLS-Enabled
Kubernetes Clusters With ACM Private CA and Amazon EKS,
(Dec. 2023). [Online]. Available: https://aws.amazon.com/it/blogs/
security/tls-enabled-kubernetes-clusters-with-acm-private-ca-and-
amazon-eks-2/

[14] “Virtual kubelet.” Dec. 2023. [Online]. Available: https://virtual-
kubelet.io/

[15] R. Ahuja and S. K. Mohanty, “A scalable attribute-based access control
scheme with flexible delegation cum sharing of access privileges for
cloud storage,” IEEE Trans. Cloud Comput., vol. 8, no. 1, pp. 32–44,
Mar. 2020.

[16] S. Ameer, J. Benson, and R. Sandhu, “An attribute-based approach
toward a secured smart-home IoT access control and a comparison
with a role-based approach,” Information, vol. 13, no. 2, p. 60, 2022.

[17] D. Balouek-Thomert, E. G. Renart, A. R. Zamani, A. Simonet, and
M. Parashar, “Towards a computing continuum: Enabling edge-to-
cloud integration for data-driven workflows,” Int. J. High Perform.
Comput. Appl., vol. 33, no. 6, pp. 1159–1174, 2019.

[18] L. Baresi, D. F. Mendonça, M. Garriga, S. Guinea, and G. Quattrocchi,
“A unified model for the mobile-edge-cloud continuum,” ACM Trans.
Internet Technol., vol. 19, no. 2, pp. 1–21, Apr. 2019.

[19] M. Bellare, B. Waters, and S. Yilek, “Identity-based encryption
secure against selective opening attack,” Cryptol. ePrint Arch., IACR,
Bellevue, WA, USA, Rep. 2010/159, 2010.

[20] P. Benedetti, M. Femminella, G. Reali, and K. Steenhaut,
“Reinforcement learning applicability for resource-based auto-
scaling in serverless edge applications,” in Proc. IEEE Int. Conf.
Pervasive Comput. Commun. Workshops Other Affil. Events (PerCom
Workshops), 2022, pp. 674–679.

[21] S. Benitez. “Meet rocket.” Accessed: Jan. 5, 2024. [Online]. Available:
https://rocket.rs/

[22] S. Bera, S. Prasad, Y. Sreenivasa Rao, A. K. Das, and Y. Park,
“Designing attribute-based verifiable data storage and retrieval scheme
in cloud computing environment,” J. Inf. Secur. Appl., vol. 75,
Jun. 2023, Art. no. 103482.

[23] J. Bethencourt, A. Sahai, and B. Waters, “Ciphertext-policy attribute-
based encryption,” in Proc. IEEE Symp. Security Privacy (SP’07),
2007, pp. 321–334.

[24] S. Böhm and G. Wirtz, “Cloud-edge orchestration for smart cities:
A review of Kubernetes -based orchestration architectures,” EAI
Endorsed Trans. Smart Cities, vol. 6, no. 18, p. e2, May 2022.

[25] D. Boneh, “Bilinear groups of composite order,” in Proc. 1st Int. Conf.
Pair.-Based Cryptogr., 2007, p. 1.

[26] D. Boneh, E. Goh, and K. Nissim, “Evaluating 2-DNF formulas on
ciphertexts,” in Proc. Theory Cryptogr. Conf., 2005, pp. 325–341.

[27] B. Burns, B. Grant, D. Oppenheimer, E. Brewer, and J. Wilkes, “Borg,
Omega, and Kubernetes,” Commun. ACM, vol. 59, no. 5, pp. 50–57,
2016.

[28] S. Carielli and L. Sustar (Forrester Res. Inc., Cambridge, MA, USA).
Best Practices: Kubernetes Security—Coordinate Across Identity,
Network, and Container Security to Protect K8S. (Jun. 2023). [Online].
Available: https://reprints2..com/#/assets/2/1941/RES179415/report

[29] E. Carmona-Cejudo, F. Iadanza, and M. S. Siddiqui, “Optimal
offloading of Kubernetes pods in three-tier networks,” in Proc. IEEE
Wireless Commun. Netw. Conf. (WCNC), 2022, pp. 280–285.

[30] C. Carrión, “Kubernetes scheduling: Taxonomy, ongoing issues and
challenges,” ACM Comput. Surv., vol. 55, no. 7, pp. 1–37, Dec. 2022.

[31] M. Chase, “Multi-authority attribute based encryption,” in Proc. 4th
Theory Cryptogr. Conf., 2007, pp. 515–534.

[32] N. Chen, J. Li, Y. Zhang, and Y. Guo, “Efficient CP-ABE scheme with
shared decryption in cloud storage,” IEEE Trans. Comput., vol. 71,
no. 1, pp. 175–184, Jan. 2022.

[33] S. Chen, J. Li, Y. Zhang, and J. Han, “Efficient revocable attribute-
based encryption with verifiable data integrity,” IEEE Internet Things
J., early access, Oct. 23, 2023, doi: 10.1109/JIOT.2023.3325996.

[34] A. Chiquito, U. Bodin, and O. Schelén, “Attribute-based approaches
for secure data sharing in industrial contexts,” IEEE Access, vol. 11,
pp. 10180–10195, 2023.

[35] Regulation (EU) 2016/679 of the European Parliament and of the
Council, European Parliament, Brussel, Belgium, 2016

1296 VOLUME 5, 2024

http://dx.doi.org/10.1109/JIOT.2023.3325996


[36] F. Faticanti et al., “Distributed cloud intelligence: Implementing
an ETSI mano-compliant predictive cloud bursting solution using
openstack and Kubernetes,” in Proc. 17th Int. Conf. Econ. Grids,
Clouds, Syst., Serv., 2020, pp. 80–85.

[37] B. Ghosh. “Hybrid Kubernetes model: Bridging clouds and
on-premises.” Medium. Sep. 2017. [Online]. Available: https:
//medium.com/@bijit211987/hybrid-kubernetes-model-bridging-
clouds-and-on-premises-4206cd430d50

[38] B. Ghosh. “The evolution of Kubernetes clusters in multicloud
and hybrid cloud.” Medium. Apr. 2023. [Online]. Available:
https://addozhang.medium.com/the-evolution-of-kubernetes-clusters-
in-multi-cloud-and-hybrid-cloud-b243aa7a4eab

[39] C. Gocul. “Cloud bursting with virtual kubelet and KIP (kloud
instance provider).” LinkedIn. May 2020. [Online]. Available:
https://www.linkedin.com/pulse/cloud-bursting-virtual-kubelet-kip-
kloud-instance-provider-chandra/

[40] T. Guo, U. Sharma, T. Wood, S. Sahu, and P. J. Shenoy, “Seagull:
Intelligent cloud bursting for enterprise applications.,” in Proc.
USENIX Annu. Tech. Conf., 2012, pp. 361–366.

[41] Y. Guo, Z. Lu, H. Ge, and J. Li, “Revocable blockchain-aided attribute-
based encryption with escrow-free in cloud storage,” IEEE Trans.
Comput., vol. 72, no. 7, pp. 1901–1912, Jul. 2023.

[42] M. A. Ibrahim, G. A. Ebrahim, and H. K. Mohamed, “A modern
cloud bursting framework,” in Proc. 12th Int. Conf. Comput. Eng. Syst.
(ICCES), 2017, pp. 148–153.

[43] B. Kar, W. Yahya, Y. Lin, and A. Ali, “Offloading using traditional
optimization and machine learning in federated cloud–edge–fog
systems: A survey,” IEEE Commun. Surveys Tuts., vol. 25, no. 2,
pp. 1199–1226, 2nd Quart., 2023.

[44] C. Lan, L. Liu, C. Wang, and H. Li, “An efficient and revocable
attribute-based data sharing scheme with rich expression and escrow
freedom,” Inf. Sci., vol. 624, pp. 435–450, May 2023.

[45] J. Lee, S. Oh, and J. W. Jang, “A work in progress: Context
based encryption scheme for Internet of Things,” Procedia Comput.
Sci., vol. 56, pp. 271–275, 2015. [Online]. Available: https://www.
sciencedirect.com/science/article/pii/S1877050915016890

[46] A. Lewko and B. Waters, “Decentralizing attribute-based encryption,”
in Proc. 30th Annu. Int. Conf. Theory Appl. Cryptogr. Techn., 2011,
pp. 568–588.

[47] J. Li, W. Yao, Y. Zhang, H. Qian, and J. Han, “Flexible and fine-
grained attribute-based data storage in cloud computing,” IEEE Trans.
Services Comput., vol. 10, no. 5, pp. 785–796, Sep.–Oct. 2017.

[48] J. Li et al., “Multiauthority attribute-based encryption for assuring data
deletion,” IEEE Syst. J., vol. 17, no. 2, pp. 2029–2038, Jun. 2023.

[49] H. Lu, R. Yu, Y. Zhu, X. He, K. Liang, and W. Cheng-Chung
Chu, “Policy-driven data sharing over attribute-based encryption
supporting dual membership,” J. Syst. Softw., vol. 188, Jun. 2022,
Art. no. 111271.

[50] (Microsoft Corp. Technol. Corp., Redmond, WA, USA). Introduction
to Azure Kubernetes Service (AKS). Accessed: Jun. 8, 2023.
[Online]. Available: https://learn.microsoft.com/en-us/azure/aks/intro-
kubernetes

[51] A. Mosteiro-Sanchez, M. Barcelo, J. Astorga, and A. Urbieta, “Too
many options: A survey of abe libraries for developers,” 2022,
arXiv:2209.12742.

[52] C. Padro, “Lecture notes in secret sharing,” Cryptol. ePrint Arch.,
IACR, Bellevue, WA, USA, Rep. 2012/674, 2012.

[53] X. Qin, Z. Yang, Q. Li, H. Pan, Z. Yang, and Y. Huang, “Attribute-
based encryption with outsourced computation for access control in
IoTs,” in Proc. 3rd Asia Serv. Sci. Softw. Eng. Conf., 2022, pp. 66–73.

[54] M. Rengo. “Project onehundredten: Cloud bursting approaches based
on Kubernetes .” GitHub. Accessed: Mar. 29, 2023. [Online].
Available: https://github.com/MRColorR/onehundredten.git

[55] M. Repetto, D. Striccoli, G. Piro, A. Carrega, G. Boggia, and R. Bolla,
“An autonomous cybersecurity framework for next-generation digital
service chains,” J. Netw. Syst. Manage., vol. 29, no. 4, p. 37, 2021.

[56] S. Risco, G. Moltó, D. M. Naranjo, and I. Blanquer, “Serverless
workflows for containerised applications in the cloud continuum,”
J. Grid Comput., vol. 19, no. 3, Jul. 2021.

[57] R. Ronan. “Simplify your hybrid/multi-cluster, multi-cloud Kubernetes
deployments with KubeSlice.” Developers Blog. Apr. 2022. [Online].
Available: https://blogs.oracle.com/developers/post/simplify-your-
hybridmulti-cluster-multi-cloud-kubernetes-deployments-with-
kubeslice

[58] A. Sahai and B. Waters, “Fuzzy identity-based encryption,” in
Proc. 24th Annu. Int. Conf. Theory Appl. Cryptogr. Techn., Aarhus,
Denmark, 2005, pp. 457–473.

[59] S. Sciancalepore, G. Piro, D. Caldarola, G. Boggia, and G. Bianchi,
“On the design of a decentralized and multiauthority access control
scheme in federated and cloud-assisted cyber-physical systems,” IEEE
Internet Things J., vol. 5, no. 6, pp. 5190–5204, Dec. 2018.

[60] V. Sharma, “Managing multi-cloud deployments on Kubernetes with
Istio, rometheus and Grafana,” in Proc. 8th Int. Conf. Adv. Comput.
Commun. Syst. (ICACCS), 2022, pp. 525–529.

[61] O. Tomarchio, D. Calcaterra, and G. D. Modica, “Cloud resource
orchestration in the multi-cloud landscape: A systematic review of
existing frameworks,” J. Cloud Comput., vol. 9, pp. 1–24, Sep. 2020.

[62] S. Touw (Immuta Inc., Boston, MA, USA). Role-Based Access Control
Vs. Attribute-Based Access Control. (Apr. 2023). [Online]. Available:
https://www.immuta.com/blog/attribute-based-access-control/

[63] M. Venema, G. Alpár, and J. Hoepman, “Systematizing core properties
of pairing-based attribute-based encryption to uncover remaining
challenges in enforcing access control in practice,” Des., Codes
Cryptogr., vol. 91, no. 1, pp. 165–220, Sep. 2023.

[64] Z. Wan, J. Liu, and R. H. Deng, “Hasbe: A hierarchical attribute-based
solution for flexible and scalable access control in cloud computing,”
IEEE Trans. Inf. Forensics Security, vol. 7, pp. 743–754, 2012.

[65] B. Waters, “Dual system encryption: Realizing fully secure IBE and
HIBE under simple assumptions,” in Proc. 29th Annu. Int. Cryptol.
Conf., 2009, pp. 619–636.

[66] R. Zhang, J. Li, Y. Lu, J. Han, and Y. Zhang, “Key escrow-free
attribute based encryption with user revocation,” Inf. Sci., vol. 600,
pp. 59–72, Jul. 2022.

[67] Y. Zhuang (Alibaba Cloud Comput. Softw. Com., Hangzhou,
China). Enhancing Self-Created Kubernetes With Cloud Elasticity to
Cope With Traffic Bursts. (Oct. 2023). [Online]. Available: https:
//www.alibabacloud.com/blog/enhancing-self-created-kubernetes-
with-cloud-elasticity-to-cope-with-traffic-bursts_600491

MAURO FEMMINELLA received the master’s and
Ph.D. degrees in electronic engineering from
the University of Perugia in 1999 and 2003,
respectively, where he has been an Associate
Professor with the Department of Engineering
since July 2022. He is also the Representative
of the University of Perugia in consortium CNIT.
He is a coauthor of more than 120 papers in
international journals and refereed international
conferences. His current research interests focus
on molecular communications, big data systems,

and network management solutions for 5G/6G networks.

MARTINA PALMUCCI was born in Jesi, Italy,
in 1997. She received the bachelor’s degree in
mathematics from the University of Camerino,
Italy, in 2020, and the master’s degree in computer
engineering from the University of Perugia, Italy,
in 2022.

She broadened her academic exposure through
Erasmus programs with the University of
Salamanca, Spain, in 2017 and the Vrije
Universiteit Brussel, Belgium, in 2022. She cur-
rently works as a Research Fellow with the GARR

Consortium, Rome, Italy. Her contributions center on the exploration
of cryptography, reflecting her unwavering commitment to enhancing
cybersecurity practices. Her primary focus lies in applied cryptography and
cybersecurity.

VOLUME 5, 2024 1297



FEMMINELLA et al.: ATTRIBUTE-BASED MANAGEMENT OF SECURE KUBERNETES CLOUD BURSTING

GIANLUCA REALI received the Ph.D. degree
in telecommunications from the University of
Perugia in 1997, where he has been an Associate
Professor with the Department of Engineering
since January 2005. From 1997 to 2004, he was a
Researcher with the Department of Electronic and
Information Engineering, University of Perugia.
In 1999, he visited the Computer Science
Department, UCLA. His research activities include
resource allocation over packet networks, wire-
less networking, network management, multimedia

services, big data management, and nanoscale communications. He is also
a member of CNIT.

MATTIA RENGO was born in Terni, Italy, in 1995.
He received the bachelor’s degree in computer
and electronic engineering with a focus on the
Computer Science curriculum from the University
of Perugia in 2020, and the master’s degree in
computer and robotics engineering, specializing
in data science, from the University of Perugia in
2023.

Currently working as a DevOps Specialist, he
is also active on GitHub. Some of his personal
projects have garnered more than a hundred stars,

showcasing their impact and usefulness in the tech community. His
professional and academic commitments reflect his dedicated focus on
computer engineering, particularly in cloud technologies and data science.

Open Access funding provided by ‘Università degli Studi di Perugia’ within the CRUI CARE Agreement

1298 VOLUME 5, 2024



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Helvetica
    /Helvetica-Bold
    /HelveticaBolditalic-BoldOblique
    /Helvetica-BoldOblique
    /Helvetica-Condensed-Bold
    /Helvetica-LightOblique
    /HelveticaNeue-Bold
    /HelveticaNeue-BoldItalic
    /HelveticaNeue-Condensed
    /HelveticaNeue-CondensedObl
    /HelveticaNeue-Italic
    /HelveticaNeueLightcon-LightCond
    /HelveticaNeue-MediumCond
    /HelveticaNeue-MediumCondObl
    /HelveticaNeue-Roman
    /HelveticaNeue-ThinCond
    /Helvetica-Oblique
    /HelvetisADF-Bold
    /HelvetisADF-BoldItalic
    /HelvetisADFCd-Bold
    /HelvetisADFCd-BoldItalic
    /HelvetisADFCd-Italic
    /HelvetisADFCd-Regular
    /HelvetisADFEx-Bold
    /HelvetisADFEx-BoldItalic
    /HelvetisADFEx-Italic
    /HelvetisADFEx-Regular
    /HelvetisADF-Italic
    /HelvetisADF-Regular
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryITCbyBT-MediumItal
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Recommended"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


