
Received 23 December 2023; revised 26 January 2024; accepted 14 February 2024. Date of publication 16 February 2024; date of current version 1 March 2024.

Digital Object Identifier 10.1109/OJCOMS.2024.3366849

Explainable Deep-Learning Approaches for
Packet-Level Traffic Prediction of Collaboration

and Communication Mobile Apps
IDIO GUARINO (Graduate Student Member, IEEE), GIUSEPPE ACETO ,

DOMENICO CIUONZO (Senior Member, IEEE), ANTONIO MONTIERI , VALERIO PERSICO ,
AND ANTONIO PESCAPÈ (Senior Member, IEEE)

Department of Electrical Engineering and Information Technologies, University of Napoli “Federico II,” 80125 Naples, Italy

CORRESPONDING AUTHOR: I. GUARINO (e-mail: idio.guarino@unina.it)

This work was supported in part by the “ADDITIONAL” Project funded by Vietsch Foundation; in part by the Italian Research Program “PON Ricerca e Innovazione

2014–2020 (PON R&I) REACT-EU – Asse IV – Azione IV.4”; in part by the Italian PNRR MUR Centro Nazionale HPC, Big Data e Quantum Computing,

Spoke9 – Digital Society & Smart Cities; in part by the the European Union under the Italian National Recovery and Resilience Plan (NRRP)

of NextGenerationEU, partnership on “Telecommunications of the Future” (PE00000001 – Program “RESTART”); and in part by the “xInternet”

Project—funded by the Ministero dell’Università e della Ricerca—within the PRIN 2022 Program (D.D.104–02/02/2022).

This manuscript reflects only the authors’ views and opinions and the Ministry cannot be considered responsible for them.

ABSTRACT Significant transformations in lifestyle have reshaped the Internet landscape, resulting in
notable shifts in both the magnitude of Internet traffic and the diversity of apps utilized. The increased
adoption of communication-and-collaboration apps, also fueled by lockdowns in the COVID pandemic years,
has heavily impacted the management of network infrastructures and their traffic. A notable characteristic
of these apps is their multi-activity nature, e.g., they can be used for chat and (interactive) audio/video in
the same usage session: predicting and managing the traffic they generate is an important but especially
challenging task. In this study, we focus on real data from four popular apps belonging to the aforementioned
category: Skype, Teams, Webex, and Zoom. First, we collect traffic data from these apps, reliably label
it with both the app and the specific user activity and analyze it from the perspective of traffic prediction.
Second, we design data-driven models to predict this traffic at the finest granularity (i.e., at packet level)
employing four advanced multitask deep learning architectures and investigating three different training
strategies. The trade-off between performance and complexity is explored as well. We publish the dataset and
release our code as open source to foster the replicability of our analysis. Third, we leverage the packet-level
prediction approach to perform aggregate prediction at different timescales. Fourth, our study pioneers the
trustworthiness analysis of these predictors via the application of eXplainable Artificial Intelligence to (a)
interpret their forecasting results and (b) evaluate their reliability, highlighting the relative importance of
different parts of observed traffic and thus offering insights for future analyses and applications. The insights
gained from the analysis provided with this work have implications for various network management tasks,
including monitoring, planning, resource allocation, and enforcing security policies.

INDEX TERMS Communication apps, collaboration apps, COVID, deep learning, encrypted traffic,
multitask approaches, traffic prediction, XAI.

I. INTRODUCTION

NETWORK traffic and the underlying infrastructure
have a symbiotic relationship, constantly evolving in

tandem. Traffic adapts to leverage the enhanced capabilities
offered by network technologies, such as higher bandwidth,

lower latency, and increased resilience and flexibility. In turn,
the infrastructure evolves to meet the demands generated by
emerging applications. Recent reports from global operators
indicate a significant increase in fixed and mobile broadband
usage over the past two years, with growth rates ranging from

c© 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME 5, 2024 1299

HTTPS://ORCID.ORG/0009-0002-6141-0188
HTTPS://ORCID.ORG/0000-0002-4445-6259
HTTPS://ORCID.ORG/0000-0002-6230-2958
HTTPS://ORCID.ORG/0000-0003-4340-442X
HTTPS://ORCID.ORG/0000-0002-7477-1452
HTTPS://ORCID.ORG/0000-0002-0221-7444

GUARINO et al.: EXPLAINABLE DEEP-LEARNING APPROACHES FOR PACKET-LEVEL TRAFFIC PREDICTION

20% to 50% and 15% to 35%, respectively [1]. Moreover,
such needs have dramatically shifted lately, with COVID
accelerating the pace of digitization by several years and
driving changes in how people across the globe utilize
technology. On the one hand, the significant increase in
Internet usage during the COVID pandemic (+15–20% in
terms of volume [2] with a measurable impact on network
performance—e.g., increasing variability of delay and loss
rate [3]) can be attributed to the widespread adoption
of remote work, remote education, online commerce, and
entertainment activities during lockdowns and periods of
social distancing. On the other hand, with COVID becoming
more endemic in many parts of the world, the continuous
increase in Internet traffic is attributed to enduring habits
and the widespread adoption of certain apps that people have
become accustomed to. This phenomenon is not solely driven
by lingering COVID-related behaviors but rather signifies the
establishment of permanent habits and the global familiarity
with these ubiquitous apps. Focusing on the nature of such
apps, trends show that they no longer deal with just one type
of traffic: it is becoming increasingly common to have video,
voice, chat, and gaming content all in the same app [1]. These
characteristics lead to increased complexity in network traffic
management for network operators, as they encounter notable
discrepancies in both inter- and intra-app behaviors [4], [5].
In this complex scenario, the quality of experience offered

plays a critical role in determining customer satisfaction.
Hence, network performance necessitates the implementa-
tion of automated and adaptive management of network
resources [6]. For a system to be truly responsive, it needs
to react promptly to observed network traffic. However, an
even more effective system would be proactive, capable of
foreseeing future traffic patterns and providing ample time
to plan and execute appropriate actions.
This increasing need in recent years has driven the creation

of diverse solutions for predicting network traffic. These
solutions typically concentrate on aggregated metrics, such
as total volume and average rate, spanning over extended
time intervals.
Differently, in this work, we focus on fine-grained

prediction, i.e., with outcomes at packet level, by designing
a novel Deep Learning (DL) solution. Further, we inspect
the effectiveness gains deriving by having prediction models
tailored on specific apps and protocols. The scientific liter-
ature has shown the suitability of DL-powered solutions to
address prediction of aggregate traffic [7], [8]. Nonetheless,
the capitalization of DL for fine-grained prediction is still a
challenge and performance gaps need to be overcome [9].
In line with the concerns related to the adoption of

Artificial Intelligence (AI) for driving critical systems, we
also deepen aspects related to the trustworthiness of the
designed solutions, focusing on technical robustness and
transparency.1

1https://digital-strategy.ec.europa.eu/en/library/ethics-guidelines-
trustworthy-ai

More specifically, the technical contributions provided by
our work are as follows:

• We tackle the challenging task of predicting network
traffic at the finest granularity level, namely the packet
level, by leveraging Deep Neural Networks (DNNs).
Our proposed models utilize a limited memory of
previously observed packets to accurately predict var-
ious characteristics of the next packet, such as its
direction, inter-arrival time, and transport-layer payload
length.

• This fine-grained prediction capability empowers effi-
cient traffic management (i) at the biflow level (thus
allowing different types of aggregation, such as server-
side or client-side), (ii) on flexible (including short)
timescales, and (iii) at different viewpoints (e.g., packet
or volume info), making valuable contributions to
the advancement of next-generation networks (e.g.,
supporting network slicing functionalities).

• To assess the effectiveness of our proposal, we
evaluate it using real traffic data from communication-
and-collaboration mobile applications (CC apps). We
selected the ones that experienced a sudden surge
in popularity (Skype, Teams, Webex, and Zoom),
collected and reliably labeled their traffic at per-activity
granularity, and used this ground truth to train and
evaluate DL models. The dataset is publicly available,
to foster reproducibility, and we published also our code
as open-source, to allow replicability of the results.

• We investigate the advantage of multitask DL models
designed for specific apps or protocols (TCP/UDP) with
respect to a single-model trained on all the considered
CC apps’ traffic. In a complementary fashion, we assess
how traffic prediction performance varies from multiple
perspectives: (i) different apps, (ii) different activities,
or (iii) different protocols.

• To overcome the limitation of black-box AI models,
particularly DNNs, we employ eXplainable Artificial
Intelligence (XAI) techniques. XAI allows us to gain
insights into the model performance (by assessing how
reliable is each prediction) and establish connections
between performance and traffic characteristics (imput-
ing importance to different packet parameters). By
utilizing XAI, we strengthen our confidence in the
results and identify areas for improvement. To the best
of our knowledge, this study is the first to propose a
DL approach evaluated using XAI to predict network
traffic at the packet level.

• To demonstrate the timescale flexibility of our proposal,
we capitalize on the outcomes of the fine-grained
packet-level multitask predictor and define an approach
that can deal with coarser-grained traffic prediction
tasks (e.g., prediction of traffic volume and number of
packets) with arbitrary aggregation intervals.

The present work significantly extends and improves our
earlier conference paper [10] with new investigations and
results, namely:

1300 VOLUME 5, 2024

TABLE 1. Related work tackling various network traffic prediction tasks using different approaches. Reported papers are listed in chronological order. The last row
summarizes the current proposal. *The solution is not designed for a specific prediction task and is evaluated on video-traffic datasets with different aggregations (from single
frame to seconds).

1) a traffic characterization of CC apps’ traffic;
2) different novel strategies for training the DL models

(e.g., by separating the traffic based on the transport-
layer protocol);

3) an XAI-based evaluation that integrates interpretability,
reliability, multifaceted error trend analysis, and in-
depth characterization of prediction errors;

4) the prediction of arbitrary-granularity traffic aggre-
gates (e.g., number of packets and traffic volume) by
capitalizing our packet-level prediction proposal.

The rest of the paper is organized as follows. Section II
surveys the literature predicting network traffic or analyzing
the trustworthiness of DL models that focus on network
traffic analysis. Section III provides the details of our
methodology regarding the packet-level traffic prediction via
multitask DL, the XAI techniques adopted to investigate
the interpretability and reliability of DL models, and the
prediction of traffic aggregates. Section IV describes the
apps/activities selection rationale, the dataset collection, and
the evaluation metrics. Section V presents the experimen-
tal evaluation with related take-home messages. Finally,
Section VII provides conclusions and future perspectives.

II. RELATED WORK
In this section, we provide an overview of the works that
have addressed network traffic prediction (Section II-A) or

exploited XAI techniques in the context of network traffic
analysis (Section II-B). Finally, we provide the positioning
of the present paper against the related literature for each
reviewed topic (Section II-C).

A. NETWORK TRAFFIC PREDICTION
The scientific community has shown great interest in
predicting the evolution of network traffic. Researchers have
approached different prediction tasks related to a variety of
distinct practical network problems. Table 1 summarizes the
main aspects of each work surveyed herein. We categorize
each paper based on whether
1) it tackles the prediction of traffic generated by multiple

activities associated with the considered application
and

2) it uses a multitask model, detailing also
3) the specific prediction techniques employed. Then, we

specify
4) if such techniques are designed for fine-grained or

coarse-grained traffic prediction,
5) how they are evaluated (i.e., the granularity of the

prediction task), and
6) the traffic parameters/quantity predicted. Finally, the

last column flags
7) the works publicly releasing the dataset used in their

experimentations.

VOLUME 5, 2024 1301

GUARINO et al.: EXPLAINABLE DEEP-LEARNING APPROACHES FOR PACKET-LEVEL TRAFFIC PREDICTION

The present section ends with the positioning of our work
whose main points are recapped in the last row of Tab. 1.

Firstly, we can notice that none of the previous works per-
forms a per-activity breakdown of the predictions associated
with the considered application.
Regarding the particular techniques exploited for traffic

prediction, Tab. 1 highlights a rising utilization of DL
models, also in a multitask configuration [9], [11], [22].
Particularly, related works mostly employ CNN of different
dimensions [9], [15], LSTM [9], [15], [17], [18], [19], [21],
[23], GRU [9], [17], [23], SAE [13], GNN [24], and hybrid
architectures obtained via their combinations [9], [15], [20].
Fewer works leverage Markov models (e.g., MC, HMM,
and MMG) [11], [14], [16], [22], traditional ML models
(e.g., LR, SVR, k-NNR, or RFR) [9], [16], [18], [22], and
statistical techniques (e.g., ARIMA or FARIMA) [12], [15],
[17], [18], usually as performance baselines to evaluate DL
models, with the latter commonly showing better prediction
performance.
Concerning the design of traffic predictors, several works

propose solutions tailored for forecasting the evolution of
traffic aggregates (CG). On the other hand, fewer proposals
are designed to forecast traffic characteristics at a finer level
(FG).

Regardless of the specific design choice, we also highlight
the granularity of the prediction task faced to evaluate the
proposed solutions.
The works performing coarse-grained evaluation (CG-

eval) forecast various traffic aggregates, such as bit
rates [23], packet distributions [17], and traffic volumes [12],
[13], [17], [18], [19], [20], [24] at different time resolutions,
ranging from less than one second to few seconds, minutes,
hours, and even days. Among the latter, some works take
into account also the geographical or topological distribution
of sources and destinations, rather than leveraging the (sole)
temporal information, via traffic matrices [18] or considering
the geographic distribution of data volumes (e.g., aggregated
data calls) as observed at base stations [15], [20], [24].
Differently, the proposals performing fine-grained eval-

uation (FG-eval) can capitalize on different sources
of information. Some works tackle packet-level traffic
prediction relying entirely on network-layer features avail-
able also in case of encryption (�), such as packet
sizes, directions, and inter-arrival times [9], [11], [22].
Other prediction approaches consider video traffic and
forecast video frame properties exploiting application-layer
information which is not always available when encryption
strategies are enforced [12], [14], [16]. We underline this
shortcoming by partially flagging (��) the FG-eval column
in Tab. 1.

B. AI TRUSTWORTHINESS IN TRAFFIC ANALYSIS
Recently, researchers have applied XAI techniques to
improve the performance, robustness, reliability, and feasi-
bility of AI models that tackle networking-related tasks [36].

Table 2 reports the works tackling various networking prob-
lems by means of different XAI methods, focusing on the
aim of the trustworthiness analysis conducted. Specifically,
we flag the works that aim to (partially) interpret their
forecasting results and/or measure to which extent the
confidence associated with the latter can be deemed reliable
(i.e., high/low confidence leads to high/low accuracy in
prediction). The last row of Tab. 2 summarizes the present
work, whose positioning w.r.t. related work is discussed at
the end of this section.
Referring to the networking problems addressed in the

light of AI trustworthiness, several papers face anomaly
detection [25] or traffic classification [28], [29], [30],
[31], [32], [33], [34], [35]. Networking-related prediction
tasks with different facets are also tackled: video bit-
rate adaptation based on reinforcement learning [26], video
quality prediction via clustering [27], and packet-level traffic
prediction (i.e., the same problem tackled in the present
work) via Markovian and DL approaches [9], [22].
We can notice that most of the works applies inter-

pretability techniques to provide explanations of the
decisions taken. More specifically, commonly used XAI
methods provide various forms of post-hoc explana-
tions [33]:
1) layer-wise relevance propagation [25] which supplies

explanations in an iterative fashion exploiting the
layered structure of the neural network;

2) interpretable local surrogates via LIME [26], [27]
which replaces the decision function with a self-
explanatory local surrogate model;

3) different types of perturbation analyses, such as
occlusion analysis [28], [32] or universal perturbation
attacks [34];

4) importance attribution based on Shapley values, either
local [37] or global [33].

Other XAI methods based on visual representations (e.g.,
t-SNE and Feature Maps) [29] inspect the activation of
intermediate neurons to highlight the most important features
that led to the decision. Moreover, Markovian Distillation
is applied to interpret traffic-prediction results by com-
paring Markov Chains’ transition probabilities and DL
predictions [9], [22]. Going further, solutions aiming at
explainability-by-design compare parts of input data with
per-class prototypes [35].
Finally, the reliability of DL models is investigated via a

calibration analysis [31], [33] of their probabilistic outputs
that aims to determine whether the confidence associated
with the final decision reflects its reliability and possibly
improve it.

C. POSITIONING W.R.T. RELATED LITERATURE
This work aims to predict the traffic generated by some of the
most popular and used CC apps at the packet level (i.e., our
proposal is designed to fulfill fine-grained traffic prediction),
specifically focusing on the lack of trustworthiness possibly
characterizing DL solutions for network traffic analysis.

1302 VOLUME 5, 2024

TABLE 2. Related work employing XAI when facing various networking problems. Reported papers are listed in chronological order. The last row summarizes the current
proposal.

Compared to other works addressing network traffic
prediction (ref. Tab. 1), we exploit fine-grained predictions
to forecast also traffic aggregates in terms of the number of
packets and volume. Thus, we perform both fine-grained and
coarse-grained traffic prediction exploiting only network-
layer features differently than all the reported works. Indeed,
all of them exclusively focus on one of these tasks, namely
either CG-eval or FG-eval. The sole exception is the work
of [12], which is, however, specifically tailored for the
prediction of video-frame sizes and leverages application-
layer information unavailable in case of encryption.
Considering the related works exploiting multitask models,

in [11] the focus is on the preliminary aspects of traf-
fic modeling of unidirectional flows—thus neglecting the
advantage of considering request-response interaction—of
non-mobile-app traffic by means of HMM. On the other
hand, HMM and MC models are investigated to characterize
and predict network traffic generated by mobile apps
in [22] without exploiting the advantages of multitask DL
models.
The closest work to ours is [9], since it addresses the

same prediction problem (i.e., network-traffic prediction
at packet level via DL approaches) investigated herein.
However, compared to the aforementioned reference, this
paper provides the following major contributions:
1) We focus on the traffic generated by CC apps.

First, this choice reflects a practical interest of network
operators, as these apps have become extremely
popular with the COVID pandemic. In addition, CC

apps are peculiar due to their multi-activity nature.
In fact, it is increasingly common to have video,
voice, chat, and game content within the same app
rather than dealing with only one type of traffic. This
multi-activity nature makes network management more
complex as different types of traffic require different
network management techniques due to their unique
characteristics and requirements [4]. Therefore, we
investigate the suitability of DL solutions to predict
their fine-grained characteristics.

2) According to such goals, we rely on a more detailed
ground truth, which includes the specific activity
performed by the users (beyond the app generating the
traffic), to investigate the impact of multiple activities
on the capability of the DL model to predict traffic
characteristics.

3) We assess the suitability of considering a single model
for all apps or a specific model for each transport-
level protocol to predict CC-app traffic against per-app
models.

Focusing on AI trustworthiness in traffic analysis, we
address the inherent lack of trustworthiness of DL models
in packet-level traffic prediction (ref. Tab. 2). Firstly, we
offer interpretability through XAI techniques. Our approach
involves conducting a comprehensive analysis of DL models
using DEEP SHAP to provide interpretable results. To the
best of our knowledge, no other research has utilized these
XAI techniques to investigate the interpretability of DL
models for network traffic prediction, irrespective of the

VOLUME 5, 2024 1303

GUARINO et al.: EXPLAINABLE DEEP-LEARNING APPROACHES FOR PACKET-LEVEL TRAFFIC PREDICTION

FIGURE 1. Workflow of the methodology defined for predicting the traffic of communication-and-collaboration mobile apps via multitask DL approaches and
explaining/assessing the forecasting outcomes via XAI techniques.

granularity of prediction or the specific DL model employed.
Indeed, our methodology overcomes the limitations of
preliminary interpretability solutions exploited in previous
works facing packet-level traffic prediction [9], [22] based
on Markovian distillation, which is constrained by memory
limitations. Moreover, we investigate the reliability of DL
models via a calibration analysis. To the best of our
knowledge, no other work dealing with network traffic
prediction has investigated such an aspect.

III. METHODOLOGY
In this section, we present an exhaustive account of the
methodology devised for predicting network traffic at the
packet level using multitask DL and explaining/assessing the
forecasting outcomes. The workflow we employ to address
this prediction problem is depicted in Fig. 1.

First, in Section III-A, we provide a formal state-
ment of the prediction task we have tackled and the

corresponding solution we have devised. Hence, the section
includes:

1) the description of the traffic parameters of interest
(Section III-A1);

2) the specification of the multitask DL architectures used
to predict them (Section III-A2);

3) the details about the adopted procedures for training
these architectures (Section III-A3).

Then, Section III-B details the XAI techniques used
for inspecting the prediction outcomes. Accordingly, the
section describes:

1) how interpret these models using post-hoc techniques
(Section III-B1);

2) how to analyze their reliability through calibration
analysis (Section III-B2).

We conclude in Section III-C with a description of
the devised procedure to forecast traffic at a coarser (but
arbitrary) granularity by exploiting packet-level predictions.

1304 VOLUME 5, 2024

A. MULTITASK DEEP LEARNING FOR PACKET-LEVEL
TRAFFIC PREDICTION
Our goal is to utilize DL approaches to predict network
traffic generated by CC-apps at the finest granularity,
i.e., at the packet level. To achieve this, we employ the
widely-used bidirectional flow (biflow) as traffic object for
our prediction task. A biflow embodies all the packets
that share the same 5-tuple (IP src, IP dst, port
src, port dst, protocol) in both upstream and
downstream directions [9].
Specifically, given a biflow up to its nth packet, we aim

to predict P traffic parameters associated to the (n + 1)th

packet. In this case, the desired output of our DL architecture
is represented by the vector xn+1. These predictions are
based on the previous values of the same traffic parameters,
which are stored in a memory window of size W. Then, the
observations xn, . . . , xn−(W−1) are used as input to the DL
architecture.
It is important to note that we construct the input using

an incremental windowing approach that utilizes a sliding
memory window with a unit stride. This allows us to
incrementally add samples to the window until it reaches
the maximum size of W. In cases where the prediction task
has accumulated memory that is less than or equal to W, we
apply left zero-padding to reach the desired window size.
This enables predictions to be made on the initial part of
the biflow (see later Section V-B1) and/or on biflows that
are shorter than W.
Furthermore, we leverage multitask architectures that

simultaneously address multiple prediction tasks, with each
task focusing on one of the P parameters under considera-
tion.2 Therefore, we are targeting the design of a single DL
model in the form:

x̂n+1 = P
(
xn, xn−1, . . . , xn−(W−1)

)
(1)

where x̂n+1 denotes the prediction vector associated to xn+1.

1) TRAFFIC PARAMETERS

Our objective is to predict three traffic parameters (P = 3),
for the packets within a biflow. These parameters are:
1) the direction (DIR), which is a binary value indicating

whether the packet is in the downstream or upstream
direction;

2) the payload length (PL), representing the size of the
transport-layer payload measured in bytes;

3) the inter-arrival time (IAT), which refers to the time
interval between the arrival of two consecutive packets.

2In a previous study [9], we conducted experiments that demonstrated
the advantages of multitask architectures in terms of prediction performance
and complexity, as compared to single-task solutions. The results showed
that multitask architectures outperformed single-task solutions in both
aspects. Specifically, the multitask architectures exhibited better prediction
performance, yielding more accurate results, while also reducing the
overall training time. This finding suggests that employing a single deep
learning architecture to predict each traffic parameter individually is
less effective and more computationally expensive compared to utilizing
multitask architectures.

In this paper, we focus on predicting such P = 3 param-
eters since, generally, most network performance problems
(e.g., loss, delay, jitter) occur at the packet level. Therefore,
predicting the size, direction, and arrival time of the next
packet can improve resource allocation within buffers and
bandwidth [11]. These aspects are crucial for ensuring the
quality of service and a seamless communication experience,
particularly when dealing with CC apps [38].

2) DL ARCHITECTURES

The DL architectures employed are depicted in Fig. 1. We
underline that all DL architectures end with a number of
dense layers (aka heads) equal to the number of parameters
to be predicted (i.e., P, with P = 3 in Fig. 1), each using a
Sigmoid activation function.
More in detail, for the convolutional model, we adopt

a 1D-CNN architecture (see Fig. 1a). It consists of two
sequential convolutional layers with 32 and 64 filters,
respectively, and a kernel size of 5. Each convolutional layer
is followed by a max-pooling layer with a pool size of 3. The
architecture further includes a dense layer with 128 neurons.
All these layers employ the Rectified Linear Unit (ReLU)
activation function.
On the other hand, we also consider two recurrent

architectures: a Gated Recurrent Unit (GRU) and a Long
Short-Term Memory (LSTM) network (see Fig. 1b). Both
recurrent models are unidirectional and consist of 200 units,
where the activation function employed is the Sigmoid.
In addition to the individual convolutional and recurrent

architectures, we also employ a composite architecture,
namely an extended version of the SeriesNet (see Fig. 1c).
This DL model is based on Dilated Causal Convolution
(DCC). More in detail, the overall architecture comprises
7 DCC layers. Each DCC has 32 filters, a dilation size of
2, and applies the Scaled Exponential Linear Unit (SELU)
activation function. Furthermore, each DCC includes a
residual connection that connects the input to the output.
The last 2 DCC layers incorporate a dropout rate of 0.8. The
sum of the parameterized skip connections from each DCC
is passed through a ReLU activation function and used as
input to a 1 × 1 convolutional layer. Finally, the output of
this layer is concatenated with the stacking of two LSTM
layers, each containing 200 units, and a dense layer with
128 neurons.
Although we restrict our analysis to the aforementioned

DL models, we remark that the methodology devised in
this paper (i.e., multitask packet-level prediction, inter-
pretability and trustworthiness of predictors, and tunable
coarser-grained traffic prediction) is quite general and can
be straightforwardly extended to other more sophisticated
prediction models.

3) LOSS SPECIFICATION AND TRAINING DETAILS

Our main objective is to predict P traffic parameters for
the next packet, which are stored in the vector xn+1.
Consequently, the DL architecture is trained to minimize a

VOLUME 5, 2024 1305

GUARINO et al.: EXPLAINABLE DEEP-LEARNING APPROACHES FOR PACKET-LEVEL TRAFFIC PREDICTION

weighted sum of the losses associated with the P prediction
tasks considered, namely:

L
(
θ shared,

{
θp

}P
p=1

)
�

P∑
p=1

λp Lp
(
θ shared, θp

)
(2)

where the weight λp indicates the importance level of the pth

task in the overall multitask objective function3 The shared
parameters θ shared are associated with the layers that are
common to all tasks, while the parameters θp are specific to
the pth task. Moreover, due to the multitask nature of these
architectures, the specific loss function Lp(·) to optimize
depends on the prediction task being addressed. Specifically,
we train the DL architectures to minimize the binary cross-
entropy loss function for the prediction of the binary DIR.
For the prediction of non-binary parameters, such as PL
and IAT, we minimize the Mean Squared Error (MSE)
between the predicted values and the actual traffic parameters
associated with the (n+ 1)th packet of a given biflow.

In this study, we employ different training strategies that
vary based on how traffic information is grouped. These
strategies allow the models to capture traffic characteristics
beyond those specific to an individual app, enabling a more
comprehensive understanding of the traffic patterns. Notably,
such strategies directly affect the number and complexity of
DL models a network operator needs to develop, train, and
deploy in the network. As a consequence, we examine the
following three training strategies corresponding to different
aggregation levels:

• per-app models (APP): a separate model is created
for each app. This means that there is a specific
predictor P(·) associated with each individual app.
The models are trained using traffic data labeled with
the corresponding app information (e.g., the Android
package name).

• per-proto models (PROTO): the models are designed to
consider traffic based on the protocols used. However,
the models do not differentiate between individual apps
within each protocol.

• overall-model (ALL): a single model is created to
encompass all the apps. In other words, a single
predictor P(·) is utilized for all the apps. The model
is trained using the entire traffic dataset, without
taking into account the specific information about the
individual app (or protocol) that generated the traffic.

We remark that the training strategies described do not
pose any constraint on the model used for traffic prediction.
Hence, each of them can be applied to all the DL traffic
predictors considered in this work. However, note that to be
practically deployed, per-app models require the presence of
an upstream traffic classifier to properly route network traffic
to the proper prediction model, namely a more complex
network setup compared to the other training strategies.

3On the basis of preliminary results, not reported for brevity, herein, we
set λ1 = λ2 = 0.45 and λ3 = 0.10, where p = 1, p = 2, and p = 3 are
associated to the DIR, PL, and IAT prediction task, respectively.

B. XAI-TOOLS FOR TRAFFIC PREDICTION
The black-box nature of DL models makes it difficult for
network operators to trust them, especially when the results
of their decisions could have a significant impact on the
network. In this scenario, XAI can assist network operators
in making improved decisions regarding the integration of
AI into their networks by offering transparency, building
trust, identifying problems, and ensuring compliance with
regulations [36].

1) INTERPRETABILITY OF DIR PREDICTION VIA DEEP
SHAP

In this section, we present the methodology employed to
investigate the interpretability of the results obtained from
a probabilistic binary classification task, specifically the
prediction of DIR values, using DL architectures. We recall
that such an interpretability analysis provides a means to
explain the model, determining whether the predictions
are more influenced by specific parts of the input traffic,
also uncovering potential biases. It can also enable the
improvement of model performance and the assessment of
robustness and vulnerabilities (e.g., how much the model
is susceptible to adversarial attacks). Additionally, from a
transparency viewpoint, interpretability techniques can facil-
itate the validation of the prediction outcome by providing
insights into the internal mechanisms of DL architectures,
thus making the resulting decisions more trustworthy.
To start interpreting DL architectures, we adopt a simpler

explanation model, denoted as g(·), which is designed to
closely approximate the original model f (·). To explain the
predictive behavior of a DL-based traffic predictor, we use
the model f (·) as the soft output associated with the generic
direction (i.e., pup/pdw). This allows us to determine which
inputs contribute the most to the confidence probability value
that is associated with a given direction. In the following, our
focus lies on local methods, which explain the model f (x)
within the neighborhood of a specific instance x, referred to
as an explanation of the input packet sequence in this case.
These local explanations utilize simplified inputs x′, which
are mapped to the original inputs x through the mapping
x = hx(x′).
Herein, we adopt the Additive Feature Attribution (AFA)

functional form as the explanation model g(·) for our
analysis. The AFA model is defined as:

g
(
z′
) = φ0 +

M∑
m=1

φm z
′
m (3)

where z′ ∈ {0, 1}M , M represents the number of simplified
inputs, and φm ∈ R. This specific class of explanation
models assigns an “effect” φm to each input, indicating its
contribution. Consequently, the output of the original model
f (x) can be approximated by summing the effects of all input
attributions.
A widely used method for computing AFA solutions is

through the application of Shapley values, which have their

1306 VOLUME 5, 2024

origins in cooperative game theory. These values quantify
the contribution of a particular player, denoted as m, to the
overall payoff achieved by the entire coalition C, denoted
as v(C). Specifically, the overall payoff is obtained by first
evaluating the payoff of all possible subsets S ⊂ C of
cooperating players which include m. Secondly, the effect of
excluding player m from each S on the payoff is evaluated,
namely v(S) − v(S \ m). The final mth Shapley value is
then obtained by taking the (weighted) average of such
differences over all the S . When applying this method to
explain a DL-based model, the input data is mapped to the
players of the cooperative game, while the output of the DL
architecture, represented by f (x), corresponds to the payoff
function.
However, the exact computation of Shapley values

becomes exponentially complex as the size of the input,
denoted as M, increases. To address this challenge, we
employ an approximation method known as SHapley
Additive exPlanation (SHAP), which efficiently calculates
the Shapley values. This approximation eliminates the
need to retrain the models by approximating the Shapley
values through the conditional expectation f (hx(z′)) ≈
E{f (z)|zS}, where S represents the set of non-zero indices
within z′.

Specifically, in our study, we utilize DEEP SHAP [39],
an adaptation of the DeepLIFT algorithm designed for
evaluating SHAP values on neural architectures. DeepLIFT
employs a compositional approximation of SHAP values
by using the output expectation as the reference value.
It also utilizes explicit Shapley equations for consistent
linearization. The reference value is a user-defined parameter
that is chosen to be an uninformative background value for
the mth input.
To be more specific, we use DEEP SHAP to explain

the soft-output associated with the predicted DIR, denoted
as p̂(x), for each input sequence represented by x =
(xn, xn−1, . . . , xn−(W−1)). For a given input sequence x, we
interpret the SHAP value φm as the importance value of the
mth traffic parameter composing x in forming the confidence
pi associated with the ith direction for the next packet. It is
worth noting that since φm ∈ R, which means that values
can be negative, we should interpret the importance values
as follows: positive values increase the confidence in the
ith direction compared to its average value, while negative
values decrease it. Additionally, the sum of the SHAP values
equals the soft-output value (pi(x)) minus the base output.
The base output represents the average of the same soft-
output value obtained from the samples associated with the
background set, i.e., E{pi}.
Finally, because the absolute importance range of the mth

traffic parameter may significantly fluctuate over different
input packet sequences due to the variability of soft outputs,
we use global explanations obtained by combining per-
packet-sequence and normalized explanations obtained from
DEEP SHAP. Specifically, our global explanation approach

involves the initial computation of normalized SHAP values:

φ̃m � φm /

M∑
m=1

φm (4)

By using φ̃m instead of φm, we can focus on the relative
importance of each input and derive importance measures
that are independent of the specific confidence levels
of the architecture. This normalization ensures consistent
aggregation over the test samples x1, . . . , xN and removes
dependence on the architecture’s peculiar confidence levels,
which can be generally higher or lower. Additionally, we
specifically concentrate on aggregating correctly classified
DIR samples [33]. This selection allows us to focus
on the accurate behavior of a DL-based traffic predictor
and interpret its counter-intuitive (while right) decisions a
posteriori.

2) ASSESSING THE RELIABILITY OF DIR PREDICTION

Other than the performance of the considered DL-based
traffic predictors, it is of great importance to evaluate the
reliability to soft-estimates associated with the prediction
of discrete-valued parameters, such as DIR in our case.
Reliability evaluation is fundamental in many critical sce-
narios and constitutes a building block of XAI since it
assesses the degree of trustworthiness in providing prediction
outputs with high confidence. In other words, it evaluates
if DL-based traffic predictors are calibrated (or not) and
consequently, if the provided predictions are reliable (or not).
Formally speaking, given an input sample x to the DL-

based traffic predictor under analysis, we will analyze the
reliability of the confidence vector p(x) = [pup(x) pdw(x)]
and of the confidence associated to the predicted DIR p̂(x) =
max{pup(x), pdw(x)}.
In what follows, we introduce a graphical visualization and

two metrics to assess calibration [40]. Indeed, a confidence-
calibrated classifier is such that for each sample, the
confidence p̂ in the predicted direction equals Pr{x̂n+1

dir =
xn+1
dir | p̂}, where xn+1

dir (resp. x̂n+1
dir) is the true (resp. predicted)

direction. That is, when reporting a confidence of, e.g.,
80% the predictor actually reaches 80% accuracy (i.e., the
confidence value was neither excessively optimistic nor
pessimistic).
To visualize the above property for varying p̂, we use

the reliability diagrams, which show the accuracy as a
function of the confidence (i.e., Pr{x̂n+1

dir = xn+1
dir | p̂} vs. p̂)

and compare it with the ideal Pr{x̂n+1
dir = xn+1

dir | p̂} = p̂
line, corresponding to a perfectly-calibrated classifier. These
diagrams are evaluated by partitioning the predictions into
M equally-spaced bins and computing the accuracy for each
of them. Let Bm be the set of evaluated samples such that
the confidence associated to the predicted app falls within
the interval Im � (m−1

M ; m
M], the corresponding bin accuracy

equals acc(Bm) = |Bm|−1 ∑
n∈Bm 1(x̂n+1

dir (s) = xn+1
dir (s)),

where xn+1
dir (s) and x̂n+1

dir (s) � arg maxi={dw,up} pi(s) are the

VOLUME 5, 2024 1307

GUARINO et al.: EXPLAINABLE DEEP-LEARNING APPROACHES FOR PACKET-LEVEL TRAFFIC PREDICTION

true and predicted labels for the sth sample, respectively.
Confidence values range in [1/2, 1], since DIR prediction
maps into a binary classification task.
To obtain concise metrics of the deviation from a perfect

calibration, we integrate the above diagrams with the
Expected Calibration Error (ECE), defined as

ECE � Ep̂

{∣∣∣Pr
{
x̂n+1
dir = xn+1

dir | p̂
}

− p̂
∣∣∣
}

(5)

and the Maximum Calibration Error (MCE), defined as

MCE � max
p̂

∣∣∣Pr
{
x̂n+1
dir = xn+1

dir | p̂
}

− p̂
∣∣∣. (6)

The former metric represents the expected absolute deviation
between the confidence and the confidence-conditional accu-
racy, whereas the latter is the maximum absolute deviation
from the identity line [40]. They can be approximately
calculated as

ECE ≈
M∑
m=1

(|Bm| /N)|acc(Bm) − conf(Bm)| (7)

and

MCE ≈ max
m=1,...,M

|acc(Bm) − conf(Bm)| (8)

respectively. The above expressions are based on the
overall number of tested samples S and the averaged
confidence within the bin Bm. The latter equals conf(Bm) =
|Bm|−1 ∑

s∈Bm p̂(s), where p̂(s) � max{pdw(s), pup(s)}
denotes the predicted confidence of the sth sample.
The ECE and MCE metrics only consider the confidence

in the predicted app, while ignoring the other scores in
the softmax distribution. A stronger definition of calibration
requires the probabilities of all the classes in the softmax
distribution to be calibrated, namely to have pi equal to
Pr{� = i| pi} for i = 1, . . . ,L, i.e., having 80% confidence
for the ith app leads to 80% probability of observing that
app. A concise metric that relies on the above stronger
calibration definition is the Class-Wise Expected Calibration
Error (CW-ECE) [41], defined as

CW-ECE � 1

L

L∑
i=1

Epi{|Pr{� = i| pi} − pi|}. (9)

Such a metric is evaluated as the class-wise sum

CW-ECE = 1

L

L∑
i=1

CW-ECEi (10)

where

CW-ECEi ≈
M∑
m=1

∣∣Bm,i
∣∣

N

∣∣�(
Bm,i

) − conf
(
Bm,i

)∣∣. (11)

In the latter definition, Bm,i denotes the set of samples
whose prediction for the ith app pi falls within the mth

bin, and conf(Bm,i) (resp. �(Bm,i)) the corresponding bin-
averaged confidence probability (resp. the proportion of
samples labeled as the ith app).

FIGURE 2. Proposed recursive approach we used to predict aggregates of traffic
(i.e., number of packets and traffic volume in both upstream and downstream
directions) over a time horizon �: we exploit a fine-grained (i.e., at the packet level)
predictor P(·) with a memory window of size W (= 3 in the figure) (a). Correction on
fine-grained prediction (b): the process ensures that all predicted packets fall within
the prediction interval �. Correction on coarse-grained prediction (c): the process
assumes that the traffic in the next �i is the same as that in the previous �i−1 when
the memory (of size W) consists of only predicted packets.

C. FROM FINE-GRAINED TO AGGREGATE TRAFFIC
PREDICTION
In this section, we define a first approach that can capitalize
on the benefits of having a multitask packet-level predictor.
Specifically, our goal is to exploit the packet-level

predictions to forecast aggregates of traffic within a future
time interval (�), also known as the time horizon. To achieve
this, we employ the recursive methodology depicted in
Fig. 2, which iteratively utilizes the packet-level predictions
(i.e., related to DIR, PL, and IAT) to predict the traffic to
a coarser granularity (i.e., the number of packets and data
volume in both upstream and downstream directions) for the
next �. This is obtained by repeatedly using the fine-grained
predictor P(·). It is worth noting that the main strength of

1308 VOLUME 5, 2024

this approach lies in its flexibility which makes it possible
to tune the � parameter at the operational stage (i.e., at
run-time). This avoids the burden of learning a DL traffic
predictor for each � of interest.
More in detail, in our procedure (depicted in Fig. 2(a)),

after each �, we take the sequence of the most recent W
packets {xn, xn−1, . . . , xn−(W−1)}, and recursively obtain a
series of predictions by means of P(·), denoted as x̂j, such
that:

∑
j x̂
j
IAT ≤ �. To do this, due to the fixed memory of

P(·), at step j > 1, the prediction x̂j is obtained by removing
the oldest packet from the memory and adding the prediction
obtained at the previous step x̂j−1 as the last observed packet.
In addition, to handle any critical situations that might

occur, we apply two corrections to both fine- and coarse-
grained predictions. The correction on the fine-grained
predictions (depicted in Fig. 2(b)) ensures that all predicted
packets fall within the next �. To this end, we enforce that
the first predicted packet (x̂n+1

) arrives at the beginning
of the next � interval if the corresponding predicted IAT
would erroneously place such packet before the beginning
of the interval. On the other hand, with the correction on
the coarse-grained predictions (depicted in Fig. 2(c)), we
avoid the error accumulation of the recursive procedure when
leveraging a memory encompassing only predicted packets.
Accordingly, in such cases, the predicted aggregate traffic is
taken as that observed in the previous �i−1 interval.

At the end of the above procedure, the set of PLs and DIRs
of the predicted packets are used to compute the volume
and number of packets in both upstream and downstream
directions (shown as Aggregation in Fig. 2). In the following,
we refer to these predicted traffic aggregates as VOLup,
VOLdw, PKTsup, and PKTsdw.

IV. EXPERIMENTAL SETUP
In this section, we provide a comprehensive overview of
the experimental setup, including details about the apps’
and related activities’ selection rationale (Section IV-A), the
collected dataset (Section IV-B), and the evaluation metrics
(Section IV-C) employed for assessing the performance of
the prediction models.

A. APPS’ AND ACTIVITIES’ SELECTION RATIONALE
Nowadays CC apps, such as those used for business meet-
ings, classes, and social interaction, are massively exploited
in everyday life after their adoption was fueled due to the
pandemic years [1]. Therefore, we have specifically selected
a subset of four CC apps from the MIRAGE-COVID-
CCMA-2022 dataset based on their popularity [42]: Skype,
Teams, Webex, and Zoom.
As previously mentioned, our experimentation focused on

specific activities associated with these apps that include:
• Audio-call (ACall): a two-way audio transmission
between two participants, without any video component.

• Chat (Chat): a conversation between two partici-
pants, where they exchange textual messages and/or
multimedia content such as images or GIFs.

• Video-call (VCall): multiple attendees who can trans-
mit both video and audio; this category encompasses
various scenarios, including video calls between two or
more attendees and webinars or live events with multiple
participants.

By selecting these CC apps and their corresponding activ-
ities, we aim to capture and analyze the usage patterns
and network traffic characteristics associated with different
modes of communication.

B. DATASET DESCRIPTION, PROCESSING AND
CHARACTERIZATION
In this study, we utilize our MIRAGE-COVID-CCMA-2022
public dataset that we have publicly released to foster replica-
bility and reproducibility.4 In detail, the dataset was collected
by students and researchers of the University of Napoli
“Federico II” between April and December 2021. The dataset
was obtained using the MIRAGE architecture [43], which was
specifically optimized for capturing and generating traffic
from CC apps.
The experimenters employed three mobile devices: a

Google Nexus 6 and two Samsung Galaxy A5, all running
Android 10. During each capture session, the experimenters
engaged in specific activities using various CC apps, aiming
to generate traffic that represents common usage scenarios.5

Each session produced a PCAP traffic trace and additional
netstat6 log files containing information about estab-
lished network connections. These log files were used to
create the ground truth, which involved labeling each biflow
with

1) the Android package-name of the app and
2) the specific activity performed by the user operating

the device.7

Then, to obtain the P packet parameters from the raw
packet sequences, we perform some preprocessing steps.
Firstly, we eliminate packets with zero payloads. Next, we
recalculate the IATs, ensuring a minimum precision of
1μ s. To remove the influence of outliers, we saturate the
recalculated IATs to the 99th-percentile value, which is
determined as 197.90 ms based on their distributions. Finally,
we apply a min-max scaler to normalize PL and IAT within
the range of [0, 1]. This scaling procedure is a common
practice when utilizing DL models, as described in [9].

Fig. 3 depicts the percentage of packets and biflows
related to the TCP and UDP protocols for the traffic used
in this study. In particular, we can observe that all the
apps tend to generate significantly more TCP biflows: from
≈ 65% (Teams) to ≈ 90% (Webex) of the total number

4http://traffic.comics.unina.it/mirage/mirage-covid-2022
5Each traffic capture session spanned 15 ∼ 80 mins based on the activity

and has been performed with the up-to-date version of the app. Also, to
limit background traffic, network access has been disabled for all the apps
but the one under test.

6https://linux.die.net/man/8/netstat
7Activity labels were manually assigned based on the knowledge of the

individual activity performed by the user during the specific capture.

VOLUME 5, 2024 1309

GUARINO et al.: EXPLAINABLE DEEP-LEARNING APPROACHES FOR PACKET-LEVEL TRAFFIC PREDICTION

FIGURE 3. Transport-level protocol distribution in terms of share of packets (a) and
biflows (b).

of biflows. Moreover, although the share of UDP biflows
is significantly lower than the TCP ones, UDP packets
correspond to 90% of the packets of each app, at least. The
above results are likely due to the fact that CC apps combine
both protocols to ensure a balance between reliable data
delivery and low latency transmission (e.g., to implement
control- and data-plane functionalities, respectively), meet-
ing the requirements of communication-and-collaboration
scenarios.
To deepen the above characterization, Fig. 4 reports for

each app the distribution of the number of packets per
biflow, according to the transport-layer protocol. Specifically,
regarding the TCP protocol (Fig. 4(a)), we observe that ≈
90% of the biflows of each app have at most 100 packets.
Also, with the only exception of Teams, 20% of biflows
have less than ≈ 10 packets. Conversely, when looking at
the UDP protocol (Fig. 4(b)), the observed behavior is more
related to the specific app. While for Skype and Teams
≈ 70% of the biflows has less than 100 packets, Webex
and Zoom expose longer UDP biflows with more than 100
packets in more than 80% of the cases.

Finally, starting from the collected traffic, we applied the
incremental windowing approach, described in Section III to
construct the input for the DL architectures. More in detail,
the resulting dataset consists of 806 k samples for Skype,
1.9 M samples for Teams, 2.5 M samples for Webex, and
1.2 M samples for Zoom.

FIGURE 4. Biflow-length distribution (in terms of the number of packets) for each
app with respect to TCP (a) and UDP (b) protocols. Values on the x-axis are reported
in log scale.

C. EVALUATION PROCEDURE AND METRICS
The evaluation of traffic prediction strategies is conducted
using a robust stratified five-fold cross-validation setup: 80%
of the biflows are allocated for the training/validation set,
with 80% of this subset being the actual training set and 20%
assigned as the validation set; the remaining 20% of biflows
are designated as the test set for evaluation purposes. The
validation set is utilized to effectively implement the early-
stopping technique, which helps prevent overfitting during
training. Consequently, we calculate the average value and
standard deviation of each evaluation metric over the five
folds.
To assess the prediction performance of the binary DIR

traffic parameter, we employ the G-mean metric:

G-mean �
√

ρdw
dir ρ

up
dir (12)

where ρdw
dir � Pr(x̂dir = DW | xdir = DW) and

ρ
up
dir � Pr(x̂dir = UP | xdir = UP), and the variable
xdir represents the sequence of actual DIRs, while the
variable x̂dir represents the predicted DIRs. The terms DW
and UP indicate the downstream and upstream directions,
respectively. The probability of accurately predicting the
DIR of downstream/upstream packets (ρdw

dir /ρ
up
dir) is computed

by dividing the number of correct predictions in a specific
direction by the total number of samples associated with that
true direction.

1310 VOLUME 5, 2024

Conversely, to evaluate the prediction performance of PL
and IAT, we employ the Root Mean Squared Error (RMSE)
metric:

RMSEp �

√√√√√ 1

N̄

N̄B∑
j=1

N̄j−1∑
n=1

[
x̂n+1
p

(
B̄j

) − xn+1
p

(
B̄j

)]2
(13)

with N̄ being the total number of predictions, xn+1
p (B̄j) the

value of the pth traffic parameter (with p ∈ {PL,IAT})
observed for packet n+ 1 from the jth biflow B̄j (of length
N̄j), and x̂n+1

p (B̄j) the corresponding value provided by the
prediction model.
To provide a meaningful reference point for comparison,

we compare the performance of DL models against that of a
packet-level baseline predictor. Specifically, the latter makes
predictions by assuming that the next observation value is
equal to the current observation value: x̂n+1

RLP � xn. We refer
to such a baseline as Repeat-Last-Packet (RLP).
Similarly, for the prediction of traffic aggregates (i.e.,

number of packets and traffic volume), we consider
Repeat-Last-Aggregate (RLA) as a reference base-
line. The RLA predictor forecasts the aggregates of traffic
within a time interval � as equal to the aggregates of traffic
observed during the previous time interval.

D. IMPLEMENTATION DETAILS
For implementing and testing the DL architectures described
in Section III-A we exploit the model provided by
Keras (https://keras.io) Python API running on top
of TensorFlow 2 (https://www.tensorflow.org/). Input
data are formatted in Parquet and optimally managed
via Apache PyArrow (https://arrow.apache.org/). Data
pre- and post-processing have been performed mainly
by means of numpy (https://numpy.org/) and pandas
(https://pandas.pydata.org/) libraries. For the evaluation
metrics reported in Section IV-C, we use the imple-
mentation of scikit-learn (https://scikit-learn.org/).
Finally, the graphical data representation has been obtained
using matplotlib (https://matplotlib.org/) and seaborn
(https://seaborn.pydata.org/) libraries.
To ensure a fair comparison among the various architec-

tures, we set uniform values to all adjustable hyperparameters
related to the training process of the models. We train
all the models for a total of 100 epochs using the Adam
optimizer, with a learning rate of 0.001, and a batch size
of 32. To avoid overfitting, we use a validation-based early-
stopping technique, where we set the patience and min_delta
parameters to 4 and 0.0001, respectively. When using DEEP

SHAP, we used a background set of 500 samples randomly
selected from the training set of the current fold.
To foster the replicability and reproducibility of our

analysis, we have publicly released the code of the DL
architectures leveraged herein, along with pre-processed
data, hyper-parameters setting, and example usages.8

8https://github.com/IdioGuarino/AFTER

V. EXPERIMENTAL EVALUATION
In the following, we first investigate traffic prediction
performance for all apps and activities, attained by different
multitask DL models, with the goal of understanding whether
it is better to train a single model for all apps or a
specific one for each of them (Section V-A). Then, we
delve into the results, investigating per-packet performance
and error distributions (Section V-B). Concerning AI trust-
worthiness, we focus on the prediction of the direction
of the next packet: we explain the model behavior via
DEEP SHAP (Section V-C), and we assess its reliability
via calibration analysis (Section V-D). Next, we deepen
the impact of transport-layer protocols on packet-level
prediction performance (Section V-E). Finally, we analyze
the suitability of the packet-level traffic prediction approach
for forecasting aggregate traffic characteristics (i.e., number
of packets and traffic volume) in a time interval of fixed but
arbitrary duration (Section V-F).

A. DO WE NEED A DEDICATED MODEL FOR EACH APP?
Preliminary results—not reported for brevity—showed that
W = 10 constitutes the best trade-off between the complexity
of the model (growing with W) and the effectiveness of
the prediction. Therefore, we provide an overview of the
performance of the multitask DL models used for predicting
DIR, PL, and IAT by adopting a memory window size
W = 10. Specifically, we evaluate the effect of having one
single overall model for all apps instead of one separate
model for each of them. To this end, Fig. 5 summarizes the
performance of all DL models trained according to different
strategies (i.e., ALL vs. APP) with respect to all the apps
considered. In addition, for each app, we also provide the
performance achieved by the corresponding RLP baseline.
DL models always outperform RLP, especially on Skype:

we observe the largest gap on all traffic parameters (i.e.,
≈ −40% G-mean on DIR, and ≈ +84 B and ≈ +26 ms
RMSE on PL and IAT, respectively). Conversely, we observe
that for the same parameters, the smallest gap is obtained on
Webex (i.e., ≈ −6% G-mean, and ≈ +54 B and ≈ +7 ms
RMSE on PL and IAT, respectively).
On the other hand, looking at the training strategies,

we note that the overall model (ALL) outperforms or
equals per-app models (APP).9 Despite this result may seem
counterintuitive, it is strongly related to the intrinsic nature
of CC apps and, accordingly, to their generated traffic.
Indeed, since different activities (i.e., ACall, VCall, and
Chat) are shared among different CC apps, exploiting a
traffic-prediction model tailored for a given app is likely to
provide slightly degraded performance compared to the ALL
one. On the other hand, using an ALL model has inherent
advantages related to the unnecessity of training, deploying,
and managing multiple models and of having an upstream

9Similar outcomes were also obtained by comparing the ALL and APP
training strategies using well-known ML models—i.e., a Random Forest
Regressor for PL and IAT prediction and a Random Forest Classifier for
DIR prediction–instead of DL models.

VOLUME 5, 2024 1311

GUARINO et al.: EXPLAINABLE DEEP-LEARNING APPROACHES FOR PACKET-LEVEL TRAFFIC PREDICTION

FIGURE 5. Prediction performance of CNN, LSTM, GRU, SeriesNet, and RLP on DIR (a), PL (b), and IAT (c). Results on the left refer to the prediction of traffic generated by
each app regardless of the specific activity. Results on the right refer to Zoom when performing a specific activity (b, d, f)—i.e., Chat, ACall, and VCall. Memory size is set to
W = 10 and both APP and ALL training strategies are considered. The arrow close to y-axis shows the desired trend. Results are in the form avg. ± std. obtained over 5-folds.

traffic classifier to guide the selection of the specific APP
model.
Additionally, by taking into account the prediction of a

specific traffic parameter, we observe that both the examined
strategies achieve ≈ 80% G-mean when predicting DIR
(Fig. 5(a)). Performance on Zoom represents an exception,
showing a G-mean of ≈ 65%. A similar outcome is also
observed for PL prediction (Fig. 5(b)) where Zoom exhibits
a higher RMSE of ≈ +50 B compared to the other apps.
A slightly different—although more stable—performance
picture is evident for IAT prediction (Fig. 5(c)), for which
Skype exhibits the worst RMSE (i.e., ≈ +5 ms than
the other apps) and presents also the highest variability.
Further investigations (not reported for brevity) have shown
that this phenomenon can be attributed to the higher
variability of IATs corresponding to ACall and VCall
activities.
Since the error on DIR has the highest impact on the

use of fine-grained (viz. packet-level) prediction results, we

analyze the performance of the most “problematic” app when
predicting the DIR parameter in more depth. Hence, we
dissect the predictions related to Zoom traffic according to
the specific activity performed by the user (i.e., ACall,
Chat, and VCall) in the right column of Fig. 5.
As depicted in Figs. 5(a)–5(b), the worst DIR and PL

prediction performance is obtained on VCall, where we
observe the lowest G-mean (≈62%) and the greatest RMSE
(≈280 B), respectively. An opposite trend can be observed
when moving to the IAT prediction (Fig. 5(c)) which
exhibits an RMSE on VCall less than half of that on Chat
and 2.5× lower than that on ACall. Also in this case, all DL
models always outperform RLP, especially for the prediction
of DIR and IAT on ACall (i.e., ≈ −46% G-mean and
≈ +60 ms RMSE, respectively) and of PL on Chat (i.e.,
≈ +94 B RMSE).

Finally, in examining the influence of the particular
DL architecture utilized, it becomes evident that it has a
minimal impact on the predictive performance, regardless

1312 VOLUME 5, 2024

FIGURE 6. Per-packet index performance in terms of G-mean for DIR and RMSE for PL and IAT of the first 128 packets. Results refer to Teams (a-c) and Webex (d-f) and are in
the format avg ± std obtained over the 5-folds. Horizontal lines report the overall G-mean/RMSE, the G-mean/RMSE of the first 32 packets (G-mean/RMSE2−32), and the
G-mean/RMSE of the remaining ones (G-mean/RMSE33−END) of each biflow.

of whether we consider the entire traffic generated by a
given application or analyze the traffic based on different
activities.10

Despite the comparable performance, the complexity of
the considered architectures varies significantly. We quantify
it with the number of trainable parameters: more trainable
parameters result in a longer training time. CNN is the least
complex architecture with 27.5 K parameters, while GRU,
LSTM, and SeriesNet are significantly more complex and
have +96.1 K (GRU), +135.3 K (LSTM), and +502.3 K
(SeriesNet) more trainable parameters.
Take-home: Training a single model on the entire traffic

of CC apps is sufficient, as there is no significant benefit
in training specialized models for each individual app.
This finding carries significant practical implications as
it eliminates the need for training, deploying, and man-
aging multiple models. Additionally, when examining the
performance of the different apps, we observe that Zoom
poses the hardest challenges for prediction, particularly in
terms of PL and DIR, whereas the other apps demonstrate
better and more consistent performance. Among the Zoom-
related activities, VCall proves to be the most difficult to
predict still in terms of PL and DIR. Finally, despite the
similar performance of the considered DL architectures, they
exhibit considerable differences in terms of computational
complexity, with CNN being the least complex. Consequently,
in the subsequent analyses, we focus on the CNN model
trained on the entire traffic (namely, the ALL variant),
as it represents the best trade-off between complexity and
prediction performance.

10Similar considerations can be drawn also for Skype, Teams, and
Webex whose per-activity performance figures are not shown for the sake
of brevity.

B. DEEPENING TRAFFIC PREDICTION PERFORMANCE
In the following, we delve into the prediction performance
by evaluating:
1) how well traffic parameters can be estimated dur-

ing the initial biflow lifetime (via per-packet-index
performance);

2) how much correct/wrong DIR estimates affect PL and
IAT predictions (via the conditional distributions of
the prediction errors).

1) HOW DOES PREDICTION PERFORMANCE VARY
ALONG A BIFLOW?

We aim to evaluate whether (and how) prediction
performance varies along a biflow. Hence, we provide a
per-packet-index performance analysis, where the evaluated
metrics (i.e., G-mean for DIR and RMSE for PL and IAT)
are computed considering packets at the same position in
biflows, namely sharing the same index or falling within
the same interval of indexes. Specifically, we focus on the
head of the biflows (i.e., the first 128 packets), showing
aggregated performance each 2 packets until the 32nd and
each 8 packets for the remaining segment.

Fig. 6 reports the results for Teams and Webex (Skype
and Zoom show similar patterns, thus, they are omitted
for brevity). For both apps, the analysis witnesses that the
packets from 2 to 32 are harder to be predicted in terms
of PL and IAT. Conversely, predicting their direction is
easier. In fact, the G-mean resulting from the prediction of
the DIR of the packets from 2 to 32 (G-mean2−32) varies
from 79% (Teams) up to 80% (Webex) and is higher
than that observed on the remaining part of the biflow (G-
mean33−END), on average: 78% (Teams) and 70% (Webex).
On the contrary, the prediction error incurred for PL and
IAT on the initial part of the biflows (RMSE2−32) is higher
than the error on the remaining part (RMSE33−END), on

VOLUME 5, 2024 1313

GUARINO et al.: EXPLAINABLE DEEP-LEARNING APPROACHES FOR PACKET-LEVEL TRAFFIC PREDICTION

FIGURE 7. Probability density of prediction error on PL. The probabilities are conditioned to different combinations of (predicted, true) direction predictions, and overall (e.g.,
↑ ↑ represents correct prediction of upstream direction, ↓ ↑ an erroneous prediction of downstream for an actually upstream packet). The number in brackets is the RMSE for the
specific combination, and overall.

FIGURE 8. Probability density of prediction error on IAT. The probabilities are conditioned to different combinations of (predicted, true) direction predictions, and overall (e.g.,
↑ ↑ represents correct prediction of upstream direction, ↓ ↑ an erroneous prediction of downstream for an actually upstream packet). The number in brackets is the RMSE for the
specific combination, and overall.

average: up to +220B for Webex and +42ms for Teams
on PL and IAT, respectively.
Take-home: Consistent discrepancy is found between the

lower prediction capabilities achieved for the beginning part
and the higher capabilities attained for the rest of the biflows,
although being less evident in some cases (e.g., DIR for
Teams).

2) WHAT KIND OF ERRORS DO THE MODELS MAKE?

We aim at characterizing the errors the prediction models
make. Figs. 7 and 8 report the prediction error (x̂n+1

(·) −
xn+1
(·)) associated with PL and IAT, respectively, for all
the apps (grey curves). By construction, negative values
in the distribution are related to under-estimation (i.e., the
prediction is lower than the actual value) for either PL or
IAT, while positive ones report over-estimation (i.e., the
prediction is higher than the actual value).

Overall, the errors span almost the whole theoretical
(−1470, 1470) B range for PL, while they lie in the
range (−198, 196) ms for IAT. However, errors small in
magnitude are extremely more frequent than errors with
high magnitude. In all the cases, the bias of the distribution
is placed around 0 (at a distance always ≤ 9 B and ≤

2 ms for PL and IAT, respectively). For PL prediction,
the RMSE varies between 157 B and 277 B (for Skype
and Zoom, respectively). For IAT prediction, the RMSE
varies between 14 ms and 20 ms (for Skype and Zoom,
respectively).
In order to analyze the relationship between the predictions

on DIR and the other two metrics (PL and IAT),
Figs. 7 and 8 report also the breakdown of the error distri-
bution conditioned on true and predicted DIR, i.e., (x̂n+1

(·) −
xn+1
(·))|x̂dir, xdir. Observing the impact of correct/wrong
predictions of DIR on the error incurred for the other two
metrics, it is evident that when the models make mistakes
in predicting DIR, higher errors are recorded for both PL
and IAT regardless of the specific app.
Specifically, the observed behavior also depends on the

app. Focusing on PL (Fig. 7), while for Skype wrongly
predicting DIR has no remarkable impact on PL, the same
does not apply to the other apps, where over-estimation
of PL is observed, on average. In fact, the observed bias
equals to 119 B (resp. 114 B) for Teams (resp. Zoom) when
(x̂dir, xdir) = (↑,↓) (resp. (x̂dir, xdir) = (↓,↑)). For Webex
the bias is 167 B and 61 B when (x̂dir, xdir) = (↓,↑) and
(x̂dir, xdir) = (↑,↓), respectively.

1314 VOLUME 5, 2024

FIGURE 9. Median importance (in log-scale) of each packet parameter (i.e., DIR, PL, and IAT) on the prediction of DIR for Skype, Teams, Webex, and Zoom. The x-axis reports
the packet index in chronological order, with 0 for the last observed packet, −1 the previous one, and so forth. Each app is separately analyzed according to the (true) direction
of packets, as upstream ((a), (b), (c), and (d)) and downstream ((e), (f), (g), and (h)).

On the other hand, concerning IAT (Fig. 8) remark-
able under-estimation of the parameter is observed when
(x̂dir, xdir) = (↓,↑) for Skype and Teams (−3 ms and
−6 ms, respectively). Interestingly, for Teams if xdir =↓,
when x̂dir =↓ the incurred bias is larger than when x̂dir =↑.
Overall, PL under-estimation is more frequent than over-

estimation for Zoom, Webex, and Teams, while the
opposite holds for Skype. This tendency is confirmed
when restricting the observation to cases where DIR is not
mistaken. On the other hand, when DIR is wrongly predicted,
an inversion in this can take place. On the contrary, the
probability of over-estimating IAT is higher than under-
estimating it for all the apps.
Errors on PL (both over- and under-estimation) larger than

200 B appear in less 25% of the cases for all the apps (less
than 10% of the cases for Skype). Similarly, errors on IAT
with magnitude larger than 10 ms appear for less than 30%
of the cases.
Take-home: The occurrence of under-estimating PL is

more common than over-estimating it for Zoom, Webex, and
Teams, while the opposite trend is observed for Skype.
This pattern remains consistent when considering only cases

where DIR is correctly predicted. However, when DIR is
incorrectly predicted, there is a reversal of this tendency.
Finally, for all the apps, the probability of over-estimating
IAT is higher than under-estimating it.

C. INTERPRETING DIR PREDICTION VIA DEEP SHAP:
HOW DO INPUTS AFFECT DIR PREDICTION?
Herein, relying on DEEP SHAP, we examine the relative
influence of the three traffic parameters—i.e., DIR, PL, and
IAT—extracted from the last W observed packets of each
biflow on the prediction of DIR.
As a result, for each traffic parameter, Fig. 9 depicts the

median importance values across the last 10 packets (since
W = 10) of each biflow that are used to feed the model to
obtain the prediction of the next packet. More in detail, the
figure provides a detailed breakdown of Skype, Teams,
Zoom, and Webex for each packet direction (i.e., upstream
↑ and downstream ↓). As can be seen, for a given traffic
parameter, the importance associated with packets in the
sequence varies according to the predicted direction.
In particular, for almost all apps, all observed input

sequences positively contribute to the prediction when the

VOLUME 5, 2024 1315

GUARINO et al.: EXPLAINABLE DEEP-LEARNING APPROACHES FOR PACKET-LEVEL TRAFFIC PREDICTION

FIGURE 10. Results obtained without occlusion (viz. No-Occ.) are compared with
those obtained by occluding (a) the Least Recent Packet (viz. LRP), (b) the Most
Recent IAT (viz. MRI), (c) the Most Recent DIR and PL (viz. MRDP), and (d) the Most
Recent Packet (viz. MRP) as input to the model. The results refer to the samples
whose DIR was correctly predicted by the CNN model (ALL variant) without occlusion.
Memory size is set to W = 10. The arrow close to the y-axis shows the desired trend.
Results are in the form avg. ± std. obtained over 5-folds.

model correctly predicts the upstream direction (↑, see
Figs. 9(a)–9(d)), with the most recent packets usually having
greater importance. Interestingly, for Teams and Webex,
unlike PL and IAT, the DIR of the last 10 observed packets
always has a negative effect on the prediction of the upstream
direction. At the same time, when we examine DIR and
PL of the last observed packet, we find that it has no
effect or even works against a proper direction prediction
(negative score). This holds especially for Zoom and Teams,
where the last observed packet has a non-negligible negative
importance—which also corresponds to the highest values in
magnitude—suggesting that this generally leads the model
to predict the downstream direction instead of the correct
upstream one.
Conversely, moving to the prediction of downstream

direction (↓, see Figs. 9(h)–9(g)), we notice an opposite
trend, where the DIR and PL of the last packet have
a positive impact on the prediction. Furthermore, their
importance (in terms of magnitude) is significantly greater
than that of the other packets. Based on this observation, we
can infer that the DIR and PL of the last packet lead the
model to accurately predict the downstream direction. Lastly,
it is worth noting that, unlike all other apps, in the case
of Teams, the DIR of all observed packets has a positive
impact on the prediction of the downstream direction of the
next packet.
We conducted an occlusion analysis to quantitatively

assess the above findings. Occlusion analysis is a per-
turbation technique that examines the effect of occluding
certain inputs on the output of DNNs [44]. Accordingly,
we evaluated how the performance of CNN (variant ALL)
varies by occluding different traffic parameters used as model
inputs on samples whose direction is correctly predicted.
To this end Fig. 10 depicts the performance obtained by
occluding:

1) the Least Recent Packet (viz. LRP),
2) the Most Recent IAT (viz. MRI),
3) the Most Recent DIR and PL (viz. MRDP), and
4) the Most Recent Packet (viz. MRP).11

11The occluded traffic parameter has been replaced with the correspond-
ing padding value, i.e., 0 for PL and IAT and 0.5 for DIR.

TABLE 3. ECE, MCE, and CW-ECE related to DIR-prediction when using CNNALL with
a memory size set to W = 10. Results refer to the prediction of traffic generated by
each app, regardless of the specific activity. For each metric, the best and the worst
calibrated apps are highlighted in green and red, respectively. Results are in the form
avg. ± std. obtained over 5-folds.

TABLE 4. ECE, MCE, and CW-ECE related to DIR-prediction when using CNNALL with
a memory size set to W = 10. Results refer to the prediction of traffic generated by
each activity, regardless of the app activity. For each metric, the best and the worst
calibrated activities are highlighted in green and red, respectively. Results are in the
form avg. ± std. obtained over 5-folds.

These occlusion choices reflect the importance of the input
parameters shown in Fig. 9.

We note that occluding the parameters of the least recent
packet results in a slight worsening of performance (i.e.,
≤ 5.4% of G-mean). In contrast, partially or completely
occluding the parameters of the most recent packet results
in a significant worsening (i.e., ≤ 44% of G-mean). Further
focusing on the traffic parameters of the most recent packet,
we note that simultaneously occluding DIR and PL results
in a greater performance loss (i.e., ≤ 43% of G-mean for
Skype) than occluding the sole IAT (i.e., ≤ 12% of G-
mean for Zoom). The aforementioned findings are consistent
with that shown in Fig. 9, where it can be seen that DIR
and PL of the most recent packet have a similar impact
on the predicted DIR, and their importance, in magnitude,
is considerably greater than that of IAT. Conversely, the
features of the least recent packet have a minor impact on
the model outcome.
Take-home: The prediction of the direction of the next

packet, based on the observation of the last 10 most recent
packets, is mostly influenced by the 3 ∼ 4 more recent
packets observed. Moreover, the direction and transport-
layer payload length of the last observed packet can be
either highly beneficial (downstream case) or detrimental
(upstream case) to properly predict the direction of the next
packet.

D. CALIBRATION ANALYSIS: HOW RELIABLE IS THE
PREDICTION OF DIR?
We now focus on assessing the reliability of the model on
the prediction of DIR in terms of the calibration metrics
defined in Section V-D, namely the (i) ECE, (ii) MCE and
(iii) CW-ECE. To this end, in Tabs. 3 and 4, we report the
above values (in percentage form) obtained by considering
the app and the activity performed by the user, respectively.
Focusing on the app, we note that in the case of Webex,

the model has the best calibration when used to predict the

1316 VOLUME 5, 2024

FIGURE 11. Reliability diagrams related to DIR-prediction task for Skype(a), Teams(b), Webex(c), and Zoom(d) when using the ALL model. As the DIR-prediction task represents
a binary classification problem, the confidence interval varies in the range [50%, 100%]. Confidence is divided into 10 bins. The number at the bottom of each bar reports the
percentage of samples within the corresponding bin.

FIGURE 12. Reliability diagrams related to DIR-prediction task for ACall(a), Chat(b), VCall(c) when using the ALL model. As the DIR-prediction task represents a binary
classification problem, the confidence interval varies in the range [0.5, 1]. Confidence is divided into 10 bins. The number at the bottom of each bar reports the percentage of
samples within the corresponding bin.

direction of the next packet with respect to all the metrics.
This result is in agreement with Fig. 5(a) in which it is
shown that the model achieves the best performance in the
case of Webex (i.e., ≈ 80% of G-mean). Conversely, the
model is less calibrated, particularly in the case of Teams
for which the MCE is significantly higher (up to 6×).
Also, it is interesting to note that although the prediction
performance associated with Teams is significantly better
than that obtained for Zoom (see Fig. 5), in the former case,
the model is less calibrated, especially in terms of MCE.
Finally, moving to the activity, we note that while for

ACall and Chat the model has a good calibration (except
for Chat in terms of MCE), this does not hold for VCall
to which corresponds an ECE/CW–ECE and an MCE that
are 2× and 7× higher, respectively.
Then, to visualize in detail how Pr{x̂n+1

dir = xn+1
dir | p̂} varies

with p̂, in Figs. 11–12, we show the accuracy as a function
of the confidence by means of a variant of the reliability

diagrams described in Section III. Therein, the difference
p̂−Pr{x̂n+1

dir = xn+1
dir | p̂} is reported on the y-axis: a perfectly-

calibrated classifier implies a null difference on all the bins,
whereas an over-confident (resp. under-confident) model is
associated to a positive (resp. negative) difference.
Looking at the results obtained per app, we note that the

samples are uniformly distributed across the bins. Moreover,
as highlighted in Figs. 11(a) and 11(c), for Skype and
Webex we observe a slight overall over-confidence and a
near-ideal behavior, respectively. In contrast, referring to
Figs. 11(b) and 11(d), in the case of Teams and Zoom we
observe a more pronounced over- and under-confidence that
varies with confidence. Specifically, for Teams, we observe
under-confident (resp. over-confident) behavior, especially
when the confidence ranges in 60 − 75% (90 − 100%). On
the other hand, for Zoom, we observe a trend that indicates
that the model is more over-confident the more confidence
with which it makes predictions. This means that increased

VOLUME 5, 2024 1317

GUARINO et al.: EXPLAINABLE DEEP-LEARNING APPROACHES FOR PACKET-LEVEL TRAFFIC PREDICTION

FIGURE 13. Reliability diagrams related to DIR-prediction task for Webex (a, c) and Zoom (b, d) when using the ALL model and according to the correct DIR prediction
(↑=upstream, ↓=downstream). As the DIR-prediction task represents a binary classification problem, the confidence interval varies in the range [50%, 100%]. Confidence is
divided into 10 bins. The number under each bar reports the percentage of samples within the corresponding bin.

confidence does not correspond to increased accuracy. To
deepen this finding, in Figs. 13, we present a similar analysis
for Webex and Zoom, distinguishing based on the true DIR.
As shown, the calibration of the analyzed apps varies by

direction. Specifically, we observe a slight over-confidence
for the downstream direction (i.e., ↓) for Webex and a
slight under-confidence for Zoom. This especially holds for
samples whose confidence levels are in the range 80 − 85%
range for Webex and in the range 60 − 80% for Zoom.
This corresponds to a gap of up to 7% between the expected
confidence and the corresponding accuracy. Conversely, in
the upstream direction (i.e., ↑), both Webex and Zoom show
a trend where the predictor becomes more over-confident
as its confidence level increases. This trend is particularly
noticeable when the confidence level is ≥ 90% for Webex,
and ≥ 5% for Zoom. In such cases, the gap between the
expected confidence level and the accuracy is ≥ 10%. It is
worth noting that while this behavior affects only 15% of
Webex samples, it affects 66% of Zoom samples. Based
on these findings, we deduce that the poor performance
in predicting DIR for Zoom (cf. Fig. 5a) is mainly due
to inaccurate prediction of the upstream direction. This is
further supported by the fact that the recall rate, not shown
for brevity, is only about ≈ 55% for the upstream direction,
while it is ≈ 80% for the downstream direction.

Moving to the calibration results related to the specific
activity, for ACall and VCall (see Figs. 12(a) and 12(c)),
the related prediction tasks present the best and worst
calibration, respectively. We note that while for ACall the
confidence of each bin is very close to the corresponding

accuracy (close-to-zero difference), for VCall the model is
particularly under-confident and over-confident with respect
to the samples falling in bins 2 − 6 and 8 − 10, respectively.
Finally, for Chat (see Fig. 12(b)), we note that most of
the samples (53%) fall in the last bin. This indicates an
optimistic behavior of the model in the presence of Chat
traffic that does not affect its calibration.
Take-home: Generally, the predictor exhibits good calibra-

tion, i.e., the confidence level associated with the predictions
reflects its reliability. The level of miscalibration is typically
< 2%, with the highest level of over-confidence observed
in the case of Zoom, where it still remains below 10%. In
addition, for Zoom, when analyzing the calibration w.r.t. the
upstream direction we notice that as the confidence level
increases, the predictor becomes more over-confident. This
results in a gap ≥ 10% between the expected confidence
level and the actual accuracy, which affects ≈ 66% of its
samples. This is related to the poor performance achieved
for DIR prediction shown in Section V-A.

E. DO WE NEED A DEDICATED MODEL FOR TCP AND
UDP PROTOCOLS?
We have previously shown in Section V-A that the CNN
architecture achieves the best trade-off between performance
and computational complexity when trained on all apps (ALL
strategy). Additionally, Section IV revealed that CC apps uti-
lize both TCP and UDP protocols in their operations. Indeed,
while they tend to establish numerous TCP connections (viz.
biflows), the majority of data (in terms of both packets
and volume) are transmitted through UDP biflows. This is

1318 VOLUME 5, 2024

FIGURE 14. Prediction performance of CNN and RLP on DIR, PL, and IAT w.r.t. UDP
and TCP protocols. For CNN, the results obtained by utilizing the ALL training strategy
are compared with those achieved by using the PROTO strategy. Results refer to the
prediction of traffic generated by all apps with a memory W = 10. Results are in the
form avg. ± std. obtained over 5-folds.

generally because TCP is mainly used for various control
and data management purposes, while UDP handles real-time
communications related to audio or video traffic in the case
of CC apps, which require low latency and fast transmission
(cf. Fig. 3). Accordingly, here we investigate the benefits
of having a separate model for each transport protocol (ref.
PROTO strategy) against employing a single model to handle
both TCP and UDP traffic (ref. ALL strategy). In Fig. 14,
we present the performance results obtained by these models
for each app, distinguishing between specific protocols and
training strategies. For the sake of completeness, we also
include the breakdown of performance achieved by the RLP
predictor. Overall, our results show that the effectiveness of
the two strategies depends on the app and the protocol: while
for UDP traffic, the performance is unaffected by the training
strategy, for TCP traffic training a specific model for the
protocol results in a considerable performance improvement
for all prediction tasks. In particular, the improvement on
DIR prediction is up to +5% of G-mean, and up to ≈ −70 B
and ≈ −11 ms of RMSE for PL and IAT, respectively.
By breaking results down on specific apps and protocols,

we observe that prediction of DIR performs better on TCP

traffic for nearly all apps except Webex. However, this trend
reverses when predicting PL and IAT, where models for TCP
traffic exhibit poorer performance. Furthermore, our results
reveal that CNNs consistently outperform the RLP predictor
for all predicted parameters, irrespective of the protocol and
training strategy. The difference is particularly pronounced
for TCP traffic generated by Skype and Teams, with CNNs
outperforming the RLP predictor by approximately ≈ +40%
of G-mean for DIR and ≈ −240 B and ≈ −60 ms of
RMSE for PL and IAT, respectively. Similar trends are
also observed for Webex and Zoom, where the difference
between CNNs and the RLP predictor is up to +27% for
DIR and up to −120 B and −40 ms on PL and IAT,
respectively. When analyzing UDP traffic, the performance
gap between CNNs and the RLP predictor is still evident
but less prominent. For Skype, CNN models outperform
the RLP predictor by ≈ +40% for DIR, ≈ −50 B for PL,
and ≈ −20 ms for IAT.
Take-home: The effectiveness of a specific training strategy

(i.e., ALL and PROTO) varies depending on the transport-
level protocol: for all apps, training a dedicated model for
TCP traffic (i.e., the PROTO strategy) generally leads to
notable improvements in performance across all prediction
tasks. However, the same approach does not show similar
benefits for UDP traffic, as the training strategy does
not have a noticeable impact. Additionally, the prediction
accuracy for DIR is generally higher for TCP compared to
UDP traffic, while the reverse trend is noticed for PL and
IAT predictions.

F. IS PACKET-LEVEL PREDICTION SUITABLE TO
PREDICT TRAFFIC AGGREGATES?
Herein, we analyze the suitability of packet-level predictors
to forecast aggregate traffic (i.e., the number of packets and
the traffic volume) in a given time interval �. Therefore,
applying the methodology outlined in Section V-F, we
compare the performance of a CNN trained leveraging the
PROTO strategy (i.e., two dedicated models designed for
TCP and UDP traffic) against a simple RLA predictor.
Fig. 15 illustrates the performance—in terms of RMSE—

for each protocol when predicting the number of packets
(viz. PKTs∗) and the traffic volume (viz. VOL∗), for
both upstream and downstream directions. The performance
is reported for different time horizons, namely � ∈
{5, 10, 20, 30, 40, 50} ms.

At a high level, we observe that the error increases with
�. The greater unpredictability of traffic over extended
time intervals could be attributed to its greater variance
and uncertainty [45] and also to the growth of prediction
errors accumulated through the recursive procedure adopted.
This variability is particularly evident in VoIP traffic,
encompassing both audio and video, as it tends to produce
micro-bursts that are difficult to predict—i.e., a notable surge
in data transmission within a brief duration, followed by
relatively quieter periods.

VOLUME 5, 2024 1319

GUARINO et al.: EXPLAINABLE DEEP-LEARNING APPROACHES FOR PACKET-LEVEL TRAFFIC PREDICTION

FIGURE 15. Prediction performance (RMSE) of CNN trained on TCP (left column) and UDP (right column) traffic for VOLup (a, b), VOLdw (c, d), PKTsup (e, f), and PKTsdw (g, h) as
� ∈ {5, 10, 20, 30, 40, 50} ms. CNN performance is compared against RLA predictor. Results refer to the prediction of traffic generated by all apps with a memory W = 10.

We also note that this error varies depending on three
factors:

1) traffic direction,
2) protocol, and
3) app considered.

Taking a closer look, we observe that the errors in the
upstream direction increase gradually and tend to stay within
a relatively narrow range (averaging around ≈ 1.3 KB and
≈ 1 packet) for most applications and protocols, except for
Webex on UDP traffic. In contrast, the downstream direction
shows a more abrupt and highly-variable change, with errors
reaching higher average levels (up to ≈ 3 KB and ≈ 4
packets).

When analyzing the performance on TCP traffic (see left
column of Fig. 15), CNN proves to be a superior choice
for predicting all features compared to RLA, regardless of
the prediction interval �. This advantage is particularly
evident when considering the traffic direction for Skype,
Zoom, and Teams. Specifically, for Skype (resp. Zoom),
the mean RMSE of CNN is at least ≈ 23% (resp. ≈
24%) and ≈ 23% (resp. ≈ 27%) lower for VOLup and
PKTsup, respectively. Similarly, for Teams, the difference
is at least 8% and 27% lower for VOLdw and PKTsdw,
respectively.
Interestingly, the only scenario where this trend is reversed

is observed on Skype in the downstream direction when
� ≥ 30 ms (see Figs. 15(c) and 15(g)). In such cases, the

1320 VOLUME 5, 2024

RMSE of the CNN on VOLdw and PKTsdw is up to +45%
and +32% higher than that of RLA.
However, when moving on UDP traffic (see right column

of Fig. 15), no consistently predominant approach can be
identified. Nonetheless, the results obtained indicate that
CNN is the most favorable option for the majority of
scenarios, particularly when it comes to predicting the
number of packets.
Specifically, compared to RLA, we find that CNN provides

a more accurate packet number estimation for applications
such as Skype, Teams, and Webex in the upstream
direction (Fig. 15(f)), as well as for Skype and Zoom in the
opposite direction (Fig. 15(h)). However, it is important to
note that for certain applications (e.g., Teams and Zoom in
the downstream and upstream directions, respectively), while
CNN outperforms the RLA predictor on short prediction
intervals (i.e., � ≤ 20 ms), the trend reverses on longer ones.

Lastly, when examining the results on traffic volumes (see
Figs. 15(b) and 15(d)), we notice a more diverse pattern
between CNN and RLA methods. In the case of Teams
(Skype), the CNN consistently surpasses the RLA approach
exhibiting a reduced error ranging from −4% (−10%) to
−18% (−24%) on the upstream (downstream) direction.
In the other scenarios, the CNN remains the superior

option for predicting aggregate traffic within relatively short
time intervals (i.e., � ≤ 30ms). However, CNN is less
effective over longer time horizons. Nonetheless, it is worth
noting that having a more accurate predictor over short
time intervals facilitates constant monitoring of network
performance and real-time optimization. These aspects are
essential when dealing with CC apps, especially when these
are used by the user to perform VoIP calls (i.e., audio and
video), which require a good level of QoS and at the same
time tend to cause intense activity on the network.
Take-home: The proposed approach outperforms RLA in

most scenarios, especially when used to predict aggregate
traffic over relatively short time intervals (e.g., � ≤ 30 ms).
Within this range, the proposed approach yields an average
error of up to ≈ 1.3 KB (≈ 1.6 KB) and 1 (2) packet(s)
on TCP (UDP) traffic protocol. Overall, the error is limited
to ≈ 3 KB (≈ 3.5 KB) and 2 (4) packets on TCP
(UDP). These findings are significant as they indicate that
the proposed approach represents a first step towards the
development of more responsive networks. Indeed, accurate
short-term predictions facilitate real-time optimization of
network capacity, enabling effective bandwidth adaptation
and resource allocation as needed. This has the potential to
enhance the network’s performance and responsiveness in
dynamic and ever-changing traffic conditions.
In particular, we analyzed the calibration breaking down

in the correctly predicted direction.

VI. DISCUSSION
The experimental analysis highlights some interesting take-
aways, summarized and discussed in the broader spectrum of
existing literature. First, our results have shown that a CNN

trained on the whole traffic of all apps represents a better
trade-off between prediction performance and complexity
compared to per-app models. Architecture-wise, the CNN
results align with those reported in [9], which however refer
to a larger and different set of mobile apps. Conversely,
regarding the training strategy, negligible performance gains
originating from the design of per-app predictors have been
already found in the context of model-based predictors
(i.e., multimodal Markov-chains [46]) and confirmed herein.
Then, focusing on the different transport-layer protocols
used by the apps under analysis, we found that training a
dedicated model for TCP traffic generally leads to notable
improvements in traffic-prediction performance across all the
tasks considered.
Going deeper, the results show a variety of behaviors

for the different apps, with Zoom being the hardest to
predict, especially regarding the direction (65% G-mean)
and the payload length (260 B RMSE) of the next packet.
Such behavior was preliminarily observed also in [9], where
the predictability of apps including video streaming (i.e.,
belonging to the Mirage-VIDEO dataset [9]) was shown to
be lower with respect to non-video apps (i.e., belonging
to the Mirage-19 dataset [43]). Within the former set,
the performance of Zoom was worse also in comparison
to other apps accounting for video dissemination (e.g.,
Netflix and PrimeVideo achieving ≥ 90% G-mean on
prediction of direction). Conversely, regarding the activities
that can be performed by these apps, video-call is the
hardest one for what concerns the prediction of the direction
and the payload length, and the easiest concerning timing
prediction. Interestingly, video-call is the most identifi-
able activity when performing traffic classification, see,
e.g., [42].

Overall, the predictor results very well-calibrated when
predicting DIR. Therefore the confidence reported with
the prediction is actually representative of its reliability
(generally < 2% miscalibration, with the worst-case of
< 10% overconfidence for Zoom only). The fine-grained
interpretation of the DL models highlights that using
a limited memory of previously observed packets, the
predictions are mainly influenced by the most recent packets.
A dominating short-term evolution behavior of biflows was
also preliminarily observed thanks to the proficient use of
higher-order Markov Chains with a very limited memory
as predictors [22]. Furthermore, in most cases, the last
observed packet can be either very informative (for Skype
and Zoom downstream) or confounding for the model (for
Zoom upstream). These results point to possible applications
and direction-specific improvements, following a per-sample
inspection of misleading inputs.
Finally, taking advantage of the benefits offered by the

fine granularity prediction approach (i.e., at packet level), we
made a first attempt to solve coarser granularity prediction
problems (e.g., to predict traffic volume and number of
packets in a given time interval). While different sophis-
ticated design solutions for coarser-granularity prediction

VOLUME 5, 2024 1321

GUARINO et al.: EXPLAINABLE DEEP-LEARNING APPROACHES FOR PACKET-LEVEL TRAFFIC PREDICTION

exist—e.g., [21]—the flexible-granularity property of our
approach represents a novel aspect of this work. Our results
show that performance varies depending on several factors
such as the transport-layer protocol, traffic direction, and the
app considered. The best results are obtained for Webex on
TCP—with an average error of up to 0.5 KB (1.8 KB) and
≈ 1 (≈ 2) packets in the upstream (downstream) direction—
and for Skype on UDP—with an average error of up to
0.5 KB (1 KB) and ≈ 1 (≈ 2) packets in the upstream
(downstream) direction.

VII. CONCLUSION AND FUTURE DIRECTIONS
We tackled packet-level traffic prediction via Deep Learning
architectures (a CNN, a GRU, an LSTM, and a SeriesNet)
using the publicly released MIRAGE-COVID-CCMA-2022
dataset as a valuable test bench. We employed XAI
approaches (i.e., DEEP SHAP) to contrast the black-box
nature of these models and obtain actionable insights on the
importance of specific subsets of input data and evaluated
the reliability of predicting DIR (via a calibration analysis).
Third, we have identified the impact of employing different
training strategies on the design of predictors to assess the
actual need for multiple model training, deployment, and
management.
Finally, taking advantage of the benefits offered by the

fine granularity prediction approach (i.e., at packet-level), we
made a first attempt to solve coarser granularity prediction
problems (e.g., to predict traffic volume and number of
packets in a given time interval). Our results showed that
performance varies depending on several factors such as
the transport layer protocol, traffic direction, and the app
considered.
Future directions will include: (i) interpretability analysis

for payload length and inter-arrival and general use of XAI
toward improvement of multitask predictors, (ii) design of a
more advanced approach to predict traffic aggregates from
packet-level predictions, (iii) lifelong learning to cope with
concept drift due to app aging, and (iv) federated-learning
exploiting multiple vantage points (also including different
stakeholders and institutions).

ACKNOWLEDGMENT
This manuscript reflects only the authors’ views and opinions
and the Ministry cannot be considered responsible for them.

REFERENCES
[1] (Sandvine, Waterloo, ON, USA). The Global Internet Phenomena

Report COVID-19 Spotlight. Jan. 2023. [Online]. Available: https:
//www.sandvine.com/hubfs/Sandvine_Redesign_2019/Downloads/
2020/Phenomena/COVIDInternetPhenomenaReport20200507.pdf

[2] A. Feldmann et al., “The lockdown effect: Implications of the COVID-
19 pandemic on Internet traffic,” in Proc. ACM Internet Meas. Conf.
(IMC), 2020, pp. 1–18.

[3] M. Candela, V. Luconi, and A. Vecchio, “Impact of the COVID-19
pandemic on the Internet latency: A large-scale study,” Comput. Netw.,
vol. 182, Dec. 2020, Art. no. 107495.

[4] I. Guarino, G. Aceto, D. Ciuonzo, A. Montieri, V. Persico, and
A. Pescapé, “Characterizing and modeling traffic of communication
and collaboration apps bloomed with COVID-19 outbreak,” in Proc.
IEEE 6th Int. Forum Res. Technol. Soc. Ind. (RTSI), 2021,
pp. 400–405.

[5] L. Grote, I. Kunze, C. Sander, and K. Wehrle, “Instant messaging
meets video conferencing: Studying the performance of IM video
calls,” in Proc. Netw. Traffic Meas. Anal. Conf. (TMA), 2023, pp. 1–10.

[6] L. Velasco et al., “A control and management architecture supporting
autonomic NFV services,” Photonic Netw. Commun., vol. 37, no. 1,
pp. 24–37, 2019.

[7] W. Jiang, “Cellular traffic prediction with machine learn-
ing: A survey,” Expert Syst. Appl., vol. 201, Sep. 2022,
Art. no. 117163.

[8] G. O. Ferreira, C. Ravazzi, F. Dabbene, G. C. Calafiore, and M. Fiore,
“Forecasting network traffic: A survey and tutorial with open-
source comparative evaluation,” IEEE Access, vol. 11, pp. 6018–6044,
2023.

[9] A. Montieri, G. Bovenzi, G. Aceto, D. Ciuonzo, V. Persico, and
A. Pescapè, “Packet-level prediction of mobile-app traffic using
multitask deep learning,” Comput. Netw., vol. 200, Dec. 2021,
Art. no. 108529.

[10] I. Guarino, G. Aceto, D. Ciuonzo, A. Montieri, V. Persico, and
A. Pescapé, “Fine-grained traffic prediction of communication-
and-collaboration apps via deep-learning: A first look at
explainability,” in Proc. IEEE Int. Conf. Commun. (ICC), 2023,
pp. 1–6.

[11] A. Dainotti, A. Pescapé, P. S. Rossi, F. Palmieri, and G. Ventre,
“Internet traffic modeling by means of hidden Markov mod-
els,” Comput. Netw., vol. 52, no. 14, pp. 2645–2662, 2008.

[12] C. Katris and S. Daskalaki, “Comparing forecasting approaches for
Internet traffic,” Expert Syst. Appl., vol. 42, no. 21, pp. 8172–8183,
2015.

[13] T. P. Oliveira, J. S. Barbar, and A. S. Soares, “Computer network
traffic prediction: A comparison between traditional and deep learning
neural networks,” Int. J. Big Data Intell., vol. 3, no. 1, pp. 28–37,
2016.

[14] S. Tanwir, D. Nayak, and H. Perros, “Modeling 3D video traffic
using a Markov modulated gamma process,” in Proc. IEEE Int. Conf.
Comput. Netw. Commun. (ICNC), 2016, pp. 1–6.

[15] C. Huang, C.-T. Chiang, and Q. Li, “A study of deep learning networks
on mobile traffic forecasting,” in Proc. IEEE 28th Annu. Int. Symp.
Pers. Indoor, Mobile Radio Commun. (PIMRC), 2017, pp. 1–6.

[16] A. Kalampogia and P. Koutsakis, “H.264 and H.265 video bandwidth
prediction,” IEEE Trans. Multimedia, vol. 20, no. 1, pp. 171–182,
Jan. 2018.

[17] N. Ramakrishnan and T. Soni, “Network traffic prediction using
recurrent neural networks,” in Proc. 17th IEEE Int. Conf. Mach. Learn.
Appl. (ICMLA), 2018, pp. 187–193.

[18] Y. Hua, Z. Zhao, R. Li, X. Chen, Z. Liu, and H. Zhang, “Deep learning
with long short-term memory for time series prediction,” IEEE
Wireless Commun. Mag., vol. 57, no. 6, pp. 114–119,
Jun. 2019.

[19] Y. Huo, Y. Yan, D. Du, Z. Wang, Y. Zhang, and Y. Yang, “Long-
term span traffic prediction model based on STL decomposition and
LSTM,” in Proc. 20th IEEE Asia-Pacific Netw. Oper. Manag. Symp.
(APNOMS), 2019, pp. 1–4.

[20] C. Zhang, M. Fiore, and P. Patras, “Multi-Service mobile traffic
forecasting via convolutional long short-term memories,” in Proc.
IEEE Int. Symp. Meas. Netw., 2019, pp. 1–6.

[21] Q. He, A. Moayyedi, G. Dán, G. P. Koudouridis, and P. Tengkvist,
“A meta-learning scheme for adaptive short-term network traf-
fic prediction,” IEEE J. Sel. Areas Commun., vol. 38, no. 10,
pp. 2271–2283, Oct. 2020.

[22] G. Aceto, G. Bovenzi, D. Ciuonzo, A. Montieri, V. Persico, and
A. Pescapé, “Characterization and prediction of mobile-app traffic
using Markov modeling,” IEEE Trans. Netw. Service Manag., vol. 18,
no. 1, pp. 907–925, Mar. 2021.

[23] S. Saha, A. Haque, and G. Sidebottom, “Deep sequence modeling for
anomalous ISP traffic prediction,” in Proc. IEEE Int. Conf. Commun.,
2022, pp. 5439–5444.

[24] Y. Fang, S. Ergüt, and P. Patras, “SDGNet: A handover-aware spa-
tiotemporal graph neural network for mobile traffic forecasting,” IEEE
Commun. Lett., vol. 26, no. 3, pp. 582–586, Mar. 2022.

1322 VOLUME 5, 2024

[25] K. Amarasinghe, K. Kenney, and M. Manic, “Toward explainable
deep neural network based anomaly detection,” in Proc. IEEE 11th
Int. Conf. Human Syst. Interact. (HSI), 2018, pp. 311–317.

[26] A. Dethise, M. Canini, and S. Kandula, “Cracking open the black
box: What observations can tell us about reinforcement learning
agents,” in Proc. ACM Workshop Netw. Meets AI ML (NetAI), 2019,
pp. 29–36.

[27] A. Morichetta, P. Casas, and M. Mellia, “EXPLAIN-IT: Towards
explainable AI for unsupervised network traffic analysis,” in Proc. 3rd
ACM CoNEXT Workshop Big DAta, Mach. Learn. Artif. Intell. Data
Commun. Netw. (Big-DAMA), 2019, pp. 22–28.

[28] S. Rezaei, B. Kroencke, and X. Liu, “Large-scale mobile app
identification using deep learning,” IEEE Access, vol. 8, pp. 348–362,
2020.

[29] C. Beliard, A. Finamore, and D. Rossi, “Opening the deep pandora
box: Explainable traffic classification,” in Proc. IEEE Conf. Comput.
Commun. Workshops (INFOCOM WKSHPS), 2020, pp. 1292–1293.

[30] X. Wang, S. Chen, and J. Su, “Real network traffic collection and deep
learning for mobile app identification,” Hindawi Wireless Commun.
Mobile Comput., vol. 2020, Feb. 2020, Art. no. 4707909.

[31] G. Aceto, D. Ciuonzo, A. Montieri, and A. Pescapé, “DISTILLER:
Encrypted traffic classification via multimodal multitask deep learn-
ing,” J. Netw. Comput. Appl., vol. 183, Jun. 2021, Art. no. 102985.

[32] I. Akbari et al., “A look behind the curtain: Traffic classification in an
increasingly encrypted web,” Proc. ACM Meas. Anal. Comput. Syst.
(POMACS), vol. 5, no. 1, pp. 1–26, 2021.

[33] A. Nascita, A. Montieri, G. Aceto, D. Ciuonzo, V. Persico, and
A. Pescapé, “XAI meets mobile traffic classification: Understanding
and improving multimodal deep learning architectures,” IEEE Trans.
Netw. Service Manag., vol. 18, no. 4, pp. 4225–4246, Dec. 2021.

[34] A. M. Sadeghzadeh, S. Shiravi, and R. Jalili, “Adversarial network
traffic: Towards evaluating the robustness of deep-learning-based
network traffic classification,” IEEE Trans. Netw. Service Manag.,
vol. 18, no. 2, pp. 1962–1976, Jun. 2021.

[35] K. Fauvel, A. Finamore, L. Yang, F. Chen, and D. Rossi, “A
lightweight, efficient and explainable-by-design convolutional neural
network for Internet traffic classification,” in Proc. ACM 29th SIGKDD
Conf. Knowl. Discov. Data Min., 2023, pp. 4013–4023.

[36] T. Zhang, H. Qiu, M. Mellia, Y. Li, H. Li, and K. Xu, “Interpreting
AI for networking: Where we are and where we are going,” IEEE
Commun. Mag., vol. 60, no. 2, pp. 25–31, Feb. 2022.

[37] X. Wang, S. Chen, and J. Su, “Automatic mobile app identification
from encrypted traffic with hybrid neural networks,” IEEE Access,
vol. 8, pp. 182065–182077, 2020.

[38] K. MacMillan, T. Mangla, J. Saxon, and N. Feamster, “Measuring the
performance and network utilization of popular video conferencing
applications,” in Proc. 21st ACM Internet Meas. Conf. (IMC), New
York, NY, USA, 2021, pp. 229–244.

[39] S. M. Lundberg and S.-I. Lee, “A unified approach to interpreting
model predictions,” in Proc. 31st Int. Conf. Neural Inf. Process. Syst.,
2017, pp. 4765–4774.

[40] M. Kull, M. P. Nieto, M. Kängsepp, T. S. Filho, H. Song, and P. Flach,
“Beyond temperature scaling: Obtaining well-calibrated multiclass
probabilities with Dirichlet calibration,” in Proc. Adv. Neural Inf.
Process. Syst., vol. 32, 2019, pp. 1–11.

[41] J. Mukhoti, V. Kulharia, A. Sanyal, S. Golodetz, P. H. Torr,
and P. K. Dokania, “Calibrating deep neural networks using focal
loss,” in Proc. 34th Conf. Neural Inf. Process. Syst. (NeurIPS), 2020,
pp. 15288–15299.

[42] I. Guarino, G. Aceto, D. Ciuonzo, A. Montieri, V. Persico, and
A. Pescapé, “Classification of communication and collaboration
apps via advanced deep-learning approaches,” in Proc. IEEE 26th
Int. Workshop Comput. Aided Model. Design Commun. Links Netw.
(CAMAD), 2021, pp. 1–6.

[43] G. Aceto, D. Ciuonzo, A. Montieri, V. Persico, and A. Pescapé,
“MIRAGE: Mobile-app traffic capture and ground-truth cre-
ation,” in Proc. IEEE 4th Int. Conf. Comput., Commun. Security
(ICCCS), 2019, pp. 1–8.

[44] A. Nascita, F. Cerasuolo, D. Di Monda, J. T. A. Garcia, A. Montieri,
and A. Pescapè, “Machine and deep learning approaches for IoT attack
classification,” in Proc. IEEE Conf. Comput. Commun. Workshops
(INFOCOM WKSHPS), 2022, pp. 1–6.

[45] C. Bergmeir and J. M. Benítez, “On the use of cross-validation for
time series predictor evaluation,” Inf. Sci., vol. 191, pp. 192–213,
May 2012.

[46] I. Guarino, A. Nascita, G. Aceto, and A. Pescapè, “Mobile network
traffic prediction using high order Markov chains trained at multiple
granularity,” in Proc. IEEE 6th Int. Forum Res. Technol. Soc. Ind.
(RTSI), 2021, pp. 394–399.

IDIO GUARINO (Graduate Student Member, IEEE)
received the master’s degree in computer engi-
neering from the University of Napoli Federico
II in July 2020, defending a thesis on the
modeling and prediction of traffic generated by
mobile applications using Markovian approaches.
He is currently pursuing the Ph.D. degree with
the Department of Electrical Engineering and
Information Technology, University of Napoli
Federico II. He currently collaborates with mem-
bers of the Traffic Research Group with the

University of Naples Federico II, which carries out its activities in the
area of computer networks. In detail, his work focuses on the analysis
of network traffic, aimed at the definition of innovative methodologies,
based on artificial intelligence, to support the classification and prediction
of network traffic.

GIUSEPPE ACETO received the Ph.D. degree
in telecommunication engineering from the
University of Napoli Federico II, where he is an
Associate Professor. His work falls in monitoring
of network performance and security (focusing on
censorship) both in traditional and SDN network
environments. He is also working on bioinformat-
ics and ICTs applied to health. He is the recipient
of the Best Paper Awards at IEEE ISCC 2010
and IEEE ICCCS 2019, the Computer Networks
2020 Best Paper Award, and the 2018 Best Journal
Paper Award by IEEE CSIM.

DOMENICO CIUONZO (Senior Member, IEEE)
received the Ph.D. degree from the University
of Campania L. Vanvitelli. He is a Tenure-Track
Professor with the University of Napoli Federico
II. His research interests are data fusion, network
analytics, IoT, and AI. He is the recipient of two
Paper awards (IEEE ICCCS 2019 and Elsevier
ComNet 2020), the 2019 IEEE AESS Exceptional
Service Award, the 2020 IEEE Sensors Council
Early-Career Technical Achievement Award, and
the 2021 IEEE AESS Early-Career Award.

ANTONIO MONTIERI received the M.S. degree
in computer engineering and the Ph.D. degree
in information technology and electrical engi-
neering from the University of Napoli Federico
II in July 2015 and April 2020, respec-
tively, where he is an Assistant Professor with
the Department of Electrical Engineering and
Information Technology. He has coauthored more
than 40 papers in international journals and con-
ference proceedings. His work concerns network
measurements, (encrypted and mobile) traffic clas-

sification, traffic modeling and prediction, and monitoring of cloud network
performance. He is the recipient of the Computer Networks 2020 Best Paper
Award, the Best Paper Award at IEEE ICCCS 2019 and IEEE ISCC 2022,
and the Best Poster Award at the TMA Ph.D. School 2016.

VOLUME 5, 2024 1323

GUARINO et al.: EXPLAINABLE DEEP-LEARNING APPROACHES FOR PACKET-LEVEL TRAFFIC PREDICTION

VALERIO PERSICO received the Ph.D. degree in
computer and automation engineering from the
University of Napoli Federico II in 2016, where
he is an Assistant Professor with DIETI. He has
coauthored more than 50 papers in international
journals and conference proceedings. His work
concerns network measurements, cloud-network
monitoring, and Internet path tracing and topology
discovery.

ANTONIO PESCAPÈ (Senior Member, IEEE) is a
Full Professor of Computer Engineering with the
University of Napoli Federico II. His work focuses
on Internet technologies and more precisely on
measurement, monitoring, and analysis of the
Internet. Recently, he is working on bioinformatic
and ICTs for a smarter health. He has coauthored
more than 200 conference and journal papers
and is the recipient of a number of research
awards. Also, he has served as an independent
reviewer/evaluator of research projects/project pro-

posals co-funded by several governments and agencies.

Open Access funding provided by ‘Università degli Studi di Napoli “Federico II”’ within the CRUI CARE Agreement

1324 VOLUME 5, 2024

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Helvetica-Condensed-Bold
 /Helvetica-LightOblique
 /HelveticaNeue-Bold
 /HelveticaNeue-BoldItalic
 /HelveticaNeue-Condensed
 /HelveticaNeue-CondensedObl
 /HelveticaNeue-Italic
 /HelveticaNeueLightcon-LightCond
 /HelveticaNeue-MediumCond
 /HelveticaNeue-MediumCondObl
 /HelveticaNeue-Roman
 /HelveticaNeue-ThinCond
 /Helvetica-Oblique
 /HelvetisADF-Bold
 /HelvetisADF-BoldItalic
 /HelvetisADFCd-Bold
 /HelvetisADFCd-BoldItalic
 /HelvetisADFCd-Italic
 /HelvetisADFCd-Regular
 /HelvetisADFEx-Bold
 /HelvetisADFEx-BoldItalic
 /HelvetisADFEx-Italic
 /HelvetisADFEx-Regular
 /HelvetisADF-Italic
 /HelvetisADF-Regular
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

