
Received 24 January 2024; accepted 14 February 2024. Date of publication 16 February 2024; date of current version 4 March 2024.

Digital Object Identifier 10.1109/OJCOMS.2024.3366770

Enhancing Adaptive Beamforming in 3-D Space
Through Self-Improving Neural Network Techniques

IOANNIS MALLIORAS 1,2 (Graduate Student Member, IEEE), TRAIANOS V. YIOULTSIS 1 (Member, IEEE),
NIKOLAOS V. KANTARTZIS 1 (Senior Member, IEEE), PAVLOS I. LAZARIDIS 3 (Senior Member, IEEE),

AND ZAHARIAS D. ZAHARIS 1 (Senior Member, IEEE)
1School of Electrical and Computer Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece

2R&D Department, Maggioli SpA, 47822 Santarcangelo Di Romagna, Rimini, Italy
3School of Computing and Engineering, University of Huddersfield, HD1 3DH Huddersfield, U.K.

CORRESPONDING AUTHOR: I. MALLIORAS (e-mail: mallioras@auth.gr)

This work was supported in part by the European Union through the Horizon 2020 Marie Skłodowska-Curie Innovative Training Networks Programme

“Mobility and Training for Beyond 5G Ecosystems (MOTOR5G)” under Grant 861219, and in part by HEAL-Link.

ABSTRACT In the rapidly evolving domain of wireless networks, adaptive beamforming stands as a
cornerstone for achieving higher data rates, enhanced network capacity, and reduced latency. This study
introduces a novel integration of deep neural networks (NNs) into adaptive beamforming, specifically
for uniform planar arrays (UPAs). We embark on an exploration of different NN architectures (a
deep feedforward NN, a gated recurrent unit, and a long short-term memory based recurrent NN) and
hyperparameter tuning techniques (grid search, Bayesian optimization, and genetic algorithm) to assemble
a model that yields the most promising zero forcing beamforming performance. This thorough examination
not only unveils the most prominent model but also highlights the most efficient hyperparameter
tuning method. A comprehensive dataset generated using the null steering beamforming algorithm
applied to an 8×8 UPA, serves as the bedrock for training these networks. Our evaluation benchmarks
the NN-based beamformers against traditional methods, assessing them on crucial metrics such as
beamforming competence, response time, and adaptability under various noise and interference scenarios.
A significant innovation of this research is the introduction of a continual learning approach, enhancing
the NN beamformers’ performance in dynamically changing environments. This self-improving algorithm
represents a stride towards more adaptable and efficient beamforming, showcasing improvement on
underperforming scenarios without compromising accuracy. Our findings demonstrate the potential of
neural networks in reshaping the future of adaptive beamforming, offering a blend of speed and precision
that is paramount in modern wireless networks.

INDEX TERMS Adaptive beamforming, null-steering beamforming, Bayesian optimization, deep learning,
gated recurrent unit (GRU), genetic algorithms, long short-term memory (LSTM), neural networks, planar
antenna arrays, recurrent neural networks.

I. INTRODUCTION

THENEXT generation of wireless networks is expected
to offer great capabilities and facilitate a wide range

of applications. Amongst the enabling factors promised
with 6G, are increased data rates, greater network capacity,
and lower latency. To achieve the high standards set for
6G, fundamental antenna operations must be optimized or
implemented with a completely novel approach. In this

work, we focus on one of these smart antenna operations,
and specifically a physical layer operation called adaptive
beamforming.
Adaptive beamforming (ABF) [1] is an essential real-

time process of smart antennas which will play a pivotal
role in future smart antenna operation. It is a method
by which an antenna regulates and steers its radiating
energy dynamically, to maintain a strong connection with

c© 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

1340 VOLUME 5, 2024

HTTPS://ORCID.ORG/0000-0003-1015-2537
HTTPS://ORCID.ORG/0000-0002-6712-8936
HTTPS://ORCID.ORG/0000-0003-0959-7838
HTTPS://ORCID.ORG/0000-0001-5091-2567
HTTPS://ORCID.ORG/0000-0002-4548-282X

the end-user. Establishing a strong and reliable connection
depends on the ability of a smart antenna to control and
direct its radiation in a desired manner. In this work, we
are interested in a uniform planar array (UPA) which is
comprised of many small radiating elements arranged in
a flat, two-dimensional configuration. Each element can
be connected to a feeding network. By manipulating the
amplitude and phase of the feeding currents we can control
the radiation of each element, and in turn, the collective
radiation of the UPA.
This way, the point of maximum gain (the peak of the main

lobe) can be steered towards directions we intend to send
and receive signals from (i.e., signals of interest or SoIs). At
the same time, unwanted incoming signals (i.e., signals of
avoidance or SoAs) can be rejected when points of minimum
gain, known as “nulls”, are formed towards their directions.
To adequately reject an SoA, it is necessary to create a null
or a low sensitivity region towards its direction. Maximizing
the energy of a beam towards a desired user while rejecting
interfering signals in a noisy environment, improves the
signal-to-interference-plus-noise ratio (SINR), the data-rate,
and even the capacity of the system [2]. That is because it
enables a more efficient utilization of the available spectrum,
consequently supporting a larger number of users. A control
system that adjusts these feeding signals based on different
scenarios of SoI and SoAs is called a beamformer. In other
words, a beamformer can be an algorithm that given a set
of angles of arrival (AoAs) of incoming signals, calculates
the proper feeding weights that produce the radiation pattern
that is needed.
Many deterministic algorithms capable of providing accu-

rate results have been developed, such as the minimum
variance distortionless response algorithm (MVDR) or the
null-steering beamforming algorithm (NSB) also known as
the zero-forcing algorithm [3], [4], [5], [6], [7]. However,
these algorithms either rely on highly complex mathematical
operations, or demand multiple iterations before converging
to the desired values of the beamforming weight vector.
Therefore, while effective, these algorithms are constrained
by their slow temporal response and limited adaptability in
dynamic environments. These limitations become increas-
ingly pronounced in next-generation wireless networks,
where real-time processing and adaptability are crucial.
To address these challenges, our research turns to the

realm of machine learning, known for its prowess in
handling complex, multi-objective tasks and its ability to
learn and adapt from experience. Because of the inherently
complex and highly non-linear nature of the problem at
hand, and considering prior research in this field has shown
that shallow neural networks (NNs) struggle to cope with
its demanding complexity [8], we opt to utilize deeper
models within the Deep Learning (DL) domain. Unlike
conventional beamforming algorithms that rely on predefined
mathematical models, deep NNs have the ability to learn
the optimal beamforming strategy directly from data. They
can extract meaningful patterns from large datasets, adapt

FIGURE 1. Adaptive beamforming cycle.

to changing signal conditions, and make real-time decisions.
This makes them ideal candidates for overcoming the
limitations of traditional beamforming methods [9]. Their
most time-consuming process, training a DL model, happens
offline, without interfering with the operation of the NNs
when deployed. As shown in [10], the use of DL, and
specifically NNs, has the potential to significantly improve
the response time and efficiency of ABF.
Developments in direction of arrival (DOA) estimation

algorithms [11] indicate that implementing beamforming
using AI can be a two-step assignment (also shown in
Fig. 1). At the first step, a capable DOA estimator imple-
mented with NNs predicts the AoAs of incoming signals
given the array measurements and channel state information
(CSI) [12], [13], [14], [15]. The second step consists of a NN
beamformer, producing the appropriate feeding currents that
through the feeding network will give the desired radiation
pattern for each scenario [16]. As demonstrated in Fig. 1,
we consider a modular approach where the DOA estimation
is not incorporated into the beamforming operation of the
proposed NN but could be assigned to a different NN
or DOA estimation technique. Thus, while imperfect CSI
does not directly impact the operation of the proposed
NN-beamformer, it can have an indirect effect, primarily
if the accuracy of DOA estimation is compromised. For
example, the misinterpretation of the true AoAs of incoming
signals due to scatterers in the channel can be an indirect
threat to the accuracy of our approach. To put it simply, if
the DOA estimation fails to predict the true AoAs then our
model’s response will be equally misaligned. Our scheme
relies upon a robust DOA estimation technique, able to deal
with scatterers and interference. However, this is not the
focus of our study.
The primary objective of the proposed NN beamformer is

to accurately map the input AoAs to desired weight vectors
independent of the CSI use. In order to better define the
purpose of our work, we need to clarify some distinctions
concerning the term beamforming, as also described in [17].
First, the term beam-shaping refers to the capability of
the antenna to reform the shape of the radiation pattern
without altering the direction of the main lobe. Conversely,
beam-steering implies solely the change of the direction
of the main lobe of the radiation pattern. Furthermore, the
term non-continuous beam-steering is used to express the
ability of an antenna system to steer the main lobe towards

VOLUME 5, 2024 1341

MALLIORAS et al.: ENHANCING ADAPTIVE BEAMFORMING IN 3-D SPACE

a limited number of directions. In contrast, continuous
beam-steering includes all possible directions within the
antennas spatial operating range. Our goal is to identify a
NN model that allows adaptive, continuous beam-steering
capable of beam-shaping, when nulls are placed towards
the directions of unwanted interfering signals. This approach
greatly differs from the fixed beamforming approach (e.g.,
code-book method) as it aims to dynamically produce the
beamforming weight vector in real time.
Our research makes several key contributions to the field:
1) Comparative Analysis of NN Architectures. We con-

duct an in-depth comparison of three distinct neural
network architectures – deep feedforward networks
(FFNN), gated recurrent units (GRUs), and long short-
term memory (LSTM) networks – in the context of
adaptive beamforming. This analysis provides valuable
insights into the suitability and performance of each
architecture for beamforming tasks in 3D space.

2) Dataset Generation and Hyperparameter
Optimization. Utilizing a substantial dataset generated
via the NSB algorithm applied to an 8×8 UPA, our
study not only explores the optimal neural network
configurations but also emphasizes the importance
of hyperparameter tuning. We employ advanced
techniques such as grid search, Bayesian optimization,
and genetic algorithms to identify the most effective
hyperparameters, thereby enhancing the beamforming
performance.

3) Performance Evaluation in Various Scenarios. We
evaluate the effectiveness of the NN-based beamform-
ers by comparing them with a traditional beamforming
algorithm. This comparison spans several criteria,
including beamforming competence, response time,
and robustness under diverse noise and interference
scenarios.

4) Introduction of a Continual-Learning Approach. In
light of the dynamic nature of wireless network
environments, we introduce a novel continual-
learning technique. This approach is designed to
further enhance the NN beamformers’ adaptability
and performance by continually training them on
increasingly complex cases, thereby ensuring their
effectiveness in a dynamically changing operational
environment.

II. RELATED WORK
There have been several works where machine learning and
deep learning techniques have been applied on this field. The
authors of [18] propose a deep learning technique to predict
the beamforming vectors from sub-6 GHz uplink channel
state prediction as input, by exploiting the features in the
latter. In [19] a joint channel predictor and beamforming
model is proposed which aims to maximize the long-term
expected sum rate. The proposed reinforcement learning
(RL) based method utilizes a zero-forcing precoding method
to generate the beamforming vectors. A convolutional NN

(CNN) is proposed in [20] which, for a given uplink channel
estimate as input, outputs downlink channel information to
be used for beamforming. The CNN model significantly
improves performance (lower bit-error rate) compared to
traditional zero-forcing beamforming based on the uplink
channel estimate. Our work fundamentally diverges from
similar literature in the metrics used to evaluate beamforming
schemes. While the previous studies rely on indirect metrics
such as bit-error rate or average sum rate, our research
prioritizes metrics directly related to the physical aspects of
beamforming. Even though these works incorporate channel
state predictors instead of relying on DOA estimation
algorithms, they do not delve into the accuracy of the
radiation patterns regarding the main lobe and null steering.
In addition, they mainly deal with uniform linear arrays
(ULA) where in our work we focus on the much more
demanding task of beamforming on UPAs.
Applications more closely aligned with our own, consider

using either the autocorrelation matrix of the signals or
their respective AoAs to produce the beamforming vectors.
Comparisons between different NN architectures applied to
16-element realistic ULAs are performed in [16] and [21]
with very promising results. In [22], an Invasive Weed
Optimization (IWO) variant is used to train a feedforward
neural network (FFNN) for accurate null-steering beamform-
ing on ULAs. The results show that for low noise conditions,
the model is able to achieve high angular accuracy on
main lobe and null steering. A radial basis function NN
(RBFNN) is proposed in [8] to predict the weights of a 6-
element ULA. This work attempts to use a NN to extract
the angles of arrival (AoAs) of the incoming signals from
their autocorrelation matrix. These angles are in turn fed
to an RBFNN to predict the feeding weights. Despite the
temporal advantage of using shallow NNs and a relatively
simplistic beamforming scenario which could lead to fast
training and good accuracy, the author concludes that NNs
inability to perform adequate null-steering beamforming
relies on the lack of training samples. In [23] a FFNN
approach is presented to predict the direction of the main
lobe in a fixed beamforming scenario for a ULA without
addressing the null-steering concept. In [24] a CNN is
employed to predict the weight vectors of a ULA. The
CNN of this case takes the autocorrelation matrix as input.
The results show how promising a NN can be in terms
of time response compared to conventional deterministic
beamformers. MVDR and loaded sample matrix inversion
(LSMI) are compared in this study. The work concludes with
the proposed CNN-beamformer having an output SINR only
0.5 dB below the optimum SINR. In our work, we further
decrease this degradation. The necessity of a larger training
dataset is also raised in this work.
Already, the SINR levels NNs can achieve on UPA

implementations shows a lot of potential [25]. A UPA
beamforming application is presented in [26] where a CNN
is used to predict the desired phase shifts for an 8×8 UPA
given the desired radiation pattern as input. The beamforming

1342 VOLUME 5, 2024

accuracy of this model is portrayed merely by an image
comparison of the desired radiation pattern and the one
produced by the CNN. In our work, we present a full
statistical analysis on the accuracy of our NN-beamformers
on a wide range of scenarios. The authors of [27] propose a
dense NN where partial and perfect channel state information
are given as input, and beamforming vectors for confidential
information signal are taken as output for a 4×4 planar
array, aiming at maximizing the average secrecy rate of the
considered unmanned aerial vehicle communication system.
Once again, the accuracy aspect of zero-forcing beamforming
is not addressed. In [28] a DL-enabled beamforming system
controlled by a central cloud processor is proposed. On this
application a deep FFNN is used to pick the most appropriate
beamforming vector out of a predefined codebook of 1024
beams. This work demonstrates how the low complexity
of DL algorithms allows multiple base stations to operate
under the control of a single cloud processor, which elevates
the importance of DL in highly mobile systems. No zero-
forcing strategy has been implemented in this work and
the discrete space of 1024 beams is not comparable to
our continuous beamforming approach. Another codebook-
based beamforming system is shown in [29] implemented
with DL and RL algorithms. This beam-steering application
employs RL to further enhance the capabilities of DL by
letting it constantly learn from its surroundings. Despite
portraying the capabilities of DL in ABF, these works
consider the non-continuous, fixed beam-steering approach.
The DL algorithms are used to accurately select between
predefined beamforming weight vectors for each occurring
scenario. In our application we are interested in using DL
to design these beamforming weight vectors in real-time
for each individual case. Finally, the authors of [6] present
an alternative method to produce the beamforming weights
of a UPA employing a variation of the particle swarm
optimization algorithm (PSO). Despite presenting outstand-
ing beamforming performance, this approach concerns an
evolutionary beamforming method, which is highly time-
consuming and therefore not applicable for real-time ABF.
There is a big difference in terms of complexity between

null-steering ABF on two dimensions (as in the case of
ULAs) and 3D space. For instance, we previously mentioned
how our work further decreases the SINR degradation
presented in [24]. However, this comparison may not be
entirely compatible as this work concerned ULAs and we
are dealing with the much more demanding UPA scenario.
Several works have also demonstrated angular accuracy
on a ULA beamforming scenario [16], [22]. In [22] an
angular divergence of 0.6 and 0.25 degrees is achieved in
main lobe and null placement respectively, with a FFNN
applied on a ULA for an incoming SNR of 10dB. Once
again, these results concern the case of ULAs and do not
compare with the increased complexity of 3D beamforming.
To the best of the authors knowledge, no prior work has
demonstrated the accuracy of their proposed beamformer on
a UPA, with a statistical analysis on angular divergence.

FIGURE 2. Planar antenna array geometry.

From identifying nulls to the actual mapping task assigned
to the beamformers and the NNs, the complexity increases
dramatically and demands a thorough examination both
in how the measurements and dataset production will be
realized and in finetuning the hyperparameters of the NN
models to establish the most efficient training and inference.
Our approach aims to fill in the gaps previously mentioned,
attempting to provide a robust and accurate continuous ABF
solution based on DL.

III. THEORETICAL NSB ALGORITHM
The theoretical NSB algorithm considers an array, composed
by single isotropic point sources. The advantage of using
NSB for beamforming comes from its ability to place precise
nulls while performing accurate beam-steering [30]. Below,
we will go through some fundamental equations of the
algorithm to elucidate its operation [3].
Let us consider a P×Q element UPA, where P is the

number of elements on the x-axis and Q is the number of
elements on the y-axis. Each element can be represented by
the coordinates (p, q) (p = 1, . . . ,P and q = 1, . . . ,Q). If
Ipq is the current used to feed the (p, q) array element, then
the UPA radiation pattern is expressed by the array factor
as follows:

AF(θn, ϕn) =
P∑

p=1

Q∑

q=1

Ipq exp
(
jβrpq · v(θn, ϕn)

)
(1)

where β is the propagation phase constant (β = 2π /λ with
λ being the wavelength of the operating frequency), −→r p,q is
the position vector of the (p, q) array element (its expression
depends on the array geometry), and v(θn, ϕn) is the unit
vector towards direction of an incoming signal (θn, ϕn) as
shown in Fig. 2.

When the array is in reception mode, the currents Ip,q
become multipliers of the input signals on each element.
Consequently, we may consider that Ipq = w∗pq, where wpq
is a complex weight that expresses the conjugate value of
the current at the input port of the (p, q) element. If N+1 is
the number of incoming signals, and (θn, ϕn) are the AoAs
of the n-th signal, the theoretical steering vector for each
incoming AoA is calculated as:

VOLUME 5, 2024 1343

MALLIORAS et al.: ENHANCING ADAPTIVE BEAMFORMING IN 3-D SPACE

a(θn, ϕn) =

⎡

⎢⎢⎢⎣

exp(jβr11 · v(θn, ϕn))

exp(jβr12 · v(θn, ϕn))
...

exp
(
jβrPQ · v(θn, ϕn)

)

⎤

⎥⎥⎥⎦ (2)

Using (2), the array factor of (1) can be re-written as:

AF(θn, ϕn) = wHa(θn, ϕn) (3)

where

w =[
w11 w12 . . . wPQ

]T (4)

is the excitation weight vector and superscript H denotes the
Hermitian transpose operation. The total steering matrix A
contains the steering vectors that correspond to the AoAs of
all incoming signals as shown below:

A = [a(θ0, ϕ0), a(θ1, ϕ1), . . . , a(θN, ϕN)], (5)

In the same way, another matrix can be defined in the
form:

Ai = [a(θ1, ϕ1), . . . , a(θN, ϕN)]. (6)

This matrix is called interference steering matrix because
it is comprised by the steering vectors of the interfering
incoming signals.
Thus, the beamforming weight vector produced by the

NSB beamformer is calculated using the array steering
matrix:

wNSB = A
(
AHA

)−1
υ1, (7)

where

υ1 = [1 0 . . . 0]T (8)

is a unit vector of size N+1.

IV. PROBLEM DEFINITION AND DATA PREPARATION
To begin with, an 8×8 UPA with its 64 elements spaced
at d=λ/2 is studied. Therefore, to control the feeding of
each of the 64 elements of the antenna, 128 values (64
real and 64 imaginary parts) are needed. The DOAs of
incoming signals sn(n = 0, 1, . . . ,N) are identified by
their respective AoAs θn and ϕn(n = 0, 1, . . . ,N). We
expect that the UPA will operate within the angular sectors
[0◦, 60◦] for elevation and [0◦, 360◦] for azimuth rotation
(Fig. 3). The choice of these angular sectors was based on
typical operational scenarios for UPAs. These ranges were
selected to cover a comprehensive field of view, ensuring
that the beamforming system can effectively handle signals
coming from various directions, which is crucial in urban
environments and complex topologies. All incoming signals
are considered to have a minimum angular distance δ (also
known as angular separation) equal to 6◦. Thus, for any
two incoming signals n1 and n2 coming at respective AoAs(
θn1 , ϕn1

)
and (θn2, ϕn2

), δ is calculated as:

δ = cos−1(sin θn1 cos ϕn1 sin θn2 cos ϕn2

+ sin θn1 sin ϕn1 sin θn2 sin ϕn2 + cos θn1 cos θn2

)
. (9)

FIGURE 3. Example of 3 incoming signals where (θ0, ϕ0) correspond to the AoA of
s0. We consider the antenna operates for θ ∈ [0◦ , 60◦] and ϕ ∈ [0◦ , 360◦].

Considering low δ values increases the difficulty of the
beamforming problem since δ defines the possible distance
between two adjacent nulls or between a null and the main
lobe. In [3], different values of �θ and �ϕ were tested
for the same task of zero-forcing beamforming with NSB
on an 8×8 UPA. The results of this work demonstrate how
the decrease of minimum angular distance between main
lobe and null direction degrades the main lobe accuracy
of NSB. Naturally, steering nulls closer to the direction
of the main lobe, can drastically affect its shape and may
even shift its peak, which causes this accuracy degradation.
Moreover, given the number of elements on this UPA
there is also a physical limitation, as the beamwidth of
an antenna array is inversely proportional to the number
of elements and the array size [2]. Steering null towards
interference directions near the direction of the desired user
without interfering with the main lobe formation, can only
be achieved when the beamwidth is significantly decreased.
Thus, maintaining the desired performance while decreasing
the angular separation below 6◦, would necessitate increasing
the physical dimensions of the antenna array. In the context
of our work, a value of 6◦ strikes a balance between making
the beamforming task for the NNs more demanding and
being closer to a real-world scenario. In addition, the signal-
to-noise ratio (SNR) of incoming signals is equal to 0 dB,
considering high noise conditions but more variations are
examined in Section VII.

To produce the initial training dataset for the NNs, we
start with the simple case of one incoming SoI and two
SoAs. This is beneficial for two reasons. First, the mapping
task assigned to the NNs is easier, allowing us to evaluate
their performance on a simple scenario. Second, the dataset
produced will be smaller and NN training will be faster.
This allows for more experimentation especially for the
hyperparameter tuning part where multiple NN trainings are
needed.
This research primarily examines how well-tuned NNs

perform in associating AoAs with optimal weight vectors
for theoretical zero-forcing ABF. However, to mimic real-
world challenges, the study also incorporates specific factors.

1344 VOLUME 5, 2024

These factors include the complexity added by the min-
imal angular separation between adjacent signals, which
intensifies the beamforming challenge, and the presence of
increased interference. Given the problem setup, we deem
these considerations enough to demonstrate how NNs behave
at an initial theoretical stage. For future exploration, we
plan to generate a dataset simulating user movement within
a coverage area. This will enable us to assess the NNs’
effectiveness in a dynamic, path-tracking scenario.
Using the NSB algorithm explained in Section III, we

produced a dataset of 5×106 records for the final NN training
and a different one of 1.1× 104 records to be used for the
hyperparameter-tuning part. During dataset production, we
put some constraints so that only the most accurate NSB
results are kept. Specifically, we only store the record if NSB
achieves main lobe and null placement accuracy with an
error of <1◦ and <0.1◦ respectively. The dataset production
showed that only 4% of the produced records were discarded,
which further validates the beamforming abilities of NSB.
The decision to discard 4% of records due to not meeting the
accuracy standards we set does not significantly impact the
robustness or generalization ability of our trained models.
The excluded records constituted a minor fraction of the
dataset and did not indicate any notable limitations or
shortcomings of NSB in specific conditions. Their exclusion
helps in preventing the model from learning from atypical
or erroneous data, which could otherwise compromise its
performance in standard scenarios. Our dataset, despite the
exclusion of certain records, encompasses a wide range of
scenarios within the operating angular sectors. It ensures
that the neural networks are trained on high-quality, accurate
data, leading to better performance which is later verified
by the results in Section VI.
Every record of the dataset consists of 2×(N+1) inputs

(pairs of (θn, ϕn) for each AoA) and 2×P×Q outputs (the
real and imaginary parts of the complex feeding weights
produced by NSB). Considering the operating angular sectors
mentioned earlier and the weight values that range between
[−1, 1], we normalize both input and output to [0, 1]. Most
activation functions used in NNs (like sigmoid or tanh) are
designed to work best with values in the range of [0, 1] or
[−1, 1]. Normalizing data to [0, 1] ensures that the inputs to
these activation functions are within their optimal operating
range, leading to better performance of the network [31]. In
addition, optimizers like Adam, utilized in our NN training
greatly benefit from this normalization as normalized data
lead to a more balanced gradient distribution across all input
features, making Adam more effective [32].

V. SELECTION OF NEURAL NETWORK
ARCHITECTURES
A. ARCHITECTURES OF NNS AND CRITERIA
In this work three different NN types are implemented. Each
of these variations will be assigned with the task of mapping
the incoming AoAs to proper feeding weights. The first one
is the FFNN, otherwise known as the multilayer perceptron

FIGURE 4. Feedforward implementation for the case of 1 SoI and 2 SoAs.

FIGURE 5. RNN implementation for the case of 1 SoI and 2 SoAs.

(shown in Fig. 4). In this case, the pairs of angles of all
incoming signals enter simultaneously on the input layer
of the NN. After being processed by the hidden layers, an
output vector of 128 values is generated.
On the other hand, we have the recurrent neural network

(RNN) configuration (Fig. 5). Here, the pair of angles of the
corresponding incoming signals enter the RNN consecutively
at different time-steps. This way, there is a progressive
adaptation of the output of the RNN according to each new
input. The processing units of each hidden layer (depicted
with light orange color in Fig. 5), will be either GRUs
or LSTM units. Both implementations will be tested to
decide upon the most efficient configuration. The mapping
task is considered as a “many-to-one” approach meaning
that AoAs are fed to the RNN one after another, and
only the output of the final time-step is kept. Since the
inner hidden state of these processing units may differ
from the desired 2×P×Q size of the output, we use an
additional, trainable, fully connected layer, to transform
the RNN hidden state information into a 128-value weight
vector.
To train each NN, we use the root mean square error

(RMSE) as cost function due to its effectiveness in capturing
the average magnitude of errors in the NN predictions.
RMSE is particularly suitable for our application as it

VOLUME 5, 2024 1345

MALLIORAS et al.: ENHANCING ADAPTIVE BEAMFORMING IN 3-D SPACE

penalizes larger errors more severely, which is crucial
in beamforming where precision in weight computation
estimation is key. However, a different criterion is used to see
how different hyperparameter configurations compare. This
criterion consists of two coefficients. The first one represents
the average validation error of the last 10 epochs of
training, and the second calculates the average gap between
training and validation error in these last 10 epochs. Thus,
every configuration is evaluated both on their predictive
performance by measuring the validation error, and on their
overfitting risk by measuring the indication of overfitting.
Since the first one is more important than the latter, we
multiply the second coefficient by a factor of 0.1. This is a
tunable value, but we found that 0.1 suits the needs of this
evaluation better. This way, between the tunings that reach
similar validation errors, we promote those that have a lower
overfitting risk. As explained in [33], the dropout rate can
create an unusual mismatch between training and validation
error. With high dropout rates, the training error on a given
epoch can be much higher than the validation error. To avoid
any bias in the second coefficient (when subtracting training
error from validation error gives a negative value), we use
the max function to only keep positive values as shown
below. Finally, if K is the total number of training epochs,
the criterion is calculated as:

criterion =
∑K

epoch = K − 10 validation errorepoch

10
+ 0.1

·
∑K

epoch = K − 10 max
(
validation errorepoch − training errorepoch, 0

)

10
(10)

B. HYPERPARAMETER OPTIMIZATION
As stated above, our ultimate goal is not only to identify an
accurate beamforming alternative in NNs, but also to have the
least response time possible. The temporal response of NNs
depends on their inner complexity. This in turn, corresponds
to the number of operations a single prediction step requires.
As information travels from input layer to output, the number
of operations is contingent upon the number of neurons on
each of the hidden layers of the NN. Therefore, the prediction
time of a NN is proportionate to its inner size. For this
reason, we insisted upon finding the most efficient design-
related tuning. Hence, we employed three different methods
of hyperparameter optimization. Our intent was not only to
find the most promising NN tuning, but also to compare these
algorithms and contribute a comparison on their performance
on hyperparameter tuning. The methods we compare are the
grid search (GS), Bayesian optimization (BO) and the genetic
algorithm (GA). The selection of these techniques was based
on their complementary strengths. GS offers a thorough
exploration of a predefined parameter space at the cost of not
exploring possible solutions not included in this grid while
for some cases it examines ineffective and unproductive
parameter combinations that waste valuable search time. An
additional limitation of GS is scalability. As the number

FIGURE 6. Optimization Stages Explained (the colors indicate which type of NN the
hyperparameter is targeted to tune).

of hyperparameters increases, the time and computational
resources needed grow exponentially. GA on the other hand
performs a much more effective and extensive exploration
of the parameter space focusing on the most prominent
solutions. GA is particularly effective in scenarios where
the relationship between hyperparameters and the objective
function is not well understood or is highly nonlinear. Finally,
BO is particularly advantageous when each evaluation of
the objective function (such as training a complex neural
network) is time-consuming and resource intensive. It’s about
finding the best solution with the least number of evaluations.
To sum up, the chosen methods cover a broad spectrum
of optimization strategies and are considered to suffice for
the purposes of this work. A similar comparison can be
found in [34] where PSO prevails over GA for this type of
optimization but a comparison with BO was considered a
better contribution. All tunable hyperparameters are shown
in Fig. 6. By color-coding each box, we signify which NN
type it optimizes. We identify two stages of optimization.
At the first stage we tune each design-related hyper-

parameter considering an initial learning rate and batch
size equal to 0.001 and 256 respectively. In the case of
FFNN we can fine tune each hidden layer size and its
corresponding activation function separately. However, both
LSTM and GRU-RNNs have a hidden state of fixed size
that is exchanged between the processing units of the RNN.
Therefore, Stage 1 is split into two steps. On the first step,
we optimize the number of hidden layers, while keeping a
constant layer size (and a constant activation function for the
case of the FFNN). While on the second step, we focus solely
on the FFNN, tuning the size and the activation function
of each hidden layer separately. All optimization techniques
participate in this stage.
On the second stage, we optimize only the training-

related hyperparameters with the rest of the design-related
hyperparameters fixed. Since these should not affect the NN
design, we consider a good practice to tune them separately.
Since we are primarily interested in the proper selection of
Stage 1 parameters and given the small search space of Stage
2 parameters (described in Table 1), Stage 2 can be covered
entirely with GS.

1346 VOLUME 5, 2024

TABLE 1. Grid search parameter selection.

TABLE 2. Stage I/ Step I of GS optimization.

TABLE 3. Stage I/ Step II of GS optimization.

Regarding tuning all hyperparameters in parallel, it has
to be noted that a combination of small batch size with an
increased number of hidden layers or hidden layer sizes may
induce unnecessarily long training times. Thereby, this two-
stage separation aims to improve the overall optimization
efficiency and avoid timewasters. Lastly, on each NN-training
a learning rate scheduler, early stopping and a 3-fold cross
validation is applied to improve training time and further
increase the validity of the findings.

1) GRID SEARCH (GS)

With GS, a list of possible values for each hyperparameter
is predefined and then the NN models train using all
possible combinations of these values. Despite this method
being one of the most popular choices for hyperparameter
tuning, GS limits the search space into a predefined grid,
excluding configurations that could potentially provide better
solutions. Furthermore, grid search scales exponentially in
terms of search time, as the number of hyperparameters
increases [35]. The distinct values selected according to the
best exploration-exploitation tradeoff are shown in Table 1.

Observing the designs proposed by GS (Tables 2 and 3)
we can easily distinguish the RNN architectures as the ones
with the lowest criterion value. The increased search time
for the FFNN case is due to the extra hyperparameter it
needs to consider (activation function).
Having identified the proposed designs for each NN type,

we can now proceed to Stage II of the optimization. After
running grid search for Stage II, we observe that the Adam
optimizer and a dropout rate of 0% gives the best results for
all NN types so from now on these parameters are fixed. This

FIGURE 7. Grid search results for LSTM-RNN, using Adam as the optimization
method (on the left we see the criterion values and on the right the training time of
each combination respectively).

FIGURE 8. Indicative normalized combination of the grid search results for criterion
and training time for the case of FFNN and LSTM-RNN.

TABLE 4. Stage II of GS optimization.

leaves us with the choice of different learning rate and batch
size configurations. At this phase, we are not only interested
in reaching a low criterion value, but also to train the NN in
the shortest time possible. Fig. 7 shows an example of the
impact of each configuration, either on the criterion value or
on the training time of the LSTM-RNN model. We observe
that even though some combinations obtain a low criterion
value, they lead to slower training (e.g., learning rate equal
to 0.001 and batch size equal to 64). Thereby, we decided
to select the best configuration as the one that minimizes
the following expression:

0.9 · criterionnormalized + 0.1 · training timenormalized (11)

where subscript normalized indicates that each part has been
normalized to [0,1] according to the corresponding max
and min values reached during GS. The selection of the
multipliers is such that prioritizes the criterion value over
training time but promotes the tunings that achieve faster
training with the lowest criterion value guaranteed. Given
the results of (11) (indicative values in Fig. 8) we extract
the final values proposed by grid search. These are shown
in Table 4.

2) BAYESIAN OPTIMIZATION (BO)

BO is another preferred and commonly used technique [36],
which has proven to be a great tool for NN hyperparameter

VOLUME 5, 2024 1347

MALLIORAS et al.: ENHANCING ADAPTIVE BEAMFORMING IN 3-D SPACE

TABLE 5. Bayesian optimization search space.

FIGURE 9. Best criterion value BO found over 20 iterations either for the case of
FFNN or the GRU/LSTM-RNN.

TABLE 6. Stage I/ Step I of BO optimization.

TABLE 7. Stage I/ Step II of BO optimization.

tuning [37], [38], [39]. It refers to a sequential approxima-
tion of the maxima of a computationally expensive black-box
function by strategically sampling its domain. The target
of BO is to systematically search the function domain for
a point x∗ ∈ X that attains the global maximum value f ∗
by probing f as few times as possible. In this work we
implemented BO using the BoTorch framework [40]. In our
implementation, we begin with 5 random initial samples, and
have BO approximate the global maxima within 20 iterations.
Specifically, as one can later observe in Fig. 9 and Table 6,
this combination can produce decent results in a very short
search time. Increasing or decreasing these values could in
turn increase the total search time of BO or prevent BO from
reaching such results. Table 5 explains the different values
examined with BO for each hyperparameter.
Comparing the results presented in Tables 6 and 7 with

those produced by GS we can already observe that there is
a significant drop in search time, with BO being twice as
fast in the case of RNN tuning and nearly six times faster
in the case of FFNN. In addition, the criterion values that
BO reached are very similar to those of GS. Moreover, BO
managed to reach these criterion levels with NN designs of
much smaller size.

FIGURE 10. Best criterion value GA found over 10 generations for the case of FFNN
or the GRU/LSTM-RNN.

TABLE 8. Stage I/ Step I of GA optimization.

TABLE 9. Stage I/ Step II of GA optimization.

3) GENETIC ALGORITHM (GA)

A GA is an evolutionary method of solving complex
optimization problems based on principals of natural selec-
tion and genetics [41]. A set of possible randomly selected
sets of solutions (strings of bits, referred to as “chro-
mosomes”) is initially generated. This initial “population”
represents the first “generation” of solutions which is then
evaluated based on how well they perform according to a
fitness function. The best-performing solutions are selected
to “reproduce” and create a new generation of solutions.
From the size of the initial population to the mutation
probability, there are different GA parameters that have to
be decided upon, before the process begins.
For our purposes we set the population size to 5, the

crossover probability to 0.9, the mutation probability to
0.1, the gene length to 6 and we run the optimization for
10 generations. Just as in the case of BO these values
were selected to serve the purpose of balancing exploration
and exploitation of the search space to our benefit. To
further elaborate, since the fitness function used in this
implementation is computationally demanding, it is crucial
that we spare any redundant calculations if a low criterion
value can be reached within a shorter amount of time.
As Fig. 10 and Tables 8 and 9 indicate, this GA parameter

configuration allows GA to reach criterion values similar to
GS and at a lower search time. The proposed designs are
similar to the GS tuning, at least for the cases of FFNN and
GRU-RNN. However, the recommended hidden layer sizes
are increased both for GRU and LSTM-RNNs. We observe
that despite GAs being more preferable than GS because of

1348 VOLUME 5, 2024

FIGURE 11. Indicative training progression of the FFNN and LSTM-RNN.

their search time, they do not reach neither the advantageous
NN designs and criterion values of BO nor the search time
of BO.
Given all previously presented results, the most promising

settings are those proposed by BO, balancing both efficient
NN designs and adequate criterion values. There is one more
important detail worth noticing. Because of the 3-fold cross
validation, GS requires three times all possible hyperparame-
ter combinations, therefore 3× (4× 4× 3) = 144 trainings.
BO needs to train the NN three times per each probing
attempt, thus 3 × (5+ 20) = 75 trainings. Lastly, GA
requires three times the number of the population for each
of the generations which gives 3× (5× 10) = 150 trainings.
Interestingly, while GS seemingly requires a smaller amount
of NN trainings than GA, GS does not avoid extreme
hyperparameter combinations that lead to unnecessarily time-
consuming NN trainings and therefore, longer optimization
duration.

C. TRAINING THE BEST CONFIGURATIONS
After comparing all proposed NN designs we come down to
the ones that performed best, proposed by BO. As mentioned
in Section IV, we have a dataset of 5 million records at
our disposal. However, since the total size of this dataset
is approximately 15GB, we split it into smaller sub-sets
of 1million records. This prevents memory overload. The
subsets are utilized according to the round robin principle,
where each subset is used to train the NN model for a
fixed number of epochs. The switch between subsets can be
observed in Fig. 11 where small reoccurring spikes appear
on the training error curve. After examining different values
for the number of epochs we decided that 200 epochs are
enough to exploit each subset without causing overfitting.
Once again, we employ the learning rate scheduler. When a
plateau appears on the validation error, the learning rate is
reduced, which can improve training performance by a factor
of 2 to 10 since it can help gradient descent-based algorithms
escape sharp local minima [42]. We set the patience of the
scheduler to 40 epochs, and we reduce learning rate by a
factor of 0.5 each time a plateau appears. These numbers
were selected to prevent the scheduler from reducing the
learning rate prematurely without stalling its intervention
unnecessarily. These learning rate reductions can be observed
in Fig. 11 where small drops both in training and validation
error can be noticed.

To save excess computational time, we set multiple
termination criteria to control the training progress. Namely,
training will stop if one of the following conditions is true:

1) Learning rate has decreased to the point where it no
longer contributes significantly to the training process
(1×10−6).

2) Overfitting occurs for the last 50 epochs. We tolerate
a small deviation between training and validation error
as long as validation error keeps decreasing.

3) Training reaches 3000 epochs. We have observed that
training beyond this number of epochs results in
insignificantly better models.

4) Validation error does not progress for 60 consecutive
epochs. This is to make sure that the training tools
have been utilized before we proceed to an early
stopping.

The FFNN trained for 10.5 hours and reached a validation
RMSE of 0.033, while the GRU training lasted for 7.3 hours
and the LSTM for 6.4 hours reaching a value of 0.0077
and 0.0073 correspondingly. All models were trained on an
NVIDIA A100-SXM4-40GB GPU.

VI. EVALUATION OF THE BEAMFORMERS
A. PERFORMANCE EVALUATION
To evaluate the performance of each beamformer, we need
to establish the metrics we intend to examine. First, each
NN beamformer should be able to reach SINR levels similar
to those of the NSB algorithm. The SINR is defined as

SINR = 10 log10
Pdesired

Pinterference + Pnoise (12)

where Pdesired is the output power towards the desired user,
Pinterference is the sum of power towards interfering signals
and Pnoise is the noise power dictated by the input SNR. High
SINR levels are a great indication of good beamforming
performance as they guarantee both the directivity and the
adaptability required from a beamformer. Since high SINR
values are achieved by rejecting the incoming interfering
signals, while accurately positioning the main lobe, we
considered that measuring the accuracy of main lobe and
null placement is necessary. In addition, we are aware that
the NSB algorithm is able to create very “deep” and accurate
nulls towards the directions of SoAs therefore it is expected
that the NN-beamformers will be inferior both in terms of
accuracy and signal rejection (the lower the array factor,
the higher the rejection). That is why we measure the array
factor at two different directions. First, towards the direction
the beamformer placed a null at, which we call Predicted
Null direction, and second, towards the true direction of the
incoming SoAs, where a null was expected to be placed at,
which is mentioned as Expected Null direction (as shown
in Figs. 15 and 16). Finally, since this implementation aims
to improve beamforming latency, we measure the time each
beamformer takes to produce the feeding weights given the
AoAs as input.

VOLUME 5, 2024 1349

MALLIORAS et al.: ENHANCING ADAPTIVE BEAMFORMING IN 3-D SPACE

FIGURE 12. NSB-produced (left) and LSTM-RNN-produced (right) array factor for an
area of 1 degree around the expected Main Lobe location.

FIGURE 13. NSB-produced (left) and LSTM-RNN-produced (right) array factor for an
area of 1 degree around the expected 1st Null location.

FIGURE 14. NSB-produced (left) and LSTM-RNN-produced (right) array factor for an
area of 1 degree around the expected 2nd Null location.

As shown in (3), for the operating range of this UPA,
the radiation pattern is composed of the array factor at each
spatial direction ([0◦, 60◦] for elevation and [0◦, 360◦] for
azimuth rotation with a step of 0.1◦). Evidently, identifying
nulls and their corresponding divergences in a grid of such
increased size (3600×600 cells) is not a trivial task. To save
computational time, we developed a technique that searches
for local minima by focusing on the area of interest, which
is around the direction of the incoming SoAs. This decreases
the search space and drastically improves search time. After
testing on 1×104 different scenarios, the average time needed
to identify local minima in the entire grid is 0.7 seconds
while with our technique this time is reduced to 0.01 seconds
(tested on the Apple M1 Max chip). We start by focusing on
an area of 1◦ around the direction of an SoA (Figs. 13-14).
If no minima are found, we expand the search territory by
a step of 0.1◦, until a local minimum is found.

We measure null divergence as the angular distance δ

between the expected direction of the null and the direction
of the local minimum created closest to it. Measuring the

FIGURE 15. Normalized NSB-produced radiation pattern for the case of 1 SoI at (40,
240) and 2 SoAs at (34.5, 40.3) and (20.7, 286.5) respectively.

main lobe divergence is a similar task, finding the angular
distance between the direction of the SoI and the local
maxima closest to that. Again, this is done by searching
only a small interest area around the main lobe (Fig. 12)
with the potential of expanding it if no local maxima
are found. Examples of this approach are shown in the
following figures where we start by depicting the interest
areas around the 3 main points of interest (the main lobe
and 2 null locations) and proceed to show the radiation
pattern for the entire operational space. All figures depict
the normalized array factor in a colormap plot, where
the x-axis represents the elevation rotation and the y-axis
the azimuth rotation. This representation is preferred from
a 3D surface plot because it helps us distinguish the
location of nulls easier. In each figure we see the produced
array factor of either the NSB algorithm or the LSTM-
RNN beamformer, concerning the same randomly generated
beamforming scenario. Specifically, we have the SoI arriving
at (40◦, 240◦) and 2 incoming SoAs at (34.5◦, 40.3◦) and
(20.7◦, 286.5◦) respectively.
In the following figures we showcase the radiation pattern

produced using the array factor of (3) using both the weights
produced by NSB and the LSTM-RNN (Figs. 15 and 16
respectively). The scale of the elevation and azimuth axes
is deliberately disproportional to improve presentability. In
Fig. 15 we observe how in the case of the NSB algorithm the
Expected and the Predicted Nulls are identical, having the
same array factor, which further demonstrates the unparallel
null-placement accuracy of NSB.
In Fig. 16 we can observe how the NN-based beamformer

creates an overall similar radiation pattern but with a slight
mismatch at the placement of nulls, with small divergences
from the expected values. However, the array factor towards
the expected location of the null is low enough to consider
the signal rejected. For both figures, the scale of array
factor was purposefully limited within the [−100dB, 0dB]
sector since values lower than −100dB are considered frill
to display.

1350 VOLUME 5, 2024

FIGURE 16. Normalized LSTM-RNN-produced radiation pattern for the case of 1 SoI
at (40, 240) and 2 SoAs at (34.5, 40.3) and (20.7, 286.5) respectively.

It has to be noted that both the NSB and the
NN-beamformer present excellent main lobe placement
abilities since the expected and the predicted locations are
identical for this scenario. Nevertheless, a more in-depth
analysis must take place in order to accurately measure
the performance of each beamformer, where more than one
scenario is considered.

B. PERFORMANCE ANALYSIS
To analyze the performance of each model, we perform a
statistical analysis using 1 × 104 new scenarios that none
of the NN beamformers has prior “experience” on. For
each scenario of random incoming AoAs, we employ both
the NSB algorithm and the pre-trained NN-beamformers
to perform beam-steering and null-steering by producing
the feeding weight vector. Next, two radiation patterns are
produced using (1), where each current Ipq takes its value
from the corresponding weight of the produced beamforming
vectors. For each pattern, we identify the direction the main
lobe and the directions of nulls by obtaining their elevation
and azimuth angle. As explained in Par. A, we designate a
specific area around the expected nulls (and the main lobe) in
which we attempt to search for local minima (maxima). The
span of these areas is 1◦ (10 matrix cells) and if no minima
(or maxima) are found we expand this area by 0.1◦ (1 matrix
cell) until the null (or main lobe) is located. This way we
can calculate the divergence between the directions of the
desired and undesired AoAs using the angular distance as
shown in (9). Using the produced weights, we can calculate
the signal-to-interference ratio (SIR) with the following:

SIR = 10log10
wH a(θ0, ϕ0) a(θ0, ϕ0)

H w

wH Ai AH
i w

(13)

where w are the produced weights, a is the steering vector
as shown in (2), Ai is the interference steering matrix shown
in (6), and n = 0, 1, . . . ,N is the index of incoming signals
with the first one being the SoI and the rest (n = 1, . . . ,N)

TABLE 10. Statistical analysis of the FFNN model performance.

TABLE 11. Statistical analysis of the GRU-RNN model performance.

the SoAs. To get the SINR we need to add the noise power
to the denominator of SIR as in (11). Considering the input
signal power equal to one, and the input SNR in dB, the
noise power at the input can be derived from:

Pnoise = 10−
SNR
10 (14)

Therefore, SINR is calculated as:

SINR = 10log10
wH a(θ0, ϕ0) a(θ0, ϕ0)

H w

wH Ai AH
i w+ Pnoise wH w

(15)

It is evident that the array factor towards the SoI and SoAs
is directly correlated to the main lobe and null divergence
that was derived earlier. The higher the divergence, the less
optimal the array factor is going to be. To demonstrate the
impact of beamforming accuracy, we also present the array
factor measured at the directions of SoI and SoAs. This gives
us a more direct representation of the performance of our
beamformers. Finally, we measure the time needed for each
beamformer to extract these weight vectors. Considering that
for n incoming signals the computational complexity of NSB
is O(n3) while for both FFNN and RNNs it is O(n), we
expect that the NN-based beamformers will be much faster
than the deterministic NSB algorithm. The mean response
time of each beamformer was measured when operating
on the same GPU that was used for training (Section V
Par. C). This is the time a beamformer needs to produce
the beamforming weight vector for the case of 1 SoI and 2
SoAs with the AoAs known. Since in this implementation,
DOA estimation is needed for both NSB and NN-based
beamforming, the time needed for DOA estimation would
be the same for both beamformers and can be omitted when
comparing the response times below. The results of the
performance of each model are shown in Tables 10-12.

VOLUME 5, 2024 1351

MALLIORAS et al.: ENHANCING ADAPTIVE BEAMFORMING IN 3-D SPACE

TABLE 12. Statistical analysis of the LSTM-RNN model performance.

The FFNN model demonstrates impeccable main lobe
placement accuracy with an angular divergence smaller than
that of NSB by 0.1 degrees. However, null divergence is
increased. This has an impact on the mean SINR levels
where a 0.65dB degradation is observed. Despite that, the
array factor towards the SoAs is adequate, which guarantees
satisfactory signal rejection. In addition, the FFNN model is
5 times faster than NSB as a beamformer.
Both GRU and LSTM based RNN models present an

outstanding beamforming performance. These architectures
achieve near optimal SINR, insignificantly lower than the
NSB algorithm. Similarly, these RNN beamformers can
guarantee an array factor of lower than −30dB towards
unwanted signals with unprecedented main lobe and null
placement accuracy. Out of the two, the GRU-RNN model
is faster, being nearly 4 times faster than NSB while the
LSTM is at least 3 times faster. These results are more
than satisfactory as they indicate that these RNN structures
are well designed and able to perform fast and accurate
beamforming for a wide variety of scenarios. Since the
accuracy of the LSTM model is slightly higher without
sacrificing much of the response time, we choose to continue
with this as the proposed model. In the following section, the
robustness of this model in various noise and interference
scenarios is presented.

C. COMPARISON WITH CODEBOOK APPROACH
Let us assume that a codebook contains k predefined beam
patterns. The complexity of the beamforming process is
primarily dictated by how these patterns are searched and
selected. In the simplest case, if a linear search is used to
find the best beam pattern, the complexity would be O(k),
where you potentially have to compare each beam pattern
with the current channel conditions or user requirements. If
the codebook is structured or indexed in a way that allows for
more efficient searching, the complexity can be lower [43].
However, in systems with large codebooks the complexity
can become significant as the number of weight vectors
stored in the codebook is increased. To accommodate all
conceivable scenarios determined by the operational angular
sectors and an angular accuracy of our study (as detailed in
Section IV), a codebook would require an immense amount
of storage space. This size escalates exponentially with the
inclusion of additional interferences and when considering
antennas with a greater number of elements. The subsequent

FIGURE 17. Input SNR - output SINR correlation.

closed-form expression provides an estimated calculation of
the required storage size in Terabytes:

Total Storage (TB) ≈
(

60
s × 360

s

)n × 2PQ× b
10244

(16)

where s is the step size in degrees, n is the number of
incoming AoAs, P and Q correspond to the number of
elements on the horizontal and vertical axes of a UPA, and
b is equal to 4 (bytes per floating point number). Taking the
simplest scenario of n = 3 incoming AoAs (1 SoI and 2
SoAs), and s = 0.3 degrees (the precision level achieved with
the proposed LSTM-based beamformer for 3 AoAs as shown
in Table 12), yields 6.4 ×106 TB of storage. Thus, it is worth
considering that although the codebook approach may offer
lower complexity compared to conventional beamformers
and possibly some NN-beamformers, it fails to achieve
the same level of precision as the NN-beamformer without
requiring an impractically large amount of storage space.

VII. ROBUSTNESS ANALYSIS
A. SINR ROBUSTNESS WITH VARYING INPUT SNR
An important performance indicator of beamformers is their
ability to maintain high SINR in varying incoming noise
conditions. As shown in Fig. 1, the part of the beamforming
process we examine is not directly influenced by incoming
noise. Specifically, this noise might influence the ability of
a DOA estimation algorithm to accurately predict the AoAs
of incoming signals. The beamformers we examine simply
receive several incoming angles, without direct dependance
on noise-carrying information. For this reason, it could be
said that our models are noise indifferent. Therefore, a
more accurate performance metric for our scenario would
be to simply measure the SIR. Evidently, improving the SIR
of a radio frequency link, also improves the SINR while
Pnoise remains unaffected. The reason we use the SINR
metric is because it is a more commonly used beamforming
performance indicator. As shown in Fig. 17, both NSB and
the LSTM model are independent of the input noise, and they
maintain optimal SINR levels regardless of the incoming
SNR.

B. CASES WITH INCREASING SOAS
Up to this point we have examined the case of three incoming
signals (1 SoI and 2 SoAs). Having found a promising

1352 VOLUME 5, 2024

TABLE 13. Statistical analysis of the LSTM-RNN model for 11 AoAs.

NN structure that performs adequately on the problem in
hand, we are left with exploring the limitations this method
may present. Since producing datasets for multiple scenarios
of ranging number of incoming signals is a highly time-
consuming process, we deemed it adequate to demonstrate
the proposed models’ performance for the case of 10 SoAs
and 20 SoAs. For these scenarios we consider that the SNR
is 0dB.

1) 1 SOI AND 10 SOAS

After training the LSTM-RNN design with a dataset of
3×106 records for the case of 1 SoI and 10 SoAs, we
perform a statistical analysis on 1×104 new records that the
NN has not been trained upon and we compare our model
with NSB. The results in Table 13 show that once again
our model manages to achieve similar main lobe placement
abilities with the NSB algorithm while the null placement
mean divergence is at a higher but still very promising
level. This is also reflected by the 0.12dB degradation on
the SINR levels which stands to show how adequately the
LSTM-RNN beamformer still performs. Even though the
increased time-steps have an impact on the response time of
the RNN architecture, it manages to still be twice as fast as
NSB. In Fig. 18 we demonstrate indicative radiation pattern
produced by the LSTM-RNN for a randomly generated
scenario. It is evident that the proposed model manages to
accurately place the main lobe while maintaining the ability
to adequately decrease the array factor around the areas of
expected interference.

2) 1 SOI AND 20 SOAS

Moving on to the case of 20 SoAs, the model is trained
once more on a new 3×106 record dataset, and we perform
a new analysis on 1×104 records. The results shown in
Table 14 have some interesting insights. First, we notice that
the proposed model is becoming better than NSB at the
task of steering the main lobe, since the angular divergence
becomes less than that of NSB. Despite the increased null
placement divergence, it is interesting to observe that the
mean SINR level of the NN is now higher than that of
NSB. This positive outcome can be explained as a result of
how nulls, may affect the main lobe. When many “deep”
nulls are placed close to the desired main lobe direction,

FIGURE 18. Normalized LSTM-RNN-produced radiation pattern for the case of 1 SoI
at (40, 150) and 10 random SoAs.

TABLE 14. Statistical analysis of the LSTM-RNN model performance for 21 AoAs.

they have an effect on its array factor. Consequently, the
maximum value of array factor (main lobe peak) can be
slightly shifted from the desired direction. This explains
the increase in main lobe divergence. Since NSB produces
almost infinitely negative array factor towards desired null
directions, when nulls are neighboring the main lobe, the
power towards the desired direction is decreased [44]. This
decrease in desired output power, can cause the SINR to
drop (as shown in (12) and (15)). This is not the case of
the LSTM-RNN. As Tables 12, 13 and 14 demonstrate, the
mean array factor towards the expected null direction is not
as “deep” as NSB, but low enough to guarantee good signal
rejection.

VIII. SELF-IMPROVING ALGORITHM
In a real-world beamforming scenario, where the electro-
magnetic environment is constantly changing, supervised DL
models would greatly benefit from a method that allows
them to adapt to new conditions. In an urban environment
these changes might include construction sites, addition or
removal of trees, traffic signs and other obstacles. From
a DL perspective these new conditions can be defined as
two types of cases. First, those which our model has never
“seen” before, or in other words, has not been trained

VOLUME 5, 2024 1353

MALLIORAS et al.: ENHANCING ADAPTIVE BEAMFORMING IN 3-D SPACE

FIGURE 19. Normalized LSTM-RNN-produced radiation pattern for the case of 1 SoI
at (30, 150) and 20 random SoAs.

upon yet. This pertains to combinations of SoI and SoAs
that were not included in the training dataset, leading to a
subpar performance of the model. Secondly, there may be
instances where the model, having been trained on certain
combinations and achieving satisfactory results, experiences
a decline in performance due to unforeseen environmental
changes. In these situations, the NN-based beamformer must
adapt to maintain the required performance levels. To do so,
it might need to take advantage of multipath propagation
and signal reflections to enhance the signal coverage and
even reach non-line-of-sight areas. Alternatively, it can also
take advantage of neighboring intelligent reflecting surfaces
(IRSs). Our model learns to map incoming AoAs to the
weight vector that better serves the predefined beamforming
purpose. In the context of null-steering, the purpose is to
correlate the AoAs of desired and undesired signals with
weight vectors that steer the main lobe and the nulls towards
the optimal directions. In the context of IRS, the NNs can
be trained to perform a different kind of correlation. For
example, the NN can be trained to steer the main lobe
towards an IRS for certain AoAs of the desired incoming
signal. This way, the NN-beamformer can learn to selectively
utilize a nearby IRS in scenarios where steering the beam
directly towards the desired AoA would lead to suboptimal
performance. All the aforementioned concepts are predicated
on the ability of the NN model to adapt and form new
correlations between the direction of incoming AoAs and
the appropriate direction in which the produced beam should
be steered. Our approach on this adaptation involves two
key steps. Pinpointing the scenarios causing difficulties and
retraining the NN to yield the required output. Notably, it
is not necessary to completely retrain the weights within
the neurons; a slight modification (fine-tuning) is often
sufficient [45], [46]. An important aspect of the proposed
continual-learning approach is its ability to retain previously
learned information while incorporating new knowledge.

Recently, deep transfer learning and meta-learning
algorithms have been proposed for ABF in dynamic wireless
environments, particularly for MISO downlink systems. The
transfer learning technique followed in [47] is similar to the
one utilized in our self-improvement method in the sense
that a pre-trained NN is used and fine-tuned to new data. The
difference in our approach is that instead of freezing most
of the pre-trained network and using only the final layer for
adaptation, we fine-tune all individual neurons of the NN.
To do this without degrading the performance of the pre-
trained model, we use large, and well-distributed datasets
and re-train the models with a very small learning rate.
The main reason for this fine-tuning approach is that there
is no concrete internal representation of the RNN models
that can be detached as a transferable “feature extraction”
part. The contribution of each hidden state to the output of
the RNN model is equally important while the final fully
connected layer merely operates as a transformation layer,
to reduce the hidden state size to the desired output size.
Thus, we consider fine-tuning all hidden layers a better
practice. Coming to the meta-learning approach, it has to
be noted that it appears to be superior to transfer-learning
as an adaptation technique at the cost of longer execution
times due to the need of two backward passes in the
training stage [47]. Even though the meta-learning approach
is more promising for the task of adaptation compared to
transfer learning, our work mainly focuses on investigating
which NN-based scheme can perform fast and accurate
3D beamforming utilising the most compact and efficient
tuning, training and adaptation methods. The purpose of our
proposed self-improvement technique is to provide the means
to adapt this supervised learning approach offline, so that
it does not require additional operational overhead. Since
this fine-tuning is an offline procedure, it does not intervene
with the operation of the NN-beamformer. In a hypothetical
implementation, one instance of the LSTM-RNN model can
actively execute ABF while a cloned instance learns from
the first one’s errors and undergoes updates as necessary.
The updated version of the model can later be deployed, and
the fine-tuning can be applied anew, to a new copy of the
recently updated model.
The models proposed so far (Tables 10-14) are trained

on a very large dataset, comprised of millions of records.
Producing such datasets is a highly time-consuming pro-
cess. A side contribution of the proposed self-improvement
method is that it also works as an efficient dataset collection
technique. Instead of producing multiple records of random
incoming AoAs (as shown in Section VI) to cover as
many scenarios as possible, we actively search for the most
challenging scenarios. This targeted strategy greatly benefits
the NN training. By focusing on difficult cases, the NN learns
faster as each record encompasses important information.
The more challenging the scenario, the greater the error in
the cost function, leading to a more significant contribution
of the record to the training process. Moreover, this technique
aids at preventing overfitting to common or simple scenarios,

1354 VOLUME 5, 2024

Algorithm 1 Self-Improvement Algorithm
Input: A pre-trained NN-beamformer
Output: An improved, fine-tuned version of the NN-beamformer

1 model ← Load pretrained model
2 while model mean SINR ≤ satisfactory SINR do
3 Collect 1×104 records
4 Get the SINR for each record
5 Create two empty lists: badCases, goodCases
6 for record in collected records do
7 if record SINR < model mean SINR then
8 Append this record to the badCases list
9 Else
10 Append this record to the goodCases list
11 End for
12 new dataset ← apply NSB to badCases to create the new

dataset
13 new dataset← apply NSB to goodCases (keep less than half

the number of badCases), mix with previous records and
shuffle the rows of the new dataset

14 Fine-tune the model on the new dataset using ADAM
15 Evaluate the model performance on a different, unbiased

and well-distributed dataset and get new model mean SINR
16 End while

ensuring that the trained model generalizes well across a
broad spectrum of challenging conditions. We expect that
the LSTM-RNN design proposed in Section VI will train
much faster and reach similar levels of SINR with that of
Table 12 while utilizing less data overall.
This “self-improvement” method employs a pre-trained

NN, subjects it to diverse beamforming scenarios, and
focuses on progressively enhancing its mean SINR level. We
start by exposing the NN to random scenarios of incoming
AoAs and keep track of the SINR achieved in each scenario.
For SINR values that fall below the model’s average SINR,
the relevant combination of AoAs is stored in a list of
“underperforming” cases. During this process, some of the
“well-performing” records are also collected. When enough
challenging records are collected, the NSB algorithm is
employed to obtain the optimal weight vector that the NN
was unable to produce. This way, a new training dataset can
be created. To establish a balanced and unbiased dataset, we
strategically blend a selection of “well-performing” records
into this dataset. Importantly, the number of these records is
kept to less than half of the “underperforming” records. This
methodical approach ensures the stability of the pre-trained
NN model by providing a well-rounded and representative
range of data scenarios. We then retrain the pre-trained model
using a very small learning rate. This algorithm is better
explained below in Algorithm 1.

To realistically emulate demanding conditions and show-
case the efficacy of our proposed algorithm, it’s necessary
to deliberately present the operating NN with beamforming
tasks that are challenging. Therefore, instead of deploying
a highly trained network for which challenging cases are
rare to find, we use an undertrained model that is more
likely to underperform. For this reason, an LSTM-RNN of

FIGURE 20. SINR and Validation RMSE progression after 100 iterations of the
proposed algorithm.

the same design as in Section VI is deployed, trained using
only 4×104 records. Once again, we refer to the simple
case of 1 SoI and 2 SoAs. Since the mean SINR value
the NSB achieves for this scenario is 17.87dB (as seen in
Tables 10-12), we set it as the maximum expected value
(satisfactory SINR value). Each iteration of the algorithm
starts with the collection of 1×104 records and proceeds
with the fine-tuning of the model. Training lasts for 200
epochs, using Adam as the optimizer and a learning rate
of 1×10−5. After running this algorithm for 100 iterations
(approximately 22 hours of running time on an Apple M1
Max chip with 32GB LPDDR5 SDRAM) we observe the
SINR and RMSE improvement shown in Fig. 20.

IX. DISCUSSION
Observing the results shown in Tables 13 and 14, and
the indicative radiation patterns shown in Figs. 17-18, it is
evident that the increase in SoAs causes a small degradation
in the accuracy of the model. It should be emphasized that
although the proposed design was initially configured based
on the simple scenario of 3 incoming AoAs, it is able
to provide adequate beamforming performance for up to
21 AoAs. In Section V, we compare different optimization
techniques to finally identify Bayesian optimization as the
most prevalent to tune an NN-based beamformer for this
task. Therefore, a major side-contribution of this paper is that
it indicates the most efficient method to configure the NN
design according to any specific scenario. If, for example,
the purpose of the antenna is to cover a very busy area, then
a model trained to cope with a large number of AoAs will
be required. That model may be of a bigger size than the
one proposed here, in order to better imitate the complexity
of the task in hand. We aim not only to demonstrate the
performance of NNs on the selected scenarios but also to
provide a method by which these NN architectures can easily
be redesigned to adapt to any particular scenario.
Finally, it is worth noting that this more targeted record

collection technique allows the LSTM-RNN to reach similar
performance with that of Table 12 by utilizing only one fifth
of the total amount of records used in that training. Creating
the dataset of 5×106 records was a process that lasted almost
a week while with this proposed self-improving technique,
both data collection and NN-training can be completed in
less than a day.

VOLUME 5, 2024 1355

MALLIORAS et al.: ENHANCING ADAPTIVE BEAMFORMING IN 3-D SPACE

X. CONCLUSION
This work presents a comprehensive examination of three
different NN architectures used as adaptive beamform-
ers on an 8×8 planar antenna array. The objective is
to discover a promising NN-based beamformer achieving
high SINR with main lobe and null-placement accuracies
comparable to the NSB, with the advantage of faster
temporal response. We utilize three optimization techniques
for hyperparameter tuning, identifying the most effective
tuning method and the most promising design for each
type of NN. The LSTM-RNN architecture, obtained through
Bayesian optimization, emerges as the strongest candidate,
displaying excellent accuracy with only 0.04 dB SINR
degradation compared to NSB and a much faster response.
Its robustness is further verified under varying noise and
interference conditions. Testing the same NN structure with
increased AoAs shows it maintains excellent beamform-
ing ability for up to 20 interfering signals. Lastly, an
iterative self-improving method is proposed to continuously
improve the mean SINR level of the NN-based beamformers
which also functions as an alternative cost-effective training
method.
As future work, a more hands-on implementation incor-

porating the proposed models on a simulated network
to observe their behavior under dynamic real-time condi-
tions would be highly insightful. Given the unprecedent
performance of the proposed NN-based beamformers, their
robustness when applied to realistic planar antenna arrays
should also be examined in the future.

ACKNOWLEDGMENT
Results presented in this work have been produced using
the Aristotle University of Thessaloniki (AUTh) High
Performance Computing Infrastructure and Resources.

REFERENCES
[1] A. M. G. Guerreiro, A. D. D. Neto, and F. A. Lisboa, “Beamforming

applied to an adaptive planar array,” in Proc. IEEE Radio Wireless
Conf., Aug. 1998, pp. 209–212, doi: 10.1109/RAWCON.1998.709173.

[2] C. A. Balanis, Antenna Theory: Analysis and Design, 4th ed. Newark,
NJ, USA: Wiley, 2016.

[3] Z. D. Zaharis, I. P. Gravas, P. I. Lazaridis, T. V. Yioultsis, and
T. D. Xenos, “Improved beamforming in 3D space applied to realistic
planar antenna arrays by using the embedded element patterns,”
IEEE Trans. Veh. Technol., vol. 71, no. 6, pp. 6145–6157, Jun. 2022,
doi: 10.1109/TVT.2022.3155966.

[4] J. F. Cardoso and A. Souloumiac, “Blind beamforming for non-
gaussian signals,” IEEE Proc. F Radar Signal Process., vol. 140,
no. 6, pp. 362–370, Dec. 1993, doi: 10.1049/ip-f-2.1993.0054.

[5] T. S. Kiong, S. B. Salem, J. K. S. Paw, K. P. Sankar,
and S. Darzi, “Minimum variance distortionless response beam-
former with enhanced nulling level control via dynamic mutated
artificial immune system,” Sci. World J., vol. 2014, Jun. 2014,
Art. no. e164053, doi: 10.1155/2014/164053.

[6] M. Abualhayja’a and M. Hussein, “Comparative study of adaptive
beamforming algorithms for smart antenna applications,” in Proc. Int.
Conf. Commun., Signal Process. Appl. (ICCSPA), Mar. 2021, pp. 1–5,
doi: 10.1109/ICCSPA49915.2021.9385725.

[7] Y. Lv, F. Cao, X. Feng, and H. Li, “Improved binary particle
swarm optimization and its application to beamforming of planar
antenna arrays,” Progr. Electromagn. Res. C, vol. 114, pp. 217–231,
Aug. 2021, doi: 10.2528/PIERC21062002.

[8] M. Sarevska and A.-B. M. Salem, “Antenna array beamforming
using neural network,” World Acad. Sci. Eng. Technol., Dec. 2008,
doi: 10.5281/zenodo.1059687.

[9] H. A. Kassir, Z. D. Zaharis, P. I. Lazaridis, N. V. Kantartzis,
T. V. Yioultsis, and T. D. Xenos, “A review of the state
of the art and future challenges of deep learning-based
beamforming,” IEEE Access, vol. 10, pp. 80869–80882, 2022,
doi: 10.1109/ACCESS.2022.3195299.

[10] G. L. Santos, P. T. Endo, D. Sadok, and J. Kelner, “When 5G meets
deep learning: A systematic review,” Algorithms, vol. 13, no. 9, p. 9,
Sep. 2020, doi: 10.3390/a13090208.

[11] Y. Li, Y. Huang, G. F. Pedersen, and M. Shen, “Recurrent NEAT
assisted 2D-DOA estimation with reduced complexity for satellite
communication systems,” IEEE Access, vol. 10, pp. 11551–11563,
2022, doi: 10.1109/ACCESS.2022.3145583.

[12] Y. Ma, Y. Zeng, and S. Sun, “A deep learning based super
resolution DoA estimator with single snapshot MIMO radar data,”
IEEE Trans. Veh. Technol., vol. 71, no. 4, pp. 4142–4155, Apr. 2022,
doi: 10.1109/TVT.2022.3151674.

[13] Z.-M. Liu, C. Zhang, and P. S. Yu, “Direction-of-arrival estimation
based on deep neural networks with robustness to array imperfections,”
IEEE Trans. Antennas Propag., vol. 66, no. 12, pp. 7315–7327,
Dec. 2018, doi: 10.1109/TAP.2018.2874430.

[14] W. Fang et al., “A deep learning based mutual coupling cor-
rection and DOA estimation algorithm,” in Proc. 13th Int. Conf.
Wireless Commun. Signal Process. (WCSP), Oct. 2021, pp. 1–5,
doi: 10.1109/WCSP52459.2021.9613199.

[15] S. Xu, B. Chen, H. Lian, and Z. Guo, “Deep learning based direction
of arrival estimation of multiple targets,” in Proc. IEEE 5th Int. Conf.
Electron. Inf. Commun. Technol. (ICEICT), Aug. 2022, pp. 138–143,
doi: 10.1109/ICEICT55736.2022.9908986.

[16] I. Mallioras, Z. D. Zaharis, P. I. Lazaridis, and S. Pantelopoulos,
“A novel realistic approach of adaptive beamforming based on deep
neural networks,” IEEE Trans. Antennas Propag., vol. 70, no. 10,
pp. 8833–8848, Oct. 2022, doi: 10.1109/TAP.2022.3168708.

[17] H. P. Z. Cano, Z. D. Zaharis, T. V. Yioultsis, N. V. Kantartzis,
and P. I. Lazaridis, “Pattern reconfigurable antennas at millimeter-
wave frequencies: A comprehensive survey,” IEEE Access, vol. 10,
pp. 83029–83042, 2022, doi: 10.1109/ACCESS.2022.3196456.

[18] I. Chafaa, R. Negrel, E. V. Belmega, and M. Debbah, “Self-
supervised deep learning for mmWave beam steering exploiting
sub-6 GHz channels,” IEEE Trans. Wireless Commun., vol. 21, no. 10,
pp. 8803–8816, Oct. 2022, doi: 10.1109/TWC.2022.3170104.

[19] M. Chu, A. Liu, V. K. N. Lau, C. Jiang, and T. Yang, “Deep
reinforcement learning based end-to-end multiuser channel prediction
and beamforming,” IEEE Trans. Wireless Commun., vol. 21, no. 12,
pp. 10271–10285, Dec. 2022, doi: 10.1109/TWC.2022.3183255.

[20] J. M. J. Huttunen, D. Korpi, and M. Honkala, “DeepTx: Deep learning
beamforming with channel prediction,” 2022, arXiv:2202.07998.

[21] I. Mallioras et al., “A novel utilization of NARX for antenna
array adaptive beamforming,” in Proc. 3rd URSI Atlantic Asia–
Pacific Radio Sci. Meeting (AT-AP-RASC), May 2022, pp. 1–4,
doi: 10.23919/AT-AP-RASC54737.2022.9814406.

[22] Z. D. Zaharis, C. Skeberis, T. D. Xenos, P. I. Lazaridis, and J. Cosmas,
“Design of a novel antenna array beamformer using neural networks
trained by modified adaptive dispersion invasive weed optimization
based data,” IEEE Trans. Broadcast., vol. 59, no. 3, pp. 455–460,
Sep. 2013, doi: 10.1109/TBC.2013.2244793.

[23] S. I. Orakwue, R. Ngah, T. A. Rahman, and S. Z. M. Hashim,
“Neural network based switch beam smart antenna,” in Proc.
IEEE Asia–Pacific Conf. Wireless Mobile, Aug. 2014, pp. 292–296,
doi: 10.1109/APWiMob.2014.6920300.

[24] P. Ramezanpour, M. J. Rezaei, and M. R. Mosavi, “Deep-learning-
based beamforming for rejecting interferences,” IET Signal Process.,
vol. 14, no. 7, pp. 467–473, 2020, doi: 10.1049/iet-spr.2019.0495.

[25] I. Mallioras, Z. D. Zaharis, P. I. Lazaridis, V. Poulkov, N. V. Kantartzis,
and T. V. Yioultsis, “An adaptive beamforming approach applied to
planar antenna arrays using neural networks,” in Proc. IEEE Int. Black
Sea Conf. Commun. Netw. (BlackSeaCom), Jun. 2022, pp. 293–297,
doi: 10.1109/BlackSeaCom54372.2022.9858302.

[26] R. Lovato and X. Gong, “Phased antenna array beamforming using
convolutional neural networks,” in Proc. IEEE Int. Symp. Antennas
Propag. USNC-URSI Radio Sci. Meeting, Jul. 2019, pp. 1247–1248,
doi: 10.1109/APUSNCURSINRSM.2019.8888573.

1356 VOLUME 5, 2024

http://dx.doi.org/10.1109/RAWCON.1998.709173
http://dx.doi.org/10.1109/TVT.2022.3155966
http://dx.doi.org/10.1049/ip-f-2.1993.0054
http://dx.doi.org/10.1155/2014/164053
http://dx.doi.org/10.1109/ICCSPA49915.2021.9385725
http://dx.doi.org/10.2528/PIERC21062002
http://dx.doi.org/10.5281/zenodo.1059687
http://dx.doi.org/10.1109/ACCESS.2022.3195299
http://dx.doi.org/10.3390/a13090208
http://dx.doi.org/10.1109/ACCESS.2022.3145583
http://dx.doi.org/10.1109/TVT.2022.3151674
http://dx.doi.org/10.1109/TAP.2018.2874430
http://dx.doi.org/10.1109/WCSP52459.2021.9613199
http://dx.doi.org/10.1109/ICEICT55736.2022.9908986
http://dx.doi.org/10.1109/TAP.2022.3168708
http://dx.doi.org/10.1109/ACCESS.2022.3196456
http://dx.doi.org/10.1109/TWC.2022.3170104
http://dx.doi.org/10.1109/TWC.2022.3183255
http://dx.doi.org/10.23919/AT-AP-RASC54737.2022.9814406
http://dx.doi.org/10.1109/TBC.2013.2244793
http://dx.doi.org/10.1109/APWiMob.2014.6920300
http://dx.doi.org/10.1049/iet-spr.2019.0495
http://dx.doi.org/10.1109/BlackSeaCom54372.2022.9858302
http://dx.doi.org/10.1109/APUSNCURSINRSM.2019.8888573

[27] R. Dong, B. Wang, and K. Cao, “Deep learning driven 3D robust
beamforming for secure communication of UAV systems,” IEEE
Wireless Commun. Lett., vol. 10, no. 8, pp. 1643–1647, Aug. 2021,
doi: 10.1109/LWC.2021.3075996.

[28] A. Alkhateeb, S. Alex, P. Varkey, Y. Li, Q. Qu, and D. Tujkovic,
“Deep learning coordinated beamforming for highly-mobile millime-
ter wave systems,” IEEE Access, vol. 6, pp. 37328–37348, 2018,
doi: 10.1109/ACCESS.2018.2850226.

[29] G. Eappen, J. Cosmas, T. Shankar, A. Rajesh, R. Nilavalan, and
J. Thomas, “Deep learning integrated reinforcement learning for
adaptive beamforming in B5G networks,” IET Commun., vol. 16,
no. 20, pp. 2454–2466, 2022, doi: 10.1049/cmu2.12501.

[30] Z. D. Zaharis, I. P. Gravas, P. I. Lazaridis, T. V. Yioultsis,
C. S. Antonopoulos, and T. D. Xenos, “An effective modification of
conventional beamforming methods suitable for realistic linear antenna
arrays,” IEEE Trans. Antennas Propag., vol. 68, no. 7, pp. 5269–5279,
Jul. 2020, doi: 10.1109/TAP.2020.2977822.

[31] J. Sola and J. Sevilla, “Importance of input data normalization for
the application of neural networks to complex industrial problems,”
IEEE Trans. Nucl. Sci., vol. 44, no. 3, pp. 1464–1468, Jun. 1997,
doi: 10.1109/23.589532.

[32] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning, vol. 1.
Cambridge, MA, USA: MIT Press, 2016.

[33] N. Bakas, G. Markou, D. Charmpis, and K. Hadjiyiannakou,
“Performance and scalability of deep learning models trained on
a hybrid supercomputer: Application in the prediction of the
shear strength of slender RC beams,” presented at the 8th Int.
Conf. Comput. Methods Struct. Dyn. Earthquake Eng. Methods
Struct. Dyn. Earthquake Eng., Athens, Greece, 2021, pp. 3878–3893,
doi: 10.7712/120121.8754.19593.

[34] E. Pellegrino et al., “Deep learning architecture optimization with
metaheuristic algorithms for predicting BRCA1/BRCA2 pathogenicity
NGS analysis,” BioMedInformatics, vol. 2, no. 2, p. 2, Jun. 2022,
doi: 10.3390/biomedinformatics2020016.

[35] A. Agnihotri and N. Batra, “Exploring Bayesian optimization,” Distill,
vol. 5, no. 5, p. e26, May 2020, doi: 10.23915/distill.00026.

[36] R. Garnett, Bayesian Optimization. Cambridge, U.K.: Cambridge
Univ. Press, 2023. doi: 10.1017/9781108348973.

[37] J. Bergstra, D. Yamins, and D. Cox, “Making a science of model
search: Hyperparameter optimization in hundreds of dimensions for
vision architectures,” in Proc. 30th Int. Conf. Mach. Learn., Feb. 2013,
pp. 115–123.

[38] J. Snoek, H. Larochelle, and R. Adams, “Practical Bayesian
optimization of machine learning algorithms,” in Proc. Adv. Neural
Inf. Process. Syst., vol. 4, Jun. 2012, pp. 1–12.

[39] R. Turner et al., “Bayesian Optimization is superior to
random search for machine learning hyperparameter tuning:
Analysis of the black-box optimization challenge 2020,”
in Proc. Competition Demonstration Track, Aug. 2021,
pp. 3–26.

[40] M. Balandat et al., “BOTORCH: A framework for efficient Monte-
Carlo Bayesian optimization,” in Proc. Adv. Neural Inf. Process. Syst.,
Dec. 2020, pp. 21524–21538.

[41] K. Sastry, D. Goldberg, and G. Kendall, “Genetic Algorithms,”
in Search Methodologies: Introductory Tutorials in Optimization
and Decision Support Techniques, E. K. Burke and G. Kendall,
Eds. Boston, MA, USA: Springer, 2005, pp. 97–125,
doi: 10.1007/0-387-28356-0_4.

[42] Y. N. Dauphin, R. Pascanu, C. Gulcehre, K. Cho, S. Ganguli,
and Y. Bengio, “Identifying and attacking the saddle point
problem in high-dimensional non-convex optimization,” in Proc.
27th Int. Conf. Neural Inf. Process. Syst., vol. 2, Dec. 2014,
pp. 2933–2941.

[43] S. Mabrouki, I. Dayoub, Q. Li, and M. Berbineau,
“Codebook designs for millimeter-wave communication
systems in both low- and high-mobility: Achievements and
challenges,” IEEE Access, vol. 10, pp. 25786–25810, 2022,
doi: 10.1109/ACCESS.2022.3154016.

[44] T. Nguyen, “Null depth trade-off for output power reduction in a
downlink adaptive antenna array,” M.S. thesis, School Eng. Sci.,
Victoria Univ., Melbourne, VIC, Australia, 2006. [Online]. Available:
https://vuir.vu.edu.au/522/

[45] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson, “How
transferable are features in deep neural networks?,” in Proc.
27th Int. Conf. Neural Inf. Process. Syst., vol. 2, Dec. 2014,
pp. 3320–3328.

[46] K. Simonyan and A. Zisserman, “Very deep convolutional networks
for large-scale image recognition,” in Proc. 3rd Int. Conf. Learn.
Represent., 2015, pp. 1–14.

[47] Y. Yuan, G. Zheng, K.-K. Wong, B. Ottersten, and
Z.-Q. Luo, “Transfer learning and meta learning-based fast
downlink beamforming adaptation,” IEEE Trans. Wireless
Commun., vol. 20, no. 3, pp. 1742–1755, Mar. 2021,
doi: 10.1109/TWC.2020.3035843.

VOLUME 5, 2024 1357

http://dx.doi.org/10.1109/LWC.2021.3075996
http://dx.doi.org/10.1109/ACCESS.2018.2850226
http://dx.doi.org/10.1049/cmu2.12501
http://dx.doi.org/10.1109/TAP.2020.2977822
http://dx.doi.org/10.1109/23.589532
http://dx.doi.org/10.7712/120121.8754.19593
http://dx.doi.org/10.3390/biomedinformatics2020016
http://dx.doi.org/10.23915/distill.00026
http://dx.doi.org/10.1017/9781108348973
http://dx.doi.org/10.1007/0-387-28356-0_4
http://dx.doi.org/10.1109/ACCESS.2022.3154016
http://dx.doi.org/10.1109/TWC.2020.3035843

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Helvetica-Condensed-Bold
 /Helvetica-LightOblique
 /HelveticaNeue-Bold
 /HelveticaNeue-BoldItalic
 /HelveticaNeue-Condensed
 /HelveticaNeue-CondensedObl
 /HelveticaNeue-Italic
 /HelveticaNeueLightcon-LightCond
 /HelveticaNeue-MediumCond
 /HelveticaNeue-MediumCondObl
 /HelveticaNeue-Roman
 /HelveticaNeue-ThinCond
 /Helvetica-Oblique
 /HelvetisADF-Bold
 /HelvetisADF-BoldItalic
 /HelvetisADFCd-Bold
 /HelvetisADFCd-BoldItalic
 /HelvetisADFCd-Italic
 /HelvetisADFCd-Regular
 /HelvetisADFEx-Bold
 /HelvetisADFEx-BoldItalic
 /HelvetisADFEx-Italic
 /HelvetisADFEx-Regular
 /HelvetisADF-Italic
 /HelvetisADF-Regular
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

