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ABSTRACT Radio-frequency electromagnetic field (RF-EMF) forecasting plays an important role in the
evaluation of regulatory compliance, network planning and system optimization. The knowledge of RF-
EMF levels is essential to ensure compliance with standards and avoid public health concerns, especially
with the arrival of new frequencies and scenarios in fifth-generation (5G) and sixth generation (6G)
wireless networks. This work provides a comprehensive study on time series forecasting for RF-EMF
measured in frequency from 100 kHz - 3 GHz. The state-of-the-art deep learning model architectures
consist of deep neural network (DNN), convolutional neural network (CNN), long-short term memory
(LSTM), and transformer are applied for time series forecasting. The prediction performance is evaluated
under three different scenarios - namely single-step input single-step output (SISO), multi-step input single-
step output (MISO), and multi-step input multi-step output (MIMO). The findings from the simulation
demonstrate that SISO forecasting is inadequate in predicting long-term radio-frequency electromagnetic
fields (RF-EMF) data as it lacks accuracy while MISO and MIMO forecasting scenarios offer more
precise predictions. Specifically, in these two scenarios where the input width and label width are both
set to 20 steps, the LSTM and CNN models exhibit superior performance compared to other models.
Nonetheless, as the input width and label width in a MIMO scenario increase, the accuracy of both
CNN and LSTM models decline considerably, whereas the transformer model consistently maintains good
performance. Additionally, the transformer model continues to deliver accurate predictions as the label
width and shift length increase, which is not the case for DNN, CNN, and LSTM models.

INDEX TERMS CNN, deep learning, EMF, forecasting, LSTM, RF-EMF, time-series, transformer, 6G.

. INTRODUCTION

LTHOUGH the 5G communication technology is still

being commercialized across the world, researchers
have been paying attention to the 6G to satisfy the future
demands by 2030. The motivations for 6G include the
explosive growth in mobile traffic, and the emergence of
unprecedented applications together with new technologies.
In particular, the mobile broadband could reach 17.1 billion

subscribers by 2030 and the monthly data consumption by
each user may increase from around 5 GB in 2020 to 250 GB
in 2030. While 5G has been evolutionary in enabling the
Internet-of-Things and Industry 4.0, it may not be able to
fully support applications such as smart cities, smart utility
services, extended reality, connected autonomous systems,
telemedicine and so on. These applications require huge
bandwidth on the order of terabit per second along with
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image compression (i.e., for holographic-type communica-
tions), low latency and high reliability (i.e., for extended
reality), and a stringent low latency (i.e., below 1ms for
tactile Internet and multi-sense experience). Consequently,
6G has promised to provide more data rate, spectrum and
reliability compared to 5G. A remarkable decrease to less
than 1ms in delay in 6G (less than 1 ms) is mandatory
compared to that in 5G. 6G should increase data rate to
a target of 1 Tbps, much higher than 1-20 Gbps in 5G,
motivating to a further investigation of frequency higher than
6 GHz. The higher frequency with a spectrum ranging from
73 - 140 GHz and 1 - 10 THz, in small-cell densification
could be a key attraction in 6G [1].

Furthermore, artificial intelligence (AI) and data science,
including data analytics and data mining, are becoming
dominant technologies of 6G development that could have
impacts on physical, medium access control, networks
and application layers. Particularly, Al has become a key
technology required for 6G networks to tackle multiple
problems, such as optimization of the radio interface,
adaptive beamforming strategies and network management.
The crucial role of Al is inevitable, especially when it is hard
to solve problems by mathematical equations, or it requires
real-time analysis, i.e., for extreme applications such as video
monitoring [2].

A. EMF STANDARDS AND LIMITATIONS

Although 6G is expected to create an ecosystem that
supports a wide range of applications, there are growing
concerns about adverse health effects due to radio-frequency
electromagnetic fields (RF-EMF) exposure, urging consid-
eration of RF-EMF exposure based constraints in recent
research about 6G. The potential health effects could be a
possible heating effect on the exposed tissues, i.e., thermal
effect, and whole-body heat stress [3], [4]. Hence, a critical
investigation of RF-EMF exposure for multi-band networks
is necessary [5]. Due to the problems of RF-EMF exposure
in humans, guidelines specified by International Commission
on Non-Ionizing Radiation Protection (ICNIRP) (1998) and
Information and Communication Technologies Authority
(ICTA) (2018) are adopted worldwide. The exposure limits in
the research by [6] are more up-to-date and can be adapted by
regulators at the national level. The study in [7] provides the
exposure level limit for base station operation at 800 MHz,
900 MHz, 1800 MHz, 2100 MHz, and 2600 MHz are 29.1
V/m, 28.8 V/m, 40.72 V/m, and 49.23 V/m respectively,
which are recommended by ICTA [8].

Recently, many studies related to 6G wireless networks
have considered RF-EMF health concerns by taking into
account the constraints of RF-EMF exposure. In particular in
the study by [9], the RF-EMF exposure is minimized under
the condition of minimum rate requirement for each user
in an orthogonal frequency-division multiplexing system.
In the study of [10], RF-EMF exposure is minimized
subjected to the minimum quality of service (QoS) in
a reconfigurable intelligent surfaces (RIS)-aided network.
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Reference [11] considered the problem of maximization the
energy efficiency in a RIS-aided multi-input multiple-output
system, subject to maximum power constraints and additional
constraints on the maximum exposure of the end-users to
electromagnetic radiations. In addition, it is important to
investigate the current status of RF-EMF exposure levels
in different environments in existing wireless networks to
understand current exposure levels and how this information
can be used to plan new deployments to minimize exposure
and educate the public.

B. RELATED WORK ON RF-EMF

In recent years, RF-EMF related studies have been mainly
concentrated on empirical and modeling approaches to
ensure safe exposure conditions and to validate that
RF-EMF values comply with international and national
regulations. In a systematic review of RF-EMF in vari-
ous micro-environments in the European region by [12],
26 related studies were categorized based on four main
methods, namely spot measurement, fixed site measurement,
personal measurement with volunteers, and mobile micro-
environmental measurement with trained researchers. Most
recently, [13] presented an assessment of RF-EMF exposure
from the downlink traffic of a commercial 5G mm-Wave base
station. The paper concluded that RF-EMF exposure from
mm-Wave base station is mostly negligible in a line-of-sight
location in the case of no traffic and increases according to
the amount of throughput. In contrast to the common belief
that densification of 5G networks may increase RF-EMF
exposure, [14] provided evidence that the higher number
of base stations contributes to reducing RF-EMF exposure
from mm-Wave frequencies, beam-forming, and connection
of millions of devices.

C. RELATED WORK ON APPLYING ML FOR RF-EMF

Few studies till now have started exploring machine learning
(ML) for RF-EMF dataset in wireless networks to solve prob-
lems such as clustering, classification and prediction. In [15],
an unsupervised ML hierarchical clustering algorithm is
applied to determine the patterns of RF-EMF radiation in
205 Greek schools in the region of Thessaly. The analysis
is due to the need to identify areas that contain increased
RF-EMF values. The RF-EMF strength is determined by the
measurements of electric field intensity (in V/m) with the
detection range from 27 MHz - 3 GHz and by the frequency
selective measurements over interval of 6 minutes at three
heights of 110 cm, 150 cm and 170 cm. The RF-EMF
dataset contains 6 variables, including area, exists, electric
field strength, dense, ratio and limit area. The results show
that no specific clustering pattern is found in the observed
frequency range. Reference [16], proposed two aritifical
neutral network (ANN) models to predict electric field values
of random locations which are specific regions for RF-EMF
exposure. The RF-EMF values (generated by averaging over
6-minute durations) are measured in the frequency range
27 MHz - 3 GHz at specific locations in the campus of Bursa
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Uludag University, Turkey. To predict the average electric
field values, two ANN models with different input layers
are applied, in which the input of ANN consists of latitude,
longitude, and different frequency ranges. Both ANN models
obtain good prediction results, with correlation coefficients
at 99% for the first ANN and at 92% for the second ANN.
Moreover, both the measured and estimated results are in
the limit values defined by ICTA.

Regarding time series EMF data, long-short term memory
(LSTM) is applied to predict electric field strength levels
of high-voltage lines that were measured monthly in Turkey
between 2014 and 2018 in the range of 1 Hz - 400 kHz using
the Wave control SMP2 device [17]. Based on the 60 monthly
time-series data of RF-EMF in the paper, the proposed
LSTM is expected to predict the next 12-month electric
field values. The RF-EMF dataset containing 60 records that
is divided into 42 records for training and 12 records for
testing. The LSTM model is compared with other models
like autoregressive integrated moving average (ARIMA),
extreme learning machine, and multi-layer perceptron etc. It
is observed that LSTM model outperforms other models in
terms of root mean square error (RMSE). Although being
the first study on RF-EMF time-series, the time-series model
for in [17] relied on a very limited amount of data for
both training and testing, which could lead to an over-
fitting model. Furthermore, the dataset was measured in a
specific location at the coordinate (38°N,41°E), thus the
time-series problem simply becomes using one input variable
and predicting one output variable. In addition, there was no
consideration of time series parameters such as the length
of input steps (input width), the length of output steps
(label width), and the shift of the time-series in [17]. The
frequency range of the dataset in [17] is from 1 kHz -
400 kHz, which is very low and hard to cover the current
most popular wireless network services such as LTE1800,
LTE2600, WLAN, and others.

D. RESEARCH GAPS, MOTIVATIONS AND
CONTRIBUTIONS

This section presents the motivations and the contributions
of this paper. The motivations of this work are based on
the importance of RF-EMF forecasting especially long-term
RF-EMF, the significance of RF-EMF predictions based on
ad machine learning techniques, and the gaps in previous
studies. Also, the differences in comparison with earlier
works are highlighted.

It is inevitable that the measurement and analysis of
RF-EMF are always further required when it comes to new
frequencies, scenarios and applications. However, it is time-
consuming and expensive to measure RF-EMF, especially
long-term RF-EMF with measurements conducted over days,
weeks or even months. In addition, the explosion of new
technologies, new frequencies and use cases in 5G/6G
networks increases the demands of RF-EMF measurements
and modeling remarkably to avoid health hazards, resulting
in more time-consuming and costly. To overcome these
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challenges, better approaches are required for RF-EMF
measurements and modeling. In addition, ML techniques
should be exploited for RF-EMF modeling, particularly for
a better classification and predictions of RF-EMF exposure
in similar use cases.

More importantly, RF-EMF forecasting is crucial for
assessing regulatory compliance, planning networks, and
optimizing systems. The estimation of RF-EMF values helps
to monitor the transmit power at base station (BS) to
guarantee that radio emissions from these sources remain
below the regulatory threshold [18]. In addition, RF-EMF
estimation is crucial to optimize the installation of BS
locations and other network infrastructure [19]. Recently, the
RF-EMF level has been considered as a constraint for the
multi-objective optimization problems in wireless networks,
such as multiple-input multiple-output (MIMO) system [20],
and RIS-aided system [21].

Due to the limited availability of studies on time-series
forecasting for RF-EMF data from wireless networks, this
paper proposes a comprehensive time-series forecasting for
instantaneous long-term RF-EMF data that were measured in
a city center in the Altinordu District of Ordu City, Turkey.
Although the dataset in this study was conducted in sub-
3 GHz, it can still be used for higher bands under new 6G
eco-system. This study is different from [17] in that the long-
term RF-EMF data were conducted in multiple locations,
resulting in a prediction based on multiple variable time-
series at the input. Furthermore, the proposed deep learning
(DL) model in this paper utilizes instantaneous long-term
RF-EMF data to avoid data sparsity, which could lead to
over-fitting problems in the training process.

Given the limited research in RF-EMF time-series fore-
casting and the advancements in machine learning for
time-series problems, this study comprehensively explores
the application of advanced machine learning techniques
for RF-EMF forecasting. Our selection of DL models for
instantaneous RF-EMF data is based on recent review studies
on DL architectures for time-series forecasting by [22],
which compared seven types of DL models and their
variants, including multi-layer perceptron, recurrent neutral
networks (RNN), echo state networks (ESN), CNN, temporal
convolutional networks (TCN), gate recurrent units (GRU)
and LSTM. The study trained 3800 models and showed
that LSTM and CNN are the best alternatives, with LSTM
providing more accurate forecasts.

Motivated by the results of [22], this research employed
conventional time-series forecasting models such as CNN
and LSTM for the time series forecasting of instantaneous
RF-EMF data. In addition, the transformer model which is
a novel architecture that leverages the attention mechanism
to process the time series sequence [23], has been studied
in this paper. Transformer is particularly useful in learning
recurrent patterns with long-term dependencies since it can
access any part of history regardless of distance [24]. In [24],
it was demonstrated that the transformer model provides
superior or comparable performance as well as computing
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efficiencies compared to RNN and its variants including
LSTM and GRU. For these reasons, the transformer model
is adopted for RF-EMF time-series forecasting in this
paper. Baseline models including linear and DNN have also
been considered to compare their performance accuracy.
To the best of our knowledge, there is limited research
on evaluating DL models’ performance for instantaneous
RF-EMF data according to time-series forecasting factors,
i.e., the single/multi-step ahead, length of input/output steps,
and the variation of shift in the time series with multiple
input features.

The contribution of this paper includes

o This paper provides a comprehensive time-series fore-
casting of instantaneous RF-EMF based on long-term
RF-EMF measurements in 17 locations in a city center,
Ordu, Turkey. This study examines the forecasting
of RF-EMF time-series at L1 (location 1) based on
multiple time-series inputs from 17 locations.

« Different learning models are used in three different
forecasting scenarios, namely SISO, MISO, and MIMO.
Linear and DNN models are used in SISO scenario,
while DNN, CNN, LSTM and transformer models are
evaluated for remaining two scenarios. The models’
performance in each scenario is assessed by using
various metrics such as root mean square error (RMSE),
mean absolute error (MAE), mean absolute percent-
age error (MAPE), and coefficient of determination
R-squared score (R2 score). The performance of differ-
ent DL models is evaluated according to the variation
of time series parameters, i.e., input width, label width
and shifts.

o This study aims to determine the optimized DL model
for a RF-EMF forecasting in each scenario to meet
the acceptable prediction performance accuracy, with
R2 score higher than 0.8 in the case of multi-step
output.

The rest of the paper is organized as follows. Section II
introduces background on the measured long-term instanta-
neous RF-EMF and presents data analysis for the dataset.
Section III explains window-based time-series forecasting
approach, and defines fundamental parameters in a time
series window. This Section also presents three time-series
forecasting scenarios, including SISO, MISO and MIMO.
Section IV provides a detailed presentation of proposed
DL models and their corresponding architectures for each
scenario. Data pre-processing, model training, and testing
process are presented in Section V. The simulation results are
discussed in Section VI, and finally Section VII concludes
the paper.

Il. DATASET

A. DATA MEASUREMENTS

The measurement used in this paper is considered from
long-term wideband instantaneous RF-EMF measurements
that were conducted in the Altinordu District of Ordu City,
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FIGURE 1. Locations of RF-EMF measurements.
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FIGURE 2. RF-EMF long-term data.

Turkey from 100 kHz - 3 GHz, more details on experimental
setup can be found in [7]. The purpose of long-term RF-EMF
measurement is to capture the daily exposure variations
and identify the main sources of RF-EMF. To ensure that
rare high peaks were not missed, the measurements were
conducted at 15-second intervals over a 24-hour period,
thereby enabling the characterization of the time-based
RF-EMF features. The measurements were taken at 17
locations in the city center, covering a frequency range
of 100 kHz - 3 GHz, starting at 06:00 a.m. and ending at
06:00 a.m. the following day as shown in Fig. 1. Fig. 2
illustrates the long-term RF-EMF data obtained from all
locations, which shows that the RF-EMF levels vary during
the day with the same pattern/trend, in which the highest
values were observed around 12:00 p.m and the lowest
during the morning and night hours. This long-term RF-EMF
trend motivated the idea of time-series forecasting for this
dataset.

The statistics of the dataset are presented in Table 1.
The instantaneous long-term RF-EMF values in this paper
comprise 5760 data points for each of the 17 locations
measured resulting in the dimension of the dataset as
(5760, 17). In Table 1, statistical features for each loca-
tion, including number of samples/data points (count),
mean, standard deviation (std), min value, 25%, 50%,
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TABLE 1. statistics of 24-hour instantaneous RF-EMF values in 17 selected measurement locations.

L1 L2 L3 14 LS Le L7 L8 19 L10 Li1 L12 L13 L14 L15S Li6 L17

Count 5760 5760 5760 5760 5760 5760 5760 5760 5760 5760 5760 5760 5760 5760 5760 5760 5760

Mean 297 202 229 201 192 3.06 227 245 263 342 2.66 236 448 495 5.13 2.03 2.60

Std 044 024 044 0.27 022 096 035 135 0.50 038 033 0.19 090 0.77 134 0.65 0.40

Min 1.85 1.7 125 152 147 161 176 010 1.59 258 2.17 1.89 32 363 253 12 1.83

25% 269 1.80 2.03 1.80 1.73 2.16 2.03 1.25 227 3.13 241 227 3.65 424 399 143 233

50% 3.09 2.02 241 2.05 1.88 3.02 226 241 273 35 2.6 244 449 499 521 192 2.69

75% 329 215 2.64 222 212 397 245 3.69 3.01 3.72 294 251 5.16 5.61 6.08 251 2.82

Max 4.01 275 3.19 294 2.66 5.16 4.1 6.08 3.84 455 383 2.8 721 692 9.54 391 444

TABLE 2. ADF statistics of original series based on 17 locations.
lll. TIME SERIES FORECASTING

ADF | P Crlig:‘fal Crsigocal Cfiotj;oal A. DEFINITION OF WINDOW SIZE IN A TIME SERIES
L1 -2.628 | 0.087 -3.431 -2.862 -2.567 FORECASTING
L2 —3:675 0:004 3 431 —2:862 —2:567 In this paper, the RF-EMF time series data is divided
L3 2552 | 0103 3431 2.862 2567 into windows before feeding to DL models. By doing this,
L4 2685 | 0.076 3431 2.862 2567 the RF-EMF time series prediction becomes time-series
L5 -2.646 | 0.083 -3.431 -2.862 -2.567 forecasting based on windows rather than based on the whole
L6 -3.744 | 0.003 -3.431 -2.862 -2.567 dataset. The window is defined by three main parameters
L7 | -2709 | 0.072 | -3.431 -2.862 -2.567 including input width, label width and shift as in Fig. 3.
L8 -4.768 | 0.000 -3.432 -2.862 -2.567 Input width refers to the length of input steps (or input
L9 -3.081 | 0.028 -3.432 -2.862 -2.567 series), label width is the length of output steps (or output
L10 -2.819 | 0.056 -3.432 -2.862 -2.567 . g s . . .
L1l | -4284 | 0.001 3432 2862 2567 series), and shift is the time offset between input series and
L12 11913 | 0326 3432 2.862 2,567 output series. There are four cases of window size as in
L13 | 2494 | 0.117 3432 2.862 2.567 Fig. 3. The length of the window size, the input width, and
L14 | -2.330 | 0.163 -3.432 -2.862 -2.567 label width are denoted by W, w;, and w,, respectively.
L15 -3.381 | 0.012 -3.432 -2.862 -2.567 In Fig. 3(a) and in Fig. 3(b), the label width is illustrated
L16 | -4.073 | 0.001 | -3.432 -2.862 -2.567 by w, = 1 which corresponds to a window of single-step
L17 -3.689 | 0.004 -3.432 -2.862 -2.567 label. In contrast, Fig. 3(c) and Fig. 3(d) illustrates w, > 1

75%, and the max value are presented in detail. The
maximum of long-term RF-EMF value recorded is 9.54
V/m at location L15, while the minimum of long-term
RF-EMF value is 0.1 at location L8. Moreover, location
L15 recorded the highest average value of 5.314 V/m,
while location L8 had the highest standard deviation of
1.358 V/m.

B. STATIONARY TESTING

Deep learning models typically struggle to provide accurate
prediction on non-stationary data, and perform better on sta-
tionary data [17]. To investigate the statistical characteristics
of the RF-EMF dataset, an augmented DickeyUFuller test
(ADF) is conducted. Table 2 shows that the dataset contains
stationary and non-stationary features. A feature is consid-
ered stationary if its p—values is less than 0.05. Based on this
criterion, stationary features are located at L2, L6, L8, L9,
L11, L15, L16, and L17. However, the RF-EMF times series
are non-stationary, meaning that they need to convert to the
stationary dataset before applying machine learning models.
The reason behind this transformation is that the non-linear
and non-stationary nature of the instantaneous long-term
RF-EMF series in this paper makes an accurate forecast
difficult [17].
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corresponding to a window of multi-step labels. The symbol
s represents the length of shift and defines the future horizon
of the time series, regardless of whether the window is a
single-step label or multi-step label. The length of the shift
(s) together with the input width (w;) determines the length
of the window size that is calculated by W = w; + s.

B. INPUT AND OUTPUT STEPS OF TIME-SERIES
FORECASTING

This section presents various use cases/scenarios for time-
series forecasting with regard to the number of input and
output steps.

1) SINGLE-STEP INPUT, SINGLE-STEP OUTPUT (SISO)
PREDICTION

The most simple prediction is that we predict the value
of the next time step based on the value of just the
previous time step as described in Fig. 4. In particular, the
RF-EMF value of time step t can be predicted based on
time step (r — 1). Fig. 4 provides the visualization of w
independent prediction of (input, prediction) by applying a
model. Each pair (input, prediction) at time step ((f — 1), f)
is considered as an individual SISO prediction. It is noted
that a single prediction can be used for MISO by iteration
of SISO forecasting. However, this iteration may cause an
accumulation of prediction errors, resulting in a large error
in sum.
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(a) Window 1 for single-step shift and single-step of label width
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(b) Window 2 for multi-step shift and single-step label width
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(d) Window 4 for multi-step shift and multi-step label width

FIGURE 3. Combination of different windows based on parameters of time series forecasting.
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i 1 I}
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FIGURE 4. Prediction of single-input step and single-output step (SISO).
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[ ] [ | moder
!
|t=2 |t=3 | |t=wfll t=w; |Prediction
|t=2 |t=3 I |t=w—1 | t=w; |Labe|

FIGURE 5. Prediction of multi-step input with a small sliding window (example of
size of 2 for illustration only).

2) MULTI-STEP INPUT (MISO & MIMO) PREDICTION

SISO prediction lacks the context of the current values
of its inputs because of no information of how the input
time series varies over time. Therefore, a multi-step input
is necessary for time-series prediction problem such as
in Fig. 5 and Fig. 6. In particular, Fig. 5 is an example
of a DL model (e.g., CNN model) using a small sliding
window that contains input width w; = 2, output width
w, = 1 and shift s = 1. The sliding window slides over
the whole window size to produce the prediction. Another
example of multi-step input prediction (e.g., LSTM model
with no return sequence) is described in Fig. 6 in which
the prediction of output steps is only based on the last
step of the input series. The multi-step input scenario is
divided into two scenarios including MISO when label width
w, = 1 and MIMO when the length of label width is defined
as w, > 1.
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l t=0 | t=1 | t=2 I | t=w-2 I t=w;—1 | Input
Model

|t:w,,, t=wy+1 |t:w,,s+2| lt=w0:+k—1| t=wW-1 | Prediction

|t=w,,s t:w,,:+1|t=w,,,+2| ...It:w,,,+k—1l t=W-1 |Labe|

FIGURE 6. Prediction of multi-input prediction without sliding window.

IV. DEEP LEARNING MODELS FOR EMF TIME-SERIES
FORECASTING

This paper utilizes linear and DNN models for the case of
SISO scenario, and DNN, CNN, LSTM, and transformer
models for MISO and MIMO scenario. For the SISO
case, a linear model is used as a baseline for performance
comparison with the other models. On the other hand, DNN
model is considered as the baseline in the cases of MISO
and MIMO. The goal of this paper is to apply state-of-
the-art DL models for RF-EMF time-series forecasting to
get high prediction performance, so this section provides a
general background of state-of-the-art DL models instead of
discussing their architecture and parameters in-depth.

A. PROPOSED DL MODELS
This section presents the DL models used in this paper. The
input and output data have three dimensions, with shapes
of (None,w;, 17) and (None, w,, 1), respectively. Number
17 corresponds to the number of input features (i.e., 17
locations), and number 1 corresponds to the number of output
feature (i.e., location L1).

The architecture of DNN models in this paper consists of
a Lambda layer, one or two hidden layers, and a Reshape
layer. The lambda layer has its own function which is used to
modify the input data. Specifically, a Lambda layer extracts
the information from input data, which is then Reshape
before being fed to the hidden layer. The Reshape layer is
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TABLE 3. Model archi Ires & par s for SISO case. TABLE 4. Model architectures and parameters for MISO case.
Case No | Model Layer Output Case | No| Model Layer Output sequence
. Sequence Lambda (None, 1, 17)
SISO 1 Linear Dense (None, 1, 1) 3 | DNN_I Dense (None, 1, 1)
Dense (None, 1, 1) Reshape (None, 1, 1)
2 Dense Dense (None, 1, 1) -
Dense (None, 1, 1) ConvlD (None, 1, fzh'fer_l)
4 | ONN_I Dense (None, 1, units_1)
Dense (None, 1, 1)
used to reshape an output to a desired shape at output. The Reshape (None, 1, 1)
DNN model employed in MISO case is DNN_1, which uses LSTM (None, w;, cell_1)
one hidden dense layer, and while DNN_2 is used in MIMO > | LSTM_1| LSTM (None, 1)
scenario and contains two hidden dense layers. MISO Reshape (None, 1, 1)
This study utilizes Conv1D for the CNN model due to the Inqu Layer (None, wi, 17)
three-dimensional nature of input data. The Lambda layer zlrllltllt(l)r}: cadat- | (None, ws, 17)
is adopted in the case of MISO with the same function as TFOLambda | (None, ws, 17)
in DNN models. Moc.lel CNN_1 for MISO is composed of 6 Transfor | ConviD (None, w;, 2)
two dense layers, while for MIMO model CNN_1 includes mer ConviD (None, w;, 2)
one dense layer. Like DNN models, all CNN models require TFOLambda | (None, w;, 17)
Reshape layer to specify the desired output shape. Average (None, w;)
Regarding LSTM, this paper proposed two LSTM archi- polling 1D
tectures named LSTM_1 and LSTM_2, in which LSTM_1 Dense (None, 1)
contains two LSTM layers and LSTM_2 consists of one Reshape (None, 1, 1)

LSTM layer. Both LSTM models adopt Reshape layer to
reshape the output. However, LSTM_1 returns the entire
sequence as the output sequence (return_sequence=True),
while LSTM_2 only returns the last output in the output
sequence (return_sequence=False). As a result, LSTM_2
requires a Dense layer to reshape the output that includes a
label width dimension.

The architecture of the transformer model used for
RF-EMF time-series data in this paper is inspired by
that presented in [23], which is originally for time-series
rather than natural language processing and implemented
in the Keras library. Transformer architecture consists of
encoders and decoders while applying multi-head attention
mechanism. To implement the projection layers, a convlD
layer is applied, followed by the average pooling 1D
method. Multiple encoders are included in the transformer
architecture, and they are connected using TFOLambda,
namely a TensorFlow operator addition layer. For a more
detailed explanation of transformer architecture and its
layers, refer to [23].

B. SISO PREDICTION

For SISO case, we select two simple models: linear and
Dense. The parameters for these models are described in
Table 3. It should be noted that to differentiate the DNN
model in SISO from the two remaining scenarios, we referred
to the DNN model in this case, SISO, as Dense model. The
main difference between dense layer in Linear model and
that in Dense model is that the former does not include
the activation function, while the latter does. To ensure the
activation match to the range of output series of train, valid
and test datasets, Tanh is used as the activation function for
Dense model in this case, as well as the remaining models
in this paper.
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C. MISO PREDICTION

For MISO prediction, the label width is set to w, = 1.
Four models are used to make comparison, as listed in
Table 4. The first model is DNN_1, which is a multi-step
dense model. In contrast to the dense in Section IV-B that
only captures a single input step, the DNN_1 works with
multi-step input. The second model, CNN_1 model uses
ConvlD layer, where the size of the convolution width is
set equal to the length of the input width. Therefore, we
have kernel_size = (conv_width, ), where conv_width = w;.
The number of filters in ConvlD is filter_1 = 32, and the
number of dense units of the first Dense layer in CNN_1
is units_1 = 32. In the third model, LSTM_1 model is
designed with return_sequences = True, which means that
the total sequence is returned in the output. The parameters
of the first LSTM layer in LSTM_1 depend on input width
wi, and the number of LSTM cell that is denoted by
cell_1 = 18. Although the architecture of the transformer
model in [23] is for time-series data, several hyperparameters
require an adjustment to work with the RF-EMF dataset.
The parameters of the transformer model in this paper are
the size of multi-head attention head_size = 2, the output
dimension of all sub-layers as well as embedding layers
ff_dim = 2, and the number of encoder blocks adopted
by num_transformer_blocks = 2. Again, all models in this
section use Tanh activation function.

D. MIMO PREDICTION

For MIMO prediction, five models are considered including
DNN_2, CNN_2, LSTM_1, LSTM_2, and Transformer
which are compared in Table 5. The difference of MISO
models and MIMO models is that the latter are designed
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TABLE 5. Model architectures and parameters for MIMO case.

Case No| Model Layer Output sequence
Lambda (None, 1, 17)
7 | DNN_2 | Dense (None, 1, units_2)
Dense (None, 1, w,)
Reshape (None, w,, 1)
Lambda (None, w;, 17)
$ | ONN 2 ConvlD (None, 1, filter_2)
Dense (None, 1, w,)
Reshape (None, w,, 1)
LSTM (None, w; , cell_2)
MIMO| 9 | LSTM_1| LSTM (None, w,)
Reshape (None, w,, 1)
LSTM (None, cell_2)
10| LSTM_2 | Dense (None, w,)
Reshape (None, w,, 1)
Input Layer (None, w;, 17)
Mul}i head at- | (None, w;, 17)
tention
TFOLambda (None, w;, 17)
11| Transfor | ConviD (None, w;, 2)
met Conv1D (None, w;, 2)
TFOLambda (None, w;, 17)
Average (None, w;)
polling 1D
Dense (None, w,)
Reshape (None, w,, 1)

for multi-step output, as reflected in the shape in the last
layer. DNN_1 and DNN_2 exhibit similar structures, just
as CNN_1 and CNN_2 also possess comparable architec-
ture. But these DNN_2 and CNN_2 differ slightly from
DNN_1 and CNN_1, respectively. In particular, number
of units in DNN_2 (unit_2) is nominated as 32, and the
number of filters in ConvlD layer of CNN_2 is set up
as filter_2 = 32. In MIMO case, LSTM_1 has the same
number of cells in a LSTM layer as LSTM_2, indicated
by cell 2 = 32. Regarding the transformer, the model
architecture and hyperparameters are similar to those in the
case of MISO, except for the multi-step output w, in the last
layer.

V. PROPOSED DL MODEL TRAINING AND TESTING

A. DATA PRE-PROCESSING

In order to improve the accuracy of time-series forecasting,
we apply the differencing technique for the original dataset to
make sure the dataset is stationary (which means all features
are stationary). The successive differencing is kept applying
until the time series becomes stationary series. The auto-
correlation function (ACF) is used to check the necessary
order of differencing for achieving stationary data. ACF
graph decays rapidly around zero value when increasing the
order of differencing in the stationary dataset; in contrast,
ACF graph firstly decreases and then varies periodically
in the non-stationary dataset. This means that if the series
still exhibits positive ACF at high lags, it may require
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FIGURE 7. ACF of the original data and the first-order difference data at location L1.

further differencing [25], [26]. The ACF figures at all other
locations (L2, L3, ..., L17) produce similar results as that
of the first-order differencing at L1. For convenience, only
the ACF graphs of location L1 as shown in Fig. 7. These
figures illustrate the ACF of the dataset at location L1
before and after implementing first-order differencing. It is
observed that the first-order of differencing is sufficient to
eliminate the non-stationary characteristics of the RF-EMF
series as the ACF values from lag 2 start fluctuating around
zero. After obtaining the first-order difference data, we
split it into training, validation and testing purpose with
the ratio 0.7: 0.2: 0.1. We then apply normalization to the
first-order difference on each dataset (train/test/validation)
separately, ensuring the range of values falls between
[min, max] = [0, 1]. Fig. 8 presents the statistics of
training data at 17 locations after applying difference and
normalization.
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FIGURE 9. Data processing, training and testing process for each DL model.

B. MODEL TRAINING AND TESTING

All processed data is fed to the proposed DL models of
each scenario at the same time. In each scenario, all models
are trained and their hyperparameters are tuned. The number
of epochs is 100, the batch size is kept to 8, and the
patience for early stopping is set to 20. The early stopping
technique is utilized to monitor the performance of the
model on validation dataset. The model training will stop
when there is no further improvement in performance on the
validation dataset, which maintains the generalization of the
DL models on validation (unseen) dataset. The performance
of all models is evaluated on both validation and test datasets
as seen in Fig. 9.

C. PERFORMANCE METRICS

The performance accuracy of DL models in this paper
is evaluated using common performance metrics such as
RMSE, mean square error (MSE), MAE, MAPE and R2
score on the normalized test dataset. In particular, RMSE
is the square root of an average squared of the difference
between the original values and the predicted values, while
MSE calculates the average of the squared difference
between the label/target and predicted values in the data
set. The MSE measures the variance of the residuals, while
RMSE estimates the standard deviation of the residuals.
RMSE and MSE is expressed as

6]

2
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where y; is the iy, target value and y; is the iy, predicted value.
The MAE determines the average of residuals by taking the
average of the absolute difference between the actual and
target values in the dataset and is expressed as

N
1 A
MAE:N E \yi—y,'|. 3)
i=1

Different from the three above metrics, which calculated the
error directly, MAPE is one of the most used metrics that
calculate the forecast error by percentage and define as

N

100%
N

i=1

Vi — i
Vi '

MAPE = “4)

Lower values of the RMSE, MSE, and MAPE indicate lower
the prediction errors are, and hence a better prediction.
Additionally, R2 score is a critical metric in prediction or
forecasting which measures the extent to which the predicted
values follow the trend of the target values. A higher value
of R2 score denotes a better prediction. The R2 score is
expressed as

R=1-5E 5)
SST
where
1< )
SSE = N; (i — )", (6)
1Y )
SST = NZ (}’i - ,uy) s @)

i=1

in which p, is the standard deviation of y. The evaluation
of the performance metrics is carried out on the normalized
test dataset which is divided into windows. As a result,
the performance metrics are obtained by taking the average
of all windows. This paper presents the first two windows
of predicted RF-EMF data w.r.t their target/label, for the
purpose of convenient visualization.

VI. SIMULATION RESULTS

A. SISO PREDICTION

This section focuses on the simplest form of prediction,
where a single input step is used to predict one output step.
Each (input, output) pair is considered independent, and there
is no relationship between the prediction points at different
time steps. For the SISO case, w; =1, w, =1, and s = 1
are set, and 20 (input, output) pairs were analyzed together.
The linear and dense models were chosen as the two simple
models for this prediction case, as shown in Table 3. The
results in Table 6 reveals that the performance accuracy of
both models is comparable. The results presented in Fig. 10
indicate that the linear and dense models fail to deliver
accurate predictions on the test data in its original scale.
Both linear and dense models produce predictions that do not
align well with the labeled data. The drawback of utilizing
prediction models in SISO case is that the present time step

1407



NGUYEN et al.: DEEP LEARNING MODELS FOR TIME-SERIES FORECASTING OF RF-EMF

TABLE 6. Performance accuracy of SISO prediction.

Metrics Linear Dense
RMSE 0.0783 0.0782
MSE 0.0061 0.0061
MAE 0.0587 0.0586
MAPE 0.1304 0.1303
1.0 T T & nputs <l Linear

—&— Labels

DNN

Prediction L1

10 15

—1.0%

o 5 20
Time step
(a) Window 1
1.0 T ) <> ]nvulf\ E Linear
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—
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£
-
1.0 L 70 i5 20
Time step

(b) Window 2

FIGURE 10. Prediction of SISO for each 20 continuous (input, label) pairs on
original-scaled test data.

lacks any connection with the previous one, prompting the
need to explore the prediction of multiple input steps.

B. MISO PREDICTION

Unlike SISO where the output of a single step depends
solely on the input at a single time step, the MISO scenario
predicts a single output step based on multiple steps from
the input time series. In other words, in MISO, the model
has the ability to retain and extract more information from
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TABLE 7. Performance accuracy of MISO prediction with w; = w, = 20 and shift

s=1
DNN_1 | CNN_1 | LSTM_1| Transformer
RMSE 0.0779 0.0750 0.0735 0.0764
MSE 0.0061 0.0056 0.0054 0.0058
MAE 0.0584 0.0570 0.0557 0.0582
MAPE 0.1301 0.1283 0.1218 0.1259
TABLE 8. Performance accuracy of MIMO prediction with w; = w, = 20.
DNN_2| CNN_2| LSTM_1| LSTM_2| Transformer|
RMSE | 0.0821 | 0.0189 | 0.0196 0.0201 0.0200
MSE | 0.0067 | 0.0004 | 0.0004 0.0004 0.0004
MAE | 0.0602 | 0.0103 | 0.0106 0.0114 0.0096
MAPE| 0.1351 | 0.0223 | 0.0239 0.0248 0.0215
R2 0.0585 | 0.9435 | 0.9460 0.9431 0.9436

multi-step input series to make predictions, which is not
the case in SISO. Table 7 indicates that the performance
measures of the four DL models in the MISO scenario are
better than those of the linear and dense models in the
SISO case. LSTM_1 performed better than DNN_1, CNN_1,
and Transformer, possibly because the LSTM architecture
is specifically designed for long-term memory time-series
prediction problems. Fig. 11 illustrates the prediction of the
first two windows, which reveals that all four models produce
predictions that closely align with the label in the case of a
single-step output prediction. In this case, it is evident that
LSTM_1 model is the optimal model. However, according
to the prediction graph in Fig. 11, DNN_1, CNN_I and
Transformer also provide relatively accurate prediction, only
slightly lower than LSTM_1. This is possible as input width
is only at w; = 20 and there is single-step output for
prediction with a shift length of 1 (s = 1) These time-series
parameters may not be long enough to create significant
differences in terms of the prediction ability among DL
models. To further access the performance of these DL
models, we will investigate how they perform when the
number of prediction steps or the length of the label width,
the input width and the length of the shift are increased.

C. MIMO PREDICTION
1) COMPARISON BETWEEN FIVE DL MODELS

To begin with, we examine the performance accuracy when
the input width is equal to the label width, that is w; =
w, = 20, and shift s = 1. Table 8 illustrates the performance
accuracy of MIMO case. When label width is w, = 20,
DNN_2 model provides very high RMSE and low R2
score compared to the four remaining models. In contrast,
CNN_2 provides the best performance accuracy among four
models. LSTM_1, LSTM_2 and transformer show similar
performance, whereas DNN is not specifically designed for
long-term memory, resulting in poor performance when the
number of input width increases. The prediction results of
DNN_2 differ significantly from the labels, as shown in
Fig. 12, while the remaining models provide predictions
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FIGURE 11. Prediction of MISO with window size W = 20 on original-scaled test set.

that are relatively closed to the labels and follow the trend
well. Table 8 presents various performance metrics for all
the observed DL models. Table 8 shows that four models,
including CNN_2, LSTM_1, LSTM_2 and Transformer, have
achieved the same MSE. In terms of RMSE, CNN_2 obtains
a slightly lower error compared to LSTM_1, LSTM_2, and
Transformer. As for MAE and MAPE, the transformer has
a slightly lower error compared to CNN_2, LSTM_1, and
LSTM_2. When it comes to R2 score, LSTM_1 provides
a slightly higher accuracy compared to CNN_2, LSTM_1,
and LSTM_2.

Even though there is a minor variation of performance
metrics among CNN_2, LSTM_1, LSTM_2, and transformer
in this case; these differences can be disregarded as the four
models perform relatively similarly. The slight differences
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FIGURE 12. Prediction of MIMO in the case of w; = w, =20 and s =1 on
original-scaled test dataset.

in performance between these four models arise from the
variation of the loss during training. In addition, none of
the four models demonstrates significant superiority over
others, possibly due to input width, which is w; = 20,
not long enough to make the distinguish between models’
memory and forecasting capabilities. Therefore, the authors
are motivated to investigate the performance of these models
with different input widths in the following subsection.

2) PERFORMANCE OF FOUR COMPARATIVE MODELS
W.R.T INPUT WIDTH

Given that short input width as well as label width (i.e.,
w; = w, = 20) and shift s = 1, CNN_2 achieves the best
performance accuracy. In this section, we investigate the
performance accuracy of four models, which are CNN_2,
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TABLE 9. Performance accuracy of transformer w.r.t label width given that w; = 80 and s = 1.

80 70 60 40 30 20 10
RMSE | 0.0113 | 0.0198 | 0.0262 | 0.0240 | 0.0213 | 0.0160 | 0.0193 | 0.0271
MSE | 0.0001 | 0.0004 | 0.0007 | 0.0006 | 0.0005 | 0.0003 | 0.0004 | 0.0007
MAE | 0.0056 | 0.0159 | 0.0223 | 0.0192 | 0.0164 | 0.0068 | 0.0093 | 0.0159
MAPE | 0.0122 | 0.0354 | 0.0493 | 0.0402 | 0.0363 | 0.0156 | 0.0209 | 0.0348
R2 0.9813 | 0.9437 | 0.9014 | 09163 | 0.9327 | 0.9615 | 0.9436 | 0.8886
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FIGURE 13. Performance accuracy w.r.t input width given that w; = w, and s = 1.

LSTM_1, LSTM_2, and transformer, as the input width
w; increases while maintaining w; = w, and s = 1.
DNN_2 is excluded from the comparison because of its poor
performance in Section VI-Cl. As seen in Fig. 13, there
is a little difference in prediction performance among the
four models when w; = 20. These findings align with those
from Section VI-C1. However, as the length of input width
w; increases, the prediction performance gap between four
models becomes apparent. Specifically, in Fig. 13 at w; =
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80, the transformer model shows good prediction accuracy
with low RMSE and high R2 score which is in contrast
to a significant decrease in prediction performance in the
other three models. The R2 score values of the observed DL
models (CNN_2, LSTM_1, and LSTM_2) are at least 0.8
for input widths of 50, 40, and 30, respectively. On the other
hand, the transformer model achieved R2 score values higher
than 0.9 for all the observed input widths. Therefore, it can
be concluded that the transformer model is a suitable option
for predicting RF-EMF time-series in a MIMO setting when
the input width is relatively high.

Model LSTM_2 has higher RMSE and lower R2 score
compared to LSTM_1. The rationale behind the higher
RMSE and lower R2 score of the LSTM_2 model compared
to LSTM_1 is that LSTM_1 returns the whole sequence in
the output sequence while LSTM_2 only returns the last
output. For the input width range of w; = 30 to w; = 70,
LSTM_1 shows better performance in terms of prediction
accuracy. However, at w; = 80, LSTM_1 and CNN_2 have
similar prediction performance, as shown in Fig. 13. It
appears that LSTM_1’s ability to capture long-term time
steps is not effective when the input width is up to w; = 80,
which could be improved by using the transformer model.

3) PERFORMANCE ACCURACY OF TRANSFORMER
W.R.T LABEL WIDTH

In the previous subsection, we examined how the
performance of the four DL models is affected by changes
in input width (w;) while keeping the output width (w,)
constant. In this subsection, we will observe the performance
accuracy of the selected optimal model (i.e., transformer)
with regard to changes in output width. The reason for choos-
ing the transformer model is due to its good performance
even when input width increases. To conduct the experiment,
the parameters are set to w; = 80, w, = [start = 10, end =
80,step = 10], and s = 1, where label width (w,)
varies from 10 to 80 with a step size of 10. As seen in
Table 9, transformer provides good prediction (R2 score
over 0.9) with label with w, > 20. When label width
w, = 10, R2 score starts to decrease slightly below 0.9.
In general, transformer achieves good performance accuracy
when adjusting label width. The shorter the label width is,
the more unlikely trend of the target/label becomes clear;
leading to a reduction in performance accuracy. The results
are in Table 9, the minimum length of label width to obtain
the R2 score above 0.9 is 20 in the case of w; = 80 and s = 1.
The prediction on original-scaled data of the Transformer
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FIGURE 14. Prediction on original-scaled data with Transformer model in the case
of w,=w,=80and s=1.

model for the first two windows in the case of w; = w, = 80
and s = 1 is presented in Fig. 14.

4) PERFORMANCE ACCURACY W.R.T SHIFT

In the previous sections, all experiments were performed
under the condition of s = 1. However, in this section, we
examine the performance accuracy of four models - CNN_2,
LSTM_1, LSTM_2, and transformer - with respect to the
variation of shift. The input width is set to w; = 45, label
width to w, = 30, and shift to s = [start = 1,end =
6, step = 1]. As shown in Fig. 15(a), shift is the parameter
that has the most significant impact on the performance
accuracy of the four models. Specifically, a slight increase
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FIGURE 15. Performance accuracy w.r.t shift.

in shift leads to a notable increase in RMSE and a decrease
in R2 score.

The graph in Fig. 15(b) indicates that the transformer
model performs better than the other three models, including
CNN_2, LSTM_1, and LSTM_2, in terms of both RMSE
and R2 score for all values of shift. For example, when shift
is 2, all four models achieve a performance of over 0.85,
whereas when shift is 5, only the transformer model attains
an R2 score value of nearly 0.8. The transformer model’s
prediction with shift s = 4 is depicted in the figure, which
closely follows the trend of the label, as shown in the two
windows of Fig. 16. The performance of the three models,
CNN_1, CNN_2, and LSTM_2, is compared in Fig. 16.
The results demonstrate that LSTM_2 performs the worst
in terms of both RMSE and R2 score, whereas CNN_1
and LSTM_1 have relatively similar performance metrics for
both RMSE and R2 score. The reason for this lies in that
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FIGURE 16. Prediction on original-scaled data with Transformer model in the case
of wy=w, =80and s =4.

the LSTM_2 model only returns the last output in the output
sequence, which may reduce its forecasting performance.
The intersection observed between CNN_2 and LSTM_1 at
the shift of 5 in Figure 15 is influenced by the variation
of loss during training process. These results are consistent
with those in Section VI-C2.

To summarize, when it comes to forecasting RF-EMF
time-series, using MISO and MIMO methods yields better
performance than SISO prediction. In multi-step input
prediction, the transformer model generally performs well
across various time-series parameters such as input width,
output width, and shift, when compared to other models
based on DNN, CNN, and LSTM architectures. Based on
the simulation results, the transformer model demonstrates
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significantly better prediction performance compared to the
other models when the number of input width (w;) is
high, given that w; = w,. In terms of LSTM architecture,
LSTM_1 model that returns the total sequence in the output
sequence, performs better than LSTM_2 model that only
returns the last output in the output sequence in both MISO
and MIMO cases. LSTM_2 model also performs worse
than the other DL models in multi-step input prediction.
When comparing LSTM and CNN architecture, LSTM_1
outperforms CNN_1 in the case of MISO, but only for input
widths lower than 80. When the input width reaches 80,
LSTM_1 no longer performs better than CNN_1 in terms of
prediction performance.

On the other hand, LSTM_2 and CNN_2 exhibit only
minor differences in their prediction performance in the
MIMO case. It is evident that the LSTM architecture
outperforms the CNN architecture only when the input width
is relatively short, i.e., within the range of [20, 60], and
the output width is a single step. Therefore, for time-series
forecasting of RF-EMF data with short input and output
widths, i.e., w; = w, = 20 with a shift of 1, both CNN
and LSTM architectures can be used. However, when the
input and output widths increase to a higher value, i.e.,
w; = w, = 80, the transformer model is a good option that
offers high prediction performance, especially with an R2
score score above 0.8. Furthermore, all architectures are
sensitive to increases in the length of shift, where the
prediction accuracy of CNN and LSTM models significantly
decreases (R2 score below 0.8) at s = 5. In contrast,
the transformer model maintains an acceptable prediction
accuracy even when s = 6. In summary, the transformer
model is a suitable candidate for long input and label widths,
particularly when the shift increases.

Transformer outperforms other DL models especially
when the input width, output width and the shift increase
in this paper. Transformer architecture does not contain
sequential characteristics as in LSTM in which the future
time step does not depend on the previous hidden states.
The entire sequence is processed simultaneously at the same
time instead of processed each time step. In other words,
transformer model shows its superiority in capturing distant
or long-range time steps and understanding dependencies
within data. This capability enables the learning of the
relationship between time steps in a longer time-series
sequence. Therefore, the transformer is not at the risk of
forgetting or losing the past information. This ability can
be achieved by using multi-head attention which contributes
valuable insights into the relationships between different
information in different time steps [23]. In the mean
while, LSTM and CNN, information must navigate through
numerous processing steps to cover a considerable distance,
resulting in challenges in learning [27]. Furthermore, there
is no assumption of temporal or spatial relationship in
Transformer. By learning the entire sequence simultane-
ously Transformer is well-suits for a long time-series
sequence [28].

VOLUME 5, 2024



,[EEES IEEE Open Journal of the
Comdoc' communications Society

On the contrary, parallel training is not feasible for
LSTM. Encoding the information in the second time step
requires the computation of information in the first step
beforehand. The point is that the encoding of a specific
step information is retained only for the next time step,
which means that the encoding of information strongly
affects only the representation of the step information in the
next step. Consequently, the influence of the information
in the previous step is quickly lost after a few time steps.
While this issue can be addressed by implementing deeper
processing of hidden states through specific units or utilizing
a bi-directional LSTM model, the problem is fundamentally
associated with recursion. This drawback causes LSTM
to experience a decline in performance as the sequence
length increases [27]. In the meanwhile, CNN deals with
the dependence between information in each time-series
sequence by applying different kernels to the same sequence.
For example, kernel size 2 can learn the relationship of
information between a pair of time steps. Kernel size 3
would capture the relationship for 3 time steps and so on.
The challenge with CNN in handling time-series data lies in
the need for a substantial number of kernels to comprehend
relationships in lengthy time-series sequences [27].

In sum, transformer is superior to other counterpart
DL models in RF-EMF forecasting based on applying the
mechanism of multi-head attention. By doing so, transformer
can avoid the recursion problem in LSTM or an issue of
the large number of kernels in CNN. While the transformer
architecture proposed in this paper may not be optimized
for extremely lengthy sequences, it is demonstrated to be
effective with the length of the RF-EMF dataset that is
observed in this study.

VIl. CONCLUSION
This study has utilized a dataset of long-term instantaneous
RF-EMF measurements taken in the city center of Ordu
city, Turkey. The study presented a comprehensive analysis
of the time-series data and data processing techniques,
aimed at addressing time-series forecasting problems in three
scenarios - SISO, MISO, and MIMO. Various DL models
and their architectures were applied to the RF-EMF dataset,
and their performance was evaluated in each scenario. The
results indicated that DL models such as DNN, CNN, and
LSTM perform better in terms of prediction accuracy when
the input or output steps are short, around 20. However, the
Transformer model has shown good prediction performance
with higher R2 score values even when the length of
input steps is increased, and the output steps and shift are
varied. Overall, the transformer model has demonstrated its
robustness in addressing time-series forecasting problems.
In future work, it is necessary to explore various architec-
tures of Transformer that are suitable to address the RF-EMF
forecasting problem in different scenarios. Such scenarios
can be based on wireless networks in indoor (e.g., WiFi), 5G
New Radio (beamforming focus), reconfigurable intelligent
surface enabled networks and how knowledge of RF-EMF
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forecasting can be used to develop RF-EMF constraints
future networks. Apart from refining the architecture of DL
models, it may be beneficial to introduce an enhanced cost
function that could reduce prediction errors.

REFERENCES

[1] H. H. H. Mahmoud, A. A. Amer, and T. Ismail, “6G: A compre-
hensive survey on technologies, applications, challenges, and research
problems,” Trans. Emerg. Telecommun. Technol., vol. 32, no. 4, 2021,
Art. no. e4233.

[2] M. Liyanage, “Explainable eAl for B5G/6G: Technical aspects, use
cases, and research challenges,” 2021, arXiv:2112.04698.

[3] B. Thors, D. Colombi, Z. Ying, T. Bolin, and C. Tornevik, “Exposure
to RF EMF from array antennas in 5G mobile communication
equipment,” IEEE Access, vol. 4, pp. 7469-7478, 2016.

[4] M. A. Saeidi, H. Tabassum, and M.-S. Alouini, “Multi-band wireless
networks: Architectures, challenges, and comparative analysis,” 2022,
arXiv:2212.07606.

[5] “Accurately assessing exposure to radio frequency
electromagnetic fields from 5G networks,” Ericsson,
Stockholm, Sweden, White Paper, 2021. [Online]. Available:

https://www.ericsson.com/en/reports—papers/white-papers/accurately-
assessing-exposure-to-radio-Freq.-Electromagn.-fields-from-5g-Netw.

[6] W. H. Bailey et al., “Synopsis of IEEE Std €95.1™.2019 ‘IEEE
standard for safety levels with respect to human exposure to electric,
magnetic, and electromagnetic fields, 0 Hz to 300 GHz,”” IEEE Access,
vol. 7, pp. 171346-171356, 2019.

[71 C. Kurnaz and M. Mutlu, “Comprehensive radiofrequency elec-
tromagnetic field measurements and assessments: A city center
example,” Environ. Monit. Assess., vol. 192, pp. 1-14, May 2020.

[8] H. M. Madjar, “Human radio frequency exposure limits: An update
of reference levels in Europe, USA, Canada, China, Japan and South
Korea,” in Proc. Int. Symp. Electromagn. Compat., 2016, pp. 467-473.

[91 Y. A. Sambo, M. Al-Imari, F. Héliot, and M. A. Imran,

“Electromagnetic emission-aware schedulers for the uplink of OFDM

wireless communication systems,” IEEE Trans. Veh. Technol., vol. 66,

no. 2, pp. 1313-1323, Feb. 2017.

H. Ibraiwish, A. Elzanaty, Y. H. Al-Badarneh, and M.-S. Alouini,

“EMF-aware cellular networks in RIS-assisted environments,” IEEE

Commun. Lett., vol. 26, no. 1, pp. 123-127, Jan. 2022.

A. Zappone and M. Di Renzo, “Energy efficiency optimization of

reconfigurable intelligent surfaces with electromagnetic field exposure

constraints,” [EEE Signal Process. Lett., vol. 29, pp. 1447-1451,

2022.

H. Jalilian, M. Eeftens, M. Ziaei, and M. Ro6sli, “Public exposure to

radiofrequency electromagnetic fields in everyday microenvironments:

An updated systematic review for Europe,” Environ. Res., vol. 176,

Sep. 2019, Art. no. 108517.

L. Chiaraviglio et al., “EMF exposure in 5G standalone mm-Wave

deployments: What is the impact of downlink traffic?”” IEEE Open J.

Commun. Soc., vol. 3, pp. 1445-1465, 2022.

L. Chiaraviglio, S. Turco, G. Bianchi, and N. Blefari-Melazzi, “Do

dense 5G networks increase exposure to electromagnetic fields? [Point

of view],” Proc. IEEE, vol. 109, no. 12, pp. 1880-1887, Dec. 2021.

Y. Kiouvrekis, A. Alexias, Y. Filipopoulos, V. Softa, C. D. Tyrakis,

and C. Kappas, “Unsupervised machine learning and EMF radiation in

schools: A study of 205 schools in Greece,” 2020, arXiv:2007.13208.

M. R. Bakcan et al., “Measurement and prediction of electromagnetic

radiation exposure level in a university campus,” Tehnicki Vjesnik,

vol. 29, no. 2, pp. 449-455, 2022.

Z. Pala, “Examining EMF time series using prediction algorithms with

R,” IEEE Can. J. Electr. Comput. Eng., vol. 44, no. 2, pp. 223-227,

Jun. 2021.

D. Colombi, P. Joshi, B. Xu, F. Ghasemifard, V. Narasaraju, and

C. Tornevik, “Analysis of the actual power and EMF exposure from

base stations in a commercial 5G network,” Appl. Sci., vol. 10, no. 15,

p. 5280, 2020.

S. Faye et al., “A survey on EMF-aware mobile network plan-

ning,” IEEE Access, vol. 11, pp. 85927-85950, 2023.

L. Chiaraviglio, C. Di Paolo, and N. Blefari-Melazzi, “5G network

planning under service and EMF constraints: Formulation and solu-

tions,” IEEE Trans. Mobile Comput., vol. 21, no. 9, pp. 3053-3070,

Sep. 2022.

[10]

(1]

[12]

(13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

1413



NGUYEN et al.: DEEP LEARNING MODELS FOR TIME-SERIES FORECASTING OF RF-EMF

[21] B. Yin, W. Joseph, and M. Deruyck, “RIS-aided mmWave network
planning towards connectivity enhancement and minimal electromag-
netic field exposure,” IEEE Access, vol. 11, pp. 115911-115923, 2023.
P. Lara-Benitez, M. Carranza-Garcia, and J. C. Riquelme, “An
experimental review on deep learning architectures for time series fore-
casting,” Int. J. Neural Syst., vol. 31, no. 3, 2021, Art. no. 2130001.
A. Vaswani et al., “Attention is all you need,” in Proc. Adv. Neural
Inf. Process. Syst., vol. 30, 2017, pp. 1-15.

S. Li et al, “Enhancing the locality and breaking the memory
bottleneck of transformer on time series forecasting,” in Proc. Adv.
Neural Inf. Process. Syst., vol. 32, 2019, pp. 1-14.

Y. Li, C. Yang, and Y. Sun, “Dynamic time features expanding and
extracting method for prediction model of sintering process quality
index,” IEEE Trans. Ind. Informat., vol. 18, no. 3, pp. 1737-1745,
Mar. 2021.

S. Ahmed, I. E. Nielsen, A. Tripathi, S. Siddiqui, G. Rasool,
and R. P. Ramachandran, “Transformers in time-series analysis: A
tutorial,” 2022, arXiv:2205.01138.

I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning
with neural networks,” in Proc. Adv. Neural Inf. Process. Syst., vol. 27,
2014, pp. 1-9.

J. Grigsby, Z. Wang, and Y. Qi, “Long-range transformers for dynamic
spatiotemporal forecasting,” 2021, arXiv:2109.12218.

[22]

(23]

[24]

[25]

[26]

(27]

(28]

CHI NGUYEN received the B.S. degree in elec-

tronics and telecommunications engineering from

the University of Transport and Communications,
i Hanoi, Vietnam, in 2011, and the M.S. degree
in telecommunication engineering from the Hanoi
University of Science and Technology in 2016.
She is currently pursuing the Ph.D. degree with the
University of Ulster. She is currently with Queen’s
University Belfast, U.K. Her research interests
include channel modeling, DL, non-orthogonal
multiple access, reconfigurable intelligent surface,
underwater communications, and visible light

=

physical layer security,
communications.

ADNAN AHMAD CHEEMA (Member, IEEE)
received the B.Sc. degree from COMSATS
University, Pakistan, in 2006, the M.Sc. degree
from King’s College London, U.K., in 2008, and
the Ph.D. degree from Durham University, U.K.,
in 2015. From 2015 to 2017, he was a Postdoctoral
Research Associate with Durham University and
was involved in 5G channel measurements and
d modeling (sub-6 GHz and 24-90 GHz). In 2017,
§ l P he joined Ulster University, U.K., as a Lecturer of

Electronics Engineering and currently leading the
SenComm Research Lab. His research interests include channel modeling,
reconfigurable intelligent surface, non-orthogonal multiple access, and
machine learning for wireless communications.

CETIN KURNAZ received the B.S., M.S., and Ph.D.
degrees in electrical and electronics engineering
from Ondokuz Mayis University, Samsun, Turkey,
in 1999, 2002, and 2009, respectively, where he
is an Associate Professor with the Department
of Electrical and Electronics Engineering. His
current research interests include wireless com-
munication, antennas and wave propagation, and
electromagnetic fields.

1414

ARDAVAN RAHIMIAN (Member, IEEE) received
the M.Eng. degree (Hons.) in electronic and
communications engineering from the University
of Birmingham, U.K., in 2009, and the Ph.D.
degree in electronic engineering from the Queen
Mary University of London, U.K., in 2018, where
he was a Postdoctoral researcher with the School
of EECS from 2018 to 2019, working on an
industrial research project supported by Huawei
Technologies. Since 2019, he has been a Lecturer
(Assistant Professor) of Electronic Engineering
with the School of Engineering, Ulster University, Belfast, U.K. He
regularly serves as a reviewer for leading journals, flagship conferences,
book proposals, and funding applications. His research interests include
applied electromagnetics, communication systems, energy networks, and
their multidisciplinary applications. He has authored or coauthored several
papers in these areas. He was the winner of the Rohde & Schwarz
Technology Prize in 2009.

CONOR BRENNAN (Senior Member, IEEE)
received the B.A. degree (Mod) in mathematics
and the Ph.D. degree from Dublin University
(Trinity College), Ireland, in 1994 and 1998,
respectively. In 2003, he joined the School of
Electronic Engineering, Dublin City University,
where he is currently an Associate Professor.
His research interests are in computational elec-
tromagnetics, wireless propagation modeling, and
channel modeling. He is an Associate Editor for
the IEEE TRANSACTIONS ON ANTENNAS AND
PROPAGATION and currently serves as the Irish representative on the
Management Committee of COST Action CA20120 INTERACT and as a
member of the European Association of Antennas and Propagation working
group on propagation.

TRUNG Q. DUONG (Fellow, IEEE) is a Canada
Excellence Research Chair and a Full Professor
with the Memorial University of Newfoundland,
Canada. He is also the adjunct Chair Professor
of Telecommunications with Queen’s University

Belfast, U.K. His current research interests
include quantum communications, wireless
communications, signal processing, machine

learning, and realtime optimization.

Dr. Duong received the Best Paper Award at
the IEEE VTC-Spring 2013, IEEE ICC 2014,
IEEE GLOBECOM 2016, 2019, and 2022, IEEE DSP 2017, IWCMC
2019 and 2023, and IEEE CAMAD 2023. He has received the two
prestigious awards, including the Research Chair of the Royal Academy
of Engineering from 2021 to 2025 and the Royal Academy of Engineering
Research Fellowship from 2015 to 2020. He is the recipient of the
prestigious Newton Prize 2017. He has served as an Editor/Guest
Editor for the IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS,
IEEE TRANSACTIONS ON COMMUNICATIONS, IEEE TRANSACTIONS
ON VEHICULAR TECHNOLOGY, IEEE COMMUNICATIONS LETTERS,
IEEE WIRELESS COMMUNICATIONS LETTERS, IEEE WIRELESS
COMMUNICATIONS, [EEE Communications Magazines, and IEEE
JOURNAL ON SELECTED AREAS IN COMMUNICATIONS.

rA

VOLUME 5, 2024




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Helvetica
    /Helvetica-Bold
    /HelveticaBolditalic-BoldOblique
    /Helvetica-BoldOblique
    /Helvetica-Condensed-Bold
    /Helvetica-LightOblique
    /HelveticaNeue-Bold
    /HelveticaNeue-BoldItalic
    /HelveticaNeue-Condensed
    /HelveticaNeue-CondensedObl
    /HelveticaNeue-Italic
    /HelveticaNeueLightcon-LightCond
    /HelveticaNeue-MediumCond
    /HelveticaNeue-MediumCondObl
    /HelveticaNeue-Roman
    /HelveticaNeue-ThinCond
    /Helvetica-Oblique
    /HelvetisADF-Bold
    /HelvetisADF-BoldItalic
    /HelvetisADFCd-Bold
    /HelvetisADFCd-BoldItalic
    /HelvetisADFCd-Italic
    /HelvetisADFCd-Regular
    /HelvetisADFEx-Bold
    /HelvetisADFEx-BoldItalic
    /HelvetisADFEx-Italic
    /HelvetisADFEx-Regular
    /HelvetisADF-Italic
    /HelvetisADF-Regular
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryITCbyBT-MediumItal
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Recommended"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


