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ABSTRACT In the midst of rising global population and environmental challenges, smart agriculture
emerges as a vital solution by integrating advanced technologies to optimize agricultural practices.
Through data-driven insights and automation, it tackles the necessity for sustainable resource management,
enhancing productivity and resilience in the face of complex food security and ecological concerns. The
prospects of utilizing the Internet of Things (IoT) for smart agriculture are tremendous, where many IoT
devices can be deployed for local environment monitoring, precision farming, autonomous irrigation, and,
soil management. In some use cases like smart monitoring and agrochemical applications, UAV-enabled
mobile-edge computing (MEC) is proposed as an enabler to provide IoT nodes with additional resources
by hosting their computation functions. From the implementation perspective, to flexibly manage the
computation functions in UAVs and/or MEC server, the emerging network function virtualization (NFV)
can be utilized. However, efficient orchestration of the virtualized functions would be a challenge. In
this paper, we consider a decentralized UAV-aided MEC system for smart agricultural applications in
which the processing nodes benefit from the NFV technology. We aim to propose a method for efficiently
orchestrating the NFVs while some important metrics are minimized, i.e., the age of information (AoI)
and total network energy consumption. Especially, we consider the case in which the network state is not
fully observable to the orchestrator or the observations are exposed to uncertainties. Consequently, the
problem is formulated as a decentralized partially observable Markov decision process (DEC-POMDP).
As the formulated problem is NP-complete, we exploit some structural features of the proposed scheme
to introduce the concept of symmetry and simplify the problem. Then, a novel decentralized federated
learning-based solution is proposed to solve the problem. Simulation results show the effectiveness of the
proposed approach in minimizing the total network energy consumption and achieving AoI values less
than 200 msec to support demanding real-time applications.

INDEX TERMS Internet of Things, UAV-aided mobile edge computing (UAV-aided MEC), age of
information, network function virtualization, federated reinforcement learning.

I. INTRODUCTION

SMART farming in the contemporary world has gained
paramount importance while playing a pivotal role

in revolutionizing agricultural practices [1]. Conversely,
the increasing global population along with environmen-
tal challenges have made the adoption of smart farming
techniques indispensable. By leveraging data-driven insights,
automation, and precision agriculture, smart farming not

only enhances productivity but also addresses the pressing
need for sustainable resource management [2]. On the other
hand, the Internet of Things (IoT) has been a promising
technology to provide connection among a large volume
of devices that are deployed to provide a specific service
for smart agriculture. A wide range of different use cases
such as smart greenhouse monitoring, pest control, and
irrigation/soil management can be considered [1], [3]. These
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use cases are mostly computation intensive and delay-
sensitive [1], [4], [5]. A large volume of connected devices
implies a large volume of data that must be processed
accurately in a timely manner [6]. Such data computation
and analysis demands a significant amount of processing
and storage resources which put a constraint on energy-
limited IoT devices. Depending on the specific application,
the aggregated data from monitoring sensors, and captured
images/videos from installed cameras in the field need to
be processed in real-time to turn raw data into usable
information. Introducing IoT and its applications in modern
agriculture provides this industry with suitable tools to
support farmers for better productivity, quality, and prof-
itability [1]. Therefore, the scope of IoT extends beyond
just agricultural land, encompassing a broader spectrum that
includes the supply chain as well [7], [8].
Battery-operated IoT devices lack the capability to perform

energy-intensive computations independently. Additionally,
they face challenges related to limited processing power
and storage capacity [9]. Therefore, MEC is proposed as
a promising technology to address these limitations by
offering additional computation and storage resources for
IoT systems. This is achieved by providing servers where
IoT devices can offload their computation tasks [10], [11].
On the other hand, large-scale agricultural operations often
involve the distribution of IoT devices across expansive
areas. In such scenarios, challenges may emerge concerning
communication, particularly with issues related to the limited
reachability between IoT devices and MEC infrastructure.
To address these challenges, a proposed solution involves the
integration of a network comprising unmanned aerial vehi-
cles (UAVs) to enhance the capabilities of MEC [12], [13].
This approach aims to mitigate communication limitations
stemming from the constrained transmission power of IoT
devices and simultaneously improve network coverage. Due
to the easy-to-deploy, cost-effective, and strong capabilities
of the UAVs, UAV-aided MEC has attracted much attention
and is widely utilized in smart agriculture to provide a high-
quality line-of-sight (LoS) link to IoT devices [1], [3], [5],
[14], [15], [16], [17]. The versatility and mobility exhibited
by UAVs in response to changing weather conditions,
alongside their straightforward deployment and economically
viable maintenance costs, collectively establish UAVs as
a proficient solution for supplying IoT devices with the
necessary resources. Nevertheless, the UAVs themselves are
quite often battery-powered which means their available
energy is limited [6].

1) AGE OF INFORMATION

Besides energy, the freshness of information is another
important aspect that needs to be considered in environmental
monitoring and smart agriculture applications in which
rapid protective and/or recovery actions are needed. Being
more specific, within the realm of environmental monitoring
applications and precision farming [18] in a UAV-aided
MEC network, the IoT devices are strategically dispersed

throughout specified regions to seamlessly gather real-time
environmental data. Then the collected and pre-processed
data by the UAVs finds its transmission route toward a
localized MEC server; where a comprehensive analysis is
conducted to facilitate the extraction of pertinent insights.
These insights, in turn, play a pivotal role in fostering prompt
agricultural decision-making and actions. The objectives
can be the refinement of operations, the performance
optimization, or the reduction of expenditure [1], [14], [19].
This expansion of smart agriculture’s scope ensures a
secure and sustainable food supply chain, underpinned by
contextual and situational awareness derived from real-time
event processing [20]. Accordingly, such applications are
characterized by their intensive computational demands and
time-sensitive nature [1], [3], [5], [14], [18]. Concisely,
the freshness of information becomes a critical factor that
demands careful consideration. Packet delay and inter-
delivery times, as two exemplary metrics that are commonly
used to quantify the performance of real-time applications,
are not adequate to represent the freshness of information
received at the destination. Recently, age of information
(AoI) has been proposed as a novel criterion to quantitatively
evaluate the freshness of information [6], [17], [21]. For a
flow of data packets, and with emphasis on the freshness of
data at the destination, AoI is defined as the time elapsed
from receiving the most recent packet belonging to that data-
packet flow [22], [23].

2) NETWORK FUNCTION VIRTUALIZATION (NFV)

From the above discussion, in the context of UAV-enabled
smart agriculture paradigm – which constitutes the focal
point of this paper – UAVs are confronted with a sub-
stantial amount of data necessitating prompt processing.
This scenario embodies a dynamic computational framework
wherein a bunch of processing functions demands seam-
less implementation across both the UAVs and the local
server [20], [24], [25].
NFV is a key technology for implementing and managing

computing machines in a reliable, efficient, and robust
manner [26]. The NFV virtualizes the network functions
(NFs) and abstracts them from the physical hardware,
which enables rapid service function chaining (SFC) and
service provisioning in UAV-aided MEC applications [27].
Considering the data-intensive and computation-based appli-
cation of smart agriculture, multiple computing functions
in the form of virtual network functions (VNF) should be
deployed sequentially and orderly to provide the processed
data for the final decision-making at the local MEC-
server. Utilizing NFV significantly enhances the agility in
deploying and managing network components and improves
the robustness and scalability of networks [27], [28].
Therefore, a critical challenge to address is the optimal

and efficient placement of Virtual Network Functions (VNFs)
and determining how to route information packets among
VNF components over the available NFV infrastructure,
i.e., UAVs and the MEC server. The decision to distribute
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and allocate VNFs between both UAVs and the server, rather
than solely on one of them, aligns with the primary goal of
the proposed scheme—to minimize the Age of Information
(AoI) while maintaining energy efficiency. Network traffic
and the workload on both UAVs and MEC servers fluctuate
over time, while changing channel conditions between the
parties necessitate adjustments in the required communica-
tion resources for packet forwarding. Furthermore, certain
processing functions, such as compression, may alter the
packet size, so the trade-off of performing these functions
locally and sending the smaller packets with spending fewer
communication resources versus doing the entire process-
ing locally becomes pivotal. Consequently, the placement
must dynamically adjust to new conditions to ensure the
minimization of AoI and energy efficiency [28]. In light
of this, a general condition has been considered where the
VNFO can, depending on network conditions (processing
node resources, service type, and channel conditions), decide
on the optimal placement to minimize AoI and energy
consumption.
The work presented in [24] is a use-case of the practical

implementation of smart agriculture in real-world contexts;
where, the authors leverage a confluence of cloud comput-
ing, edge computing, and NFV technology to conceive a
comprehensive framework tailored to the essential demands
of soilless precision farming practiced within a fully-
recirculating greenhouse [24].

3) FEDERATED REINFORCEMENT LEARNING (FRL)

The VNF placement and scheduling in our network settings
can be expressed as integer programming with some con-
straints that reflect the service requirements and the network
infrastructure’s restrictions. Nevertheless, this problem is
NP-complete and there is no standard solver that can
solve such problems in polynomial time [29], especially
for large-scale networks where the required computation to
find the optimal solution increases exponentially. Recently,
machine learning algorithms and artificial intelligent (AI)
based solutions appear as a viable way to solve such
complex problems in polynomial time [17], [29], [30]. Since
its inception in 2017 [31], Federated Learning (FL) has
reshaped many emerging intelligent IoT systems toward
advanced FL architecture. The distributed nature of FL,
where some agents cooperatively train a global ML model
without directly sharing the local data, makes FL an attractive
alternative to traditional centralized ML schemes. To be
more specific, FL by pushing intelligent ML functions to the
network edge enhances the privacy and scalability of IoT
applications and networks [30].
In this paper, our focus is on use cases in smart agriculture

that require live streaming and analysis, such as surveillance
and environmental monitoring. Specifically, we address the
flexible dynamic orchestration of NFV-enabled SFCs within
the context of delay-sensitive services. The approach involves
distributing VNFs across processing nodes, utilizing UAVs
and local MEC server in a UAV-aided MEC network. The

objective is to perform SFC while ensuring the freshness
of information by jointly minimizing AoI and total energy
consumption throughout the network. Condensing the system
model and the definition of the problem, we present the
following key insights:

• In the realm of smart agriculture applications, real-time
information is collected by IoT devices on a smart farm
and transmitted through hovering UAVs to the local
server.

• VNFs must be executed sequentially on the raw packets,
as they represent split functionalities of a single process-
ing job. Meanwhile, certain VNFs, such as compression,
may potentially alter packet sizes.

• Various service types are assumed, each with its specific
VNF chain.

• The challenge involves determining the optimal place-
ment and scheduling of VNF chains on processing
nodes (UAVs and the local server), accounting for
processing time, transmission delay, and power con-
sumption (both transmit and processing power) in a
distributed manner.

• We will demonstrate analytically that the problem:

– Exhibits circular symmetry, wherein the optimal
policies of the agents (UAVs) are identical.

– The local observations of the agents serve as
sufficient statistics for determining the optimal
policy,

We will show how these two features will simplify the
problem significantly. Subsequently, we present a novel
solution for solving the modeled problem.

The main contributions of our paper are summarized as
follows:

• To the best of our knowledge this is the first time
that the problem of dynamic orchestration of NFV-
enabled SFCs in a multi-hop UAV-aided MEC network
for smart agriculture is considered, while the problem
is formulated as a joint AoI and Energy minimization.

• We formulate this joint optimization problem as
a decentralized partially observable MDP (DEC-
POMDP), where the parties are not aware of the true
state and just make decisions based on their local
observations.

• We adopted the structural feature of the problem and
have analytically shown that under the satisfaction of
certain symmetry conditions, the local observation of
the parties (agents) would be a sufficient statistic for
determining the optimal solution.

• As the formulated problem is NP-complete, we
proposed a novel FL-based algorithm called
Asynchronous FL Deep Q-Network (AFDQN) in which
a set of distributed parties learn in parallel and aggregate
their own experience through a coordinator.

• A Multi-hop network is considered, where the UAVs
can offload their computing tasks to the other UAVs as
well as the local MEC server.
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The rest of the paper is organized as follows: In Section II
some state-of-the-art studies will be reviewed. Section III
describes the system model and the main components of
the system in detail. Section IV presents the problem
definition and formulation. In Section V, the problem is
expressed as a DEC-POMDP, and some analytical results are
given that support our proposed FL-based solution presented
in Section VI. The complexity analysis of the proposed
algorithm is presented in Section VII. The effectiveness and
performance of the proposed scheme is demonstrated in
Section VIII. Finally, Section IX concludes the paper.

II. RELATED WORKS
In this section, we review some state-of-the-art studies on
AoI and energy-aware UAV-aided MEC for smart agricul-
ture. The prospects of using UAVs for smart agriculture
are immense. Moreover, UAVs are easy to deploy and
cost-effective which motivates their use in smart agricul-
ture [1], [6], [32]. For a comprehensive survey on IoT-based
smart agriculture and the emerging technologies mentioned
in the previous section refer to [1]. In [13], Mozaffari et al.
have considered the reliable design of IoT’s uplink commu-
nication in a scenario in which multiple UAVs are deployed
to collect data from ground IoT devices. In particular, a
framework for jointly optimizing the trajectory of the UAVs,
IoT-to-UAV association, and IoT’s uplink power is proposed
with the aim of minimizing the total energy consumption
and mobility of the UAVs. However, in the formulated
problem, the delay of the forwarded data across the UAV
network is not considered. Nguyen et al. [5] have considered
this issue as the problem of processing deadline-critical
tasks which are fed to a network of hovering UAVs that
support the IoT devices deployed in a smart farm. It is
assumed that the smart farm is equipped with a multi-access
MEC infrastructure. In such a circumstance, the energy-
efficient monitoring problem is modeled as a multi-objective
maximization problem which aims to maximize the number
of tasks that are successfully processed before their deadline.
Then, a Q-Learning-based solution is proposed to solve
the problem. The same authors in [5] have extended their
proposed scheme to a DQN-based solution [33] and to a
multi-actor-based risk-sensitive RL approach [32]. Although,
the goal of the aforementioned studies is to minimize the
energy consumption in the network, however, the proposed
solutions are basically centralized and the communication
overhead of the centralized approaches is itself a source of
energy waste.
The AoI as a metric for determining the freshness

of information has been used in some recent works
On UAV-aided IoT networks [6], [17], [23], [34], [35].
Buyukates and Ulukus [34] examined a status update system
where update packets require processing to extract embedded
useful information. The source node sends information to
a computation unit (CU) with a master node and worker
nodes. The master node assigns tasks, aggregates results,
and sends them back to the source node for updating.

The analysis focuses on the age performance of various
schemes in the presence of stragglers, considering i.i.d.
exponential transmission delays and i.i.d. shifted exponential
computation times. Then, the best scheme that minimizes
the average age is presented. In [35], the authors analyzed
the average age of information (AoI) and average peak
AoI (PAoI) in a multiuser Mobile Edge Computing (MEC)
system. The system considers three computing schemes:
local computing, edge computing, and partial computing
(where the computational tasks are partially performed at the
edge and the remaining is performed by the local server). To
address the complexity, upper and lower bounds on average
AoI are provided, enabling an examination of optimal
offloading decisions based on MEC system parameters.
In [6], Han et al. modeled a UAV-aided IoT network

using a Markov chain. The freshness of data packets is
defined using AoI and they analyzed the IoT devices as
first-come–first-served (FCFS) model and M/M/1 queue.
Sun et al. [17], employed AoI to propose an AoI-energy-
aware data collection scheme for IoT networks in which
the UAVs are used to collect data. Here, AoI is used
to quantify the temporal correlation among data packets.
Then, an algorithm for determining the UAV’s flight speed,
hovering locations, and allocated bandwidth to IoT devices
is proposed that jointly minimizes energy consumption and
the weighted sum of expected average AoI in the network.
In [23], a UAV-aided wireless powered IoT scheme is
proposed, where a UAV flies from a data center toward IoT
sensory nodes to transfer energy and collect their information
and then it returns back to the data center. The goal is to
minimize the average AoI of the collected data from sensor
modes. For such circumstances, an optimization problem
is formulated, and then a suboptimal method is proposed
that first decomposes the problem into two subproblems.
The solution to the first subproblem is the input for the
second subproblem. It is worth mentioning that the AoI
is basically an end-to-end metric; Hence, even though the
aforementioned works try to minimize the AoI, for the use
cases in smart agriculture that the captured data needs some
live processing before being turned into useful information,
these approaches are not effective as they just consider the
problem of finding the best data flow path.
In the context of UAV-aided MEC for IoT networks, each

service can be represented as a service function chain (SFC)
consisting of ordered processing functions in the form of
VNFs that can be geographically placed on to local MEC-
server or the UAVs. However, in a network with numerous
IoT devices and dynamic network load, the placement of
VNF instances and routing among them in an optimal
and efficient manner is a challenging problem [27], [28].
In the literature, this problem is referred to as the SFC
dynamic orchestration problem (SFC-DOP) [27]. In [27],
Liu et al. presented a DRL-based framework for dynamic
SFC orchestration in IoT networks. Huang et al. in [36]
dealt with the problem of scalability and flexibility of static
orchestration of NFV-enabled SFCs. Then, a FL-based SFC
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TABLE 1. Summary of related works.

orchestration is proposed which is scalable and benefits from
low communication cost.
Table 1 presents an overview of the previously mentioned

studies, emphasizing the main topics they concentrated on.
Although, in the literature, the UAV-aided MEC architecture
is mainly proposed as a technique to compensate for
the energy and computational limitations of IoT networks,
however, existing solutions for NFV-enabled SFC require IoT
nodes to exchange large volumes of local data with a cen-
tralized server or among the distributed agents. Considering
the energy limitation of IoT devices and battery-powered
UAVs, this significantly causes waste of the network energy.
In this paper, we deal with this inconsistency and propose
a novel FL-based solution for the dynamic orchestration
of SFCs in a multi-hop and UAV-aided MEC network. To
the best of our knowledge, this is the first time that the
problem of dynamic orchestration of NFV-enabled SFCs
in a multi-hop UAV-aided MEC network is considered.
What makes our approach unique is the adoption of the
inherent structural aspects of the problem, typical in most
scenarios, to introduce a decentralized solution that is
analytically demonstrated to be valid. The proposed method
is asynchronous FL-based, enabling distributed parties to
independently learn locally and subsequently contribute to
the training of the global model asynchronously [38], [39].
In other words, the parties are allowed to directly share
gradients with the coordinator (here, the MEC server) after
every local update and asynchronous of the other parties.
This further enhances the training speed and efficiency of our
proposed approach [39]. The coordinator in turn can perform
the aggregation and update the global model whenever
an update from one of the distributed parties is received.
This approach improves the whole system’s scalability and

alleviates the straggler impact, i.e., users who may have
slower performance [38].

The following notations are used throughout the remainder
of the paper. Matrices and sets are denoted by Bold upper-
case characters, and vectors are denoted by bold lower-case
characters. The cardinality of a set A is represented by |A|.
The expected value of random variable X is denoted by E[X].
The indicator function 1A(a) is defined as 1A(a) = 1 if the
element a belongs to A, and 1A(a) = 0 if the element a
does not belong to A.

III. SYSTEM MODEL
A. GENERAL DESCRIPTION
We consider a real-time IoT network for smart agriculture
applications, where, the IoT network provides real-time mon-
itoring and visibility to network operators by video/image
streaming. For such circumstances, several use cases from
remote monitoring to security can be considered. As it is
depicted in Fig. 1, a set N of N IoT devices collect real-time
information from a smart farm and send the packets to a
local server. A UAV-aided MEC architecture is considered,
where packets are forwarded through an Aerial Network
consisting of U hovering UAVs toward the local server. We
consider applications in which some processing functions,
from primary processes (e.g., compression) to advanced ones
(e.g., object recognition) must be sequentially performed on
the raw packets. Each IoT device is associated with one of
the UAVs in its range. U denote the set of all U UAVs in the
network. The local server is indeed a MEC-server1 denoted
by M. A set S = {Sk}Kk=1 with |S| = K different service

1Unless it makes ambiguity, in this paper the terms local server and
MEC will be used interchangeably.
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FIGURE 1. System model.

types is assumed. Each service type Sk itself consists of a set
Fk = {Fkf }F

k

f=1 including Fk different processing functions
that should be performed on the packets of that service and
F denotes a set of all processing functions of all services,
F = ⋃

k∈S(Fk). The input and output packet sizes of the
function f of service type k are ρkf and �kf , respectively.

Let skn ∈ {0, 1} denote the service type k ∈ S in IoT node
n ∈ N is active, skn = 1, or not, skn = 0. In each IoT node one of
the K different services is running,

∑
k∈S skn = 1,∀n ∈ N . To

perform the processing functions, the MEC-serverM and each
UAV u is able to run F =∑k∈S Fk different VNF types on
their physical computing machine.2 The proposed architecture
is based on ETSI-NFV standard [40] which is a globally
accepted architecture for implementing the NFV. According
to ETSI-NFV, in each physical machine (processing node)
p ∈ U ∪M (All U UAVs and the local server M), the VNF
manager (VNFM) is responsible to manage its computing
and storage resources among the VNFs it hosts. The total
available resources at processing node p is indicated by Cp,
the computing capacity in Hz, and Bp, the memory capacity
in Byte. The VNF orchestrator (VNFO), hosted by the local
server, places and schedules the chain of VNFs through Aerial
Domain and Local (MEC) Server.
For a summary of the key symbols and variables used in

the system model and problem formulation, refer to Table 2.

B. VNF PLACEMENT AND SCHEDULING
We consider a discrete-time system with two hierarchical
timing levels. First, the time is divided into equal time slots
TS with duration T indexed by t = 1, 2, . . . . On top of
that, we have the VNF-scheduling time slots t̃ with duration
T̃ that is multiples of T , and it is a single round of VNF
placement and scheduling update. At the beginning of each
time slot t̃, the VNFO updates the VNF placements. Each
UAV u segregates data packets from IoT nodes sharing the
same service type, say k, into a packet-flow ϒk

u(t), which it
then transmits across the aerial network to the local server.
The set Fk = {V fk}Fkf=1 of Fk different VNFs (processing

2Depending on the load level of a service type, the processing node
may run more than one instance of a VNF type.

TABLE 2. Key symbols and variables.

functions) must be performed on data packets of the IoT
nodes with service type k.
At the beginning of each VNFO-level time slot t̃, the

VNFO determines the set of processing nodes �k
u(t̃) that

participate in serving the kth service packet-flow ϒk
u(t)

of UAV u at tth TS. Each selected processing node p ∈
U ∪M that belongs to �k

u(t̃) performs a subset Bkup(t̃) of all
functions Fk that is supposed to be performed on the packet
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FIGURE 2. Network-wide timing model.

flow of service type k belongs to UAV u:

Bkup
(
t̃
) =

{
Fkf : ḟ kup ≤ f ≤ f̈ kup

}
,

Bkup
(
t̃
) ⊆ Fk, (1)

where ḟ kup(S) and f̈ kup(E) are the first and the last function
(VNF) that p performs on the packet flow of service type k of
UAV u. In summary, for each packet-flow ϒk

u(t), the VNFO
selects and schedules the processing nodes that handle Fk.
These nodes can be each one of any other UAVs (intra-
domain offloading) or local server (inter-domain offloading).
Remark 1: Let P to−do

p (t̃) = {(u, k, f ) : f ∈ Fk
u is running

on p} indicate a set of all assigned VNFs to the processing
node p ∈ U ∪M. We assume all assigned VNFs P to−do

p (t̃)
to processing node p should be finished in a single round
of VNF scheduling t̃.
Fig. 2 provides a comprehensive representation of crucial

elements related to the proposed orchestration solution and
the communication dynamics within the network. Operating
at two distinct timing levels, the figure elucidates: 1) The
VNFO timing (Tier 1), emphasizing interactions pivotal for
establishing the proposed orchestration solution, and 2) the
network-wide communication (Tier 2), encompassing all
entities within the network.
The upper segment of the figure illustrates how UAV

1 manages received packet flows from IoT nodes, accom-
modating two distinct service types. Following the assumed
VNFO policy in a single round of VNF placement and
scheduling, it is evident that for packets of service type 1,
UAV1 processes them and subsequently forwards them to

UAV3. UAV3, after performing the assigned VNFs, then
forwards the packets to the local server, i.e., the final
destination. Conversely, for packets of service type 2, UAV1
initiates some initial processing and then directly forwards
them to the local server, where all remaining VNFs are
executed.
The lower section of the figure is dedicated to illustrating

VNFO level operation, depicting control packets exchanged
between the local server and agents for the training of
the VNFO model. Further clarification on this VNFO
communication is postponed to subsequent sections within
the article.

C. COMMUNICATION (ACCESS) NETWORK
There are three communication links among the network
nodes: the wireless links between IoT nodes and an aerial
network consisting of UAVs, the UAV-to-UAV wireless links,
and the wireless link between the UAVs and the local
terrestrial server. Let random process gnu(t) ∈ C denote the
channel loss between IoT node n ∈ N and UAV u ∈ U , then
the achievable bit rate of node n in up-link direction at time
instant t will be Rnu(t) = wn log2(1+ pnu|gnu(t)|

σ 2 ),∀n ∈ N , u ∈
U , where wn and σ 2 denote the channel bandwidth of IoT
device n and the noise variance, respectively, and pnu is the
transmission power level. The channel between IoT nodes
and UAVs and between UAVs and the local server can be
modeled as an air-to-ground channel model [41]. According
to this model, the path loss, gnu can be calculated as [37],
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gnu(t) =
(4π f

c

)2
d2(t)ηe, (2)

where f , c, and d are frequency of operation, speed of
light, and distance between the transmitter and receiver,
respectively; and ηe is the average of excessive path loss in
two cases of existing a LoS path, ηLoSe , and non-LoS case,
ηnLoSe ,

ηe = pLoS × ηLoSe + (1 − pLoS)× ηnLoSe , (3)

where pLoS is the probability that a LoS path exists and can
be closely approximated as [37],

pLoS = 1

1 + a exp −b(ψ − a)
, (4)

where, a and b are environment-related parameters.
Similarly, in the downlink direction, the achievable bit rate

of the link between UAV u ∈ U and MEC server M at time
instant t will be RuM(t) = wuM log2(1 + puM |guM(t)|

σ 2 ),∀u ∈ U ,
where wuM denotes the channel bandwidth, σ 2 is the noise
variance, puM is the transmission power level, and random
process guM(t) ∈ C denotes the channel Loss at time t.
Finally, the UAV-to-UAV wireless channel also follows the
same mathematical model, however, the only difference is
that the probability of existing LoS is equal to 1, pLoS = 1.

For each UAV u and service type k, τ ku (t) is defined as the
expectation value of IoT access network delay with respect
to transmission rate Rnu(t),

τ ku (t) = ERnu
[
τ knu(t)

]
,

τ knu(t) = Dnu/C +�k
nu/Rnu(t), (5)

where, ERnu denotes the expectation with respect to Rnu, Dnu
is distance between IoT node n ∈ N and UAV u ∈ U and
�k
nu is the packet length of service type Sk ∈ S . For the

aerial radio links, Let random process guú(t) ∈ C denote the
channel power gain between UAV u ∈ U and UAV (or local
server M) ú ∈ U ∪ M, then the achievable bit rate of the link
at time instant t will be Ruú = wuú log2(1 + puú|guú(t)|

σ 2 ),∀n ∈
N , u ∈ U ∪M, where wuú denote the channel bandwidth
between UAV u, and UAV (or local server) ú, σ 2 is the
noise variance, and puú is the transmission power level.
In the following sections, we will focus on the VNFO’s
functionality, and resource allocation of the radio access part
is beyond the scope of this paper; hence, without loss of
generality, we assume a fixed power and bandwidth allocated
to all the participating nodes.

IV. PROBLEM FORMULATION
Let χ fkpu(t̃) ∈ {0, 1} denote whether the processing node p at
time slot t is selected to run VNF function f on the packet
of the kth service type of UAV u:

χ fkpu
(
t̃
) =

{
1, if p ∈ �k

u

(
t̃
)
and f ∈ Bkpu

(
t̃
)

0, otherwise
∀k ∈ S, u ∈ U . (6)

For each service type k ∈ S of UAV u, only one of the
processing nodes (UAVs or MEC-server) must be selected
for serving each function f ∈ Fk:

∑

p∈U∪M
χ fkpu
(
t̃
) = 1,∀f ∈ Fk,

∑

p∈U∪M
χ fkpu
(
t̃
) = 0,∀f�Fk. (7)

The relation (7), both left and right expressions together,
implies that the packets belonging to the service packet-
flows travel a loop-free route. Each packet belongs to
packet-flow ϒk

u(t) needs a specific computational capacity
cfk in CPU cycle. Assuming that all the processing capacity
of processing node p in a single time slot with duration
T̃ is CpT̃ , to be assured that the computing capacity
of the selected processing node is enough to serve the
assigned VNFs and the scheduler does not exceed the
processing node’s budget, the following condition at each
VNF-scheduling time slot t̃ should be satisfied:
∑

u∈U

∑

k∈S

∑

f∈Fk

1P to−do
p (t̃)(u, k, f )c

fk ≤ CpT̃,∀p ∈ U ∪M. (8)

The same condition also needs to be fulfilled regarding
the storage capacity requirement bfk (in Bytes):
∑

u∈U

∑

k∈S

∑

f∈Fk

1P to−do
p (t̃)(u, k, f )b

fk ≤ Bp,∀p ∈ U ∪M (9)

where Bp is the total amount of available storage capacity
of the processing node p.

A. AGE OF INFORMATION
In order to quantify the freshness of the received packet at
the destination, the AoI metric is adopted. As soon as an IoT
node has a packet to send, it connects to its serving UAV
and sends packets.3 For each packet flow of service type k
that UAV u ∈ U receives directly from the IoT nodes that
are connected to it and running this service type, the arrival
time tku is defined as the time elapsed from the beginning
of the time slot t in which any packet has arrived in. Let
k
u(t) denote the AoI of the packet-flow of service type k

in UAV u, it can be calculated as,

k
u(t) =

{
τ ku + T − tku, if αku(t) = 1
k
u(t − 1)+ T, if αku(t) = 0

∀k ∈ S, u ∈ U (10)

where binary variable αku(t) ∈ {0, 1} indicates whether any
new packet of service flow k at TS t is received, αku(t) = 1,
or not, αku(t) = 0. By definition, for every time slot t in
which the UAV does not receive a new packet from a service
packet flow, the AoI of that service packet flow increases
by T . On each received packet from IoT node n with service
type k, the set Fn

k of VNFs (processing functions) should be
performed. As stated above, the VNFO determines the set of
processing nodes p ∈ �k

u(t̃) that participate in performing the
VNFs on packet-flow ϒk

u(t) by performing the set Bkup(t̃) of
VNFs. Bkup(t̃) = ∅ means p hosts none of the required VNFs

3Communications between the nodes throughout the network are based
on the smaller time scale t.
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of ϒk
u(t). Let �

k
u(t̃) = {p1, p2, . . . , pL} denote the sequence

of all UAVs that are already selected to sequentially do the
chain of VNFs on the received packets of service type k.
The processing time of every packet of this flow will be,

�k
u(t) =

∑

pv∈�k
u(t̃)

(⌈
τ
fk
pv−ipv(t)

T

⌉

T +
∑

ϑ∈Bk
upv(t̃)

(⌈
θkϑ

T

⌉

T

))

,

∀k ∈ S, u ∈ U
τ fkpv−ipv(t) = Dpv−ipv/C +�pv−ipv

(
Fkf

)
/Rpv−ipv(t)

Fkf = f̈ kupv−i, (11)

where θkϑ is the run time of ϑ th VNF for service type k,
�pv−ipv(F

k
f ) is the packet length of service type Sk ∈ S

after doing the last VNF f̈ kupv−1
of the chain in pv−1, and,

Assuming that the queueing delay is negligible, τ fkpv−1pv is
total transmission delay between pv−1 and pv consists of
propagation delay and transmission delay.
If the binary variable βku(t̃) ∈ {0, 1} indicates whether the

VNF scheduling (at VNF-scheduling time slots t̃) for the
flow of packets belong to service type k of UAV u was
successful, then, the AoI at the Local server will be,

�k
u(t) =

{
k
u(t)+�k

u(t), if β
k
u

(
t̃
) = 1

�k
u(t − 1)+ T̃, if βku

(
t̃
) = 0

∀k ∈ S, u ∈ U . (12)

Note that T̃ is the duration of a single round of VNF
placement and scheduling.

B. ENERGY CONSUMPTION
The energy consumption of the network in the uplink
direction can be calculated as,

PUL(t) =
∑

n∈N

∑

k∈S

∑

u∈U
sknpnu�

k
nu/Rnu(t), (13)

where �k
nu/Rnu(t) is the transmission time between IoT

node n, with service type k, and UAV u at TS t. The other
energy-consuming part of the access network is transmission
among the processing nodes. If we represent the energy
consumption in the aerial domain (including UAV-to-UAV
and UAV-to-MEC links) at TS t with PAerial(t), then it will
be as,

PAerial(t) =
∑

u∈U

∑

k∈S

∑

pv∈�k
u

ppv−ipvτ
fk
pv−ipv(t),

τ fkpv−ipv(t) = Dpv−ipv/C +�pv−ipv
(
Fkf

)
/Rpv−ipv(t),

Fkf = f̈ kupv−i, (14)

where �pv−ipv(F
k
f ), f̈

k
upv−1

and τ fkpv−1pv are defined like (11).
Finally, if �k

ϑ denotes the power each machine, that hosts
the ϑ th VNF of service type k, consumes to run this VNF on
each packet of this service type, then, the total network-wide
required energy for performing the VNFs across a single
packet of all service type can be calculated as follows:

PNFV =
∑

u∈U

∑

k∈S

∑

pv∈�k
u

∑

ϑ∈Bk
upv

�k
ϑθ

k
ϑ . (15)

In a single term, PNFV represents the energy consumption
resulting from VNFs processing.
Using (13)-(15), the total energy consumption of the

network to process a single packet across all the service
types belonging to all UAVs would be,

PTotal(t) = PUL(t)+ PAerial(t)+ PNFV . (16)

The UAVs use a battery, hence their available energy to
do the processes and perform the required communications
is limited. Therefore, we need an energy-efficient VNFO
solution with minimum communication overhead. A central-
ized ML method will be optimal, but it requires a large
communication transaction to share the local observation
with the central controller. Another drawback of adopting
centralized architecture is that the centralized coordinator is
not scalable and from the processing and communication
viewpoint is a single point of failure. Therefore, in this
paper, we deal with proposing a solution for the following
problem of distributed NFV orchestration through the UAVs
as distributed VNFO agents.
Problem 1 (Distributed VNFO for Joint AoI and Energy

Minimization): Considering the service requirements of
IoT nodes, UAVs/MEC-server available resources, and the
condition of access networks, what is the optimal strategy
of VNF placement and scheduling in each UAV to jointly
minimize the average AoI and total energy consumption at
the Local Server:

Minimize
χ
fk
pu(t̃)

γ AoI
[

1

UK

∑

u∈U

∑

k∈S
�k
u(t)

]

+ γ EPtotal(t),

s.t.
∑

p∈U∪M
χ fkpu
(
t̃
) = 1,∀f ∈ Fk,

∑

p∈U∪M
χ fkpu
(
t̃
) = 0,∀f�Fk,

∑

u∈U

∑

k∈S

∑

f∈Fk

1P to−do
p (t̃)(u, k, f )c

fk ≤ CpT,

∀p ∈ U ∪M,
∑

u∈U

∑

k∈S

∑

f∈Fk

1P to−do
p (t̃)(u, k, f )b

fk ≤ Bp,

∀p ∈ U ∪M. (17)

In each VNFO-level time slot T̃ the orchestrator sequen-
tially decides on the chain of VNFs of the service flows
belonging to UAVs. For a class of stochastic sequential
decision-making problems, the Markov Decision Process
(MDP) has been a powerful framework for the mathematical
formulation and study of this type of problems. Another
point that is worth mentioning is that our proposed method
in Section VI is FL-based where the UAVs follow the
same model trained cooperatively. Therefore, minimizing the
average AoI over UAVs or minimizing the maximum value
of AoI over UAVs are basically the same.
Depending on the environment state, the MDP output will

be the best action (or at least the best upon the history of
the observations and actions) which maximizes a specific
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utility function [42]. For the case that the state is not fully
observable to the deciding agent or the agent’s observations
are exposed to noise or some source (sort) of uncertainties,
another extended class of decision-making processes called
Partially Observable MDP (POMDP) is adopted [43]. Both
MDP and POMDP in their original scope are defined
centralized [42], [43]. Partially Observable Stochastic Game
(POSG) is the extended version of POMDP in which a set
of distributed agents are involved in the decision-making
process [44], [45]. By definition, if every agent has the
same individual reward function, the POSG model becomes
the Decentralized POMDP (DEC-POMDP) [45]. In the
following two sections, first, we show how the problem can
be modeled as a DEC-POMDP and then we will present our
proposed method to solve the developed DEC-POMDP.

V. DEC-POMDP FORMULATION
In a multi-agent MDP with state uncertainty, a DEC-POMDP
is formally defined as a tuple with the following definition.
Definition 1 (DEC-POMDP Model): DEC-POMDP G

with a set U of U agents is defined as a tuple G =
〈U ,S,b0,A,O,T,O,R〉, where

• S is the finite set of global environment states,
• b0 is the probability of the environment initially being
in state s ∈ S,

• A = ∏
u∈U Au is the joint action of all agents, where

Au is the set of actions available to agent u,
• O = ∏

u∈U Ou is joint observation, where Ou is the
observations available to agent u,

• T is the transition function T :
⋃

s∈S(s×A(s))× S →
[0, 1], where T(ś|s,A(s)) is defined as the transition
probability from state s to ś by doing joint action A(s),

• O is the observation function O :
⋃

s∈S(s × A(s)) ×
O → [0, 1], where O(O|s,A(s)) is defined as the joint
observation at state s by doing joint action A(s),

• R = {ru}U−1
u=0 is a set of reward functions ru :

⋃
s∈S(s×

A(s)) → R, where ru(s,A(s)) is defined as the reward
received by u when A(s) is executed at the global state s.

In a DEC-POMDP, each agent u ∈ U based on its local
observation ou ∈ Ou and a local policy πu performs an
independent action au ∈ Au. In each partially observable
state s, the joint action A(s) = ∏

u∈U au(s) from the joint
policy P =∏u∈U πu determines the next global state ś and
joint observations O according to transition and observation
probability of T(ś|s,A(s)) and O(O|s,A(s)), respectively.
According to Problem 1, our purpose is to find the best
choice for the sets �k

u(t) of processing nodes p and Bkup(t)
of the VNF chains for serving packet-flow ϒk

u(t) of any
service type k ∈ S of UAVs u ∈ U in a distributed
manner.
Remark 2 (Source of Uncertainties): We have considered

a multi-hop network architecture, as depicted in Fig. 3, in
which, 1) each agent u is not aware of the other agents’
observation o−u (−u refers to all the agents except u, o−u =

FIGURE 3. System model as a DEC-POMDP.

∏
ú�=u oú), nor the action a−u,4 2) each agent observes the

result of doing its own action and the actions of the other
agents, while it is not aware of the global state nor the action
of the other agents. Therefore, according to Definition 1, it
can be inferred that Problem 1 in its decentralized form is
a DEC-POMDP.
In DEC-POMDP, each agent based on its actions and

observations creates a local database that in time t can be
represented as hu(t̃) = {au(t̃ − 1), ou(t̃)}t̃t̃=1,∀u ∈ U , where
au(t̃ − 1) and ou(t̃) are the action of u at time slot t̃ − 1
and its corresponding observation at t̃. All the information
is available to all the U agents at time t̃ defines as the
joint history H(t̃) = ∏

u∈U hu(t̃) = {A(t̃ − 1),O(t̃)}t̃
t̃=1.

The POMDP state is hidden from the agents. Hence, the
agents would not be able to choose their actions based on
knowing the true state. The standard approach for dealing
with POMDPs is to find a solution to the fully observable
equivalent belief-MDP [43]. Where, belief B(s, t̃) = P(s(t̃) =
s|H(t̃),B(0)),∀s ∈ S defines as a probability distribution
over the state space of the original POMDP knowing the
joint history H(t̃), i.e., all the available information from
the sequence of interactions that the agents have had until
now,where B(0) is the initial value the belief state function.
Belief state function B(s, t̃) is known as sufficient statistic
for the history H(t̃) [45]. Upon performing a new interaction
at t̃ + 1, the belief value is updated from the belief point
at time t considering the new interaction {A(t̃ − 1),O(t̃)}.
Despite the current hidden state, in DEC-POMDP the agents
need to infer the action (the policy) of the other agents. This
leads to the definition of multi-agent belief function [46]
with the following definition,

bu :
⋃

s∈S
(s× π−u(s)) → [0, 1],∀u ∈ U (18)

bu,t̃(s, π−u) = P
(
s(t̃) = s, π−u|hu(t̃), bu(0)

)
,

π−u =
∏

ú∈U ,ú �=u
πú.

As it is evident, the multi-agent belief function is defined
in a space that is a combination of the hidden global

4It should be mentioned that the local observation ou of agent u is the
result of the action of all agents, i.e., the joint action A.
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state s and joint policy π−u of the other agents. From
Bellman expectation equation [47], the action-value function
Qπ
u,t̃

[(s, π−u), aπu ] is the expected return starting from state
hidden state s, taking action aπu according to policy πu, while
the other agents follow the joint policy π−u,

Qπu,t̃

[
(s, π−u), aπu,t̃

]
= E

{
Ru
[
(s, π−u), aπu,t̃

]

+ γuQ
π
u,t̃+1

[(
ś, π−u

)
, aπu,t̃+1

]}
. (19)

where the action-value function decomposed into immediate
reward plus discounted action-value of the successor state,
and γu is the discount factor of agent u. With some
mathematical manipulation, (19) can be written as,

Qπu,t̃

[
(s, π−u), aπu,t̃

]
= Ru

[
(s, π−u), aπu,t̃

]

+ γu
∑

(ou,o−u)∈O
O
[
ou, o−u|s,

(
aπu , a

−π−u
)]∑

ś∈S
T
[
ś|s, (a−π−u

)]

×
∑

(aπu ,a
−π−u )∈A

πu
(
aπu |ś) Qπu,t

[(
ś, π−u(o−u)

)
, áπu,t̃+1(ou)

]
.

(20)

Using (18), for a given belief state function bu,t̃(s, π−u),
the action-value function Qπ

u,t̃
(bu,t̃, a

π
u,t̃
) will be,

Qπu,t̃

(
bu,t̃, a

π
u,t̃

)
=
∑

s∈S

∑

π−u
bu,t̃(s, π−u) Qπu,t̃

[
(s, π−u), aπu,t̃

]
.

(21)

For an enough large value of t̃ (t̃ → ∞), the goal is
to find the optimal policy π∗

u among available policies πu
which leads to the optimal Q-value (action-value) function,

Q∗
u,t̃

(
bu,t̃, au,t̃

) = arg max
π

Qπu,t̃

(
bu,t̃, a

π
u,t̃

)
. (22)

There is no straightforward solution for the afore-
mentioned DEC-POMDP problem. Among decentralized
methods, multi-agent solutions also need a large volume
of communication overhead between the agents to share
their local observations to converge. FL does not have
the communication overhead of the centralized techniques
and also does not necessitate the agents to share all of
the data and local observations to converge. Although this
specification is for providing privacy, in our problem it
provides us with the gain of energy efficiency that arises
because the agents (UAVs) do not need to share all of
their observations. A few efforts, [45], [48], [49], have been
made in the literature to capture and exploit some structural
specifications of the understudied system (application) to
find or at least simplify the problem of finding optimal
policy (22). One of these works is one presented by
Yongacoglu et al. [48], in which the authors have developed
a class of POSGs that is characterized by symmetry across
players in terms of cost and state dynamics. In view of this
research, within the APPENDIX, we introduce a class of
Symmetric DEC-POMDP and prove that Problem 1 belongs
to this class and is Circularly Symmetric. This implies

FIGURE 4. Block diagram of the proposed Asynchronous Federated-DQN (AFDQN).

that the best agents’ policy, π∗ are the same, {πu}U−1
u=0 =

π∗. In essence, this necessitates a distributed solution to
determine the best policy while ensuring uniformity across
all agents. Furthermore, in accordance with the circular
symmetry characteristic of the problem, in Corollary 2 we
prove that local observations serve as sufficient statistics for
each agent to ascertain the best policy. Corollary 2 guarantees
that the local observation hu(t̃) serves as a sufficient statistic
to determine the optimal policy π∗ for the agents (UAVs).
This implies that the information encapsulated in the local
observations of the individual agents is comprehensive
enough to determine the optimal policy π∗. While this
corollary does not suggest a particular method for identifying
the optimal policy, it is promising and justifies our proposed
FL-based algorithm in which the agents collaboratively
engage in training a globally shared model. This approach
aligns with the notion that leveraging decentralized insights
from each agent’s local observations can contribute to the
derivation of an effective and globally optimal policy because
their observations are sufficient statistics.
Capitalizing on the promising findings in this section,

the subsequent section introduces our proposed approach to
address Problem 1.

VI. SYMMETRY-AIDED ASYNCHRONOUS FEDERATED
DQN FRAMEWORK
In this section, we introduce our proposed Asynchronous
Federated Deep Q-Network (AFDQN) algorithm and the
components we have used in the proposed model as depicted
in Fig. 4. In traditional RL, the problem is modeled as an
MDP consisting of a tuple {s(t̃), a(t̃), r(t̃), s(t̃+ 1)}. At each
decision-making time t̃, the agent is at state s(t̃) and takes an
action a(t̃) based on a policy π that causes a state transition
from s(t̃) to s(t̃+1) while an immediate reward r(t̃) incurred.
For our POMDP case in which the true state of the network
is hidden, the true state s(t̃) is replaced with belief-state
b(t̃). Mainly, the RL aims to guide the agent to find the
best policy π∗ defined as the best mapping from observation
o(t̃) to action a(t̃) that maximizes the expected cumulative
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discounted future rewards R(t̃) = Eπ {∑∞
l=t γ (l−t̃)r(l)}, where

γ ∈ [0, 1] is a discount factor indicating how much future
rewards is important. For our DEC-POMDP problem, this
relation maps to (19).

A. DEEP Q-NETWORK (DQN) PART
To estimate Q-value functions (21), deep reinforcement
learning (DRL) is deployed, where Q-values are pre-
dicted using deep neural networks (DNNs) as function
approximators. The estimated Q-functions are represented
by {Qu(ou(t̃), au(t̃); θu(t̃))}U−1

u=0 , where the parameter θu(t̃)
represents the weights of the agent u’s neural network (NN).
The updated value of θu(t̃) is used to approximate the true
values of Qu(t̃) [21], [50]. Let’s define the loss function
L(θu(t̃)) as the expectation value of the mean squared error of
the estimated Q-value Qu(ou(t̃), au(t̃); θu(t̃)) from the target
value y(t̃) [21],

L
(
θu
(
t̃
)) = E

[(
y
(
t̃
)− Qu

(
ou
(
t̃
)
, au
(
t̃
); θu

(
t̃
)) )2

]
, (23)

where, y(t̃) = ru(t̃) + γ maxau(t̃+1)Qu(ou(t̃ + 1), au(t̃ +
1); θu(t̃)) and au(t̃+1) indicates the agent’s action generated
by the DNN at t̃ + 1, given the observation ou(t̃ + 1).

At each iteration, the deep Q-function approximator is
trained to learn the best estimate of the Q-function by
minimizing the loss function L(θu(t̃)). To improve the
stability of the algorithm and cope with samples correlation,
as depicted in Fig. 4, two novel techniques, namely Fixed
Target Network [51] and Experience Replay Buffer [52] are
deployed, respectively. Utilizing these two techniques, the
loss function L(θu(t̃)) can be written as

L
(
θu(t̃)

)

= ED

[(

ru
(
t̃
)+ γ max

au(t̃+1)
Qu
(
b
(
t̃ + 1

)
, au
(
t̃ + 1

); θ́u
(
t̃
))

− Qu
(
ou(t̃), au(t̃); θu(t̃)

)
)2]

, (24)

where θ́u(t̃) denotes the target network parameters, and the
expectation ED is taken over the randomly selected mini-
batches of samples from the replay buffer D.

B. FEDERATED LEARNING PART
As it is illustrated in Fig. 4, we have two main entities, the set
U = {0, 1, . . . ,U−1} of UAVs that are our distributed agents
or in FL terminology, the agents, and the coordinator that in
our model is local server (MEC-server). FL allows the UAVs
(agents) to train a shared global model parameterized by θg
that is an exact copy of the agents’ local model {θu}u=U−1

u=0
using their own dataset {Du}u=U−1

u=0 , while the original data
remains in UAVs. After local training, agents share their local
model updates with the coordinator. The coordinator then
aggregates the received updates to build the global model
θg. As a result, relying on the distributed data training at
the agents, the local server is able to enhance the training
performance without significant communication overhead as

it just needs an update of the local model parameters, not
the agents’ local data. The federated learning procedure of
our proposed method includes the following key steps.

1) DISTRIBUTED LOCAL TRAINING

Primarily, the local server initializes the global model,
θg,0, and transmit it to the agents. Upon receiving θg,0,
during VNFO time slots t̃ the agents interact with environ-
ment and train their local model {θu(t̃)}u=U−1

u=0 using their
own data set {Du(t̃)}u=U−1

u=0 by minimizing a loss function
{Lu(θu(t̃))}u=U−1

u=0 ,

θ∗
u = arg min

πu
Lu
(
θu
(
(t̃)
))
, ∀u ∈ U . (25)

Then, the agents upload their local update on {θu(t̃)}u=U−1
u=0

to the coordinator for aggregation.

2) MODEL AGGREGATION

After collecting the agents’ local model updates, the next
step is aggregating them into a new version of the global
model which is performed by the coordinator by solving the
following optimization problem.
Problem 2 (Model Aggregation): Given the local model

updates {θu(t̃)}u=U−1
u=0 of all agents, and knowing the local

loss functions {Lu(·)}u=U−1
u=0 , what is the optimal strategy for

aggregating the local model that minimizes the global loss,

θ∗
g, L

∗
g = arg min

Lg,θg
Lg
(∏

u∈U
Lu
(
θg
(
(t̃)
)))
. (26)

According to Problem 2, θ∗
g is the optimal value for θg

with having the local updates in hand; and L∗
g is the best

function (the best method) for aggregating the local loss
function. The loss-aggregation function L∗

g indicates the
relative contribution of each agent on the global model,
however, there is not a fixed method for determining this
function and it depends mostly on the structure and specific
features of the problem.
Corollary 1: According to Lemma 2,

1) The best setting for loss functions is (24) and
{Lu(·)}u=U−1

u=0 = L(·),
2) The optimal way for aggregating the local updates is

averaging among the agent’s contributions, thus (25)
can be rewritten as, θ∗

g = ∑
u∈U ωuθu, where ωu

represents the relative contribution of each agent on
the global model.

After the derivation of a new update of θg the coordinator
broadcasts it to all agents. Upon receiving the update
from the coordinator, the agents upgrade their local model
accordingly. Until achieving a predefined level of accuracy
or convergence of the global loss function, this process is
continued.

C. ASYNCHRONOUS NETWORKING
The communication among the network entities follows the
time slots t, but slot scheduling in which the agents share
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their own local model with the coordinator is distributed
and asynchronous. Upon receiving an update, the coor-
dinator aggregates it with the global model and updates
the agents with the newly updated global model. In this
way, we do not impose a strict constraint on synchronous
communication with the local server (the coordinator).
This significantly decreases the networking overhead in
comparison with synchronous federation among distributed
agents. During the training phase, we consider episodes in
which the agent presets to a random initialization setting
and starts interaction with the environment, and learns from
its experience. Each episode contains T̂ VNF scheduling
round t̃. In the deployment phase, the stream of packets
that belong to different services is assigned based on an
optimally determined VNF placement/scheduling policy. To
avoid service interruption any fine-tuning and policy adaption
to environmental changes, including the time the algorithm
spends on fine-tuning and finding the optimal solution by
coordinating multiple agents to train the global model, can
be done in parallel.
Definition 2 (Global Update Period): global update

period 1 ≤ η ≤ T̂ is defined as the period of updating the
coordinator by the agents. We have two special settings,
1) AFDQN-SGD (η = 1): In this case, every VNF

scheduling slot t̃, the agent sends the locally calcu-
lated SGD, ∇θLu(θu(t̃)) to the coordinator. Then, the
coordinator uses the received local data to perform one
step of gradient descent:

θg
(
t̃ + 1

) = θg
(
t̃
)− γ̇∇θLu

(
θu(t̃)

)
. (27)

2) AFDQN-Avg (η = T̂): In this case, only one time dur-
ing each episode, the agent sends the whole parameter
θu(t̃) to the coordinator. Then, the coordinator updates
θg(t̃) accordingly,

θg
(
t̃ + 1

) = (1 − γ̈ )θg
(
t̃
)+ γ̈ θu

(
t̃
)
, (28)

where, γ̇ and γ̈ are AFDQN-SGD and AFDQN-Avg
forgetting factors, respectively.

Introducing the forgetting factors γ̇ and γ̈ allows for the
adjustment of learning rates during model updates. Rather
than updating the global model instantly upon receiving a
local update, it is beneficial to employ a weighted average
approach, considering both the most recent update and
the previous value of the Agent’s NN weight θg. This
approach, known as Asynchronous Weight Averaging [53] in
the literature, proves advantageous in alleviating the impact
of outdated updates, commonly referred to as stale weights,
and consequently, it enhances overall stability. The only point
is that the forgetting factors should be chosen small enough.
Another worth mentioning point is that the AFDQN-SGD

and a centralized approach doing mini-batch SGD in the local
server are essentially different as the former is asynchronous,
distributed, and fully based on local data. The details of the
proposed AFDQN algorithm are described in Algorithm1.
Considering our optimization problem, for each agent u ∈

U at VNF scheduling round t̃, we define the observation

Algorithm 1: AFDQN-η Algorithm

1 Coordinator:
2 - Initialize main Q-network parameter θg(t̃)
3 - Initialize target Q-network parameter θ́g(t̃)
4 agent:
5 - Initialize Qu

(
ou(t̃), au(t̃); θu(t̃)

)
and Qu

(
ou(t̃), au(t̃); θ́u(t̃)

)

6 - Initialize reply buffer
7 Environment: Initialize environment state s(0)
8 Repeat for each agent u
9 for Episode 1 : total-number-of-episodes do

10 for t̃ = 1 : T̂ do
11 - Get local observation ou(t̃)
12 - Select action au(t̃) = πu(au(t̃)|ou(t̃); θu)
13 - Execute au(t̃), calculate ru(t̃) from (31),
14 - Save

{
ou(t̃), au(t̃), ou(t̃ + 1), ru(t̃)

}
to replay buffer

D
15 if |D| ≥ batch-size then
16 Sample a mini-batch of D, randomly
17 for each sample do
18 - calculate ∇θLu(θu(t̃)), cumulatively
19 - Update main Q-network:

Qu
(
ou(t̃ + 1), au(t̃ + 1); θu(t̃ + 1)

)

20 - Update target Q-network:
Qu
(
ou(t̃ + 1), au(t̃ + 1); θ́u(t̃ + 1)

)

21 if t̃ mod η = 0 then
22 if η = 1 then
23 Update θ́g(t̃) from (27)
24 else
25 Update θ́g(t̃) from (28)
26 end
27 end
28 Coordinator: Update the other agents
29 end
30 end
31 end
32 end

space Ou, the action space Au, and the reward function Ru
as follows:

• Observation: We define the observation space as
a vector of: 1) CPU and storage requested by the
local service flows {ϒk

u(t)|t = t̃}k as {cfk(t)|t = t̃}f ,k
and {bfk(t)|t = t̃}f ,k, respectively, 2) available CPU
{Cp}p and storage {Bp}p of the processing nodes,
3) service arrival time {tku}k, and 4) the transmission rate
{Ruṕ}U\ú∪M of the links between agent u and the other
processing nodes. Therefore, the observation ou(t̃) can
be written as

Ou
(
t̃
) =

{{
cfk(t)

}
f ,k,
{
bfk(t)

}
f ,k,

{
Cp
}
p,
{
Bp
}
p,
{
tku
}
k,
{
Ruṕ
}
U\u⋃M

}

t=t̃. (29)

• Action: The action space is defined as all possible
placement of the required VNFs for service flows
{ϒk

u(t)|t = t̃}k as

Au
(
t̃
) =

{
χ fkpu
(
t̃
)}
,∀p ∈ U ∪M, k ∈ S, f ∈ Fk. (30)
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• Reward: Our objective is to orchestrate the VNFs in
a way that jointly minimizes the average AoI and total
energy consumption over the network. So we define the
reward as a linear combination of three terms as follows:

Ru
(
t̃
) = δNFVζ u

(
t̃
)+ δAoI�

(
t̃
)+ δEPtotal

(
t̃
)
,

ζ u
(
t̃
) = 1

K

∑

k∈S
ζ ku
(
t̃
)

�
(
t̃
) = 1

UK

∑

u∈U

∑

k∈S
�k
u

(
t̃
)

ζ ku
(
t̃
) =

{+1, if (7)-(9) are satisfied
−10, otherwise.

(31)

where δNFV , δAoI and δE are the normalization factors for
NFV scheduling result, AoI, and the energy consumption,
respectively; ζ ku (t̃) is defined as the reward assigned to the
result of NFV placement for service flow ϒk

u(t)|t = t̃.

VII. COMPLEXITY ANALYSIS
In this section, we determine the computational complexity
of the proposed Algorithm 1. We analyze the algorithm’s
complexity through two distinct phases: Model Training and
Action Selection, which occur during the deployment of the
trained model. During each iteration of the global update
period η, the process involves the training of local models
by the agents (UAVs) and subsequently, the asynchronous
aggregation of these local models by the MEC server to
form the global model. The complexity of the local model
training conducted by the agents can be expressed as the sum
of two components: the complexity of action selection and
the complexity of the back-propagation algorithm for each
sample within the replay buffer. This sum is then further
multiplied by the mini-batch size and η. It is worth noting
that the multiplication by the mini-batch size accounts for the
fact that, in each training iteration, the local agent randomly
selects a mini-batch of samples from its own local replay
buffer.
The computational complexity of action selection in a

fully connected neural network with a fixed number of
hidden layers and neurons in each hidden layer is directly
proportional to the sum of the input size and the output
size of the neural network being used [54], [55]. The
input size of the neural network is equivalent to the size
of the state space, which from (29) is given by 2KF +
2(U + 1) + K + (U − 1) + 1; and, the output size of the
neural network is equal to the size of the action space.
which from (30) is given by KF(U + 1). It’s worth recalling
that F = ∑

k∈S Fk represents the overall count of distinct
VNFs required to be executed across all service types.
Hence, the computational complexity associated with action
selection is represented by O(KFU). Conversely, as indicated
in equation [54], [55], for a specific sample extracted from
the replay buffer, the computational complexity of the
back-propagation process is directly proportional to the
product of the neural network’s input and output sizes.

Consequently, in our specific scenario, derived from the
preceding computations, the overall algorithmic complexity
for each agent can be expressed as O(ηOK2F2U), where,
O denotes the batch size. From Algorithm 1, each agent
repeats the whole process of local model training η times
preceding sharing the results with the local server.
The last step is the aggregation process. While our

algorithm conducts asynchronous aggregation, it’s important
to note that the processing load escalates proportionally
with the number of UAVs, U. As a result, the overall
computational complexity for the training phase across the
entire network is given by O(ηOF2K2U2).
Based on the prior discussion, the complexity associated

with the action selection for all U agents during the
deployment phase is denoted as O(KFU2).

VIII. PERFORMANCE EVALUATION
In this section, the performance of the proposed algorithm
is evaluated. The performance results are compared for four
different methods of AFDQN-SGD, AFDQN-Avg, AFDQN
with parameter η �= {1, T̂}, and a centralized case. In the
centralized DQN method, all the observations are forwarded
to the local server and the local server performs the VNF
scheduling. Hence, its performance can be considered as an
upper bound for the proposed AFDQN method.

A. SIMULATION SETUP
The simulation is implemented by Python using OpenAI
gym [56], a widely used tool for developing RL algorithms,
and conducted in a computer with Intel Core i7-10700 CPU
2.90 GHz and 64 GB RAM. Using simulation, the impact of
parameter η, the number of IoT nodes, and the effect of the
received load by the agents are evaluated. To this purpose,
while T̂ = 60, five different values for the parameter of
η consisting of 1 (corresponds to AFDQN-SGD), 10, 20,
30, and 60 (corresponds to AFDQN-Avg) are considered.
The other model parameters and simulation settings are
summarized in Table 3 and Table 4. The proposed system
model entirely matches none of the existing related works.
However, the simulation parameters have been chosen to be
in line with the typical values commonly used in similar
studies within this context [6], [32], [33], [36], [37].

B. SIMULATION RESULTS
In Fig. 5, the convergence behavior of the AFDQN method
is compared with the centralized method as a baseline. The
two extreme cases of AFDQN-SGD and AFDQN-Avg are
considered. As is evident from this figure, for the AFDQN
method we have some variations around the value where it
converged. The absolute value of these variations in AFDQN-
Avg is more than AFDQ-SGD, and in AFDQN-SGD’s case,
they are around the value achieved by the centralized method.
Also, the AFDQN-Avg converged to a smaller value for
total return, we expect this result will also be reflected
in the performance of AFDQN-Avg against AFDQN-SGD.
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TABLE 3. Model parameters and simulation settings part I.

TABLE 4. Model parameters and simulation settings part II.

This will be investigated in the following experiments. In
Fig. 6(a) and Fig. 6(b), the minimum achievable average
AoI and total energy consumption are investigated. The AoI
value is averaged over all the agents and the total energy
consumption is defined as the total energy consumption for
sending a single packet of each service flow through the
network from IoT nodes toward the local server. As can
be seen, the maximum energy consumption of the three
methods is limited to a maximum value corresponding to the
maximum value of resources that the processing nodes can
allocate to the requests. As a result, the negative side effect
of the methods’ drop in performance is mostly reflected

FIGURE 5. Episodic reward of agent 1 for the proposed method compared with
centralized architecture. All agents follow the same policy, which is a copy of the
cooperatively-trained global model.

in the value of the averaged AoI. For the AFDQN-Avg,
this point is evidenced in Fig. 6(a), where we can see that
at several points the values of the averaged AoI are more
than 1 second. However, this is the worst-case choice for
selecting the global update period η. Form Fig. 6(a), for
the proposed AFDQN, we could achieve an average AoI of
less than 200 msec, which is acceptable for most real-time
applications. Therefore, performance close to the centralized
case can be achieved by the proposed method in a distributed
manner, relying solely on the local observations of the UAVs
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FIGURE 6. (a) Average episodic AoI. (b) Average episodic total energy consumption
of the proposed method compared with centralized architecture. All agents follow the
same policy, which is a copy of the cooperatively-trained global model.

and the sharing of trained local models, thus eliminating the
need for exchanging the local observations, which can be
time and energy-consuming.
In Fig. 7(a) and Fig. 7(b), the network energy efficiency

versus service availability is drawn. The network-wide
energy efficiency is defined as the total number of
successfully-supported service flows divided by the total
energy consumption throughout the network to send a single
packet from each one of the services flows. Also, service
availability is defined as the percentage of the service flows
that are supported successfully. In Fig. 7(a), the average
network energy efficiency and the sample values in our
simulation, as well as the standard deviation of the value,
for AFDQN-20 (η = 20) are shown. The averaged network
efficiency with increasing the value of the service availability
increases in a way that for the service availability of more
than 80 percent, it converges to around 82 percent. This
convergence for large value of service availability shows that
we were eventually able to provide energy efficiency as one
of our objective functions. In Fig. 7(b), where the proposed
AFDQN method with different values of η ∈ {20, 30, 60} is
compared with the centralized approach, it can be seen that

FIGURE 7. Network-wide energy efficiency vs. percentage of service availability. The
shaded area represents the standard deviation (SD) from the average value: (a) For
AFDQN with η = 20. Sample values are shown for more illustration. (b) For AFDQN
with η = 20, η = 30, AFDQN-Avg and centralized architecture.

the energy efficiency of the centralized approach degrades
as the availability reaches 100%. This behavior is because
the centralized method has a single NN for all UAVs. For
the availability values near 100%, the centralized agent is
not able to do the job as efficiently as the AFDQN method
where each agent has its own NN.
As illustrated in Table 3, the load of services (in terms

of requested CPU and storage resources) is modeled as a
normalized uniform random variable. The standard deviation
(SD) of the values for both CPU request values and storage
is 1.3 percent. In Fig. 8, the impact of increasing this value,
up to 6 times the primary value of 1.3, on the network’s
performance is examined. The network is first trained with
the primary input-load SD value of 1.3, and then, we
incrementally raised the SD of the input load. This can be
implicitly considered as a test under non-stationary load. It
is evident that in this situation the AoI will increase, as
illustrated in Fig. 8. To be more specific, we considered a
threshold of one second for the acceptable AoI. Hence, we
have also drawn a graph of AoI violation (in percentage)
in conjunction with the bar chart of averaged AoI to better
reflect the effect of the load SD. The results demonstrate
that the AFDQN-Avg method has better performance in
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FIGURE 8. Averaged-AoI and AoI-violation percentage for AFDQN-10 and
AFDQN-Avg versus standard deviation (SD) of the load normalized by SD of the load
in the training phase.

FIGURE 9. The effect of increasing the number of IoT nodes per agent (UAV) on AoI
and energy consumption.

this situation, which appears to contradict our previous
observations where we concluded that decreasing the global
update period improves the performance. This observation
can be explained using the non-stationary behavior of the
input load. In this case, the AFDQN-Avg lets the agents learn
the variations and input model better, in comparison with
AFDQN-10, which was chosen as an example for a case
between two extreme cases, AFDQN-SGD and AFDQN-
Avg.
The effect of increasing the number of IoT nodes per

agent (UAV) on AoI and Energy consumption is inves-
tigated in Fig. 9. For this experiment, two AFDQN-10
and AFDQN-Avg cases are considered. The results show
that AFDQN-10 had better performance than AFDQ-Avg.
Another important point that should be mentioned relates to
the behavior of the network for a large number of IoT nodes,
e.g., 120 or more. As the number of IoT nodes increases, the
load of the agents increases directly, this means that there
are more CPU and storage requests. Because the resources
in the processing nodes are limited, there comes a point
where an increase in the number of IoT nodes will lead to

FIGURE 10. Averaged-AoI and AoI-violation percentage for AFDQN-avg compared
with MDQN and Minimum-Delay versus standard deviation (SD) of the load normalized
by SD of the load in the training phase.

FIGURE 11. The effect of increasing the number of IoT nodes per agent (UAV) on AoI
and energy consumption for AFDQN-avg compared with MDQN and Minimum-Delay.

more request rejection responses. In this situation, the fresh
packets will drop, and that causes an increase in the AoI
value. However, the network energy consumption does not
change because the volume of the active processes does not
change and remains equal to the maximum capacity of the
processing nodes.
For further exploration, Fig. 10 and Fig. 11 compare

the performance of the proposed algorithm against two
baseline algorithms: Multi-agent DQN (MDQN) [57] and the
adapted version of heuristic Minimum-Delay algorithm [58].
In MDQN the agents operate independently based on
locally trained models without coordination. The agents are
equipped with an identical neural network featuring the same
specifications as AFDQN. Conversely, the Minimum Delay
algorithm selects actions at each VNF scheduling round t́
to minimize end-to-end delay (not AoI) between IoT nodes
and the local server.
In Fig. 10, a comparison similar to Fig. 8 assesses the

impact of increasing load standard deviation (SD) on network
performance in terms of AoI and AoI violation. Generally,
an increase in SD raises the average AoI and AoI violation
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percentage for all methods, as larger SD values force agents
to find the best action across a larger state space. As it is
evident, the proposed AFDQN method exhibits the smallest
average AoI and AoI violation percentage compared to
baseline methods. However, the Minimum Delay method
performs the worst due to its localized short-term target.
Finally in Fig. 11, the impact of increasing the number

of IoT nodes per agent (UAV) on the proposed method’s
performance in terms of AoI and energy consumption is
explored and compared with MDQN and Minimum Delay
algorithms. Results demonstrate the superior performance
of the proposed AFDQN method compared to baselines.
Additionally, as the number of IoT nodes reaches 120
and beyond, there is an increased demand for CPU and
storage; limited resources in processing nodes eventually
lead to increased rejection of requests, causing a rise in AoI.
However, network energy consumption remains unchanged,
as the volume of active processes remains equal to the
maximum capacity of processing nodes.

IX. CONCLUSION
We considered the problem of dynamic orchestration of
NFV-enabled SFCs in smart agriculture applications to
jointly minimize the AoI and energy consumption throughout
the network. Especially, the problem is formulated as a
decentralized POMDP. Then, adopting the symmetric struc-
ture of the network, we analytically proved that the optimal
policy among the agents is behaving similarly. Accordingly,
a novel federated-based DQN method was proposed to solve
the problem efficiently. The proposed method is distributed
and energy efficient, as the local agents just need to share
the parameters of their locally trained model with each other.
Although the primary goal of this method is to provide
privacy among the agents, in our problem, this significantly
decreased the communication overhead, and additionally,
the total energy consumption of the network. In terms of
freshness of information, the AoI is minimized jointly, and
the achieved value for the AoI, while the parameter setting
is set to be close to real values, is appropriate for most
real-time applications.

APPENDIX
In this section, we aim to simplify the problem of
determining the optimal policy (22) by utilizing some struc-
tural specifications of the developed system and problem.
Inspiring by the work presented by Yongacoglu et al. [48],
we introduce a class of Symmetric DEC-POMDP based on
the Definition and Lemma presented below.
Definition 3 (Symmetric DEC-POMDP): A DEC-

POMDP is called symmetric if the following conditions
hold:
(i) Au = Aú and γu = γú, ∀u, ú ∈ U
(ii) ∀u ∈ U , ∀a ∈ A, and an arbitrary permutation function

σ(.):
a) ru(s, σ (a)) = rσ(u)(s, a), and
b) T(·|s, σ (a)) = T(·|s, a).

FIGURE 12. Index mapping mechanism.

Lemma 1: Let G be a symmetric DEC-POMDP, for any
u, ú ∈ U , if πu = πú, then, πu is ε-best-response to π−u
if and only if πú is ε-best-response to π−ú, where ε-best-
response (for an arbitrary ε ≥ 0) defines as a policy that
achieves (reach) a reward (cost) within ε of the maximum
(minimum) value.
In our VNF scheduling problem, as it is depicted in

Fig. 3, at each VNF scheduling round t̃, each distributed
agent u ∈ U , has K packet-flow {ϒk

u(t)|t = t̃}Kk=1 belong
to different services each of which requires running Fk

different VNFs on their packets. The agents decide on how to
place these VNFs into available processing nodes, i.e., other
U − 1 UAVs, the local server, or itself, in a way that
jointly minimizes the average AoI and energy consumption
according to (17). All the agents follow the same goal and
the priorities among the agents are the same. Without loss of
generality, we assume that the agents have chosen the same
discount factor, {γu}u∈U = γ . Thus, it can be found that
the agents conceptually have the same model; an intuitive
inference that can be figured out better using the following
Index Mapping rule.
Definition 4 (Index Mapping): For each function f ∈ Fk

of packet-flow ϒk
u(t)|t = t̃, by definition we assume that the

policy πu(t̃) outputs �fku ∈ {0, 1, . . . ,U − 1,M} is the ith
candidate processing node, �i, as depicted in Fig. 12. The
actual selected processing node among p ∈ {u∪{ú}ú �=u∪M},
will be,

pu
(
t̃
) =

{
[(u+ i) mod U]th UAV, if �i �= �M
M, if �i = �M,

∀ �fku = �i. (32)

Then, χ fkpu(|t = t̃) = 1, and Xku, B
k
pu will be updated

accordingly.
Now, according to Definition 3 and Definition 4, the

following lemma can be driven.
Lemma 2: Problem 1 is a symmetric DEC-POMDP.
Proof: According to Definition 4, the agents have the same

set of actions {Au}u∈U = {�i}i∈U∪M , so the condition (i) of
Definition 3 is met. Let define C� as circular shift operand
with arbitrary value of �, C�(·) = [ ·+�]mod U. Considering
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a circular shift of � over joint action A, C�(A), we will have,
aC�(u) = au, thus from (32), for each �fkC�(u) = �fku = �i the
selected processing node pC�(u)(t) will be,

pC�(u)
(
t̃
) =

{
[(C�(u)+ i) mod U]th UAV, if �i �= �M
M, if �i = �M,

∀ �fkC�(u) = �i.
Or,

pC�(u)
(
t̃
) = C�

(
pu(t̃)

)
. (33)

Equation (33) means Problem 1 is circularly symmetric. To
be more specific, we do not have any special dependency
on the identity of the agents and the state transitions
depend only on the profile of joint actions performed
by all agents. Accordingly, permuting the agents’ actions
does not change the conditional transition probabilities,
T(·|s, C�(A)) = T(·|s,A), and this permutation will lead
to a corresponding permutation of rewards, rC�(u)(s,A) =
ru(s, C�(A)). Hence, the second condition of Definition 3 is
also satisfied and the proof is complete.
According to Lemma 2, being circularly symmetric means

that the best agents’ policy, π∗ are the same, {πu}U−1
u=0 = π∗.

For such a condition, Lemma 1 implies that the problem
of finding the best policy can be reduced to finding π∗

u ,
the best response to

∏
ú�=u πú, while πú = πu, ∀ú �= u.

Although this result is promising, from an implementation
viewpoint, proposing a distributed solution for finding the
best policy while requiring the same policy for all the agents
is challenging. Recalling (18), in addition to the current
hidden state, in DEC-POMDP the agents need to infer the
action (the policy) of the other agents. The subsequent
Corollary establishes a connection between this inference
and solely relying on the local observations of the agents,
thereby rendering it feasible.
Corollary 2: With the same initialization of the belief

function, {bu(0)}U−1
u=0 = b(0), for a circularly symmetric

DEC-POMDP, the local observation hu(t̃) is a sufficient
statistic for determining the optimal policy π∗.
Proof: Assume that using a mechanism, the agents peruse

the same policy πu(t̃), while they are learning the optimal
policy π∗. Then, the multi-agent belief state bu,t̃(s, π−u)
would be,

bu,t̃(s, π−u) = bu,t̃

⎛

⎝s,
∏

ú �=u
πu

⎞

⎠

= P
(
s(t̃) = s|hu(t̃), bu(0), πu

)

= bπuu
(
s, t̃
)
.∀u ∈ U (34)

So, for each agent u, the local observation hu(t̃) and knowing
its local policy πu is enough for determining the belief-
state bπuu (s, t̃). In a DEC-POMDP, the set {bπuu (s, t̃)}U−1

u=0 is
sufficient statistic for the joint history H, and the proof is
complete.

REFERENCES
[1] O. Friha, M. A. Ferrag, L. Shu, L. Maglaras, and X. Wang, “Internet

of Things for the future of smart agriculture: A comprehensive survey
of emerging technologies,” IEEE/CAA J. Automatica Sinica, vol. 8,
no. 4, pp. 718–752, Apr. 2021.

[2] X. Yang et al., “A survey on smart agriculture: Development
modes, technologies, and security and privacy challenges,” IEEE/CAA
J. Automatica Sinica, vol. 8, no. 2, pp. 273–302, Feb. 2021.

[3] P. K. Reddy Maddikunta et al., “Unmanned aerial vehicles in smart
agriculture: Applications, requirements, and challenges,” IEEE Sensors
J., vol. 21, no. 16, pp. 17608–17619, Aug. 2021.

[4] F. Guo, F. R. Yu, H. Zhang, X. Li, H. Ji, and V. C. M. Leung,
“Enabling massive IoT toward 6G: A comprehensive survey,” IEEE
Internet Things J., vol. 8, no. 15, pp. 11891–11915, Aug. 2021.

[5] A. C. Nguyen, T. Pamuklu, A. Syed, W. S. Kennedy, and
M. Erol-Kantarci, “Reinforcement learning-based deadline and
battery-aware offloading in smart farm IoT-UAV networks,” in Proc.
IEEE Int. Conf. Commun. (ICC), 2022, pp. 189–194.

[6] R. Han, J. Wang, L. Bai, J. Liu, and J. Choi, “Age of information
and performance analysis for UAV-aided IoT systems,” IEEE Internet
Things J., vol. 8, no. 19, pp. 14447–14457, Oct. 2021.

[7] K. Gupta and N. Rakesh, “IoT-based solution for food adulteration,”
in Proc. 1st Int. Conf. Smart System, Innovat. Comput., Singapore,
2018, pp. 9–18.

[8] S. Nirenjena, D. Subramanian, and M. Monisha, “Advancement in
monitoring the food supply chain management using IoT,” Int. J. Pure
Appl. Math., vol. 119, pp. 1193–1196, Jan. 2018.

[9] K. Wang, Y. Wang, Y. Sun, S. Guo, and J. Wu, “Green Industrial
Internet of Things architecture: An energy-efficient perspective,” IEEE
Commun. Mag., vol. 54, no. 12, pp. 48–54, Dec. 2016.

[10] L. Lei, H. Xu, X. Xiong, K. Zheng, and W. Xiang, “Joint computation
offloading and multiuser scheduling using approximate dynamic
programming in NB-IoT edge computing system,” IEEE Internet
Things J., vol. 6, no. 3, pp. 5345–5362, Jun. 2019.

[11] L. Dong, W. Wu, Q. Guo, M. N. Satpute, T. Znati, and D. Z. Du,
“Reliability-aware offloading and allocation in multilevel edge com-
puting system,” IEEE Trans. Rel., vol. 70, no. 1, pp. 200–211,
Mar. 2021.

[12] M. Mozaffari, W. Saad, M. Bennis, Y.-H. Nam, and M. Debbah,
“A tutorial on UAVs for wireless networks: Applications, challenges,
and open problems,” IEEE Commun. Surveys Tuts., vol. 21, no. 3,
pp. 2334–2360, 3rd Quart., 2019.

[13] M. Mozaffari, W. Saad, M. Bennis, and M. Debbah, “Mobile
unmanned aerial vehicles (UAVs) for energy-efficient Internet of
Things communications,” IEEE Trans. Wireless Commun., vol. 16,
no. 11, pp. 7574–7589, Nov. 2017.

[14] P. Radoglou-Grammatikis, P. Sarigiannidis, T. Lagkas, and
I. Moscholios, “A compilation of UAV applications for precision
agriculture,” Comput. Netw., vol. 172, May 2020, Art. no. 107148.

[15] M. Bacco, A. Berton, A. Gotta, and L. Caviglione, “IEEE 802.15.4
air-ground UAV communications in smart farming scenarios,” IEEE
Commun. Lett., vol. 22, no. 9, pp. 1910–1913, Sep. 2018.

[16] Y. Zeng, R. Zhang, and T. J. Lim, “Wireless communications
with unmanned aerial vehicles: Opportunities and challenges,” IEEE
Commun. Mag., vol. 54, no. 5, pp. 36–42, May 2016.

[17] M. Sun, X. Xu, X. Qin, and P. Zhang, “AoI-energy-aware UAV-assisted
data collection for IoT networks: A deep reinforcement learning
method,” IEEE Internet Things J., vol. 8, no. 24, pp. 17275–17289,
Dec. 2021.

[18] K.-V. Nguyen, C.-H. Nguyen, T. V. Do, and C. Rotter, “Efficient multi-
UAV assisted data gathering schemes for maximizing the operation
time of wireless sensor networks in precision farming,” IEEE Trans.
Ind. Informat., vol. 19, no. 12, pp. 11664–11674, Dec. 2023.

[19] O. Elijah, T. A. Rahman, I. Orikumhi, C. Y. Leow, and M. N. Hindia,
“An overview of Internet of Things (IoT) and data Analytics in
agriculture: Benefits and challenges,” IEEE Internet Things J., vol. 5,
no. 5, pp. 3758–3773, Oct. 2018.

[20] S. Wolfert, L. Ge, C. Verdouw, and M.-J. Bogaardt, “Big data in smart
farming–a review,” Agricultural Syst., vol. 153, pp. 69–80, May 2017.

[21] F. Wu, H. Zhang, J. Wu, Z. Han, H. V. Poor, and L. Song, “UAV-
to-device underlay communications: Age of information minimization
by multi-agent deep reinforcement learning,” IEEE Trans. Commun.,
vol. 69, no. 7, pp. 4461–4475, Jul. 2021.

1240 VOLUME 5, 2024



[22] Y. Sun, I. Kadota, R. Talak, and E. Modiano, “Age of information:
A new metric for information freshness,” in Synthesis Lectures
Communication Network, vol. 12, San Rafael, CA, USA: Morgan
Claypool Publ., Dec. 2019, pp. 1–224.

[23] H. Hu, K. Xiong, G. Qu, Q. Ni, P. Fan, and K. B. Letaief, “AoI-
minimal trajectory planning and data collection in UAV-assisted
wireless powered IoT networks,” IEEE Internet Things J., vol. 8, no. 2,
pp. 1211–1223, Jan. 2021.

[24] M. A. Zamora-Izquierdo, J. Santa, J. A. Martínez, V. Martínez, and
A. F. Skarmeta, “Smart farming IoT platform based on edge and cloud
computing,” Biosyst. Eng., vol. 177, pp. 4–17, Jan. 2019.

[25] A. Pretto et al., “Building an aerial–ground robotics system for
precision farming: An adaptable solution,” IEEE Robot. Autom. Mag.,
vol. 28, no. 3, pp. 29–49, Sep. 2021.

[26] S. T. Arzo, C. Naiga, F. Granelli, R. Bassoli, M. Devetsikiotis, and
F. H. P. Fitzek, “A theoretical discussion and survey of network
automation for IoT: Challenges and opportunity,” IEEE Internet Things
J., vol. 8, no. 15, pp. 12021–12045, Aug. 2021.

[27] Y. Liu, H. Lu, X. Li, Y. Zhang, L. Xi, and D. Zhao, “Dynamic service
function chain orchestration for NFV/MEC-enabled IoT networks: A
deep reinforcement learning approach,” IEEE Internet Things J., vol. 8,
no. 9, pp. 7450–7465, May 2021.

[28] J. Pei, P. Hong, K. Xue, and D. Li, “Efficiently embedding service
function chains with dynamic virtual network function placement in
geo-distributed cloud system,” IEEE Trans. Parallel Distrib. Syst.,
vol. 30, no. 10, pp. 2179–2192, Nov. 2018.

[29] B. Khamidehi and E. S. Sousa, “Reinforcement learning-aided safe
planning for aerial robots to collect data in dynamic environments,”
IEEE Internet Things J., vol. 9, no. 15, pp. 13901–13912, Aug. 2022.

[30] D. C. Nguyen, M. Ding, P. N. Pathirana, A. Seneviratne, J. Li,
and H. Vincent Poor, “Federated learning for Internet of Things: A
comprehensive survey,” IEEE Commun. Surveys Tuts., vol. 23, no. 3,
pp. 1622–1658, 3rd Quart., 2021.

[31] B. McMahan, E. Moore, D. Ramage, S. Hampson, and
B. A. Y. Arcas, “Communication-efficient learning of deep networks
from Decentralized data,” in Proc. 20th Int. Conf. Artif. Intell. Statist.,
2017, pp. 1273–1282.

[32] T. Pamuklu, A. C. Nguyen, A. Syed, W. S. Kennedy, and
M. Erol-Kantarci, “IoT-aerial base station task offloading with risk-
sensitive reinforcement learning for smart agriculture,” IEEE Trans.
Green Commun. Netw., vol. 7, no. 1, pp. 171–182, Mar. 2023.

[33] A. C. Nguyen, T. Pamuklu, A. Syed, W. S. Kennedy, and
M. Erol-Kantarci, “Deep reinforcement learning for task offloading in
UAV-aided smart farm networks,” in Proc. IEEE Future Netw. World
Forum (FNWF), 2022, pp. 270–275.

[34] B. Buyukates and S. Ulukus, “Timely distributed computation with
stragglers,” IEEE Trans. Commun., vol. 68, no. 9, pp. 5273–5282,
Sep. 2020.

[35] Z. Tang, Z. Sun, N. Yang, and X. Zhou, “Age of information of multi-
user mobile-edge computing systems,” IEEE Open J. Commun. Soc.,
vol. 4, pp. 1600–1614, 2023.

[36] H. Huang et al., “Scalable orchestration of service function chains in
NFV-enabled networks: A federated reinforcement learning approach,”
IEEE J. Sel. Areas Commun., vol. 39, no. 8, pp. 2558–2571,
Aug. 2021.

[37] Z. Zhu, S. Wan, P. Fan, and K. B. Letaief, “Federated Multiagent
actor–critic learning for age sensitive mobile-edge computing,” IEEE
Internet Things J., vol. 9, no. 2, pp. 1053–1067, Jan. 2022.

[38] A. Imteaj, U. Thakker, S. Wang, J. Li, and M. H. Amini, “A survey
on federated learning for resource-constrained IoT devices,” IEEE
Internet Things J., vol. 9, no. 1, pp. 1–24, Jan. 2022.

[39] S. Zheng et al., “Asynchronous stochastic gradient descent with
delay compensation,” in Proc. 34th Int. Conf. Mach. Learn., 2017,
pp. 4120–4129.

[40] “NFV release 2015 definition,” Eur. Telecommun. Stand. Inst. (ETSI),
Sophia Antipolis, France, document GS NFV-REL 002 V1.1.1,
Sep. 2015.

[41] D. W. Matolak and R. Sun, “Unmanned aircraft systems: Air-ground
channel characterization for future applications,” IEEE Veh. Technol.
Mag., vol. 10, no. 2, pp. 79–85, Jun. 2015.

[42] R. Bellman, “A Markovian decision process,” J. Math. Mechanics,
vol. 6, no. 5, pp. 679–684, 1957.

[43] L. P. Kaelbling, M. L. Littman, and A. R. Cassandra, “Planning
and acting in partially observable stochastic domains,” Artif. Intell.,
vol. 101, no. 1, pp. 99–134, 1998.

[44] D. S. Bernstein, R. Givan, N. Immerman, and S. Zilberstein, “The
complexity of decentralized control of Markov decision processes,”
Math. Oper. Res., vol. 27, no. 4, pp. 819–840, 2002.

[45] B. K. Kang and K.-E. Kim, “Exploiting symmetries for single-and
multi-agent partially observable stochastic domains,” Artif. Intell.,
vols. 182-183, pp. 32–57, May 2012.

[46] R. Nair, M. Tambe, M. Yokoo, D. Pynadath, and S. Marsella, “Taming
decentralized POMDPs: Towards efficient policy computation for
multiagent settings,” in Proc. Int. Joint Conf. Artif. Intell. (IJCAI),
2003, pp. 705–711.

[47] R. Sutton and A. Barto, Reinforcement Learning, Second Edition: An
Introduction (Adaptive Computation and Machine Learning series).
Cambridge, MA, USA: MIT Press, 2018.

[48] B. Yongacoglu, G. Arslan, and S. Yüksel, “Satisficing paths and
independent multi-agent reinforcement learning in stochastic games,”
2021, arXiv:2110.04638.

[49] M. Zinkevich and T. R. Balch, “Symmetry in Markov decision
processes and its implications for single agent and Multiagent
learning,” in Proc. 18th Int. Conf. Mach. Learn., 2001, p. 632.

[50] X. Fu, F. R. Yu, J. Wang, Q. Qi, and J. Liao, “Service function
chain embedding for NFV-enabled IoT based on deep reinforcement
learning,” IEEE Commun. Mag., vol. 57, no. 11, pp. 102–108,
Nov. 2019.

[51] V. Mnih et al., “Human-level control through deep reinforcement
learning,” Nature, vol. 518, no. 7540, pp. 529–533, Feb. 2015.

[52] Y. Hou, L. Liu, Q. Wei, X. Xu, and C. Chen, “A novel DDPG method
with prioritized experience replay,” in Proc. IEEE Int. Conf. Syst.,
Man, Cybern. (SMC), Banff, AB, Canada, 2017, pp. 316–321.

[53] Q. Wang, Q. Yang, S. He, Z. Shi, and J. Chen, “AsyncFedED:
Asynchronous federated learning with euclidean distance based
adaptive weight aggregation,” 2022, arXiv:2205.13797.

[54] M. Sipper, “A serial complexity measure of neural networks,” in Proc.
IEEE Int. Conf. Neural Netw., 1993, pp. 962–966.

[55] J. Hu, H. Zhang, L. Song, R. Schober, and H. V. Poor, “Cooperative
Internet of UAVs: Distributed trajectory design by multi-agent deep
reinforcement learning,” IEEE Trans. Commun., vol. 68, no. 11,
pp. 6807–6821, Nov. 2020.

[56] “Getting started with gym.” openai. Accessed: Feb. 18, 2024. [Online].
Available: https://www.gymlibrary.dev/

[57] E. A. O. Diallo, A. Sugiyama, and T. Sugawara, “Learning to
coordinate with deep reinforcement learning in doubles pong game,”
in Proc. 16th IEEE Int. Conf. Mach. Learn. Appl. (ICMLA), 2017,
pp. 14–19.

[58] J. Cai, Z. Huang, J. Luo, Y. Liu, H. Zhao, and L. Liao, “Composing
and deploying parallelized service function chains,” J. Netw. Comput.
Appl., vol. 163, Aug. 2020, Art. no. 102637.

MOHAMMAD AKBARI received the B.Sc. degree
in electrical engineering from Tabriz University,
Tabriz, Iran, in 2008, and the M.Sc. and Ph.D.
degrees from the Iran University of Science and
Technology, Tehran, Iran, in 2010 and 2016,
respectively. From 2010 to 2017, he was a
Senior System Designer with Afratab R&D Group,
Tehran. In 2018, he joined as a Research Assistant
Professor with the Department of Communication
Technology, ICT Research Institute, Tehran. Since
September 2021, he has been a Postdoctoral

Fellow with the University of Ottawa, ON, Canada. His current research
interests span topics in telecommunication systems and networks, including
self-organizing networks, 5G and 6G networks, and the application of
machine learning techniques in wireless communication.

VOLUME 5, 2024 1241



AKBARI et al.: AoI-AWARE ENERGY-EFFICIENT SFC IN UAV-AIDED SMART AGRICULTURE

AISHA SYED (Member, IEEE) is an Augmented
Dynamic Networks Researcher with the Modelling
and Optimization Group, Nokia Bell Labs. Her
current research interests lie broadly in automating
network and service management and evolution
in the presence of challenges and opportunities
created by increasing adoption of soft technologies
and machine learning.

W. SEAN KENNEDY (Member, IEEE) received
the joint Ph.D. degree in mathematics and
computer science from McGill University in
Montreal, Canada. In 2011, he joined Bell Labs
as a Postdoctoral Researcher, before becoming
a Technical Staff Member with the Mathematics
of Network Systems Department. He currently
heads Nokia Bell Labs’ Artificial Intelligence
Research Lab and is focused on creating solutions
for critically hard and important industry prob-
lems through disruptive research into algorithms,

machine learning fundamentals and applications, and real-time analytics. He
applies his unique depth in both mathematics and computing technologies to
envision the evolution and future effects of artificial intelligence ultimately
building disruptive technologies to realize this vision. His current research
focuses on moving beyond existing machine learning systems towards
systems that mimic the human capacity for analytical thinking.

MELIKE EROL-KANTARCI (Senior Member, IEEE)
is the Canada Research Chair in AI-enabled
Next-Generation Wireless Networks and a
Full Professor with the School of Electrical
Engineering and Computer Science, University
of Ottawa. She is the Founding Director of
the Networked Systems and Communications
Research Laboratory. She is the Co-Editor of
three books on smart grids, smart cities, and
intelligent transportation. She has over 200+
peer-reviewed publications. She has delivered

70+ keynotes, plenary talks, and tutorials around the globe. Her
main research interests are AI-enabled wireless networks, 5G and
6G wireless communications, smart grid, and Internet of Things. She
is an IEEE ComSoc Distinguished Lecturer and an ACM Senior
Member. She has received numerous awards and recognitions including
a Women in AI North America Award in 2023. She is on the edito-
rial board of the IEEE TRANSACTIONS ON COMMUNICATIONS, IEEE
TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING,
and IEEE NETWORKING LETTERS. She has acted as the general chair
and the technical program chair for many international conferences and
workshops.

1242 VOLUME 5, 2024



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Helvetica
    /Helvetica-Bold
    /HelveticaBolditalic-BoldOblique
    /Helvetica-BoldOblique
    /Helvetica-Condensed-Bold
    /Helvetica-LightOblique
    /HelveticaNeue-Bold
    /HelveticaNeue-BoldItalic
    /HelveticaNeue-Condensed
    /HelveticaNeue-CondensedObl
    /HelveticaNeue-Italic
    /HelveticaNeueLightcon-LightCond
    /HelveticaNeue-MediumCond
    /HelveticaNeue-MediumCondObl
    /HelveticaNeue-Roman
    /HelveticaNeue-ThinCond
    /Helvetica-Oblique
    /HelvetisADF-Bold
    /HelvetisADF-BoldItalic
    /HelvetisADFCd-Bold
    /HelvetisADFCd-BoldItalic
    /HelvetisADFCd-Italic
    /HelvetisADFCd-Regular
    /HelvetisADFEx-Bold
    /HelvetisADFEx-BoldItalic
    /HelvetisADFEx-Italic
    /HelvetisADFEx-Regular
    /HelvetisADF-Italic
    /HelvetisADF-Regular
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryITCbyBT-MediumItal
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Recommended"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


