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ABSTRACT The growing popularity of online and cloud gaming applications is reshaping the landscape
of the entertainment industry and acting as a key driver of market growth. However, the dependency of
these applications on network resources poses significant challenges to the communication infrastructure.
This is particularly critical as network performance plays a key role in influencing user satisfaction during
gameplay. Inevitably, these inherently interactive applications are also closely linked to the concept of
quality of experience (QoE), which expresses the perceived quality of a service by end-users. In this paper,
we leverage deep learning methodologies to develop an objective QoE prediction model. Specifically, the
proposed prediction model investigates the effect of wireless network operation on the QoE of gaming
video streaming. Employing a tailored multi-headed convolutional neural network (multi-headed CNN),
the model can predict in real-time the transmission-related QoE value using measurable quality of service
(QoS) parameters. To validate the effectiveness of the model, tests and evaluations were conducted in an
open radio access network testbed environment equipped with O-RAN-compatible interfaces.

INDEX TERMS Convolutional neural network, deep learning, deep neural network, gaming video, open

radio access network (Open RAN), quality of experience (QoE), QoE prediction.

I. INTRODUCTION

HE VIDEO game industry has grown at an astonishing

rate in recent years, and gaming has now transformed
from a niche hobby to one of the largest markets in
the entertainment industry [1]. Gaming reached an all-time
high in terms of revenue and user engagement during the
COVID-19 global pandemic. In 2022, the global video game
industry’s revenues surpassed the USD 200 billion mark for
the first time, while the number of players worldwide was
estimated at 3 billion. Currently, the video game industry
exceeds the combined revenues of the music and film
industries and is only trailed by television [2]. Therefore,
online and cloud gaming can be seen as an increasingly

important research area, attracting the interest of both
academia and industry. Consequently, the development of
wireless networks capable of supporting the demanding ser-
vice requirements of gaming video streaming is a necessary
condition for the further growth of gaming applications.
Thus, it has become vital for Internet service providers
(ISPs) to provide the best possible gaming experience to
end-users, making efficient use of the available physical
network infrastructure. However, understanding the mech-
anisms that determine quality as experienced by end-users
is a highly complex process. This is due to the fact that
these mechanisms include technical parameters such as
terminal equipment, network state and video compression,
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the gaming environment, as well as the subjective perception
of the players [3]. To this end, quality of experience (QoE)
is the metric that indicates the perceived quality of a
service by the end-user, taking into account all the factors
involved. In the context of wireless communication networks,
QoE has become a key tool for evaluating the quality of
their operation. This is because it allows a more in-depth
knowledge of how the quality of service (QoS) factors of
a network affect the perceived quality of communication
services by end-users.

Legacy wireless networks, however, are unable to meet the
network traffic and radio resource requirements of today’s
gaming video streaming applications as they exhibit limited
bandwidth, high latency, and inefficient network resource
management. These challenges require new wireless network
designs that offer customized communication solutions based
on programmable, flexible, and scalable architectures. A sig-
nificant opportunity for transforming the wireless and mobile
networks is offered by open radio access network (Open
RAN) technology, as suggested by the O-RAN Alliance [4].
Based on two key concepts, openness and intelligence, Open
RAN can be seen as a disruptive technology in the wireless
communications ecosystem, capable of enabling new markets
and encouraging innovation.

In addition, the development of QoE prediction models
can make a decisive contribution to optimizing the oper-
ation of wireless networks, complementing the innovative
design of the Open RAN network architecture. The benefits
of accurate QoE prediction in a wireless communication
system with respect to system performance arise from the
ability to predictively analyze the patterns and dynamic
characteristics of QoE. This analysis can serve as the
basis for the implementation of a network optimization
policy. Consequently, accurate QoE prediction facilitates the
effective planning for the allocation of the finite radio and
computing resources, enhances network energy efficiency,
mitigates network congestion, and leads to reduced capital
expenditure (CapEx) and operational expenditure (OpEx),
ultimately enhancing profitability. Real-time QoE prediction
should be regarded as an important element in the design of
next-generation wireless communication networks, particu-
larly when transmitting services with intrinsic interactivity,
such as gaming applications.

In this paper, we present a deep learning-based objective
QoE prediction model for gaming video streaming appli-
cations. The prediction model is based on a customized
multi-headed convolutional neural network (multi-headed
CNN) applied to an O-RAN-compliant wireless communica-
tion network. The goal of the prediction model is to measure
the influence of wireless network operation on gaming
video quality as perceived by end-users in real-time. Since
the prediction model can forecast the network/transmission-
related QoE value using purely quantifiable QoS factors,
the QoE evaluation can be categorized as objective. The
QoS parameters of bandwidth, latency, packet loss, and jitter
are captured and recorded by a QoS monitoring system
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designed with open-source monitoring tools. The prediction
model first converts the collected QoS parameters into mean
opinion score (MOS) values, and then the multi-headed
CNN network analyzes the interdependencies among them
to derive the overall QoE value for the wireless gaming
video streaming service. To the authors’ knowledge, this is
the first study to measure and predict the QoE of gaming
video streaming over Open RAN. Furthermore, it gives for
the first time a benchmarking of deep neural network (DNN)
algorithms for this kind of application.

The paper is organized as follows: Section II provides
a review of state-of-the-art models for gaming video
QoE prediction. Section III analyzes the QoE assessment
methodologies in connection to gaming video applications.
Moreover, it explores the gaming video QoE influencing fac-
tors (IFs) and evaluates the network/transmission-related IFs.
In addition, it examines the QoS/QoE mapping approaches.
Section IV introduces the suggested QoE prediction model.
First, the Open RAN testbed is described, then the QoS mon-
itoring system and dataset creation process, the QoS/QoE
mapping model, and finally the deep learning-based QoE
prediction model. Section V presents a comparative study of
deep learning methodologies and provides the performance
assessment findings for the suggested prediction model.
Section VI concludes with closing observations.

Il. RELATED WORK

Early work on QoE prediction for wireless video streaming
focuses on conventional video formats without considering
gaming video applications, which due to their highly
interactive nature exhibit particular features and network
requirements.

In [5], a DNN method for QoE prediction in mobile video
transmission is presented. This approach uses a mobile phone
application to collect data related to user QoE. The process
involves the collection of a significant amount of data that
includes both subjective ratings and network parameters. A
DNN is then constructed to discriminate the links between
these network parameters and subjective QoE ratings.

In [6], a real-world dataset derived from a mobile operator
is employed to create a correlation between network-side
parameters and user QoE in video streaming applications.
This involves the utilization of a deep learning model for the
initial forecast of the channel path loss. Subsequently, this
prediction is applied to forecast the MOS for mobile video
streaming. It is important to note that the trained model
cannot be directly applied to a different geographical area,
which does not allow the generalization of this approach.

In [7], a model integrating mobile edge computing
(MEC) and software-defined networking (SDN) is proposed
to allocate resources and reduce latency for 3D high-
definition video. The model uses an actor-critic based deep
reinforcement learning algorithm for viewport prediction
and QoE optimization and a long-short memory network
(LSTM) for bandwidth and viewport prediction. The model
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can adaptively assign the best transmission throughput based
on observations to maximize QoE.

In [8], an end-to-end framework for video QoE prediction
is presented. Initially, a mixture of deep learning method-
ologies, including word embedding and a 3D convolutional
neural network (C3D), are used to extract generalized
features. These features are then fused and fed into a neural
network to learn representations. The acquired representation
is then used as input for tasks related to classification and
regression.

In [9], an explainable artificial intelligence (XAI) model
is used to overcome the need to ensure high levels of
explainability in AI models. The study contrasts fuzzy
decision tree models with classical decision tree models
and random forest (RF) classifiers on a QoE classification
dataset. The findings of the comparison demonstrate that
fuzzy decision trees are easier to interpret and exhibit
comparable performance, particularly in detecting stalling
events in video streaming applications.

In [10], a Bayesian network (BN) model aiming to predict
the re-buffering ratio by concentrating on a selected set of
QoE parameters is introduced. Specifically, a neural network-
based approach is suggested to validate the BN’s accurate
representation of stalling data patterns. The study concludes
by demonstrating that models incorporating hidden variables
and contextual information exhibit enhanced performance on
QoE-related metrics.

In [11], a tutorial focused on implementing QoE measure-
ment and prediction in video streaming applications using
supervised machine learning (ML) algorithms is presented.
The tutorial is structured in three parts. Initially, an approach
for applying video streaming QoE prediction models based
on supervised learning is described. Next, the development
of ML-based models for QoE prediction and measurement in
5G/6G networks is examined. Finally, a benchmark analysis
is provided, which evaluates the performance of state-of-the-
art supervised learning ML models.

In recent years, there has been increasing interest in
developing QoE prediction models adapted to the par-
ticular characteristics of wireless gaming video streaming
applications.

In [12], a no-reference frame-based measurement system
for gaming video quality performance is created using
the support vector regression (SVR) algorithm. The SVR
training includes nine frame-level indices as input features
and video multimethod assessment fusion (VMAF) scores
as reference data. This prediction model is characterized by
low complexity, as it is based on features that are available
in real-time.

In [13], two no-reference lightweight ML methods for
predicting QoE in gaming video streaming are introduced.
These models are constructed using the algorithms of SVR,
Gaussian process regression (GPR), random forest (RF), and
artificial neural network (ANN). Due to their simplicity, both
models can serve as the initial phase of a real-time optimized
online gaming QoE management framework.
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In [14], a method is proposed to improve the quality
of compressed gaming content by using generative super-
resolution contradictory networks (SRGAN). This involves
using a DNN in tandem with an adversarial network to
produce higher-resolution images. The proposed approach
incorporates adaptations to the generative network, including
modifications to the skip connections and loss function.
These modifications improve the information flow within the
network, leading to increased perceived quality.

In [15], a no-reference lightweight module for assessing
video quality in gaming content is created, utilizing the
random forest regression (RFR) algorithm. This method
forecasts video quality scores solely based on the recorded
video, prioritizing features that are straightforward to calcu-
late. Additionally, it incorporates minimal features in order
to establish a model capable of making real-time QoE
predictions.

In [16], a technique is put forward to develop a CNN-
derived metric for assessing the quality of gaming videos.
The CNN undergoes training with the VMAF objective qual-
ity model as a reference, and further refinement is achieved
through subjective image quality evaluations. Additionally,
a novel temporal pooling approach based on frame-level
predictions is introduced for the prediction of gaming video
QoE.

In [17], a methodology for real-time reduced refer-
ence evaluation of gaming video quality is introduced.
This approach is built upon a psychometric curve-fitting
method characterized by low complexity. The model employs
ML techniques, including decision tree regression (DTR)
and ANN. The proposed solution selects the most per-
tinent objective features while minimizing complexity.
Subsequently, it models the relationship between these
features and the reference quality by incorporating human
visual system (HVS) psychometric perception.

In [18], a QoE estimation model is introduced, incorpo-
rating both gaming and non-gaming videos and relying on
the algorithms of CNN and RF. The CNN is trained using
an objective metric, enabling it to grasp video artifacts, and
is fine-tuned using blockiness and blurriness scores derived
from a small image quality dataset. The temporal and frame-
level information of videos is employed by an RF model to
estimate video QoE. The model’s low complexity renders it
well-suited for real-time applications.

In [19], a streamlined quality prediction model for gaming
video streaming is suggested, utilizing CNN. This prediction
model incorporates a hard pairwise ranking loss, enabling it
to prioritize the discrimination of similar pairs. Additionally,
an efficient adapted distillation model is integrated, resulting
in minimal performance loss.

The first set of state-of-the-art QoE prediction mod-
els mentioned above focuses on the wireless streaming
of conventional video formats and cannot be generalized
for use in gaming video streaming applications, as these
models do not take into account the specific aspects and
characteristics of this type of video. The second set of QoE
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prediction models mainly takes into account frame-level IFs
of the gaming video format, such as bluriness, naturalness,
blockiness and complexity, as well as the influence of
spatiotemporal features and psychometric parameters. Our
approach differs from these methods, concentrating on the
influence of the transmission channel on gaming video
QoE. Across various applications, the majority of existing
literature on QoE assessment and prediction neglects the
thorough examination of network/transmission-related IFs.
In instances where the impact of the wireless transmission
channel is considered, it is typically done using network
simulators and emulators. Our study stands out as the
first to utilize a real 4G/5G wireless network, thoroughly
investigating the impact of network/transmission-related IFs
on gaming video streaming QoE under real-world conditions.
Moreover, our work is centered on developing an entirely
objective QoE prediction model through the application
of QoS/QoE mapping functions. Specifically, we consider
real-world network design scenarios based on Open RAN
technology, where the use of subjective QoE evaluation and
prediction models is impractical due to their limitations,
as discussed in Section III-A. Finally, this is the first
paper that provides a comprehensive study on deep learning
techniques for QoE prediction in wireless gaming video
streaming applications. The choice to develop deep learning-
based prediction models is due to the effectiveness of their
operation when trained with huge amounts of data, such
as those encountered in real mobile networks, which tends
to completely replace the use of statistical analysis and
conventional ML models.

lll. GAMING VIDEO QOE ASSESSMENT

The idea behind the development of the QoE metric is
to reflect the quality of a service as perceived by-end
users. As a result, in a wireless network ecosystem, QoE
indicates how the network operation affects the perceived
quality of communications services. The QoE evaluation
is conditional on the comparison between the anticipated
quality characteristics that define the user’s expectations
and the perceived characteristics derived from the physical
stimulus.

A contributing factor to the difficulty in comprehending
gaming video QoE mechanisms is that gaming, as opposed
to conventional media applications, can be viewed as a
human-machine interaction. Therefore, typical approaches to
assessing the influence of transmission on media distribution
are not applicable. Furthermore, parameters such as the
content, the backend platform on which the game was
developed, the user interface, the wireless communication
channel, and the user features can all significantly affect
QoE [20].

A. PREDICTION METHODOLOGIES

The literature reports two ways of evaluating QoE, subjec-
tive and objective evaluation [21]. In subjective methods,
participants evaluate the quality of a service after being
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subjected to a set of tests or stimuli. These techniques
use psychophysical and psychometric methodologies to
quantify evaluators’ perception of service quality, as well
as qualitative methodologies to determine which IFs affect
QoE and to what extent [22]. Evaluators, as a general rule,
rate a variety of perceived quality attributes on a MOS scale
that spans from 1 to 5 (i.e., poor to excellent), reflecting
the degree of contentment with a service [23]. The main
advantage of subjective evaluations lies in the fact that,
due to the direct reception of data from end-users, they
achieve precise results. These results can subsequently be
used as a reference for training and validating QoE prediction
models [24].

Because subjective methodologies have boundaries such
as being laborious, costly, unable to perform real-time
use, and non-reproducible, there has been a substantial
interest in creating objective models that predict QoE
using exclusively measurable qualitative characteristics of
communication networks. The idea behind objective methods
is to predict QoE values that are close to the evaluations of
subjective techniques. The fundamental benefit of objective
approaches is their ease of use and adjustment, because the
assessment procedure requires quantifiable QoS parameters
and mathematical models that connect these parameters to
QoE values. The drawback of these methodologies is their
inaccuracy, as they calculate the QoE value; hence, their
results are an estimate and not an actual representation of
the quality perceived by end-users [25].

B. GAMING VIDEO QOE NETWORK/TRANSMISSION
INFLUENCING FACTORS

Any characteristic of a user, system, service, or application
that can have an impact on the perceived quality of a
service by the end-user can be referred to as a QoE IF [26].
The purpose of this paper is to investigate the effect of
the operation of the wireless communication network on
QoE. For this reason, our work focuses on the study of
network/transmission-related IFs. These IFs are affected
by transmission channel losses and refer to network QoS
parameters, including latency, jitter, bandwidth and packet
loss [27].

Wireless gaming video streaming and cloud gaming appli-
cations require extensive Internet resources when connecting
between client and server. Due to the need to exchange
a huge amount of multimedia data with a server, a user’s
wireless connection must be able to send this data with
the lowest possible delay [28]. Therefore, these types of
applications are susceptible to variations in network QoS
parameters, which makes it necessary to ensure adequate
values for latency, jitter, bandwidth, and packet loss to
achieve optimal QoE:

o The latency perceived by an end-user is associated with
the time interval from the execution of the user’s com-
mands to the occurrence of the subsequent game event
on the screen. Therefore, the impact of delay on QoE
is greatly affected by the game’s characteristics [29].
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o Jitter has a discernible influence on the QoE of online
and cloud gaming applications [30]. The presence of
jitter induces an unsmooth visual impression of the
game, as due to its effect, the display of video frames
occurs with a fluctuating latency [31].

e The impact of bandwidth limitation on QoE has
proven to be particularly important for cloud gaming
applications, as they rely on real-time gaming content
streaming. This requires a consistent and high-rate
data transfer to ensure smooth gameplay. Bandwidth
constraints can lead to buffering, lower resolution and
increased latency, negatively impacting QoE [32].

o Packet loss has a significant impact on QoE in gaming
applications, with levels as low as 1% resulting in an
important decline in the end-user experience. Excessive
packet loss reduces visual quality, leading to lower
frame rates and a poor gaming experience [33].

C. QOS/QOE MAPPING

The operating principle of QoS/QoE mapping is to calculate
QoE using only countable values of the network QoS param-
eters. To specify the association between these parameters
and QoE level, it is essential to create a correlation model.
The purpose of this model is to compute QoE values using
fitting mathematical models [34]. The prediction model we
have developed is based on the logistic mapping function,
IQX hypothesis, Weber-Fechner law, and Steven’s power law,
as follows:

1) To convert the countable QoS parameters into MOS
scores, an appropriate mapping function is required. Mapping
functions can be either linear or nonlinear [35]. However,
since objective quality metrics are seldom uniform, the linear
mapping functions tend to understate the outcome. Therefore,
typically, nonlinear mapping functions are employed, as
they obtain more accurate correlations. One of the most
commonly used mapping functions is the logistic, as shown
in the below formula [22]:

Q0F = a/(l i e—b(Q"S—C>). (1)

where a, b and c coefficients are adjustable parameters.

2) The IQX hypothesis is an exponential method that
describes QoE as a parameterized negative exponential
function of a QoS impairment attribute. QoE can be defined
as a function of n influence factors I;, 1 <j < n:

QoE = ®(I1 I, .. .1,) 2)

IQX hypothesis focuses on a single influence component,
I = QoS, to obtain the primary correlation QoE =
f(QoS) [36]. We fit the differential equation below, consid-
ering a linear connection at the QoE level:

IQ0E
9008

~ —(QoE —y). 3)
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where y coefficient defines the sensitivity of the observed
QoE to changes in QoS. This equation’s outcome is spec-
ified as an exponential function reflecting the fundamental
relationship of the IQX hypothesis:

QO0E = ae P25 1 4)

where a, b and ¢ coefficients are adjustable parameters.

3) The Weber-Fechner Law (WFL) is a logarithmic
approximation that relates the perceptual capacities of
the human sensory system to the awareness of scarcely
perceptible changes of a salient stimulus [37]. The following
differential equation explains it:

dPerception 1
dStimulus

®)

~ Stimulus

Therefore, the ensuing mathematical equation is logarith-
mic and can be utilized to express the coupling of stimulus
and perception as follows:

QoFE = alog(QoS) + b. (6)

where a, and b coefficients are adjustable parameters.

4) The Stevens’ power law (SPL) is a psychophysics law
that describes how the intensity of a physical stimulus affects
human perception [38]. The following equation can be used
to describe SPL:

P(S) = KS”. 7

where P stands for human perception as a product of stimulus
strength S, K is a constant that varies with the measurement
setting, and the exponent b denotes the kind of stimulus and
defines the curvature of the function power.

IV. QOE PREDICTION MODEL

The suggested QoE prediction model is based on a multi-
headed CNN and applied to a small-scale experimental
wireless network created using Open RAN technology. The
user-side QoS monitoring system has been built with open-
source monitoring tools. The collected QoS attributes of
bandwidth, delay, jitter and packet loss are provided to
the QoS/QoE mapping model, which maps them to MOS
values. Finally, to calculate the overall QoE value, the
multi-headed CNN prediction model analyzes the interde-
pendencies between the mapped input values.

A. OPEN RAN TESTBED
Open RAN technology has the potential to revolutionize
mobile RAN and is expected to be a key element in the
creation of next-generation wireless networks. In line with
the O-RAN Alliance specifications, the Open RAN archi-
tecture will be able to provide customized communication
services to meet the demanding and diverse service demands
of innovative usage scenarios, including online and cloud
gaming applications [39].

The Open RAN implementation operates in a small-scale
testbed environment, supporting both 4G and non-standalone
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FIGURE 1. Monolithic gNB (5G NSA) architecture [42].

5G (NSA) architectures. It is based on the open-source soft-
ware package of OpenAirlnterface (OAI) [40]. The testbed
supports three different node base station (eNB) architectures
(monolithic, split option 2 and split option 7.2), a next
generation node base station (gNB) architecture (monolithic)
and an evolved packet core (EPC) architecture [41]. All
network components are installed on the same physical
hardware, a personal computer (PC) with 64 GB of RAM and
an Intel 19 3.6 GHz CPU. Transmission in eNB is configured
in frequency division duplex transmission (FDD) mode with
a bandwidth of 20 MHz in band 7, while transmission in
gNB is configured in time division duplex transmission
(TDD) mode with a bandwidth of 40 MHz in band n78.
The following are the main characteristics of the testbed, as
illustrated in Fig. 1 [42]:

« Remote radio head (RRH) is implemented for all RAN
architectures via a universal software radio peripheral
(USRP) B210 in single-input single-output (SISO)
mode, connected to the PC with a universal serial bus
(USB) 3.0 cable.

« For split option 7.2, the distributed unit (DU) imple-
ments higher-layer physical layer (high-PHY) functions,
including medium access control (MAC) and radio
link control (RLC) layer, while the central unit (CU)
deploys radio resource control (RRC), packet protocol
data convergence process (PDCP) and service data
adaptation process (SDAP). The two units are connected
to each other via an F1 interface.

o The virtual baseband unit (vBBU) is present in the cases
of 4G and 5G monolithic architectures, performing the
functions of the CU and DU units.

o The EPC consists of the 3GPP modules based on the
home subscriber server (HSS), the mobility manage-
ment entity (MME), the service gateway (SGW) and the
packet gateway (PGW). However, the service and packet
gateways (SPGWs) have separate user (SPGW-U) and
control (SPGW-C) layers.

B. QOS MONITORING AND DATASET GENERATION
The QoS monitoring system uses the open-source monitoring
tools Prometheus [43], Telegraf [44] and Grafana [45] for the
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collection of the network/transmission metrics of bandwidth,
jitter, latency and packet loss. It can be classified as a user-
centric QoS monitoring system since network/transmission
parameters are collected from the user side using end-user
device probes to provide application-level metrics [46].

The dataset for training the neural network was generated
by monitoring the QoS parameters during the wireless
transmission of YouTube gaming videos. Data was collected
using a variety of video streaming loads from November
2022 to January 2023. The monitoring period was 8 weeks
in total, and data was collected with a measurement interval
of 1 min, resulting in a total of 80640 data samples for
each QoS parameter. Videos with a resolution of 2560x1440
pixels (2K) and frame rate of 60 FPS were used. The five-
number summary of the dataset (i.e., minimum, first quartile,
median, third quartile and maximum) is shown in Fig. 2
and the. collected samples of QoS parameters are shown in
Fig. 3.

C. QOS/QOE MAPPING MODEL
In order to construct the QoS/QoE mapping model, we
used the logistic, IQX, WFL and SPL mapping methods by
applying formulas (1), (4), (6) and (7) to the measurements
of the network QoS parameters, respectively. To obtain an
approximate curve y = f(x) that best fits the discrete set
of measurement points (x;, y;), where i =1,2,3,...,n, we
used the curve fitting method. In particular, we adopted
the method of least squares, which is one of the most
commonly used methods to find the curve that best fits a
given dataset [47]. In the formula f(x), the coefficients a, b,
and c¢ of the mapping functions are adjustable parameters.
The aim of the least squares method is to determine these
parameters to minimize the fitting error, i.e., the variance
between the data values y; and the y-values f(x;) on the fitted
curve. The residuals are defined as the variances between
the observed y-values and those given by the fitted curve at
the x-values where the data were originally collected.

Let the data points be (x1, y1), (x2, ¥2), ..., (xu, yn) Where
x is the independent variable and y is the dependent variable.
The deviation error ¢; of the fitted curve f(x) from each data
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point is determined as follows:

er =y1 —f(x1),
e =y — f(x2),
en = Yn — f(xn). 3)

According to the principle of the least squares, the best

fitting curve has the property that the sum of the squares of
errors in formula (8) is minimum, and hence, the calculated
value of the parameters a, b, and ¢ minimizes the error e;.

n n
2
Yo = [n—fe] ©)
1 1
To implement the least squares curve fitting we

used Python’s SciPy, NumPy, and Pandas open-source
libraries [48]. To evaluate the curve fitting accuracy, we used
the metrics of R? and mean squared error (MSE) [34].
Table 1 shows the curve fitting accuracy results for the
IQX, WFL, SPL and logistic mapping functions, whereas
Fig. 4 shows the associated curves. The QoS/QoE mapping
mechanism, as shown in Fig. 4, transforms the measured
values of bandwidth, jitter, delay and packet loss into MOS
values. It is worth mentioning that in the case of latency,
jitter and packet loss, their impact on perceived service
quality develops in reverse proportion to the degradation,
i.e., the higher the QoS value, the lower the objective quality.
In the case of bandwidth, however, the higher the QoS score,
the higher the objective quality. For this reason, the algebraic
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TABLE 1. Curve fitting accuracy.
R? MSE
1QX Bandwidth 0.99 7.33-1071
1QX Latency 0.99 7.85-10718
1QX Packet Loss 0.99 5.46-1071°
1QX Jitter 1 0
WFL Bandwidth 0.99 1.12-107**
WEFL Latency 1 0
WEFL Packet Loss 1 0
WEFL Jitter 1 0
SPL Bandwidth 0.99 3.18-107%4
SPL Latency 1 0
SPL Packet Loss 1 0
SPL Jitter 1 0
Logistic Bandwidth 0.99 3.43-10715
Logistic Latency 0.99 14.06- 107
Logistic Packet Loss 0.99 1.06-10713
Logistic Jitter 0.99 1.44-10"14

signs in equations (1), (4), (6), and (7) have been adjusted
accordingly.

D. DEEP LEARNING PREDICTION MODEL

The development of the QoE prediction model is based on
deep learning techniques, namely CNN. Originally designed
for two-dimensional image data, CNN can also be used
to model time series prediction problems, as they can
automatically learn features from sequence data, handle mul-
tivariate data, and instantly generate a vector for multistep
prediction. One of the key advantages of CNN is that it
can generate representations for fixed-size frames, permitting
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FIGURE 4. Curve fitting for QoS/QoE mapping.

the expansion of the network’s frame size through multi-
level stacking. This ensures exact control over the maximum
length of the dependencies to be modeled. Furthermore, the
convolutions can be applied in parallel, allowing an entire
input sequence to be processed in its whole during both
training and evaluation, which results in faster training and
testing procedures [49]. As a rule, the architectural design
of CNN consists of an input

layer, an output layer and multiple hidden layers. These
layers are referred to as convolutional layers, aggrega-
tion layers and fully connected layers, respectively. More
specifically, the convolution layers are responsible for
the convolution or cross-correlation process, which maps
multidimensional parameters using kernels, i.e., locally
connected filters. The convolution performs for each position
p of the output y, the following operation [50]:

wy =Y wpax(py + pa)- (10)

pGeC

where pg stands for the positions in the receptive field
G of the convolutional filter W, which corresponds to the
receptive field of the neurons in the inputs at a convolutional
layer. W denotes the weights which are distributed in the
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input representation. Typically, when the inputs and outputs
contain M and N filters respectively, the convolutional
layer would need M x N filters to perform the convolution
process. The CNN architecture is based on three key
principles [51]: 1) sparse interactions, 2) parameter sharing,
and 3) equivalent representations, which has the effect of
reducing the volume of model features, and the number of
necessary factors, minimizing the possibility of overfitting
during model training.

A subclass of the CNN architecture is the CNN model
with multiple heads, in which a separate CNN sub-model
or a separate head is used for each input variable. In
multi-headed architecture, adaptation is required in the
design of the model and in the preprocessing of the
training and test datasets. In terms of model design, a
separate CNN model must be defined for each of the
input variables, with appropriate modifications to the number
of layers and hyperparameters tuning. More specifically,
a sub-model must be developed for each input variable,
which accepts a one-dimensional sequence of input data
and outputs a planar vector containing a summary of the
feature learning. The set of these vectors can be merged by
concatenation in order to develop a large vector that, prior
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FIGURE 5. Deep learning QoE prediction model architecture.

to forecasting, is interpreted by a number of fully connected
layers.

To develop the deep learning prediction model, we
used TensorFlow [52] and Keras [53]. The suggested
QoE prediction model is built using a multistep, multi-
headed CNN with multivariate input. The multivariate input,
as illustrated in Fig. 5, comprises the mapped values of
bandwidth, jitter, latency, and packet loss. The hidden layer is
based on a multi-headed CNN designed to resolve sequence
problems. Since the number of elements in input and output
sequences might differ and prediction entails providing the
next value in an actual sequence, the task of sequence
prediction is made particularly challenging. These kinds of
applications are typically framed as prediction problems
involving one or more input time steps and one output time
step. In our case, we use the QoS measurements of the
previous 2 days to forecast the QoE of the next day.

In data preparation we resampled the dataset into
non-overlapping 60-minute sequences. Consequently, the
80640 minute input data were resampled into hourly samples,
yielding a total of 1344 samples. The multi-headed CNN is
designed as a multistep multivariate time series prediction
model that predicts the next day’s QoE values based on the
previous two days’ data. In particular, to predict the QoE of
24 forward time steps (1 day x 24 hours), it uses 48 hourly
samples (2 days x 24 hours) as backward time steps. The
prediction model has 16 input sequences corresponding to
the mapped values of the QoS parameters and 1 output that
yields the overall QoE value.

The structure of the multi-headed CNN model is shown
in Fig. 6. The model does not consider the data to have
time steps; instead, it treats it as a sequence on which
convolutional layers may apply filters similar to a 1D image.
During model development, the input and flatten layers are
kept in lists in order to determine the model inputs and
the function of the max pooling layer. The model expects
16 arrays as input, one for each of the sub models. This
is required at all stages of the process, including training,
evaluation, and prediction with a final model. For this reason,
a list of 16 3D matrices [samples, time steps, features]
has been created, where the column of features is
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equal to one, as it represents the one-dimensional input
sequences.

V. PREDICTION MODEL EVALUATION

The aim of this paper is to introduce a model designed
to predict the QoE of wireless gaming video streaming
in real-world conditions. The development of the proposed
prediction model is based on deep learning techniques,
while its effectiveness is evaluated through comparison
with state-of-the-art deep learning models. This choice is
based on the superior performance demonstrated by deep
learning models when trained with huge amount of data,
such as that encountered in real-world mobile networks.
Therefore, statistical analysis and traditional ML models are
not considered, and instead, the performance of the proposed
model is evaluated against deep learning models belonging
to the CNN and RNN classes.

A. DEEP LEARNING MODELS FOR COMPARISON

The multi-headed CNN is compared with the most widely
used models of the CNN class, including CNN, multi-
channel CNN, temporal convolutional network (TCN), and
residual CNN-LSTM (ResCNN-LSTM), as well as with
the well-established models of the recurrent neural network
(RNN), LSTM, and gated recurrent unit (GRU):

o CNN is suitable for multistep time series forecasting
problems. It can be used in two ways: either in a
recursive forecasting approach, in which the model
produces one-step forecasts and the outputs are provided
as inputs for subsequent forecasts, or in a direct
forecasting approach, in which a model is constructed
for each time step to be forecast. A major advantage
of using CNN is that it can provide forecasts using
numerous 1D inputs, which is advantageous in problems
where the output is a function of a multivariate input
sequence.

e Multi-channel CNN is an enhanced version of CNN
designed to predict the value of the next time step using
each of the variables in the time series input sequence.
This is achieved by feeding each unidimensional time
series into the model as a separate input channel. The
model then reads each input sequence into a separate
set of filter maps, thus learning features from each
input time series variable. This method is useful for
problems in which the output sequence is a function
of observations at previous time steps of various
independent features.

e TCN is a variant of CNN for sequence modelling
problems that incorporates elements of RNN and CNN
design. The key difference between TCN and other
CNNs is that it uses causal and dilated convolutions.
Causal convolutions prompt the model to learn the
relationship between time steps while maintaining the
natural time sequence. This differs from other CNNs,
whose algorithms use all available data in a sequence.
The dilation approach allows TCN to process more steps
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FIGURE 6. Structure of the multi-headed CNN.

in the time series as it progresses deeper into the layers.
Typically, these networks are trained faster than RNN.
LSTM, a dedicated type of RNN, is specifically
developed for applications where the use of a common
RNN proves to be ineffective. It excels at capturing
long-term dependencies, having an architectural design
specifically tailored to address the primary shortcomings
of RNN. These shortcomings include the challenge
of preserving past state information and addressing
the problems of exploding and vanishing gradients
commonly associated with conventional RNN.

ResCNN-LSTM is a CNN framework that addresses the
vanishing gradient problem, allowing for the construc-
tion of networks with a huge number of convolutional
layers. This is accomplished by the use of skip
connections, in which some layers are skipped and the
output of the preceding layer is passed on to the current
position, enhancing the model’s operation. Another
purpose of skip connections is to allow for better
gradient flow and to guarantee that critical attributes
are conveyed down to the network’s final layers without
increasing computational load.

e RNN is a modified version of feedforward neural
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networks (FNN), specifically designed for processing
sequential or time series data. Unlike conventional FNN,
which is suitable for handling unrelated data, RNN
excel in scenarios where the values in a sequence are

dependent on each other. It can be trained to retain
historical information from previous inputs, allowing it
to predict future values within the sequence. This ability
to capture the dependencies between values makes RNN
an effective choice for modeling data with sequential
relationships.

e GRU stands out as an improved variant in the RNN
category, addressing the challenge of vanishing gra-
dients faced by traditional RNN. Similar to LSTM,
GRU addresses this issue by incorporating two gates
- the update gate and the reset gate - to regulate the
data stream. What makes GRU salient is its simpler
architecture compared to LSTM; it does not have a
separate cell state and has only one hidden state.
This streamlined design simplifies the model and also
improves the training efficiency, making GRU a more
efficient and advanced option.

B. COMPARATIVE EVALUATION OF PREDICTION
MODELS

The prediction models use each of the 16 time series input
variables to predict the total value of QoE for the next 24 time
steps. This is achieved by including each one-dimensional
time series as a separate input sequence, to which an internal
representation is then interpreted from the output. This is
because, instead of predicting a single feature, our approach
requires multivariate inputs, as the output sequence is a
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FIGURE 7. Representation of actual versus predicted QoE value.

product of observations of previous time steps affected by
multiple independent features.

The 8 weeks of QoS monitoring resulted in 56 days of
data collection. These 56 days were distributed as follows:
the training data set consists of 42 days, the test data set
consists of 7 days, and the validation data set consists of 7
days. We employed Keras callbacks to increase the efficiency
of training when assembling the models. In particular, we
utilized ModelCheckpoint to store model weights at key
time steps, EarlyStopping to terminate the process when
the observed evaluation metric no longer improves, and
ReduceLROnPlateau to minimize the learning rate when the
observed metric no longer improves.
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We utilized the MSE, root-mean-square error (RMSE),
mean absolute error (MAE), mean absolute percentage error
(MAPE), and median absolute error (MedAE) metrics

to assess the accuracy of the prediction models [34].
Table 2 presents the findings of the prediction accuracy
metrics. We can see that the suggested multi-headed CNN
model prevails over the other models by outperforming them
in all

the accuracy scores. It is important to emphasize that all
the prediction models show moderate discrepancies between
them, which validates the suitability of the CNN and RNN

class models in addressing time series data modelling
problems.
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FIGURE 8. Representation of real-time QoE prediction versus actual values.

The results of the QoE prediction of the next day over
the validation dataset values of the previous 2 days are
depicted in Fig. 7. The next day’s prediction corresponds
to 24 forward time steps, and the validation basis of the
previous 2 days corresponds to 48 backward time steps.
Table 3 includes the mean QOoOE values as derived from
the considered prediction models. We can observe that the
proposed model approximates the actual QoE value with
greater accuracy compared to the rest of the prediction
models.

The reason for using mean QoE values is that this
aggregate metric summarizes the performance of deep learn-
ing models across the entire dataset and observation time.
This facilitates comparison between models and provides a
strong indication of the expected level of QoE predicted by
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the models. In addition, the deep learning models exhibit
stochastic behavior during the training phase due to the
use of mini-batch sampling and the dropout regularization
technique. Utilizing average QoE values helps mitigate the
effects of this stochasticity by providing a summary statistic
that reflects overall performance by smoothing out the noise
introduced during training.

C. REAL-TIME QOE PREDICTION

The trained models are used to predict QoE in real-time,
as shown in Fig. 8, where QoE values are predicted for 24
time steps forward. Predicted versus actual QoE values are
presented, based on real-time QoS monitoring and QoS/QoE
mapping. The experimental data collection was performed
over a 4-hour period and was based on QoS monitoring
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TABLE 2. QoE prediction model evaluation.

TABLE 5. Real-time QoE predicted mean value.

MSE RMSE MAE MAPE | MedAE Mean QoE (MOS)
(%) Actual 3.18467
cm\{ 0.03241 | 0.18005 | 0.14492 | 3.92163 | 0.13820 NN 3.66479
Multi- 0.03432 | 0.18527 | 0.14835 | 4.03715 | 0.13218 Multi-channel CNN 328782
channel CNN -

Multi-headed | 0.01342 | 0.11588 | 0.09786 | 2.52839 | 0.09664 Multi-headed CNN 3.26618
CNN TCN 3.91023
TCN 0.03581 | 0.18924 | 0.15303 | 4.14064 | 0.13052 LST™M 3.66526
LSTM 0.03250 | 0.18029 | 0.14196 | 3.85048 | 0.13774 ResCNN-LSTM 3.73323

ResCNN- 0.03245 | 0.18016 | 0.14317 | 3.87785 | 0.13492 RNN 3.51430
LSTM GRU 3.72533
RNN 0.03450 | 0.18576 | 0.14212 | 3.88562 | 0.11938
GRU 0.03232 | 0.17978 | 0.14060 | 3.82902 | 0.12912

TABLE 3. QoE predicted mean value

Mean QoE (MOS)

Actual 3.76110

CNN 3.75376

Multi-channel CNN 3.78851

Multi-headed CNN 3.76470

TCN 3.74875

LSTM 3.75908

ResCNN-LSTM 3.75194

RNN 3.79294

GRU 3.77089

TABLE 4. Real-time QoE prediction model evaluation.
MSE RMSE MAE MAPE MedAE
(%)
CNN 0.23826 | 0.48811 | 0.48011 15.1477 | 0.47310
Multi- 0.01761 0.13272 | 0.10765 3.43980 | 0.09638
channel CNN
Multi-headed | 0.01362 | 0.11674 | 0.09386 | 3.00307 | 0.07228
CNN
TCN 0.56402 0.75101 | 0.72555 22.8735 | 0.72082
LSTM 0.23745 0.48729 | 0.48058 15.1615 | 0.47333
ResCNN- 0.31307 | 0.55952 | 0.54857 17.2956 | 0.54257
LSTM

RNN 0.11620 | 0.34089 | 0.32962 10.4182 | 0.32056
GRU 0.30079 0.54844 | 0.54065 17.0485 | 0.53445

of the gaming video streaming via the Open RAN testbed,
providing a total of 240 minute samples. These samples are
used to evaluate the accuracy of the real-time QoE prediction
in backward time steps and are the dataset against which
the ability of the model to generalize well to new data is
validated.

The suggested multi-headed CNN model outperforms the
CNN, multi-channel CNN, TCN, LSTM, ResCNN-LSTM,
RNN, and GRU prediction models in all accuracy measures,
as shown in Table 4. We can also see that the real-time
QoE prediction accuracy scores for all models are lower
than the values obtained when evaluating the models. This
is due to the fact that the experimental real-time dataset
is limited in size, which affects the intrinsic variance of
the input data, leading to a larger intrinsic variance of the
training dataset compared to the validation dataset. Due to
its greater ability to handle small datasets, the multi-headed
CNN model achieves higher accuracy than the rest of the
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prediction models. The prediction accuracy improves when
the volume of the dataset is increased through long hours
of data collection, but we are interested in verifying the
usefulness of the prediction model in real-world situations,
where the model should be able to provide predictions in a
limited amount of time.

Table 5 presents the real-time average QoE value obtained
from the considered forecasting models. This value indicates
the overall performance of the Open RAN testbed as deter-
mined by the composition of the dependencies among the 16
input variables. As mentioned previously, the multi-headed
CNN model approximates more accurately the actual QoE
value compared to state-of-the-art deep learning prediction
models. This demonstrates that the multi-headed CNN
is highly effective in handling small-sequence problems,
making it suitable for real-time applications, where, due to
time constraints, wireless network performance evaluation
relies on feeding a limited amount of new data into the QoE
prediction model.

VI. CONCLUSION

Real-time QoE prediction should be thought of as a key
component in the design of next-generation wireless commu-
nication networks, especially with regard to the transmission
of inherently interactive and increasingly demanding gaming
video streaming applications. In this work, we provide a
QoE prediction model based on deep learning techniques.
More specifically, we present a multi-headed CNN-based
objective QoE prediction model for gaming video streaming
applications. The prediction model is evaluated on an Open
RAN testbed and is capable of quantifying the impact of
wireless network operation on gaming video quality using
the QoS parameters of bandwidth, latency, packet loss, and
jitter.

The suggested prediction model outperforms state-of-the-
art deep learning models, including CNN, multi-channel
CNN, TCN, LSTM, ResCNN-LSTM, RNN, and GRU.
The multi-headed CNN model has greater prediction accu-
racy and can generalize to new data more successfully.
Furthermore, it is suitable for time series forecasting
problems with multivariate inputs since a distinct CNN
sub-model is employed for each input variable and an
output planar vector is created that comprises the feature
learning summary. In addition, our findings show that the
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multi-headed CNN model is ideal for real-time forecasting
applications since it operates effectively with small data
sequences.

This is the first study to present a comparative analysis
of deep learning algorithms from the CNN and RNN class
for QoE prediction in wireless gaming video streaming
applications. Furthermore, this is the first time a QoE
prediction model for gaming video streaming has been
developed and evaluated on an Open RAN testbed.
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