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ABSTRACT Various applications of molecular communications (MCs) feature an alarm-prompt behavior for which
the prevalent Shannon capacity may not be the appropriate performance metric. The identification capacity as an
alternative measure for such systems has been motivated and established in the literature. In this paper, we study
deterministic K-identification (DKI) for the discrete-time Poisson channel (DTPC) with inter-symbol interference
(ISI), where the transmitter is restricted to an average and a peak molecule release rate constraint. Such a channel serves
as a model for diffusive MC systems featuring long channel impulse responses and employing molecule-counting
receivers. We derive lower and upper bounds on the DKI capacity of the DTPC with ISI when the size of the target
message set K and the number of ISI channel taps L may grow with the codeword length n. As a key finding, we
establish that for deterministic encoding, assuming that K and L both grow sub-linearly in n, i.e., K = 2κ log n and
L = 2l log n with κ + 4l ∈ [0, 1), where κ ∈ [0, 1) is the identification target rate and l ∈ [0, 1/4) is the ISI rate,
then the number of different messages that can be reliably identified scales super-exponentially in n, i.e., ∼ 2(n log n)R,

where R is the DKI coding rate. Moreover, since l and κ must fulfill κ + 4l ∈ [0, 1), we show that optimizing l (or
equivalently the symbol rate) leads to an effective identification rate [bits/s] that scales sub-linearly with n . This result
is in contrast to the typical transmission rate [bits/s] which is independent of n.

INDEX TERMS Channel capacity, deterministic identification, inter-symbol interference, molecular
communication, Poisson channel.

I. INTRODUCTION

MOLECULAR communication (MC) is a new commu-
nication concept where messages are embedded in the

properties of molecules [2], [3]. In contrast to conventional
electromagnetic-based (EM) communication systems, which
embed information into the properties of EM waves such as
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their amplitude, frequency, and phase, MC systems embed
information into the properties of molecules such as their
concentration [4], type [5], time of release [6], and spatial
release pattern [7]. A parallel growing and related field
to MC is synthetic biology [8], which provides tools for
realizing the hardware components needed for MC systems.
In [9], [10], the realization of MC systems using synthetic
biology techniques is discussed and biological components
are investigated which can potentially serve as the main
building blocks of synthetic MC systems, i.e., as transmitter,
receiver, and signaling particles. This promising vision for
realizing synthetic MC systems has motivated the research
community to establish theoretical frameworks for their
modeling, design, and analysis. Examples include channel
modeling [11], modulation and detection design [12], and
information-theoretical performance characterization [13].
Advanced synthetic MC systems are expected to facilitate
the realization of the Internet of Bio-Nano Things [14], [15]
capable of performing sophisticated tasks such as sensing,
computing, and networking inside the human body.

A. POISSON CHANNEL WITH INTER-SYMBOL
INTERFERENCE
In the context of MC systems, information can be encoded
in the concentration (rate) of molecules released by the
transmitter and be decoded based on the number of molecules
observed at the receiver. Assuming that the release, propaga-
tion, and reception of different molecules are independent of
each other, the number of molecules observed by molecule
counting receivers in MC systems are characterized by
the Binomial distribution. However, the Binomial channel
model and in particular its probability and cumulative
distribution functions make theoretical analysis cumbersome.
Fortunately, in most MC applications, the number of released
molecules is quite large which allows approximating the
Binomial channel model by the Gaussian or Poisson channel
models [16]. Specifically, when the number of molecules
emitted by the transmitter, N, is large but the probability of
successful observation of one molecule at the receiver, p, is
small (such that Np is still small), the Poisson distribution
can be shown to result as the limiting case of the Binomial
distribution1 [11, Sec. IV].

Diffusive MC channels are inherently dispersive since
molecules do not quickly fade away and stay in the channel
for a long time. This leads to a long tail of channel
impulse response (CIR) and causes inter-symbol interference
(ISI) [13]. The number of relevant channel memory taps,
L, depends on the relative length of the CIR and the
symbol duration and hence is a function of the symbol
rate. Motivated by the above discussions, we focus on
investigating the fundamental performance limits of the
discrete-time Poisson channel (DTPC) with ISI in this paper.

1In the literature, this result is also known as the Poisson limit theorem
or the law of rare events [17].

B. INFORMATION THEORETICAL ANALYSIS OF MC
SYSTEMS
Despite the recent theoretical and technological advance-
ments in the field of MC, the information-theoretical
performance limits of DTPC MC systems with and without
ISI are still not fully understood [13]. In fact, finding an
analytic expression for the transmission rate (TR) capacity
of the DTPC with ISI under an average power constraint
is still an open problem [13], [18], [19]. Nevertheless, for
characterizing the TR capacity for the DTPC, a number
of approaches have been explored and several bounds
and asymptotic results for the DTPC with ISI have been
established. For instance, analytical lower and upper bounds
on the TR capacity of the DTPC with input constraints and
ISI are provided in [20]. Bounds on the TR capacity of the
DTPC with ISI are developed in [21], [22]. The design of
optimal codes for the DTPC with ISI is studied in [23], [24].
In [25], the impact of ISI on the transmission performance
over a diffusive MC channel is investigated. Nonetheless, the
DTPC with ISI has been mostly studied for the TR problem
in the existing literature. On the other hand, in [26], [27],
deterministic identification (DI) for the DTPC without ISI
is studied, where bounds on the DI capacity are established.
To the best of the authors’ knowledge, for the DTPC with
ISI, the fundamental performance limits for the DI problem,
have not been investigated in the literature, yet, except in
the conference version of this paper [1].

C. APPLICATIONS OF THE K-IDENTIFICATION PROBLEM
FOR MC SCENARIOS
Numerous envisioned applications of MCs under the
umbrella of future generation (XG) communication
networks [28], [29] give rise to event-triggered commu-
nication scenarios,2 where TR capacity may not be the
appropriate performance metric. In particular, in event-
detection, object-finding or alarm-prompt scenarios, where
the receiver has to decide about the occurrence of a specific
event or the presence of an object with a reliable Yes / No
answer, the so-called K-identification capacity is the relevant
performance measure [31]. More specifically, in the K-
identification problem, it is assumed that the receiver is
interested in a subset of size K of the message set, M =
{1, . . . ,M}, referred to as the target message set. Since M
has cardinality M, there are in total

(M
K

)
possible target

message sets or subsets of size K. For each inclusion test,
the receiver chooses an arbitrary message from the message
set and checks whether or not it belongs to a given target
message set. The error criteria imposed on the corresponding
K-identification codes dictate that such an inclusion test must
be reliable no matter which specific target message set is
considered.

2Such communication systems are also known as post-Shannon commu-
nication systems in the literature [29]. A detailed discussion of the potential
of MC and post-Shannon communication for the sixth generation (6G) of
communication systems can be found in [30].
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TABLE 1. Mathematical notations used throughout this paper.

Concrete examples of the K-identification problem in the
context of MC can be found in communication scenarios
featuring event/object recognition tasks. In particular, for
targeted drug delivery [2], [32], [33], [34], [35] where,
e.g., a nano-device’s objective may be to identify whether
or not a specific biomarker present around a target tissue
belongs to a certain category of cancers; in health monitor-
ing [36], [37], where, e.g., one may be interested in finding
to which group/set of diseases a target bacteria belongs to.
Moreover, K-identification problems may find applications
in natural MC systems. For example, in natural olfactory
MC systems [38], [39], [40], where the communication
goal may involve the inclusion of a specific type of
secreted odor/pheromone into a target group of K-odors
corresponding to a specific identification task for foraging,
mating, etc.
Besides, in the context of molecular modeling [41], a

computational representation of an MC unit, called a digital
twin [42], may be required. In order to manage complex tasks
(e.g., prediction of future behavior) and perform reliable
computational functions (e.g., real-time simulation) on the
digital twin, it has to continually remain consistent with its
real counterpart [42]. Such a virtual copy of a target MC unit
allows experts to accomplish and evaluate their subsequent
computational tasks in a more reliable manner. Therefore, it
is crucial for the digital twin to verify/identify whether or
not it is consistent with the real MC unit. Examples include
the creation of a functioning Human brain at the molecular

level [43] and real-time calibration between an operating
nano-scale communication system and its digital twin [44].

D. CONTRIBUTIONS
In this paper, we study the problem of deterministic
K-identification (DKI) over the DTPC with ISI under average
and peak molecule release rate constraints which account
for the restricted molecule production / release rates by the
transmitter. In particular, this work makes the following
contributions:

• Generalized DKI and ISI model: In this paper, we
study the DTPC, where the ISI memory length, L, and
the size of the identification set, K, may scale with
the codeword length, n. As special cases, this model
includes the ISI-free channel (L = 1), the ISI channel
with constant L, DI (K = 1), and DKI with constant
K. For a given MC channel, scaling L implies a higher
symbol rate. Therefore, the proposed generalized model
allows us to investigate whether large codeword lengths
enable reliable identification even if the symbol rate is
increased (or similarly K is increased). To the best of
the authors’ knowledge, such a generalized DKI and
ISI model has not been studied in the literature, yet.

• Codebook scale: We establish that the codebook size
for K-identification for the DTPC with ISI for determin-
istic encoding scales in n similar as for the memoryless
DTPC [27], [45], namely super-exponentially in the
codeword length, i.e., ∼ 2(n log n)R, where R is the DKI
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coding rate, even when the size of the target message
set K and the number of ISI channel taps L, both grow
sub-linearly in n, i.e., K = 2κ log n and L = 2l log n,

respectively, where κ + 4l ∈ [0, 1), has to hold, and
κ ∈ [0, 1) is called the identification target rate and l ∈
[0, 1/4) is the ISI rate. This result reveals that the set of
target messages for identification and the ISI memory
can indeed scale with n without affecting the scale of
the codebook, confirming the result for the standard
identification problem for the memoryless DTPC (i.e.,
K = L = 1) [45].

• Capacity bounds: We derive DKI capacity bounds for
constant K ≥ 1 and growing K = 2κ log n for the
dispersive DTPC with constant L ≥ 1 and growing ISI
L = 2l log n, respectively. We show that for constant
K and L, the proposed lower and upper bounds on
R are independent of K and L, whereas for growing
target message set or growing number of ISI taps, they
are functions of the target identification rate κ and ISI
rate l, respectively. Moreover, we show that optimizing
the ISI rate l (or equivalently the symbol rate) leads
to an effective identification rate [bits/s] that scales
super-linearly with n . This result is in contrast to the
typical transmission rate in [bits/s] for which the rate
is independent of n.

• Technical novelty in the capacity proof: To obtain the
proposed lower bound on the DKI capacity, we analyze
the input space imposed by the input constraints and
exploit it for an appropriate sphere packing (non-
overlapping spheres with identical radius), namely we
consider the packing of hyper spheres inside a larger
hypercube, whose radius grows in the codeword length
n, the target identification rate κ, and the ISI rate
l, i.e., ∼ n(1+κ+4l)/4. Unlike the existing construction
for Gaussian channels [46], [47], where the radius of
spheres vanishes for asymptotic codeword length n, i.e.,
n → ∞, here, the radius of the hyper spheres tends to
infinity with a polynomial growth, i.e., ∼ n(1+κ+4l)/4.

This packing incorporates the impact of the size of the
target message set and the ISI as functions of κ and l,
respectively. For derivation of the upper bound on the
DKI capacity, we assume that an arbitrary sequence of
codes with vanishing error probabilities is given. Then,
for such a sequence of codes, we prove that a certain
minimum distance between the codewords is asserted.
Unlike the previous construction for Gaussian [46], [47]
and memoryless channels, here this distance converges
to zero more rapidly for the asymptotic codeword
length n and depends on the target identification rate
and the ISI rate and decreases as K and L grow,
respectively.

E. ORGANIZATION
The remainder of this paper is structured as follows.
Section II reviews previous results for the DI, RI, and
DKI problems and includes background information. In

Section III, the system model is presented and the
required preliminaries regarding DKI codes are established.
Section IV provides the main contributions and results on
the K-identification capacity of the DTPC with ISI. Finally,
Section V concludes the paper with a summary and directions
for future research.
The notations adopted throughout this paper are summa-

rized in Table 1. Moreover, all logarithms are to base two.

II. BACKGROUND ON IDENTIFICATION PROBLEM
In this section, we establish the required background for our
work and introduce the identification problem. Furthermore,
we review relevant previous results on the randomized-
encoder identification (RI), DI, and DKI capacities for
different channels.

A. IDENTIFICATION PROBLEM
In Shannon’s communication paradigm [48], a sender, Alice,
encodes her message in a manner that will allow the receiver,
Bob, to reliably recover the message. In other words, the
receiver’s task is to determine which message was sent.
In contrast, in the identification setting, the coding scheme
is designed to accomplish a different objective [31]. The
decoder’s main task is to determine whether a particular
message was sent or not, while the transmitter does not know
which message the decoder is interested in.

Randomized identification: Ahlswede and Dueck [31]
introduced an RI scheme, in which the codewords are
tailored according to their corresponding random source
(distribution). Note that such an approach cannot increase the
TR capacity for Shannon’s message transmission task [49].
On the other hand, Ahlswede and Dueck [31] established that
given local randomness at the encoder, reliable identification
is accomplished with a codebook size that is double-
exponential in the codeword length n, i.e., ∼ 22nR [31], where
R is the coding rate. This behavior differs radically from
the conventional message transmission setting, where the
codebook size grows only exponentially with the codeword
length, i.e., ∼ 2nR. Therefore, RI yields an exponential gain
in the codebook size compared to the transmission problem.
The construction of RI codes has been considered in previous
works [50], [51]. For example, in [50], a binary code is
constructed based on a three-layer concatenated constant-
weight code.

Deterministic identification: The realization of RI codes
can be challenging in practice since they require the imple-
mentation of probability distribution functions. Therefore,
from a practical point of view, it is of interest to consider
the case where the codewords are not selected based on
distributions but rather by means of a deterministic mapping
from the message set to the input space. This is known as
DI in which the encoder is a deterministic function.

K-Identification framework: For the standard DI or RI
problems [31], [47], the receiver is interested in identifying a
single message, that is, it selects an arbitrary message called
target message and using a decision rule (decoder) decides
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FIGURE 1. End-to-end transmission chain for DKI communication in a generic MC system modelled as a Poisson channel with ISI. The transmitter maps message i onto a
codeword ci = (ci,t )|n

t=1. The receiver selects an arbitrary target message set K = {j1, . . . , jK } and, given the channel output vector Y = (Yt )|n
t=1, asks whether or not the sent

message i belongs to target message set K.

whether or not this target message is identical to the sent
message. For the K-identification problem [52], the receiver
selects a subset of K messages from the message set called
target message set (denoted by K) and in contrast to the
standard DI or RI problems, it decides whether or not the
sent message belongs to this target message set. We note
that such a target message set can be in general any arbitrary
subset of the message set of size K, where the total possible
number of such subsets is

(M
K

)
. The K-identification scenario

may be interpreted as a generalization of the standard DI
or RI problems in the sense that the target message at
the receiver is substituted with a set of K target messages,
where K ≥ 1. That is, the DKI for the special case where
K = 1 corresponds to the standard DI problem considered
in [45], [53].

B. RELATED WORK ON DI CAPACITY
In the deterministic coding setup for identification, for
discrete memoryless channels (DMCs), the codebook size
grows only exponentially in the codeword length, similar
to the conventional transmission problem [31], [54], [55],
[56], [57], [58]. However, the achievable identification
rates are significantly higher compared to the transmission
rates [47], [55]. Compared to RI codes, DI codes often
have the advantage of simpler implementation and simula-
tion [59], [60] and explicit construction [61]. In [47], [55],
DI for DMCs with an average power constraint is considered
and a full characterization of the DI capacity is provided.
In [46], [47], Gaussian channels with fast and slow fading
and subject to an average power constraint are studied and
the codebook size is shown to scale as 2(n log n)R . DI is also
studied in [62] for Gaussian channels in the presence of
feedback and in [63] for general continuous-time channels
with infinite alphabets. Furthermore, DI for MC channels
modelled as DTPC without ISI and the Binomial channel is
studied in [26], [27], [45], [53], where the scale of the size
of the codebook is shown to be 2(n log n)R.

C. RELATED WORK ON DKI CAPACITY
Randomized K-identification for the DMC is studied in [52]
where assuming K = 2κn, the set of all achievable pairs of
the identification coding rate R and the target identification
rate κ, is shown to contain {(R, κ) : R, κ ≥ 0; R +
2κ ≤ CTR}. Assuming K = 2κ log n, the DKI for slow
fading channels, denoted by Gslow, subject to an average

power constraint and a codebook size of super-exponential
scale, i.e., ∼ 2(n log n)R, is studied in [64], [65] and the
following bounds on the DKI capacity are derived: (1 −
κ)/4 ≤ CDKI(Gslow,M,K) ≤ 1 + κ, for 0 ≤ κ < 1. Also,
a full characterization of the DKI capacity for the binary
symmetric channel subject to a Hamming weight constraint
is established in [66]. On the other hand, to the best of the
authors’ knowledge, the DKI capacity of the DTPC with ISI
(which is relevant for MC systems) has not been studied
in the literature, yet, and hence it is the main focus of this
paper.

III. SYSTEM MODEL AND K-IDENTIFICATION CODING
In this section, we present the adopted system model and
establish some preliminaries regarding DKI coding.

A. SYSTEM MODEL
In this paper, we consider a K-identification-focused com-
munication setup, where the decoder aims to accomplish
the following task: Determining whether or not a specific
received message belongs to a target set of messages of
size K; see Figure 1. To achieve this objective, a coded
communication between the transmitter and the receiver over
n uses of the MC channel is established by modulating
the molecule concentration. We assume that the transmitter
releases molecules with rate xt (molecules/second) during
TR seconds at the beginning of each symbol interval having
a length of TS seconds [13]. These molecules propagate
through the channel via diffusion and/or advection, and may
even experience degradation in the channel via enzymatic
reactions [11]. The ISI of the channel is modelled by
a length L sequence of probability values, i.e., p =
(p0, p1, . . . , pL−1), where value pl ∈ (0, 1] denotes the
probability that a given molecule released by the transmitter
for the t-th channel use is observed at the receiver during
time slot t+ l. Further, let ρ � (ρ0, . . . , ρL−1), where ρl �
plTR.
We assume a counting-type receiver.3 Examples of such

receivers include the transparent receiver, which counts

3We note that there are different types of receivers in MC systems includ-
ing timing receivers, counting receivers, concentration-based receivers, and
receivers using secondary/indirect signals, see [3], [11] for a comprehensive
review. We adopt counting receivers in this paper, since on the one hand,
they are not as complex as timing receivers, and on the other hand, they are
more accurate than concentration-based receivers or receivers that employ
secondary/indirect signals.
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the molecules that are at a given time within its sensing
volume [67], the fully absorbing receiver, which absorbs
and counts the molecules hitting its surface within a given
time interval [68], and the reactive receiver which counts
the molecules bound to the ligand proteins on its surface at
a given time [69]. The value of pl depends on parameters
such as the diffusion coefficient of the molecules, D, the
propagation environment (e.g., diffusion, advection, and
reaction processes), the distance between transmitter and
receiver, d, and the type of reception mechanism (e.g.,
transparent, absorbing, or reactive receiver); see [11, Sec. III]
for the characterization of pl for various setups. For instance,
assuming instantaneous release (i.e., TR → 0) of molecules
by a point-source transmitter, molecule propagation via
diffusion in an unbounded three-dimensional environment,
and assuming a uniform concentration approximation of
molecules within the reception volume of a transparent
receiver, pl can be obtained as [11]

pl = Vrx
(4πDτl)3/2

· e−d2/(4Dτl), (1)

where Vrx is the reception volume size and τl � lTS+ τ̄ with
l ∈ {0, . . . ,L−1}, denotes the sampling time at the receiver,
where τ̄ is a constant time offset between the release time
by the transmitter and sample time at the receiver within
each symbol duration.
Assuming that the release, propagation, and reception

of individual molecules are statistically identical but inde-
pendent of each other, the received signal follows Poisson
statistics when the number of released molecules is large,
i.e., 	xtTR
 � 1 [11, Sec. IV]. We assume that X ∈ R≥0 and
Y ∈ N0 denote RVs modeling the rate of molecule release
by the transmitter and the number of molecules observed at
the receiver, respectively. The channel output Y is related to
the channel input X according to

Yt = Pois
(
Xρ
t + λ

)
, (2)

where

Xρ
t �

L−1∑

l=0

ρlXt−l, (3)

is the mean number of observed molecules at the receiver
after the release of molecules at the time t. The constant λ ∈
R>0 is the mean number of observed interfering molecules
originating from external noise sources which employ the
same type of molecule as the considered MC system. Let

x∗
t

def= (xt−L+1, . . . , xt)

be the vector of the L most recently released symbols.
Considering the Poisson distribution provided in (2), the
letter-wise conditional distribution of the output of the DTPC
with ISI P is given by

V(Yt|x∗
t ) = e

−
(
Xρ
t +λ

)(
Xρ
t + λ

)Yt
/(Yt!). (4)

Standard transmission schemes employ strings of letters
(symbols) of length n, referred to as codewords, that is,
the encoding scheme uses the channel in n consecutive
symbol intervals to transmit one message. Since the channel
is dispersive, each output symbol is influenced by the L
most recent input symbols. As a consequence, the receiver
observes a string of length n̄ = n + L − 1, referred to as
output vector (received signal). Since the ISI of the channel,
characterized by p = (p0, p1, . . . , pL−1), has length L, we
assume that different channel uses given any L previous
input symbols are statistically independent. Therefore, for
n channel uses, the transition probability distribution is
given by

Vn̄(y|x) =
n̄∏

t=1

V(Yt|x∗
t ) =

n̄∏

t=1

e
−
(
Xρ
t +λ

)(
Xρ
t + λ

)Yt

Yt!
, (5)

where x = (x1, . . . , xn) and y = (y1, . . . , yn̄) denote the
transmitted codeword and the received signal, respectively.
We assume that xt = 0 for t > n or t < 0. We impose

peak and average molecule release rate constraints on the
codewords as follows

0 ≤ xt ≤ Pmax and
1

n

n∑

t=1

xt ≤ P avg, (6)

respectively, ∀t ∈ [[n]], where Pmax > 0 and P avg > 0
constrain the rate of molecule release per channel use
and over the entire n channel uses in each codeword,
respectively. Imposing such constraints on the rate of the
released molecules is motivated by the fact that there are a
finite and limited number of signalling molecules contained
in the molecule reservoir and the constraints guarantee
that, for large number of channel uses, the number of
stored molecules suffices. Unlike the classical average power
constraint imposed on the input of the Gaussian channel
which is a non-linear function of the symbols signifying
the signal (symbol) energy, here for the DTPC with ISI,
the average constraint is a linear function of the symbols
signifying the number of released molecules normalized by
the codeword length [13].

B. DKI CODING FOR THE POISSON CHANNEL WITH ISI
The definition of a DKI code for the Poisson channel with
ISI, P, is given below.
Definition 1 (ISI-Poisson DKI Code): An (n,M(n,R),

K(n, κ),L(n, l), e1, e2) DKI code for a Poisson channel
with ISI, P, under average and peak molecule release rate
constraints of P ave > 0, and Pmax > 0, respectively, and
for integers M(n,R), K(n, κ), and L(n, l), where n,R, κ,
and l are the codeword length, the DKI coding rate, the
target identification rate, and the ISI rate, respectively, is
defined as a system (C,T ), which consists of a codebook
C = {ci} ⊂ R

n+, with i ∈ [[M]], such that

0 ≤ ci,t ≤ Pmax and
1

n

n∑

t=1

ci,t ≤ P avg, (7)
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FIGURE 2. Depiction of a DKI setting with K = 3 and target message set K = {2, 3, 5} colored in blue. In the correct identification event, the channel output is detected in the
union of the individual decoders Tj , where j belongs to the target message set K. A type I error event occurs if the channel output is observed in the complement of the union of
the individual decoders to which the index of the codeword belongs to. A type II error event occurs if the channel output is detected in the union of the individual decoders Tj ,

with j ∈ K, but the index of the sent codeword does not belong to K.

∀i ∈ [[M]], ∀t ∈ [[n]] and a decoder TK ⊆ N
n̄
0, where K is

an arbitrary subset of size K. That is K ∈ {G ⊆ [[M]]; |G| =
K}. Given a message i ∈ [[M]], the encoder sends ci, and the
decoder’s task is to perform a binary hypothesis test: Was a
target message j ∈ K sent or not? There exist two types of
errors that may happen4 (see Figure 2):

Type I error: Rejection of the correct message, i ∈ K.

Type II error: Acceptance of a wrong message, i /∈ K.

The associated error probabilities of the DKI code reads

Pe,1(i,K) = Pr
(
Y ∈ T c

K

∣∣ x = ci
)

= 1 −
∑

y∈TK

Vn̄
(
y
∣
∣ ci

)
, i ∈ K, (8)

Pe,2(i,K) = Pr
(
Y ∈ TK

∣∣ x = ci
)

=
∑

y∈TK

Vn̄
(
y
∣∣ ci

)
, i /∈ K, (9)

and ∀e1, e2 > 0 fulfill the bounds Pe,1(i,K) ≤ e1,∀i ∈ K,
and Pe,2(i,K) ≤ e2,∀i /∈ K.
Note that correct K-identification implies that neither

type-I nor type-II errors occur. In this paper, we are
interested in the asymptotic case when arbitrary small error
probabilities are achievable for sufficiently large codeword
length n.
Definition 2 (DKI Coding / Target Identification / ISI

Rates): The size of the codebook M(n,R), the size of the
target message set K(n, κ), and the number of ISI taps L(n, l)
are sequences of monotonically non-decreasing functions in
codeword length n with R, κ, and l denoting the DKI coding

4 The error requirement as imposed by the DKI code definition applies
to all possible choices of the set K, i.e.,

(M
K
)
cases; see [70, p. 140] for

further details on K-identification codes.

rate, target identification rate, and ISI rate, respectively. In
particular, we consider the following functions in this paper:

M(n,R) = 2(n log n)R,K(n, κ) = 2κ log n,L(n, l) = 2l log n.

Definition 3 (Achievable Rate Region): The triple of rates
(R, κ, l) is called achievable if for every e1, e2 > 0 and
sufficiently large n, there exists an (n,M(n,R),K(n, κ),
L(n, l), e1, e2)-ISI-Poisson DKI code. Then, the set of all
achievable rate triples (R, κ, l) is referred to as the achievable
rate region for P .
Definition 4 (Capacity Region / Capacity): The opera-

tional DKI capacity region of the ISI-Poisson channel, P, is
defined as the closure of all achievable rate triples (R, κ, l).
The supremum of the identification coding rate R is called the
identification capacity and is denoted by CDKI(P,M,K,L).

IV. DKI CAPACITY OF THE POISSON CHANNEL WITH ISI
In this section, we first present our main results, i.e., lower
and upper bounds on the achievable DKI rates for P .
Subsequently, we provide detailed proofs of these bounds.

A. MAIN RESULTS
The DKI capacity theorem for P is stated below.
Theorem 1: Consider the DTPC with ISI, P, and assume

that both the target message set and the number of ISI
channel taps grow sub-linearly with the codeword length, i.e.,

K(n, κ) = 2κ log n and L(n, l) = 2l log n,

respectively, where κ ∈ [0, 1), l ∈ [0, 1/4), and κ + 4l ∈
[0, 1). Then, the DKI capacity of P subject to average
and peak molecule release rate constraints of the form
n−1 ∑n

t=1 c i,t ≤ P ave and 0 ≤ c i,t ≤ Pmax, respectively,
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FIGURE 3. Illustration of achievable rate region for triple rates (κ ,l,R) for the DTPC with ISI, P. The DKI capacity region of P includes the entire depicted convex tetrahedron
with vertices at (κ = 0,l = 0,R = 0), (κ = 1,0,0), (0,l = 1/4,0), and (0,0,R = 1/4). The plane formed by the three extreme points marked in blue is characterized by
κ + 4l + 4R − 1 = 0, which is derived by considering the equality case in the lower bound on the DKI capacity in Theorem 1. The subspace inscribed by this plane, and three other
equations namely, 0 ≤ κ < 1, 0 ≤ l < 1/4, and R ≥ 0, defines the entire rate region.

with i ∈ [[M]] and a codebook of super-exponential scale,
i.e., M(n,R) = 2(n log n)R, is bounded by

1 − (κ + 4l)

4
≤ CDKI

(
P,M,K,L

) ≤ 3

2
+ κ + l.

Proof: The proof of Theorem 1 consists of two parts,
namely the achievability and the converse proofs, which are
provided in Sections IV-B and IV-C, respectively.

In the following, we highlight some insights obtained from
Theorem 1 and its proof.

Rate region: Theorem 1 unveils the feasible region for
three different rates, namely, the DKI achievable rate R, the
ISI rate l, and the target identification rate κ. The geometric
structure for all possible triples (κ, l,R) obtained from
Theorem 1 is shown in Figure 3. A tetrahedron characterizes
the feasible triple vectors (κ, l,R) for which a communication
system can accomplish the task of K-identification for a
DTPC with L ISI taps at a DKI achievable rate of at least
R, where K = 2κ log n and L = 2l log n.

The cross section of the tetrahedron with plane R =
0 determines the feasible region for rate pairs (κ, l); see
Figure 4. This region can also be derived by the following
argument: Since the target identification rate κ, the ISI rate l,
and the lower bound on the DKI capacity given in Theorem 1
are non-negative rate values, we obtain 0 ≤ κ < 1, 0 ≤ l <
1/4, and 0 ≤ κ+4l ≤ 1. The first two constraints involving
only κ and l, respectively, yield a rectangle having two of
its corners at the origin (0, 0) and (1, 1/4), and the third
joint constraint on κ and l, i.e., 0 ≤ κ + 4l ≤ 1 excludes
some of the rate pairs (κ, l) from such a rectangle for which
the corresponding lower bound on the DKI capacity would
be a strictly negative value. In addition, we note that more
sophisticated coding schemes may result in an achievable
region for rate pairs (κ, l) beyond the blue line in Figure 4.

Adopted decoder: Before going through the details of
the achievability proof, we will present some insight into the
proposed decoder. In particular, in the proposed achievable

scheme, we adopt a distance decoder that decides in favour
of a candidate codeword based on the distance between the
received vector and expected value of the received vector if
such a candidate codeword was really sent by the transmitter.
More specifically, upon observing an output sequence y at
the receiver, the decoder declares that message j was sent if
the following condition is met

∣∣∣ ‖y − E
(
Y|cj

)‖2 −∥∥y
∥∥

1

∣∣∣ ≤ n̄δn, (10)

where δn is referred to as a decoding threshold and cj =
[cj,1, . . . , cj,n] is the codeword associated with message j.
Unlike the distance decoder used for Gaussian channels [46],
which includes only the distance term ‖y − E(Y|cj)‖, the
proposed decoder provided in (10) requires subtraction of an
additional correction term

∥∥y
∥∥

1. This correction term stems
from the fact that the noise in the DTPC with ISI is signal
(input codeword) dependent [11]. Therefore, the variance of
‖y − E(Y|cj)‖ depends on the adopted codeword cj which
implies that, unlike for the Gaussian channel, here the radius
of the decoding region is not constant for all the codewords.
To account for this fact, we include the correction term

∥∥y
∥∥

1 .

Corollary 1 (DI Capacity of the ISI-free DTPC): The
lower and upper bounds on the DKI capacity of the DTPC
with ISI, P, for the asymptotic range of l, κ → 0 converges
to their maximum possible and minimum possible values,
i.e., 1/4 and 3/2, respectively. Specifically, for L = K =
1, i.e., l = κ = 0, Theorem 1 recovers the results for the
memoryless standard DI problem studied in [26], [45]:

1

4
≤ CDKI

(
P,M,K = 1,L = 1

) ≤ 3

2
. (11)

Proof: The proof follows directly by substituting the
extreme values of l and κ in the capacity results in
Theorem 1.
Remark 1: The lower bound on the DKI capacity in

Theorem 1 suggests that by considering a dispersive com-
munication system or allowing the receiver to identify its
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FIGURE 4. Illustration of achievable rate region for rate pairs (κ ,l) for the DTPC with ISI, P , which is the set of all points inscribed by the blue line (obtained by equating the
lower bound given in Theorem 1 to zero) as well as the horizontal and vertical axes. The extreme points (0,0.25) and (1, 0) correspond to the DI with maximum possible number of
ISI taps [1] and the DKI with the maximum size of the target message set, respectively. Walking on the blue line towards each of the extreme cases exemplifies the trade-off
between the target identification rate and the ISI rate. The origin (0, 0) corresponds to the standard identification scheme (i.e., DI for the DTPC without ISI), where the set of target
messages has only one element and the channel is memoryless [26], [27].

favourite message among a larger set of target messages, a
penalty on the value of the lower bound is incurred. However,
an increase in the exponent l for the number of ISI channel
taps has a four times larger impact on the proposed lower
bound. Another observation is that for a communication
setting, where a fixed given lower bound on the identification
performance in terms of the maximum achievable rate is
required, there is a trade-off between the target identification
rate and the ISI rate.
Corollary 2 (Effective Identification Rate): Let us assume

that the physical length of the CIR interval is fixed and
given by Tcir. Further, assume that the L ISI taps span the
CIR interval, Tcir. Then, the following relation between the
symbol duration, TS, and the number of ISI taps, L holds:

TS = Tcir/L = Tcir2
−l log n, (12)

for some l ∈ [0, 1/4) with κ + 4l ∈ [0, 1). Now, let the
effective identification rate, R̄eff, be defined as follows

R̄eff
def= logM(n,R)

nTS
(13)

(in bits/s). Then, the effective identification rate subject
to average and peak molecule release rate constraints is
bounded by
(
1 − (κ + 4l)

)
nl log n

4Tcir
≤ R̄eff ≤

(
3 + 2(κ + l)

)
nl log n

2Tcir
. (14)

Proof: The proof follows directly by substituting the
capacity results in Theorem 1 into the definition of
the effective rate and performing some mathematical
simplifications.
Remark 2: Theorem 1 assumes that the number of ISI

taps L(n, l) scales sub-linearly in the codeword length n,
i.e., ∼ 2l log n. More specifically, L used in Theorem 1 may
comprise the following three different cases:
1) ISI-free, L = 1: This case corresponds to an ISI-free

setup, which is valid when the symbol duration is large
(TS ≥ Tcir), and implies L = 1 and l = 0. Thereby,

R̄eff scales logarithmically with the codeword length n.
This is in contrast to the transmission setting, where
R̄eff is independent of n (e.g., the well-known Shannon
formula for the Gaussian channel). This result is known
in the identification literature [31], [45].

2) Constant L > 1: When TS is constant and TS < Tcir,
we have a constant L > 1, which implies l → 0 as
n → ∞. Surprisingly, our capacity result in Theorem 1
reveals that the bounds for the DTPC with memory
are in fact identical to those for the memoryless DTPC
given in [45].

3) Growing L: Our capacity result shows that reliable
identification is possible even when L scales with the
codeword length as ∼ 2l log n. Moreover, the impact of
ISI rate l is reflected in the capacity lower and upper
bounds in Theorem 1, where the bounds respectively
decrease and increase in l. While the upper bound
on R̄eff increases in l, too, the lower bound in (14)
suggests a trade-off in terms of l, which is investigated
in Corollary 3.

Corollary 3 (Optimum ISI Rate): The lower bound given
in Corollary 2 is maximized for the following ISI rate

lmax(n) = 1

4

(
1 − κ − 4

ln n

)
, (15)

where n ∈ N. Moreover, the maximum ISI rate, lmax,

provided in (15) yields the following lower bound on the
effective identification rate, R̄eff(n):

R̄eff(n) ≥ log e

eTcir
· n 1

4 (1−κ). (16)

Thereby, the normalized effective identification rate is lower
bounded as follows

lim inf
n→∞

R̄eff(n)

n
1
4 (1−κ) ≥ log e

eTcir
. (17)

Proof: The proof follows from differentiating the lower
bound in Corollary 2 with respect to l and equating the result
to zero.
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FIGURE 5. Illustration of the lower bound on the effective identification rate R̄eff provided in (14) for target identification rates κ = 0,0.1,0.2 and codeword length n = 104. The ISI
rate l that yields the maximum value for each value of l is marked by a yellow star and coincides with the optimal lmax provided in (15).

The effective identification rate R̄eff [bits/s] in (13) is
the product of two terms, namely the identification rate per
symbol logM(n,R)/n [bits/symbol] (which decreases with l
for the lower bound provided in Theorem 1) and the symbol
rate 1/TS [symbol/s] (which increases with l). The above
corollary reveals that in order to maximize R̄eff, it is optimal
to set the trade-off for l such that the identification rate, i.e.,

logM(n,R)

n
=

(
1 − (κ + 4lmax)

)
log n

4
= log e, (18)

becomes independent of n but the symbol rate scales
polynomially with fractional exponent in n, i.e.,

1/TS = n
1
4 (1−κ)/Tcir = 2O(log n). (19)

As a result, in contrast to the typical transmission setting,
where the effective rate is independent of n, here, the
effective identification rate R̄eff for the optimal l grows
sub-linearly in n. Moreover, the sub-linear increase of the
effective rate in n is faster compared to the typical scenario,
where TS (and hence L) is fixed and l = 0, and the effective
rate, i.e., ((1 − κ) log n) /4 increases logarithmically in n.
Fig. 5 shows the lower bound on the effective identification
rate R̄eff in (14) for target identification rates κ = 0, 0.1, 0.2
and codeword length n = 104. Note that n should be
large since our capacity results are valid asymptotically. As
expected, each curve in Fig. 5 has a unique maximum at an
ISI rate l that coincides with lmax in (15).
In addition, based on Theorem 1, we can distinguish the

following three cases in terms of K:

• DI, K = 1: This case accounts for a standard identi-
fication setup (κ = 0), i.e., the degenerate case where
the target message set has only one element, namely,
K = {i}, with i ∈ [[M]] and |K| = K = 1. Therefore,
the identification setup in the deterministic [47] and
randomized regimes [31] can be regarded as a special
case of K-identification considered in this paper.

• Constant K > 1: Constant K > 1 implies κ → 0 as
n → ∞. Our DKI capacity result in Theorem 1 reveals
that the bounds on the DKI achievable rate are identical
to those for K = 1.

• Growing K: The DKI capacity bounds in Theorem 1
suggest that reliable identification is possible even when
K scales with the codeword length as ∼ 2κ log n, for
some κ ∈ [0, 1) and κ + 4l ∈ [0, 1).

In the following, we provide the proof of Theorem 1,
namely the achievability proof in Section IV-B and the
converse proof in Section IV-C.

B. LOWER BOUND (ACHIEVABILITY PROOF)
The achievability proof consists of the following two steps.

• Step 1: We propose a codebook construction and
derive an analytical lower bound on the corresponding
codebook size using inequalities for the sphere packing
density.

• Step 2: We prove that this codebook leads to an
achievable rate by proposing a decoder and showing that
the corresponding type I and type II error probabilities
vanish as n → ∞.

A DKI code for the DTPC, P, is constructed as follows.
Input constraint adaptation: We restrict ourselves to

codewords that meet the condition 0 ≤ ci,t ≤ P ave, ∀ i ∈
[[M]],∀ t ∈ [[n]], which ensures that both constraints in (7)
are met for P ave > Pmax and P ave ≤ Pmax:

1) P ave > Pmax : In this case, the condition 0 ≤ ci,t ≤
Pmax,∀ i ∈ [[M]],∀ t ∈ [[n]], yields n−1 ∑n

t=1 ci,t ≤
P ave. In this case, the average constraint trivially holds
and we exclude this scenario from the analysis.

2) P ave ≤ Pmax : Then, the condition 0 ≤ ci,t ≤
P ave,∀ i ∈ [[M]],∀ t ∈ [[n]], implies both 0 ≤ ci,t ≤
Pmax and n−1 ∑n

t=1 ci,t ≤ P ave.

Thus, for the construction of the codebook in the next steps,
we only require that 0 ≤ ci,t ≤ P ave, ∀ i ∈ [[M]],∀ t ∈ [[n]].

Convoluted codebook construction: In the following,
instead of directly constructing the original codebook C =
{ci} ⊂ R

n+, with i ∈ [[M]], we present a construction
of a codebook called convoluted codebook and show that
the original codebook can be uniquely reconstructed for a
convoluted codebook. In particular, the convoluted codebook
is denoted by Cρ = {cρ

i } ⊂ R
n+, with i ∈ [[M]], where
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each cρ
i � (cρi,1, . . . , c

ρ
i,n) is referred to as a convoluted

codeword whose symbols are formed as a linear combination
(convolution) of the L most recent symbols of codeword
ci � (ci,1, . . . , ci,n) and CIR vector ρ, i.e.,

cρi,t �
L−1∑

l=0

ρlci,t−l. (20)

Observe that the convoluted symbol cρi,t represents the
expected value of the signal observed at the receiver
after the release of ci,t molecules by the transmitter. The
proposed convoluted codebook construction is motivated by
the structure of the ISI channel and the choice of the distance
decoder given in (10). More specifically, the term E(Y | cj)
for j ∈ [[M]] given in (10) is the center of the distance
decoder and includes the convoluted codeword, i.e., cρ

j .

In order to use the convoluted codebook, we have to
show that the original codewords ci can be uniquely derived
from the convoluted codewords cρ

i , i.e., there is a one-to-one
mapping between the convoluted and the original codebooks.
To show this, let us first define the set of feasible original
and convoluted codewords, respectively, as:

C0 = Q0(n,P ave)

�
{
ci ∈ R

n : 0 ≤ c i,t ≤ P ave,∀ i ∈ [[M]],∀ t ∈ [[n]]
}

(21)

C
ρ
0 �

{
cρ
i ∈ R

n : cρi,t �
L−1∑

l=0

ρlci,t−l, ci ∈ C0,∀ i ∈ [[M]]
}
.

(22)

Unfortunately, unlike the feasible set of the original code-
words C0, the feasible set of the convoluted codewords
C

ρ
0 lacks the simple structure and geometry needed for the

calculation of the volume and rate analysis. To cope with
this issue, we target a subset of C

ρ
0 that enjoys a suitable

structure with well-known geometry and analytic volume
formula, namely the following hyper cube:

Q0

(
n, P̄ ave

)

= {cρ
i : 0 ≤ cρi,t ≤ P̄ ave,∀ i ∈ [[M]],∀ t ∈ [[n]]}, (23)

where

P̄ ave � min
i∈[[M]];

cρi ∈C1∩Cc
2

min
t∈[[n]];

t−L+1≤t̄≤t
cρi,t, (24)

where t̄ is a specific symbol index for which the corre-
sponding input symbol yields a non-zero number of released
molecules from the transmitter, i.e.,

⌊
TRci,t̄

⌋ ≥ 1. Moreover,
sets C1 and C2 are given by

C1 = Q0
(
n,P′

ave

)

�
{
cρ
i ∈ R

n : 0 ≤ cρi,t ≤ P′
ave,∀ i ∈ [[M]],∀ t ∈ [[n]]

}
,

C2 = {
cρ
i ∈ R

n : c i,t ≥ 0,∀ i ∈ [[M]],∀ t ∈ [[n]]
}
, (25)

where P′
ave � ρ0P ave.

Next, we have to show that the volume of Q0(n, P̄ ave)

is non-zero (i.e., P̄ ave is bounded away from zero) and
Q0(n, P̄ ave) ⊆ C

ρ
0 . The former follows from the fact that

P̄ ave tends to zero only if all symbols of at least one of
the original codewords are arbitrary close to zero. Such a
single all-zero codeword can be excluded without affecting
the rate analysis. To prove Q0(n, P̄ ave) ⊆ C

ρ
0 , we show that

the original codeword ci obtained from cρ
i ∈ Q0(n, P̄ ave)

belongs to C0, namely the extracted original symbols must
meet 0 ≤ c i,t ≤ P ave. We first show that c i,t ≥ 0 holds via
contradiction. In other words, we assume cρ

i ∈ Q0(n, P̄ ave)

but the corresponding original codeword meets ci ∈ Cc
2.

This already contradicts the fact that P̄ ave > 0, see (24). To
show c i,t ≤ P ave, we use the following chain of inequalities
assuming cρ

i ∈ Q0(n, P̄ ave):

ρ0ci,1 ≤ P̄ ave ≤ P′
ave

ρ0ci,2 + ρ1ci,1 ≤ P̄ ave ≤ P′
ave

ρ0ci,3 + ρ1ci,2 + ρ2ci,1 ≤ P̄ ave ≤ P′
ave

...

ρ0ci,n + ρ1ci,n−1 + . . .+ ρL−1ci,n−L+1 ≤ P̄ ave ≤ P′
ave, (26)

where P̄ ave ≤ P′
ave holds since Q0(n, P̄ ave) ⊂ C1, see (24).

The above inequalities can be rewritten as follows

ci,1 ≤ P′
ave/ρ0 = P ave

ci,2 ≤ P′
ave − ρ0ci,1

ρ0
≤ P′

ave/ρ0 = P ave

...

ci,n ≤ P′
ave − ∑K−1

t=1 ρlci,t−l
ρ0

≤ P′
ave/ρ0 = P ave, (27)

where we used the fact that ci,t ≥ 0. Hence, condition
‖ci‖∞ ≤ P ave holds for the extracted original codewords. In
summary, we showed that for convoluted codewords cρ

i ∈
Q0(n, P̄ ave), there is a unique feasible original codeword ci ∈
Q0(n,P ave). Therefore, the rate analysis of the convoluted
codebook is also valid for the original codebook.

Calculation of the codebook size/rate: We use a packing
arrangement of non-overlapping hyper spheres of radius r0 =√
nεn in a hyper cube with edge length P̄ ave, where

εn = 3a

4n
1
2 (1−(b+κ+4l))

, (28)

and a > 0 is a non-vanishing fixed constant, 0 < b < 1 is
an arbitrarily small constant, and 0 ≤ κ + 4l < 1.

Let S denote a sphere packing, i.e., an arrangement of M
non-overlapping spheres Scρi

(n, r0), i ∈ [[M]], that are packed

inside the larger cube Q0(n, P̄ ave) with edge length P̄ ave,

see Figure 6. As opposed to standard sphere packing coding
techniques [71], the spheres are not necessarily entirely
contained within the cube. That is, we only require that the
centers of the spheres are inside Q0(n, P̄ ave), the spheres
are disjoint from each other, and they have a non-empty
intersection with Q0(n, P̄ ave). The packing density Δn(S )
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FIGURE 6. Illustration of a saturated sphere packing inside a cube, where small
spheres of radius r0 = √

nεn cover a larger cube. Dark gray colored spheres are not
entirely contained within the larger cube, and yet they contribute to the packing
arrangement. As we assign a codeword to each sphere center, the 1-norm and
arithmetic mean of a codeword are bounded by P̄ ave as required.

is defined as the ratio of the saturated packing volume to
the cube volume Vol(Q0(n, P̄ ave)), i.e.,

Δn
(
S

)
�

Vol
(⋃M

i=1 Scρi
(n, r0)

)

Vol

(
Q0

(
n, P̄ ave

)) . (29)

Sphere packing S is called saturated if no spheres can be
added to the arrangement without overlap.
In particular, we use a packing argument that has a

similar flavor as that for the Minkowski–Hlawka theorem for
saturated packings [71]. Specifically, consider the saturated
packing arrangement of

M(n,R)⋃

i=1

Scρi

(
n,

√
nεn

)
(30)

spheres with radius r0 = √
nεn embedded within cube

Q0(n, P̄ ave). Then, for such an arrangement, we have
the following lower [72, Lemma 2.1] and upper bounds
[71, eq. (45)] on the packing density

2−n ≤ Δn
(
S

) ≤ 2−0.599n. (31)

In particular, in our subsequent analysis, we employ the
lower bound given in (31), which can be proved as follows:
For the saturated packing arrangement given in (30), there
cannot be a point in the larger cube Q0(n, P̄ ave) with
a distance of more than 2r0 from all sphere centers.
Otherwise, a new sphere could be added which contradicts
the assumption that the union of M(n,R) spheres with radius√
nεn is saturated. Now, if we double the radius of each

sphere, the spheres with radius 2r0 cover thoroughly the
entire volume of Q0(n, P̄ ave), that is, each point inside the
hyper cube Q0(n, P̄ ave) belongs to at least one of the small
spheres. In general, the volume of a hyper sphere of radius
r is given by [71, eq. (16)]

Vol
(
Sx(n, r)

) = π
n
2

	
(
n
2 + 1

) · rn. (32)

Hence, if the radius of the small spheres is doubled, the
volume of

⋃M(n,R)
i=1 Scρi

(n,
√
nεn) is increased by 2n. Since

the spheres with radius 2r0 cover Q0(n, P̄ ave), it follows
that the original r0-radius packing5 has a density of at least
2−n. We assign a convoluted codeword to the center cρ

i of
each small hyper sphere. The convoluted codewords satisfy
the input constraint as 0 ≤ cρi,t ≤ P′

ave,∀t ∈ [[n]],∀i ∈ [[M]],
which is equivalent to

∥
∥∥cρ

i

∥
∥∥∞ ≤ P̄ ave. (33)

Since the volume of each sphere is equal to
Vol(Scρ1

(n, r0)) and the centers of all spheres lie inside
the cube, the total number of spheres is bounded from
below by

M =
Vol

(⋃M
i=1 Scρi

(n, r0)
)

Vol
(
Scρ1
(n, r0)

) =
Δn

(
S

) · Vol
(
Q0

(
n, P̄ ave

))

Vol
(
Scρ1
(n, r0)

)

≥ 2−n · Pnave

Vol
(
Scρ1
(n, r0)

) , (34)

where the inequality holds by (31). The bound in (34) can
be written as follows

logM ≥ log
(
P̄nave /Vol

(
Scρ1
(n, r0)

)) − n

≥ n log
(
P̄ ave/

√
πr0

)
+ log

(
	
(
n/2 + 1

)) − n, (35)

where the last inequality exploits (32). The above bound can
be further simplified as follows

logM ≥ n log
(
P̄ ave/

√
πr0

)
+ log

(⌊
n/2

⌋
!
) − n, (36)

where the equality exploits the following relation:

	
(
n/2 + 1

) (a)= n

2
	
(
n/2

) (b)≥ ⌊
n/2

⌋
	
(⌊
n/2

⌋) (c)
�

⌊
n/2

⌋
!.

(37)

In the above equation, (a) holds by the recurrence relation
of the Gamma function [73] for real n/2, (b) follows from⌊
n/2

⌋ ≤ n/2, the monotonicity of the Gamma function [73]
for

⌊
n/2

⌋ ≥ 1.46 ≡ n ≥ 4, and (c) holds since for positive
integer

⌊
n/2

⌋
, we have 	(

⌊
n/2

⌋
) = (

⌊
n/2

⌋ − 1)!, cf. [73].
Next, we proceed to simplify the factorial term given in (36).
To this end, we exploit Stirling’s approximation, i.e., log n! =
n log n − n log e + o(n) [74, p. 52] with the substitution of
n = ⌊

n/2
⌋
, where

⌊
n/2

⌋ ∈ Z. Thereby, we obtain

logM ≥ n log P̄ ave − n log r0 + ⌊
n/2

⌋
log

(⌊
n/2

⌋)

− ⌊
n/2

⌋
log e+ o

(⌊
n/2

⌋) − n, (38)

5 We note that the proposed proof of the lower bound in (31) is non-
constructive in the sense that, while the existence of the respective saturated
packing is proved, no systematic construction method is provided.
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Therefore, for r0 = √
nεn = √

a′n 1+b+κ+4l
4 , where a′ � 3a/4,

we have

logM
(a)≥ n log

P̄ ave√
πa′ −

(
1 + b+ κ + 4l

4

)
n log

√
an

+ (n/2 − 1) log
(
n/2 − 1

) − ⌊
n/2

⌋
log e

+ o
(
n/2 − 1

) − n

(b)≥ n log
P̄ ave√
πa′ −

(
1 + b+ κ + 4l

4

)
n log

√
an

+ 1

2
n log n− 2n− log n− n

2
log e+ o

(
n/2

)

=
(

1 − (b+ κ + 4l)

4

)
n log n

+ n
(

log P̄ ave/
√
πa′e

)
+ O(n), (39)

where (a) follows from
⌊
n
2

⌋
> n

2 − 1 and (b) holds since

log(t − 1) ≥ log t − 1 for t ≥ 2 and
⌊
n
2

⌋
≤ n

2 for integer n.

Observe that the dominant term in (39) is of order n log n.
Hence, to obtain a finite value for the lower bound on the
rate, R, (39) reveals that the scaling law of M is 2(n log n)R.

Therefore, we obtain

R ≥ 1

n log n

[(
1 − (b+ κ + 4l)

4

)
n log n

+ n

(

log
P̄ ave√
πa′e

)

+ O(n)

]
, (40)

which tends to (1 − (κ + 4l))/4 when n → ∞ and b → 0.
Encoder: Given message i ∈ [[M]], transmit x = ci.
Proposed decoder: In order to analyze the error

performance of the proposed codebook, we need to adopt a
decoder which is introduced next. Before we proceed, for
the sake of a concise analysis, we introduce the following
conventions. Let:

• Yt(i) ∼ Pois(cρi,t +λ) denote the channel output at time
t given that x = ci.

• The output vector is defined as the vector of symbols,
i.e., Y(i) = (Y1(i), . . . ,Yn̄(i)).

• ȳt(i) � yt(i)− (cρi,t + λ), where yt(i) is a realization of
Yt(i).

Furthermore, let

δn � 4εn/3 = 4a/
(
3n

1
2 (1−(b+κ+4l))

)
, (41)

where 0 < b < 1 is an arbitrarily small constant and 0 ≤
κ + 4l < 1 with κ and l being the identification target rate
and the ISI rate, respectively. To identify whether a message
j ∈ [[M]] was sent, the decoder checks whether the channel
output y belongs to the following decoding set,

Tj =
{
y ∈ N

n̄
0 :

∣∣∣T
(
y, cj

)∣∣∣ ≤ δn

}
, (42)

where

T
(
y; cj

) = 1

n̄

n̄∑

t=1

(
yt −

(
cρj,t + λ

))2 − yt, (43)

is referred to as the decoding metric evaluated for observation
vector y and codeword cj. Finally, let e1, e2 > 0 and
ζ0, ζ

′
0, ζ1, ζ

′
1 > 0 be arbitrarily small constants.

Error analysis: In the following, we exploit Chebyshev’s
inequality in order to establish upper bounds for the type I
and type II error probabilities.

Type I error analysis: Consider the type I errors, i.e., the
transmitter sends ci, yet Y /∈ Ti. For every i ∈ [[M]], the
type I error probability is bounded as

Pe,1
(
i,K

) = Pr
(
Y(i) ∈ T c

K

)

= Pr

(

Y(i) ∈
(

⋃

j∈K
Tj

)c)

(a)= Pr

(

Y(i) ∈
⋂

j∈K
Tc
j

)

(b)≤ Pr
(
Y(i) ∈ Tc

i

)

= Pr

(∣∣
∣T

(
Y(i), cj

)∣∣
∣ > δn

)

, (44)

where (a) holds by De Morgan‘s law for a finite number
of union of sets [75], i.e., (

⋃
j∈KTj)

c = ⋂
j∈KTc

j and (b)
follows since

⋂
j∈KTc

j ⊂ Tj.

In order to bound Pe,1(i,K) in (44), we apply Chebyshev’s
inequality, namely

Pr

(∣∣∣∣T
(
Y(i), ci

) − E

[
T
(
Y(i), ci

)]
∣∣∣∣ > δn

)

≤
Var

[
T
(
Y(i), ci

)]

δ2
n

. (45)

First, we calculate the expectation of the decoding metric as
follows

E

[
T
(
Y(i), ci

)]

(a)= 1

n̄

n̄∑

t=1

E
[(
Yt(i)− (

cρi,t + λ
))2] − E

[
Yt(i)

]

(b)= 1

n̄

n̄∑

t=1

Var
[
Yt(i)

] − (
cρi,t + λ

)

(c)= 1

n̄

n̄∑

t=1

(
cρi,t + λ

) − (
cρi,t + λ

) = 0, (46)

where (a) follows from the linearity of expectation, (b) holds
since E[(Yt(i)−E[Yt(i)])2] = Var[Yt(i)] and E[Yt(i)] = cρi,t+
λ, and (c) follows since Var[Yt(i)] = E[Yt(i)] = cρi,t + λ.

Second, in order to compute the upper bound in (45), we
proceed to compute the variance of the decoding metric. Let
us define

ψVar �
n̄∑

t=1

Var
[
Y2
t (i)− Yt(i)

]
. (47)
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Since, conditioned on ci, the channel outputs conditioned on
the L most recent input symbols are uncorrelated, we obtain

Var
[
T
(
Y(i); ci

)] = ψVar

n̄2
. (48)

Next, we proceed to establish an upper bound ψUB
Var for ψVar.

To this end, let us define

ψVar � Var
[
Y2
t (i)− Yt(i)

]

(a)= Var
[
Y2
t (i)− (

2
(
cρi,t + λ

) + 1
)
Yt(i)

]

(b)= Var
[
Y2
t (i)

] + (
2
(
cρi,t + λ

) + 1
)2Var

[
Yt(i)

]

−(
4
(
cρi,t + λ

) + 2
)
Cov

[
Y2
t (i),Yt(i)

]
, (49)

where (a) holds since Ȳt(i) � Yt(i) − (cρi,t + λ) and the
decomposition in (b) follows from the following identity for
constants a and b:

Var
[
aX − bY

] = a2Var[X] + b2Var[Y] − 2abCov[X,Y].

(50)

Next, let us define

ψCov �
(
4
(
L̄P avg + λ

) + 2
)√

exp
(
8/λ

)(
L̄P avg + λ

)

= O
(
L3/2

)
, (51)

with L̄ � LTR. Now, we proceed to establish an upper bound
on (49) as follows

ψVar
(a)≤ E

[
Y4
t (i)

]
+ (

2
(
cρi,t + λ

) + 1
)2(

cρi,t + λ
)

+ (
4
(
cρi,t + λ

) + 2
)
√

E

[
Y4
t (i)

]
Var

[
Yt(i)

]

(b)≤ (
L̄P avg + λ

)4 exp
(
8/λ

) + (
2
(
L̄P avg + λ

) + 1
)2 + ψCov,

(52)

where (a) follows from the triangle inequality, i.e.,
α − β ≤ |α − β| ≤ |α| + |β| for real a and
b, Var[Y2

t (i)] ≤ E[Y4
t (i)],Var[Yt(i)] = cρi,t + λ, and

Cov[X,Y] ≤ √
Var[X] · Var[Y] for RVs with finite variances,

(b) follows from c i,t ≤ P avg,∀i ∈ [[M]],∀t ∈ [[n]], for a
Poisson RV Yt(i) ∼ Pois

(
λ
)
, an upper bound on the non-

centered moments:

E

[
Ykt (i)

]
≤ E

k[Yt(i)
] · exp

(
k2/2E

[
Yt(i)

])
, (53)

(see [76, Th. 1]), and (51). Thereby, exploiting (45)-(49),
we can establish the following upper bound on the type I
error probability given in (44):

Pe,1(i,K) = Pr

(
∣
∣T

(
Y(i), cj

)∣∣ > δn

)

(a)≤

(

L̄P avg + λ

)4

exp
(
8/λ

) +
(

2

(

L̄P avg + λ

)

+ 1

)2

+ ψCov

)

nδ2
n

(b)=
9

((

L̄P avg + λ

)4

exp
(
8/λ

) +
(

2

(

L̄P avg + λ

)

+ 1

)2

+ ψCov

))

16a2nb+κ+4l

=
O
(
L4

)

nb+κ+4l
= O(1)

nb+κ
≤ e1, (54)

for sufficiently large n and arbitrarily small e1, where (a)
follows from (45), (104), (52), and (b) follows from (41).

Type II error analysis: Next, we consider type II errors,
i.e., when Y(i) ∈ TK while the transmitter sent ci with
i /∈ K. Then, for each of the

(M
K

)
possible cases of K, where

i /∈ K, the type II error probability is bounded as

Pe,2
(
i,K

) = Pr
(
Y(i) ∈ TK

)

= Pr

(

Y(i) ∈
⋃

j∈K
Tj

)

= Pr

(
⋃

j∈K

{

|T(Y(i), cj
)| ≤ δn

})

≤
|K|∑

j=1

Pr

(∣
∣∣T

(
Y(i); cj

)∣∣∣ ≤ δn

)

≤ |K| ·
[

max
1≤j≤K Pr

(∣∣∣T
(
Y(i); cj

)∣∣∣ ≤ δn

)]

,(55)

where T(Y(i); cj) is a random variable modeling the decod-
ing metric in (43), i.e.,

T
(
Y(i); cj

) = 1

n̄

n̄∑

t=1

(
Yt(i)− (

cρj,t + λ
))2 − Yt(i). (56)

Next, we establish an upper bound on the RHS of (55),
while we assume that j can be an arbitrary value from set
[[K]]. Further, let

j̃ � arg max
1≤j≤K

Pr

(∣
∣∣T

(
Y(i); cj

)∣∣∣ ≤ δn

)
. (57)

We note that if our analysis gives an upper bound on
Pr(|T(Y(i); cj)| ≤ δn) for arbitrary j ∈ [[K]], then the
same upper bound is valid for Pr(|T(Y(i); cj̃)| ≤ δn).

That is, we immediately obtain an upper bound for
max

1≤j≤K Pr(|T(Y(i); cj)| ≤ δn) in (55).

Observe that (56) for j = j̃ can be rewritten as follows

T
(
Y(i); cj̃

)

= 1

n̄

n̄∑

t=1

(
Yt(i)− (

cρi,t + λ
) + (

cρi,t − cρ
j̃,t

))2

︸ ︷︷ ︸
�φi,j̃,t

− Yt(i). (58)

Observe that φi,j̃,t in (58) can be expressed as

φi,j̃,t = Ȳt(i)
2 + ψ2

i,j̃,t
+ 2Ȳt(i)ψi,j̃,t, (59)

where

Ȳt(i) = Yt(i)− (
cρi,t + λ

)
and ψi,j̃,t = cρi,t − cρj,t. (60)
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Then, define the following events

Ei,j̃ =
{∣∣∣

n̄∑

t=1

(
Ȳt(i)+ ψi,j̃,t

)2 − Yt(i)
∣∣∣ ≤ n̄δn

}

,

E ′
i,j̃

=
{

n̄∑

t=1

(
Ȳt(i)+ ψi,j̃, t

)2 − Yt(i) ≤ n̄δn

}

,

Ei,j̃
′′ =

{∣∣∣
n̄∑

t=1

Ȳt(i)ψi,j̃,t

∣∣∣ > n̄δn/2

}

,

Ei,j̃
′′′ =

{
n̄∑

t=1

Ȳt(i)
2 + ψ2

i,j̃,t
− Yt(i) ≤ 2n̄δn

}

. (61)

Hence,

Pe,2
(
i,K

) ≤ K · Pr
(
Ei,j̃

)

= K · Pr

(∣
∣∣

n̄∑

t=1

(
Ȳt(i)+ ψi,j̃,t

)2 − Yt(i)
∣
∣∣ ≤ n̄δn

)

(a)≤ K · Pr

(
n̄∑

t=1

(
Ȳt(i)+ ψi,j̃,t

)2 − Yt(i) ≤ n̄δn

)

= K · Pr
(
E ′
i,j̃

)
, (62)

where (a) holds since α−β ≤ |α−β| for real α, β. Now, we
apply the law of total probability to event Ei,j̃′ with respect
to the pair of (Ei,j̃′′, Ei,j̃′′c), and obtain the following upper
bound on the type II error probability,

Pe,2
(
i,K

) ≤ K · Pr
(
E ′
i,j̃

)

= K ·
[
Pr

(
E ′
i,j̃

∩ Ei,j̃
′′) + Pr

(
E ′
i,j̃

∩ Ei,j̃
′′c)

]

(a)≤ K ·
[
Pr

(
Ei,j̃

′′) + Pr
(
E ′
i,j̃

∩ Ei,j̃
′′c)

]

(b)= K ·
[
Pr

(
Ei,j̃

′′) + Pr
(
Ei,j̃

′′′)
]
, (63)

where (a) follows from E ′
i,j̃

∩Ei,j̃′′ ⊂ Ei,j̃′′ and (b) holds since
the event E ′

i,j̃
∩ Ei,j̃′′c yields event Ei,j̃′′′, with the following

argument. Observe that,

Pr
(
E ′
i,j̃

∩ Ei,j̃
′′c

) (a)≤ Pr

(
n̄∑

t=1

Ȳt(i)
2 + ψ2

i,j̃,t
− Yt(i) ≤ 2n̄δn

)

= Pr
(
Ei,j̃

′′′), (64)

where (a) holds since given the complementary event Ei,j̃′′c,
we obtain

−n̄δn/2 ≤
n̄∑

t=1

Ȳt(i)ψi,j̃,t ≤ n̄δn/2,

which implies that −2
∑n̄

t=1 Ȳt(i)ψi,j̃,t ≤ n̄δn. That is, event
E ′
i,j̃

∩ Ei,j̃′′c yields the event

n̄∑

t=1

Ȳt(i)
2 + ψ2

i,j̃,t
− Yt(i) ≤ 2n̄δn.

Now, we establish an upper bound on Pr(Ei,j̃′′) by exploiting
Chebyshev’s inequality:

Pr
(
Ei,j̃

′′
)

= Pr

(∣∣∣
n̄∑

t=1

Ȳt(i)ψi,j̃,t

∣∣∣ > n̄δn/2

)

≤
Var

[∑n̄
t=1 Ȳt(i)ψi,j̃,t

]

(n̄δn)2

=
∑n̄

t=1 Var
[
Ȳt(i)ψi,j̃,t

]

(n̄δn)2
, (65)

where the last equality holds since the variance of the sum
of uncorrelated RVs is the sum of the respective variances.
Thereby,

Pr
(
Ei,j̃

′′
)

≤
∑n̄

t=1 ψ
2
i,j̃,t

Var
[
Ȳt(i)

]

(n̄δn)2

=
∑n̄

t=1

(
cρi,t − cρ

j̃,t

)2Var
[
Ȳt(i)

]

(n̄δn)2

(a)≤
∑n̄

t=1

(
cρi,t + cρ

j̃,t

)2Var
[
Ȳt(i)

]

(n̄δn)2

(b)=
∑n̄

t=1

(
cρi,t + cρ

j̃,t

)2
(
cρi,t + λ

)

(n̄δn)2

(c)≤
‖cρ

i + cρ

j̃
‖2

(
L̄P ave + λ

)

(n̄δn)2
, (66)

where (a) exploits the triangle inequality, i.e., |cρi,t − cρ
j̃,t

| ≤
|cρi,t + cρ

j̃,t
|, (b) follows since Var[Ȳt(i)] = cρi,t +λ,∀t ∈ [[n̄]],

and (c) follows since cρi,t ≤ L̄P ave + λ. Now, observe that

∥∥cρ
i + cρ

j̃

∥∥2 (a)≤
(∥∥∥cρ

i

∥∥∥ + ∥∥cρ

j̃

∥∥
)2

(b)≤
(

√
n
∥∥∥cρ

i

∥∥∥∞ + √
n
∥∥cρ

j̃

∥∥∞

)2

(c)≤
(

√
nL̄P avg + √

nL̄P avg

)2

= 4L̄2nP2
avg, (67)

where (a) holds by the triangle inequality, (b) follows since
‖·‖ ≤ √

n‖·‖∞ , and (c) is valid by the definition of cρ
i , i.e.,

cρ
i = ∑L−1

l=0 ρlci,t−l, and (33). Hence,

Pr
(
Ei,j̃

′′
)

≤
‖cρ

i + cρ

j̃
‖2

(
L̄P ave + λ

)

(n̄δn)2

≤
4L̄2P2

avg

(
L̄P ave + λ

)

nδ2
n

= 9L̄3P2
avg

(
P avg + λ

)

4a2nb+κ+4l
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=
O
(
L3

)

nb+κ+4l

� ζ0. (68)

We now proceed with bounding Pr(Ei,j̃′′′) as follows. Based
on the convoluted codebook construction, each convoluted
codeword is surrounded by a sphere of radius

√
nεn, that is

∥∥cρ
i − cρ

j̃

∥∥2 ≥ 4nεn = 3n̄δn, (69)

where the last equality exploits (41). Thus, we can establish
the following upper bound for event Ei,j̃′′′:

Pr
(
Ei,j̃′′′

)
= Pr

(
n̄∑

t=1

Ȳt(i)
2 + ψ2

i,j̃,t
− Yt(i) ≤ 2n̄δn

)

= Pr

(
n̄∑

t=1

Ȳt(i)
2 − Yt(i) ≤ 2n̄δn − ψ2

i,j̃,t

)

(a)≤ Pr

(
n̄∑

t=1

Ȳt(i)
2 − Yt(i) ≤ 2n̄δn − 3n̄δn

)

(b)≤
Var

[∑n̄
t=1 Ȳt(i)

2 − Yt(i)
]

n̄2δ2
n

(c)=
Var

[
T
(
Y(i), ci

)]

δ2
n

(d)= 9
((
L̄P avg + λ

)4 exp
(
8/λ

) + (
2
(
L̄P avg + λ

) + 1
)2 + ψCov

)

16a2nb+κ+4l

� ζ1, (70)

where (a) follows from (69), (b) holds from applying
Chebyshev’s inequality, (c) follows from similar arguments
as provided for the type I error probability, i.e., the
calculations provided in (47) and (48), (d) holds by (52).
To sum up, recalling (68), we obtain

Kζ0 = 9KL̄3P2
avg

(
P avg + λ

)

4a2nb+κ+4l
(a)=

O
(
L3

)

nb+4l
(b)= O(1)

nb+l
� ζ ′

0, (71)

where (a) exploits K = nκ and (b) holds as L = nl. On the
other hand, recalling (70), we obtain

Kζ1 = 9nκ
(((
L̄P avg + λ

)4 exp
(
8/λ

) + (
2
(
L̄P avg + λ

) + 1
)2 + ψCov

)))

16a2nb+κ+4l

(a)=
O
(
L4

)

nb+4l
(b)= O(1)

nb
� ζ ′

1, (72)

where (a) exploits K = nκ and (b) holds as L = nl.
Therefore, recalling (63) and (68), and (70) we obtain

Pe,2
(
i,K

) ≤ K ·
[
Pr

(
Ei,j̃

′′) + Pr
(
Ei,j̃

′′′)
]

≤ K · [ζ0 + ζ1
]

= ζ ′
0 + ζ ′

1

≤ e2, (73)

hence, Pe,2(i,K) ≤ e2 holds for sufficiently large n and
arbitrarily small e2 > 0.

We have thus shown that for every e1, e2 > 0 and
sufficiently large n, there exists an (n,M(n,R),K(n, κ),
L(n, l), e1, e2)-ISI-Poisson DKI code.
Remark 3: In the error analysis, we established upper

bounds on the type I (cf. (54)) and type II error probabilities
(cf. (71) and (72)). These results reveal that the fastest scales
for the size of the target message set K(n, κ) and the number
of ISI taps L(n, l) which ensure the vanishing of the type I
and type II error probabilities as n → ∞, are allowed to be
defined as follows:

K(n, κ) = 2κ log n = nκ and L(n, l) = 2l log n = nl.

C. UPPER BOUND (CONVERSE PROOF)
Before we start with the converse proof, for the sake of
a concise presentation of the analysis, we introduce the
following notations. Let:

• Ixt � λ+ ∑L−1
l=1 ρlxt−l.

• di,t = ρ0c i,t + Icit ,∀t ∈ [[n]].
The converse proof consists of the following two main steps.

• Step 1: First, we show in Lemma 1 that for any
achievable DKI rate (for which the type I and type
II error probabilities vanish as n → ∞), the distance
between any selected entry of one codeword and any
entry of another codeword is at least larger than a
threshold.

• Step 2: Employing Lemma 1, we then derive an upper
bound on the codebook size of DKI codes.

We start with the following lemma on the ratio of di2,t/di1,t
for two distinct messages i1 and i2, with i1, i2 ∈ [[M]].
Lemma 1 (Shifted Symbol Distance): Suppose that R >

0 is an achievable DKI rate for the DTPC with ISI, P .
Consider a sequence of (n,M(n,R),K(n, κ),L(n, l), e(n)1 ,

e(n)2 )-ISI-Poisson codes (C(n),T (n)), where

K(n, κ) = 2κ log n , L(n, l) = 2l log n,

with κ, l ∈ [0, 1) such that e(n)1 and e(n)2 tend to zero as n
→ ∞. Then, given a sufficiently large n, the codebook C(n)
satisfies the following property. For every pair of codewords,
ci1 and ci2 , there exists at least one letter t ∈ [[n]] such that

∣∣
∣1 − di2,t

di1,t

∣∣
∣ > θn, (74)

for all i1, i2 ∈ [[M]], such that i1 �= i2, with

θn �
Pmax

KLn1+b = Pmax

n1+b+l+κ , (75)

where b > 0 is an arbitrarily small constant.
Proof: The method of proof is by contradiction, namely,

we assume that the condition given in (74) is violated and
then we show that this leads to a contradiction, namely the
sum of the type I and type II error probabilities converges
to one, i.e., limn→∞ [Pe,1(i1,K)+Pe,2(i2,K)] = 1 for some
K ⊆ [[M]], where i1 ∈ K and i2 /∈ K.
Let e1, e2 > 0 and η0, η1, η2, δ > 0 be arbitrarily

small constants. Assume to the contrary that there exist
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two messages i1 and i2, where i1 �= i2, meeting the error
constraints in (8) and (9), such that ∀t ∈ [[n]], we have

∣∣∣1 − d i2,t
d i1,t

∣∣∣ ≤ θn. (76)

In order to show contradiction, we bound the sum of the
two error probabilities, Pe,1(i1,K)+Pe,2(i2,K), from below.
Then, observe that

Pe,1
(
i1,K

) + Pe,2
(
i2,K

)

=
[
1 −

∑

y∈TK

Vn̄
(
y
∣
∣ ci1

)] +
∑

y∈TK

Vn̄
(
y
∣
∣ ci2

)
. (77)

To bound the error, let us define

Fi1 =
{
y ∈ TK : n̄−1

n̄∑

t=1

Yt − I
ci1
t ≤ ρ0Pmax + δ

}
, (78)

where TK ⊆ N
n̄
0 is the decoding set adopted6 for the set of

target messages K.
Now, consider the sum inside the bracket in (77),

∑

y∈TK

Vn̄
(
y
∣∣ ci1

)

=
∑

y∈TK∩Fi1
Vn̄

(
y
∣∣ ci1

) +
∑

y∈TK∩Fci1
Vn̄

(
y
∣∣ ci1

)
, (79)

where the equality follows from applying the law of total
probability on TK with respect to (Fi1,F

c
i1
).

Now, we proceed to establish an upper bound on the RHS
sum in (79) as follows

∑

y∈TK∩Fci1
Vn̄

(
y
∣∣ ci1

) = Pr
(
TK ∩ Fci1

)

≤ Pr

(
n̄−1

n̄∑

t=1

Yt(i1)− I
ci1
t > ρ0Pmax + δ

)
. (80)

Next, we apply Chebyshev’s inequality to the probability
term in (80) and obtain

∑

y∈TK∩Fci1
Vn̄

(
y
∣∣ ci1

)

(a)≤ Pr

(
n̄−1

n̄∑

t=1

Yt(i1)− n̄−1
n̄∑

t=1

E
[
Yt(i1)

]
> ρ0Pmax + δ

)

(b)≤
Var

[
n̄−1 ∑n̄

t=1 Yt(i1)
]

(
ρ0Pmax + δ

)2

(c)= n̄−2 ∑n̄
t=1 ρ0c i1,t + I

ci1
t

(
ρ0Pmax + δ

)2

6 We note that in the achievability proof given in Section IV-B we impose
a specific structure on the decoding set TK, namely, we defined TK
to be the union of the individual decoding set corresponding to messages
that belong to set K, i.e., TK = ⋃

i1∈KTi1 . In contrast, in the converse
proof, we do not impose any structure on TK and treat the decoding set
TK as a general choice TK ⊆ N

n̄
0.

(d)≤ TRPmax + λ+ (L− 1) TRPmax

nδ2

≤ LTRPmax + λ

nδ2
= O(L)

nδ2

(e)= O(1)

n1−lδ2
� η0, (81)

for sufficiently large n, where (a) holds since E[Yt(i1)] =
I
ci1
t , for inequality (b), we exploited Chebyshev’s inequality,
and for equality (c), we used the fact that Var[Yt(i1)] = E

[Yt(i1)] = ρ0c i1,t + I
ci1
t , ∀ t ∈ [[n]]. Inequality (d) employs

c i1,t ≤ Pmax, ∀ i1 ∈ [[M]], ∀ t ∈ [[n]], ρ0 ≤ TR, n ≤ n̄ and (e)
exploits L = nl. Thereby, recalling (79) and (81), we obtain

∑

y∈TK

Vn̄
(
y
∣
∣ ci1

)

≤
∑

y∈TK∩Fi1
Vn̄

(
y
∣
∣ ci1

) +
∑

y∈TK∩Fci1
Vn̄

(
y
∣
∣ ci1

)

≤
∑

y∈TK∩Fi1
Vn̄

(
y
∣
∣ ci1

) + η0. (82)

Next, recalling the sum of error probabilities in (77), where
i1 ∈ K and i2 /∈ K, we obtain

Pe,1
(
i1,K

) + Pe,2
(
i2,K

)

=
[
1 −

∑

y∈TK

Vn̄
(
y
∣∣ ci1

)] +
∑

y∈TK

Vn̄
(
y
∣∣ ci2

)

(a)≥ 1 − η0 −
∑

Fi1

Vn̄
(
y
∣∣ ci1

) +
∑

TK

Vn̄
(
y
∣∣ ci2

)

(b)≥ 1 − η0 −
∑

⋃

i1∈K
Fi1

Vn̄
(
y
∣∣ ci1

) +
∑

⋃

i1∈K
Fi1

Vn̄
(
y
∣∣ ci2

)

≥ 1 − η0 −
∑

⋃

i1∈K
Fi1

[
Vn̄

(
y
∣∣ ci1

) − Vn̄
(
y
∣∣ ci2

)]
, (83)

where (a) holds by (82) and (b) follows since Fi1 ⊂⋃
i1∈K Fi1 ⊂ TK. Now, let us focus on the summand in the

square brackets in (83). Employing (5), we have

Vn̄
(
y
∣∣ ci1

) − Vn̄
(
y
∣∣ ci2

)

= Vn̄
(
y
∣∣ ci1

) ·
[
1 − Vn̄

(
y
∣∣ ci2

)
/Vn̄

(
y
∣∣ ci1

)]

= Vn̄
(
y
∣
∣ ci1

) ·
[
1 −

n̄∏

t=1

e
−
(
d i2,t−di1,t

)(d i2,t
d i1,t

)Yt]

= Vn̄
(
y
∣∣ ci1

) ·
[
1 −

n̄∏

t=1

e−θndi1,t(1 − θn)
Yt
]
, (84)

where for the last inequality, we exploited

d i2,t − di1,t ≤ ∣∣d i2,t − di1,t
∣∣ ≤ θndi1,t (85)

and

1 − d i2,t
di1,t

≤
∣∣∣1 − d i2,t

di1,t

∣∣∣ ≤ θn, (86)
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which holds by (76). Now, we bound the product term inside
the bracket in (84) for space y ∈ ⋃

i1∈K Fi1 as follows:

n̄∏

t=1

e−θndi1,t(1 − θn)
Yt = e−θn

∑n̄
t=1 di1,t · (1 − θn)

∑n̄
t=1 Yt

(a)≥ e
−n̄θn

(
ρ0Pmax+n̄−1 ∑n̄

t=1 I
ci1
t

)

·(1 − θn)
n̄

(
ρ0Pmax+n̄−1 ∑n̄

t=1 I
ci1
t +δ

)

= en̄θnδ · e−n̄θn
(
ρ0Pmax+n̄−1 ∑n̄

t=1 I
ci1
t +δ

)

·(1 − θn)
n̄

(
ρ0Pmax+n̄−1 ∑n̄

t=1 I
ci1
t +δ

)

(b)≥ en̄θnδ · e−n̄θn
(
ρ0Pmax+n̄−1 ∑n̄

t=1 I
ci1
t +δ

)

·(1 − n̄θn)
ρ0Pmax+n̄−1 ∑n̄

t=1 I
ci1
t +δ

(c)= en̄θnδ · f (n̄θn) ≥ enθnδ · f (n̄θn) (d)> f (n̄θn)

(e)≥ 1 − 3
(
ρ0Pmax +

n̄∑

t=1

I
ci1
t + δ

)
n̄θn

(f )≥ 1 − 3
(
TRPmax + λ+ (L− 1)TRPmax + δ

)
Pmax

nb+l+κ
· n̄
n

= 1 − O(L)

nb+l+κ
·
(

1 + O(L)

n

)

= 1 − O(1)

nb+κ
−

O
(
L2

)

n1+b+l+κ
(g)= 1 −

(
O(1)

nb+κ
+ O(1)

n1+b+κ−l

)

(h)= 1 − η1, (87)

for sufficiently large n. We used the following facts for the
above inequalities:

• Inequality (a) follows since

di1,t ≤ ρ0Pmax + I
ci1
t , ∀ t ∈ [[n]], (88)

and

n̄∑

t=1

Yt ≤ n̄
(
ρ0Pmax + n̄−1

n̄∑

t=1

I
ci1
t + δ

)
, (89)

where the latter inequality follows from y ∈ ⋃
i1∈K Fi1,

cf. (78).
• For (b), we used Bernoulli’s inequality [77, Ch. 3]:

(1 − x)r ≥ 1 − rx , ∀ x > −1 , ∀r > 0. (90)

• For (c), we used the following definition:

f (x) = e−cx(1 − x)c, (91)

with c = ρ0Pmax + n̄−1 ∑n̄
t=1 I

ci1
t + δ.

• For (d), we used the fact that

enθnδ = ePmaxδ/nb+l+κ > 1. (92)

• For (e), we used the Taylor expansion

f (n̄θn) = 1 − 2cn̄θn + O
(
(n̄θn)

2
)

(93)

to obtain the upper bound f (n̄θn) ≥ 1 − 3cn̄θn for
sufficiently small values of n̄θn, i.e.,

n̄θn = Pmax

n1+b+l+κ · (n+ L− 1) = Pmax

nb+l+κ
· n̄
n

= Pmax

nb+l+κ
·
(

1 + O(L)

n

)
= Pmax

nb+l+κ
+ O(1)

nb+l+κ
. (94)

• Inequality (f ) exploits (75).
• Equality (g) employs L = nl, with l ∈ [0, 1).
• Finally, (h) follows from

O(1)

nb+κ
+ O(1)

n1+b+κ−l � η1.

Thereby, (84) can then be written as follows

Vn̄
(
y
∣∣ ci1

) − Vn̄
(
y
∣∣ ci2

)

≤ Vn̄
(
y
∣∣ ci1

) ·
[

1 − e−θn
∑n̄

t=1 di1,t · (1 − θn)
∑n̄

t=1 Yt

]

≤ η1 · Vn̄(y ∣∣ ci1
)
. (95)

Next, recalling the definition of an ISI-Poisson DKI code
given in (1), we focus on the underlying assumptions stated
in Lemma 1 on the properties of a given sequence of ISI-
Poisson DKI codes (C(n),T (n)). Such a code sequence has
five parameters (n,M(n,R),K(n, κ),L(n, l), e(n)1 , e(n)2 ), and
endows the following property:
For each general choice (arrangement) of the target

message set K ⊂ [[M]] of size K, the upper bound on the
type I and type II error probabilities, i.e., e(n)1 and e(n)2 ,

respectively, tends to zero as n tends to infinity. That is,

lim
n→∞

[
Pe,1

(
i1,K

) + Pe,2
(
i2,K

)] = 0, ∀K ⊂ [[M]]. (96)

Next, let K(i1, i2) denote a specific class of the target
message sets K, where i1 ∈ K and i2 /∈ K, i.e.,

K(i1, i2) �
{
K ⊆ [[M]]; |K| = K; i1 ∈ K, i2 /∈ K

}
. (97)

Observe that the above set cannot be empty
(i.e., |K(i1, i2)| ≥ 1), that is, there exists at least one
arrangement K belonging to K(i1, i2), where i1 ∈ K, i2 /∈
K. This holds true since according to Lemma 1 the two
messages i1 and i2 are distinct, i.e., i1 �= i2. Thereby, for
every set K ∈ K(i1, i2), we have the following upper bounds
on the type I and type II error probabilities

Pe,1
(
i1,K

) = Vn̄
(
T c
K | xn = ci1

) ≤ e(n)1 ,

Pe,2
(
i2,K

) = Vn̄
(
TK | xn = ci2

) ≤ e(n)2 . (98)

Hence,

e(n)1 + e(n)2 ≥ Pe,1
(
i1,K

) + Pe,2
(
i2,K

)

(a)≥ 1 − η0 −
∑

⋃

i1∈K
Fi1

[
Vn̄

(
y
∣∣ ci1

) − Vn̄
(
y
∣∣ ci2

)]
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(b)≥ 1 − η0 − η1

∑

⋃

i1∈K
Fi1

Vn̄
(
y
∣∣ ci1

)

(c)≥ 1 − η0 − η1

∑

i1∈K

∑

Fi1

Vn̄
(
y
∣∣ ci1

)

(d)≥ 1 − η0 − η1 · |K|
(e)≥ 1 − η0 − KO(1)

nb+κ
(e)= 1 − η0 − η2, (99)

where (a) follows from (83), and (b) holds by (95), (c)
exploits the union bound, (d) follows since

∑
Fi1

Vn̄(y | ci1)
= Pr(Fi1) ≤ 1, (e) holds since |K| = K, and (f ) follows
from O(n−b) � η2.

Therefore, e(n)1 +e(n)2 ≥ 1−η0−η2 which is a contradiction
to (96). In other words, Lemma 1 states that every given
sequence of ISI-Poisson DKI codes (C(n), T (n)) with the
parameters (n,M(n,R),K(n, κ) = 2κ log n,L(n, l) = 2l log n,

e(n)1 , e(n)2 ) endows the following property: For an arbitrary
(general) choice of K of size K(n, κ), the upper bounds on
the type I and type II error probabilities vanish, i.e., e(n)1 and
e(n)2 tend to zero as n → ∞. However, we show that there
exist some particular choices for K denoted by K(i1, i2)
whose elements satisfy the following property: The sum of
the corresponding upper bounds on the type I and type II
errors is lower bounded by one, i.e., e(n)1 and e(n)2 do not
vanish. This is clearly a contradiction and implies that the
inequality given in (76) does not hold. This completes the
proof of Lemma 1.
Next, we use Lemma 1 to prove the upper bound on the

DKI capacity. Observe that since

di,t = ρ0c i,t + Icit > λ, (100)

Lemma 1 implies

ρ0
∣∣c i1,t − c i2,t

∣∣ = ∣∣di1,t − d i2,t
∣∣ (a)> θndi1,t

(b)
> λθn, (101)

where (a) follows from (74) and (b) holds by (100). Now,
since

∥
∥ci1 − ci2

∥
∥ ≥ |c i1,t−c i2,t|, we deduce that the distance

between every pair of codewords satisfies
∥∥ci1 − ci2

∥∥ > λθn/ρ0. (102)

Thus, we can define an arrangement of non-overlapping
spheres Sci(n, λθn/2ρ0), i.e., spheres of radius r0 = λθn/2ρ0
that are centered at the codewords ci. Since all codewords
belong to a hyper cube Q0(n,Pmax) with edge length Pmax,

it follows that the number of packed small spheres, i.e., the
number of codewords M, is bounded by

M =
Vol

(⋃M
i=1 Sci(n, r0)

)

Vol
(
Sc1(n, r0)

) = Δn
(
S

) · Vol(Q0(n,Pmax)
)

Vol
(
Sc1(n, r0)

)

≤ 2−0.599n · Pnmax

Vol
(
Sc1(n, r0)

) , (103)

where the last inequality follows from (31). Thereby,

logM ≤ log

(
Pnmax

Vol
(
Sc1(n, r0)

)

)

− 0.599n

= n log(Pmax)− log
(
Vol

(
Sc1(n, r0)

)) − 0.599n
(a)= n logPmax − n log r0 − n log

√
π + log

(
	
(
n/2 + 1

))

(104)

where (a) exploits (32). Next, we proceed to establish an
upper bound on the last term in (104). Observe that

	
(
n/2 + 1

) (a)= (n/2)	
(
n/2

)

(b)
<

(⌊
n/2

⌋ + 1
)
	
(⌊
n/2

⌋ + 1
)

(c)= (⌊
n/2

⌋ + 1
)
!, (105)

where (a) holds by the recurrence relation of the Gamma
function [73] for real n/2, (b) follows since n/2 <

⌊
n/2

⌋+1
for real n/2, and (c) holds since for positive integer

⌊
n/2

⌋
,

we have 	(
⌊
n/2

⌋+1) = (
⌊
n/2

⌋
)!, cf. [73]. Next, we proceed

to simplify the factorial term given in (105). To this end,
we exploit Stirling’s approximation, i.e., log n! = n log n −
n log e+o(n) [74, p. 52] with the substitution of n = ⌊

n/2
⌋+

1, where
⌊
n/2

⌋ ∈ Z. Thereby, we obtain

log
(
	
(
n/2 + 1

))

<
(⌊
n/2

⌋ + 1
)

log
(⌊
n/2

⌋ + 1
) − (⌊

n/2
⌋ + 1

)
log e+ o

(⌊
n/2

⌋)

(a)≤ (
n/2 + 1

)
log

(
n/2 + 1

) − (
n/2

)
log e+ o

(⌊
n/2

⌋)
, (106)

where (a) follows from
⌊
n
2

⌋
≤ n

2 and
⌊
n
2

⌋
> n

2 − 1, for
integer n. Therefore, merging (104)–(106), we obtain

logM ≤ n logPmax − n log r0 − n log
√
π

+ (
n/2 + 1

)
log

(
n/2 + 1

) − (
n/2

)
log e+ o

(⌊
n/2

⌋)

= n logPmax − n log
(
λPmax/(2ρ0)

)

+ (1 + b+ l+ κ) n log n

− n log
√
π + (

n/2 + 1
)

log
(
n/2 + 1

)

− (
n/2

)
log e+ o

(⌊
n/2

⌋)
, (107)

where for the equality we used

r0 = λθn

2ρ0
= λPmax

2ρ0n1+b+l+κ . (108)

The dominant term in (104) is again of order n log n. Hence,
to ensure a finite value for the upper bound of the rate,
R, (104) induces the scaling law of M to be 2(n log n)R. By
setting M(n,R) = 2(n log n)R, we obtain

R ≤ 1

n log n

[(
1

2
+ (1 + b+ κ + l)

)

n log n

− n

(
1

2
+ log

(
λ
√
πe/(2ρ0)

))

+ o(n)

]

, (109)

which tends to 3
2 + l + κ as n → ∞ and b → 0. This

completes the proof of Theorem 1.
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V. SUMMARY AND FUTURE DIRECTIONS
In this paper, we studied the deterministic K-identification
problem for MC channels. In particular, we considered MC
systems with molecule counting receivers, modeled by the
DTPC with ISI. For this setting, we derived lower and upper
bounds on the DKI capacity subject to average and peak
molecule release rate constraints for a codebook size of
M(n,R) = 2(n log n)R = nnR. Our results revealed that the
super-exponential scale of nnR is the appropriate scale for
the DKI capacity of the DTPC with ISI. This was proved
by finding a suitable sphere packing arrangement embedded
in a hyper cube. In particular, in the rate analysis, we
established a lower bound for the logarithm of the number
of codewords, whose fastest growing term has order n log n;
cf. (39) and (40). This observation dictates, that in order
to obtain a finite and positive value for the DKI capacity,
the codebook size should scale as M(n,R) = 2(n log n)R.

We note that this scale is distinctly different from the
ordinary scales in transmission and RI settings, where the
codebook size grows exponentially and double exponentially,
respectively.
The results presented in this paper can be extended in

several directions, some of which are listed in the following
as potential topics for future research:

• Continuous alphabet conjecture: Our observations for
the codebook size of the DTPC with ISI, DTPC
without ISI [26], [45], Binomial channel [53], [78], and
Gaussian channel with fading [46] lead us to conjecture
that the codebook size for any continuous alphabet
channel is a super-exponential function, i.e., 2(n log n)R.

However, a formal proof of this conjecture remains
unknown.

• Multiuser and multi-antenna systems: This study has
focused on a point-to-point system and may be
extended to multi-user scenarios (e.g., broadcast and
multiple access channels) or multiple-input multiple-
output channels which are relevant in complex MC
nano-networks.

• Finite codeword length coding: The identification
capacity results in this paper reveal the performance
limits of DTPC with ISI for the asymptotic regime
when the length of codewords can be arbitrarily
large. However, the codeword length is finite in
practice, particularly for MC applications, where
large encoding/decoding delays cannot be afforded.
Therefore, the study of the non-asymptotic DKI capacity
of the DTPC is an important direction for future
work.

• Explicit code construction: Our main focus in
this paper was the establishment of fundamental
performance limits for the DKI problem for the DTPC
with ISI, where an explicit code construction was not
considered. In fact, the proposed achievable scheme
proves the existence of a code without providing a
systematic approach to construct it. Hence, interesting
directions for future research include the explicit

construction of identification codes and the development
of low-complexity encoding and decoding schemes for
practical applications. The efficiency of these designs
can be evaluated against the performance bounds
derived in this paper.
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