
Received 31 October 2023; revised 29 December 2023; accepted 19 January 2024. Date of publication 26 January 2024; date of current version 12 February 2024.

Digital Object Identifier 10.1109/OJCOMS.2024.3358740

Generative Deep Learning Techniques for Traffic
Matrix Estimation From Link Load Measurements

GRIGORIOS KAKKAVAS 1 (Graduate Student Member, IEEE), NIKOLAOS FRYGANIOTIS1,
VASILEIOS KARYOTIS 1,2 (Member, IEEE), AND SYMEON PAPAVASSILIOU 1 (Senior Member, IEEE)

1School of Electrical and Computer Engineering, National Technical University of Athens, 15780 Zografou, Greece

2Department of Informatics, Ionian University, Corfu 49132, Greece

CORRESPONDING AUTHOR: S. PAPAVASSILIOU (e-mail: papavass@mail.ntua.gr)

This work was supported by the National Technical University of Athens Research Committee Grant on “Network Management and Optimization”
under Award 95028000. The publication of the article in OA mode was financially supported by HEAL-Link.

ABSTRACT Traffic matrices (TMs) contain crucial information for managing networks, optimizing traffic
flow, and detecting anomalies. However, directly measuring traffic to construct a TM is resource-intensive
and computationally expensive. A more practical approach involves estimating the TM from readily
available link load measurements, which falls under the category of inferential network monitoring based
on indirect measurements known as network tomography. This paper focuses on solving the problem of
estimating the traffic matrix from link loads by utilizing deep generative models. The proposed models are
trained using historical data—specifically, previously observed TMs—and are then leveraged to transform
traffic matrix estimation (TME) into a simpler minimization problem in a lower-dimensional latent space.
This transformed problem can be efficiently solved using a gradient-based optimizer. Our work aims
to examine and test different model architectures and optimization approaches. The performance of the
proposed methods is comparatively evaluated over a comprehensive set of suitable metrics on two publicly
available datasets comprising actual traffic matrices obtained from real backbone networks. In addition,
we compare our approach with a state-of-the-art method previously published in the literature.

INDEX TERMS Attention, generative deep learning, network tomography, traffic matrix estimation,
variational autoencoder.

I. INTRODUCTION

THE traffic matrix (TM) measures the demand between
all pairs of origin and destination entities within a

network, typically representing nodes or sets of nodes.
It captures the volume of traffic flowing between these
specific origins and destinations, holding crucial information
for network management, traffic engineering, and anomaly
detection tasks. Traditional methods for constructing a TM
involve direct measurements at network entry and exit
points, realized by collecting packet traces, performing
flow-level aggregation, or utilizing packet sampling [1].
Such approaches, however, entail significant administrative
and computational costs. An alternative and more practical
method is to estimate the TM using readily available
link load measurements and leveraging existing routing
information. The latter falls under the category of inferential

network monitoring based on indirect measurements known
as network tomography (NT) [2], [3].

Machine learning has found extensive applications in
network management and monitoring due to its efficiency in
modeling nonlinearities and capturing long-range spatiotem-
poral dependencies in network traffic. Notably, deep neural
networks incorporating recurrent units, such as LSTMs or
GRUs, have demonstrated effectiveness in TM prediction
[4], [5]. This is an example of multivariate time series
prediction that involves forecasting future network-wide
traffic based on historical TM data, where the past traffic
intensity values inform predictions for subsequent time
steps. While the present work addresses a related problem,
it focuses specifically on TM estimation from link load
measurements based on a linear measurement model. In this
context, the developed solution takes as input the measured

c© 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME 5, 2024 1029

HTTPS://ORCID.ORG/0000-0001-9092-4837
HTTPS://ORCID.ORG/0000-0002-2841-9925
HTTPS://ORCID.ORG/0000-0002-9459-318X

KAKKAVAS et al.: GENERATIVE DEEP LEARNING TECHNIQUES FOR TME FROM LINK LOAD MEASUREMENTS

vector of link counts, with each link potentially multiplexing
multiple origin-destination (OD) flows, and outputs the
corresponding traffic matrix. This formulation constitutes a
linear inverse problem, involving the reconstruction of the
unknown (vectorized) traffic matrix from an underdetermined
system of noisy linear link measurements (i.e., there are
many solutions that can explain the measurements).
Assuming a network with n nodes and m links, NT

problems can be generally formulated as the following
system of linear equations:

y = Ax+ ε, (1)

where y ∈ Rm×1 is the vector of observed measurements,
A ∈ Rm×n is the routing or measurement matrix representing
the network topology, x ∈ Rn×1 is the vector of unknown
parameters, and ε ∈ Rm×1 is a noise/error term. The routing
matrix is usually binary (i.e., aij is 0 or 1, indicating whether
link i participates in routing path j or not), but its entries can
also be probabilities in the case of multiple paths in a network
due to load balancing considerations. The error term ε is
typically assumed to be zero or conveniently distributed (e.g.,
Gaussian, Poisson, binomial or multinomial). The goal is to
estimate the unobserved vector x given the aforementioned
linear model and the known vector of measurements y. The
challenge lies in the fact that the system of linear equations
is heavily under-determined (i.e., the matrix A is not full-
rank, and there are many solutions that fit the observations)
since generally m << n.

Tailoring the above generic NT formulation to the traffic
matrix estimation (TME) problem, the unknown traffic
matrix can be represented as an n × n matrix with the
element at row i and column j indicating the traffic volume
between the origin node i and the destination node j.
To further simplify the representation, the traffic matrix
is vectorized, i.e., it is transformed into a p-dimensional
vector x, with p corresponding to the number of OD flows,
namely n2. Assuming a fixed routing configuration during
the measurement period and a negligible error term ε, we
can formulate the linear model y = Ax, where y represents
the m-dimensional vector of link counts and A is the m× p
(or m× n2) routing matrix, whose element aij is assigned a
value of 1 if OD flow j traverses link i, or 0 otherwise. The
inherent ill-posed nature of the TME NT problem is typically
tackled by employing statistical models and regularization
techniques to introduce additional structural assumptions.
Generative deep learning has witnessed remarkable

advancements and substantial progress in recent years,
driving the field towards unprecedented capabilities and
applications [6]. In general terms, generative deep learning
focuses on developing models capable of generating new
data that resembles samples from a given distribution. The
fundamental idea is to train deep generative models to
learn the underlying patterns and structure of the data,
enabling them to generate novel samples with desirable
characteristics. Deep generative models typically employ
deep neural networks to capture the complex relationships

and dependencies within the data [7]. These models aim to
learn a latent representation or a compressed encoding of
the data, which can then be used to generate new samples.
They operate in an unsupervised learning setting, meaning
they learn from unlabeled data without explicit target labels.
In contrast to classical approaches that involve sparsity

assumptions or conditional independence conditions to solve
linear inverse problems, a recent promising strategy leverages
pre-trained deep generative models as priors [8]. The key
premise of this methodology is the assumption that the
unknown vector is in or near the range of the pre-trained
deep generative model, i.e., there is a latent vector that can
produce the unknown vector of parameters when provided
as input to the generative component of the model (e.g.,
the generator of the GAN or the decoder of the VAE) [9].
Thus, the inverse problem is transformed into a minimization
problem in the lower-dimensional latent space that can be
solved via gradient descent or by adaptively expanding the
range of the generator through the optimization of differ-
ent intermediate layers [10]. This approach, successfully
employed in imaging [11] and telecommunications [12], is
adapted and leveraged to the TM estimation problem in this
paper.
The novelty of this work manifests in two key aspects.

Firstly, we contribute by framing traffic matrix estimation
as a linear inverse problem and proposing a solution that
leverages pre-trained deep generative models as data-driven
priors. While this methodology has found success in other
domains, it has yet to be adequately investigated in network
monitoring and traffic estimation. Specifically, we explore
the power of deep generative models to address the ill-
posed inverse NT problem of estimating the unobserved
traffic matrix from measured link loads. Our approach is
data-driven, utilizing historical data comprising previously
observed traffic matrices to train the proposed models.
We then leverage the trained models to transform the
TME task into a more manageable optimization problem
in a lower-dimensional latent space. This transformation
enables the use of a gradient-based optimizer to effi-
ciently solve the problem and obtain accurate estimates
of the traffic matrix in a different manner compared to
previous approaches. Secondly, we explore several deep
generative model variants in an effort to identify the most
suitable neural networks for this data-driven approach and
we strive to determine the correct mixture and optimal
combination of elements to compose an efficient overall
architecture.
The key contributions of this work can be summarized as

follows:
• Capitalizing on our previous work [13], we construct
a Convolutional Variational Autoencoder (VAE) and
leverage it to perform TME by transforming it into a
simpler minimization problem in the latent space.

• Aiming to enhance the representation learning abil-
ity of the previous model’s convolutional layers, we
explore for the first time the option of incorporating

1030 VOLUME 5, 2024

attention (i.e., highlighting important spatial loca-
tions/correlations) using two alternative architectural
units: the Convolutional Block Attention Module
(CBAM) [14] or the Squeeze and Excitation (SE)
block [15].

• Considering the traffic matrices of a particular network
as sequential data (i.e., multivariate time series), we
model for the first time the complex spatiotemporal
dependencies by employing ConvLSTM [16] layers in
the VAE, which combine convolutional operations with
the memory capabilities of LSTM.

• Hoping to capture long-range spatiotemporal dependen-
cies across arbitrary distances, we propose employing
SA-ConvLSTM [17] layers, which incorporate self-
attention memory (SAM) into the standard ConvLSTM.

• We implement the proposed deep generative models,
exploring all alternative options, and we publish1 the
source code under a permissive free software license,
accompanied by comprehensive documentation.

• We extensively evaluate the performance of the
proposed models over a comprehensive set of suitable
metrics on two publicly available datasets of traf-
fic matrices obtained from real backbone networks.
Additionally, we compare our approach with a
state-of-the-art method previously published in the
literature [18].

The remainder of this paper is organized as follows.
In Section II, we briefly overview related work, while
in Section III, we introduce the proposed approach and
describe in detail the employed deep generative models.
Section IV outlines the experimental setup and presents the
performance evaluation results and respective discussion.
Finally, Section V concludes the paper.

II. RELATED WORK
Traffic matrix estimation has been extensively researched in
the last two decades and remains a particularly active topic.
Most proposed tomographic methods focus on addressing the
ill-posed nature of TME by imposing additional statistical
assumptions and leveraging various techniques to reduce
the number of free variables. Of course, the apparent
consequence of this approach is that the achieved estimation
accuracy depends on how well the employed assumptions
reflect reality. For example, in [19], all OD flows are
assumed independent Poisson random variables. Moreover,
given a deterministic routing with a fixed path assigned to
each OD flow, the link traffic flows are the superposition of
all OD flows that pass through the respective links. Thus,
the link traffic flows are also Poisson but not independent.
This dependence renders maximum likelihood estimation
techniques unsuitable. Instead, the author employs second-
order moment matching rate estimation. Extending this
initial formulation, a Bayesian rate estimation approach
using Markov Chain Monte Carlo simulation is presented

1. https://gitlab.com/gkakkavas/gdl-tme

in [20], while the authors in [21] replace the Poisson traffic
model with a Gaussian traffic model and employ maximum
likelihood rate estimation.
Other works incorporate information from additional

sources to the linear measurement system. For instance,
in [22], the OD flows are assumed proportional to the
incoming and outgoing traffic of the nodes, and the so-
called gravity model is used in combination with SNMP
link counts. The devised tomogravity method is composed
of two stages. First, the TM estimate is initialized using
the link counts and the (simple or generalized) gravity
model. Then, it is refined using the Moore-Penrose pseudo-
inverse to minimize

∥
∥Ax− y

∥
∥

2. On the other hand, in [23],
the routing matrix’s rank is increased by changing the
weight of each link and, therefore, the underlying paths
followed by the OD flows. To that end, the authors introduce
a temporal model called route change, in which each
OD flow is considered dependent on its past. Finally,
in [24], [25], both spatial and temporal information is
leveraged. More precisely, the authors in [24] propose a
Principal Components Analysis (PCA) method that reduces
the dimension of the TME problem by taking into account
only the most important eigenflows and a Kalman method
that employs state space models from the dynamic linear
systems theory to capture the evolution of the network.
Meanwhile, the authors in [25] introduce the Sparsity
Regularized Matrix Factorization (SRMF) technique that
produces sparse, low-rank approximations of the TM, which
are then combined via local interpolation.
More recently, the authors in [26] leverage the Partial

Least Squares (PLS) regression technique to create a
predictive model between the TM and the link counts. They
also propose a suitable re-calibration strategy after fixed
time intervals to maintain adequate performance. In [27],
tomogravity is used to provide an initial TM estimate,
which is subsequently improved via Genetic Algorithm (GA)
optimization using an objective function based on (1). Last
but not least, Ephraim et al. [28] extend NT by assuming
that the distribution of the counts of each OD flow is a
(continuous or discrete) mixture of Poisson distributions,
and they estimate the mean traffic rate for every OD
pair by solving a second-order moment matching system
using least squares and the minimum I-divergence iterative
procedure. They also develop aMoment Generating Function
(MGF) matching approach, which is further evolved to
Characteristic Function matching [29].

Alternative methods adopt artificial neural networks
(ANNs) instead of statistical modeling techniques and addi-
tional structural assumptions. These data-driven approaches
fall under the supervised learning paradigm and utilize
extensive raw measurement data to capture the spatio-
temporal patterns of the inverse system and establish a
direct mapping between link counts and the traffic matrix.
By posing the traffic matrix estimation as a regression
problem and defining an appropriate objective function, an
iterative optimization algorithm can identify the optimal

VOLUME 5, 2024 1031

KAKKAVAS et al.: GENERATIVE DEEP LEARNING TECHNIQUES FOR TME FROM LINK LOAD MEASUREMENTS

parameters for the neural network architecture. Then, using
the trained network, the traffic matrix can be estimated
from the observed link loads. Within this context, various
neural network models have been proposed for solving the
TME problem, including a state-space recurrent multilayer
perceptron (RMLP) [30], a back-propagation neural network
(BPNN) combined with the iterative proportional fitting
procedure (IPFP) [31] or an auto-regressive (AR) model [32],
a non-linear auto-regressive exogenous model (NARX)
together with the genetic algorithm (GA) [33], and a
deep belief network (DBN) [34]. More recent works have
attempted to incorporate routing information and topological
network structure into the neural network input, such as the
Moore-Penrose inverse of the routing matrix multiplied with
link load vector [35] and graph-embedding [36], [37], [38].
The latter has been combined with convolutional neural
networks [36], [37] and nonnegative matrix factorization
(NMF) [38]. A feedforward back-propagation neural network
trained with the Levernberg-Marquardt algorithm has also
been proposed [39].

Our work also adopts a data-driven approach based on
deep neural networks (DNNs) but pertains to the unsu-
pervised learning paradigm—particularly, generative deep
learning. Taking this into consideration, the most relevant
approach to our work has been presented in [18] because it
employs the same problem formulation and enabler for TM
estimation (i.e., linear inverse problem and generative deep
learning). It involves constructing a solution to the underde-
termined TME linear system by leveraging the range space
of a properly trained generative model. However, contrary
to our methods, the authors in [18] employ a Generative
Adversarial Network (GAN) and not a probabilistic model
allowing to capture uncertainty like VAE. In addition, they
only utilize fully connected layers, they do not make use
of any form of attention mechanism (neither convolutional
“spatial” attention nor self-attention), and most importantly,
they only consider the spatial dependencies among the OD
flows of the traffic matrix, ignoring the temporal domain
entirely. Our work addresses these limitations by constructing
generative models based on the Variational Autoencoder
architecture, incorporating specific components tailored to
the aforementioned aspects. A detailed description of our
approach can be found in the following section.
Generally speaking, we opt to employ variants of the VAE

architecture over GAN to capture the inherent uncertainty
in the examined problem. While both VAE and GAN are
generative models, they differ fundamentally in their learning
and data generation approaches. VAE explicitly learns the
likelihood distribution through an appropriately defined loss
function, while GAN learns through a “min-max two-player
game”. Another crucial distinction lies in how these models
handle latent input variables. In VAE, the latent input variable
is associated with a probability distribution that the model
learns throughout the learning process. In contrast, GAN’s
hidden state distributions are predefined. To summarize,
machine learning has two primary types of uncertainty:

aleatoric and epistemic [40]. Aleatoric uncertainty, also
known as data uncertainty, stems from the inherent variability
in the data, leading to uncertainty in predictions. This type
of uncertainty is not a model characteristic but rather an
intrinsic property of the data distribution, and as such, it
is irreducible. On the other hand, epistemic or knowledge
uncertainty arises from insufficient knowledge and can, in
principle, be reduced (e.g., uncertain predictions for out-of-
distribution samples fall into this category). To that end,
Bayesian deep learning methods, such as VAEs, endeavor to
estimate epistemic uncertainty by modeling distributions for
parameter values.
Finally, we note that the task of inferring the network

traffic matrix from link load measurements bears similarities
to the demand flow estimation problem in transportation,
whose objective is to estimate the number of persons or vehi-
cles traveling between specific origins and destinations (OD
transit matrix) from the observed flows in particular routes.
Numerous studies have investigated this topic, with recent
trends leaning towards the application of machine learning,
particularly deep learning approaches. Some representative
works include the following. In [41], the authors aim to
create a theoretically interpretable deep learning approach
for estimating different levels of traffic demand by proposing
a multi-layered Hierarchical Flow Network (HFN) that can
fuse data from diverse sources. The introduction of a special
computational graph serves as a modeling tool to extend
the HFN and express mathematical formulations. At the
same time, the back propagation (BP) algorithm is adapted
to compute the derivatives of the underlying composite
functions efficiently. Ou et al. [42] present a learning-
assigning-searching framework for estimating dynamic OD
flows in real time. Their approach involves employing
a convolutional neural network as both the learner and
assigner, along with two specifically developed genetic
algorithms (GAs) functioning as searchers. Finally, in [43],
multi-class dynamic OD demand estimation in large-scale
transportation networks is framed into a computational graph
with tensor representations of spatiotemporal flows, and a
forward-backward algorithm is proposed to solve the devised
formulation iteratively. Interested readers are directed to [44]
for a comprehensive survey of transit OD matrix inference.

III. GENERATIVE DEEP LEARNING-BASED TRAFFIC
MATRIX ESTIMATION
In order to solve the problem of estimating the traffic matrix
x based on a given measured vector of link counts y and
a known routing matrix A, we leverage the capabilities of
generative modeling. Generative models [45] describe how
a dataset is generated from a probabilistic perspective. By
sampling from such models, we can generate new (i.e.,
outside the employed training dataset), distinct but similar
examples. The probabilistic nature of these models means
they must include a stochastic element that influences the
generated examples. In other words, the observed data
is considered a finite set of samples from an underlying

1032 VOLUME 5, 2024

distribution. Any generative model aims to approximate this
data distribution using as (training) input the provided data
points and then sample from it to generate new, analogous
examples that appear as if they could have been included in
the original training set. Contrary to discriminative modeling,
which is akin to supervised learning (i.e., learning a function
that maps an input to an output using a labeled dataset)
and regards categorizing samples, generative modeling is not
concerned with labeling observations. Instead, it attempts to
estimate the likelihood of any given sample. Even though it
is usually applied to an unlabeled dataset (i.e., unsupervised
learning), it can also employ a labeled dataset to learn how to
generate examples belonging to each class. In recent years,
deep learning has driven significant advances in generative
modeling due to its capability to infer relevant structures
directly from the data without any assumptions [46]. The
result of this synergy is the creation of the so-called
deep generative models, which are neural networks with
many hidden layers trained to approximate complicated
(i.e., unknown or intractable), high-dimensional probability
distributions using (independent and identically distributed)
samples [7].
The main idea is to transform TME into a constrained

minimization problem and explore the latent space of a
suitable deep generative model to find a generated TM that
best matches the measured link loads. In other words, we
constrain the estimated TM to have properties similar to
previously observed TMs (i.e., historical data), which are
used to train the employed deep generative model. The deep
generative models we examine in this work are variations
of the Variational Autoencoder (VAE) [47] architecture
and will be detailed in the following sections. Generally
speaking, the VAE learns the underlying distribution of the
historical data and the spatio-temporal traffic patterns via
training. Consequently, the respective decoder network can
be leveraged to generate synthetic examples x from random
low-dimensional latent vectors zzz that fit the considered
network topology and “mimic” the samples of the training
set. Among the latter, we select the one that best conforms
to the observed link loads. The trained decoder’s synthesis
capability can also be utilized to create more extensive
artificial datasets of “realistic” traffic matrices, which can
be used for training and evaluating other relevant methods
that require TMs as input.
More rigorously, we assume that the solution can be gen-

erated by the trained decoder (i.e., it belongs to the range of
the trained decoder), and we leverage the learned distribution
to transform TME into the following minimization problem
in the lower-dimensional latent space:

arg min
z

[∥
∥y− A · d(z)∥∥2

2 + c · ∥
∥z

∥
∥2

2

]

, (2)

where d(·) denotes the trained decoder and c · ‖z‖2
2 is a

regularization term motivated by the fact that VAEs impose
a Gaussian prior distribution on z, with scalar c weighing the
importance of the prior and the measurement error. The intent

is to focus on exploring regions of the latent space that the
decoder prefers. Simply put, we constrain the solution within
the range of the trained generative model and minimize its
distance to the observations y to ensure agreement with the
measured link counts. This may implicitly introduce bias into
the results, as the model is conditioned on historical patterns
and may not fully capture potential variations or shifts in
the underlying traffic dynamics. One straightforward way
to address this limitation is the periodic retraining of the
model. This becomes particularly relevant when significant
network topology or behavior changes are detected or when
estimation accuracy demonstrates substantial deterioration.
By updating the model in response to these changes, we can
mitigate potential bias and ensure the predictions’ continued
relevance and accuracy.
To solve the optimization problem (2), we can use a

gradient-based optimizer [48] like SGD or Adam since the
decoder is differentiable. To speed up the process, we can
choose the initial point z0 of the optimization by iterating
over a number M of random latent vectors and selecting the
one with the smallest distance to the measured link counts:

z0 = zk s.t.
∥
∥y− A · d(zk)

∥
∥2

2 ≤ ∥
∥y− A · d(zi)

∥
∥2

2,

for i ∈ 1, . . . ,M. (3)

Once we find the optimal z∗ that minimizes the objective (2),
we can use the mapping x̂ = d(z∗) to obtain the estimated
TM.
In summary, the proposed generative deep learning-

enabled approach for estimating the TM from observed link
counts does not require additional assumptions about OD
flows, unlike conventional NT TME methods (see Section II).
Instead, the necessary prior knowledge is indirectly learned
from the historical data used as a training dataset. This
reliance on substantial historical/training data is typical in
deep learning. A large and diverse dataset is essential for
effective learning and generalization, enhancing the models’
proficiency in recognizing patterns and making accurate
predictions. The performance of deep learning models,
including those employed in our work, is directly influenced
by the richness and representativeness of the training data.
Efforts can be made to reduce the required training data by
incorporating more diverse and representative samples (e.g.,
in our case, TMs spanning all times and days of the week).
However, it is crucial to acknowledge the inherent tradeoff
between dataset size and model performance/generalization
in deep learning approaches. A more extensive and diverse
dataset typically leads to improved model performance and
better generalization to new, unseen examples. Nevertheless,
this advantage comes with the cost of requiring increased
amounts of data and computational resources. The following
subsections detail the different deep generative models
employed in this work.

A. CONVOLUTIONAL VARIATIONAL AUTOENCODER
A Variational Autoencoder (VAE) [49] is a type of unsuper-
vised learning algorithm for learning a lower-dimensional

VOLUME 5, 2024 1033

KAKKAVAS et al.: GENERATIVE DEEP LEARNING TECHNIQUES FOR TME FROM LINK LOAD MEASUREMENTS

FIGURE 1. Convolutional Variational Autoencoder.

feature representation from unlabeled input data and gen-
erating new samples that resemble the training data.
Convolutional VAEs, in particular, combine convolutional
neural networks (CNNs) and variational autoencoders to
efficiently handle data that have a spatial or grid-like
structure (e.g., images or, in our case, traffic matrices). As
can be seen in Fig. 1, the key components of this generative
model are:

• Encoder: The encoder network learns the mapping
from the input data to a low-dimensional latent space.
Contrary to vanilla autoencoders, where each data point
x is mapped directly to one point in the latent space (i.e.,
representation or latent vector), in VAEs, the encoder
learns to encode the input data into a distribution
in the latent space, qφ(z|x), typically assumed to be
multivariate Gaussian. Then, it produces a latent vector
z by sampling from this distribution using the repa-
rameterization trick. The latter allows backpropagation
(otherwise, gradients cannot be backpropagated through
sampling layers) and efficient end-to-end training. In
particular, the encoder outputs this distribution’s mean
μ and standard deviation σ (in practice, the logarithm
of variance that can take any real value, matching the
natural output range of a neural network) vectors and
then computes the sampled latent vector as

z = μ + σ � ε, (4)

where ε is a vector of samples drawn from a standard
normal distribution and � denotes element-wise mul-
tiplication. The encoder network generally consists of
several convolutional layers that progressively reduce
the dimensionality of the input to capture important
features and hierarchical representations. In addition, it
often includes BatchNormalization and Dropout layers
implementing the respective regularization techniques
to improve generalization and prevent overfitting.

• Decoder: The decoder learns the mapping back from
the latent space to the reconstructed data. It takes the
sampled latent vector z as input and aims to reconstruct
the original data. In other words, it computes the poste-
rior distribution pθ (x|z). The decoder network generally
consists of a series of transposed convolutional layers
that progressively increase the spatial dimensions of the
latent vector to match the original data’s dimensions.

The final output of the decoder is a reconstructed data
point x̂ that should closely resemble the original input x.

• Loss Function: The loss function consists of two
components—the reconstruction loss and the regulariza-
tion loss. The former measures the difference between
the original input data and the reconstructed output
to make the encoding-decoding scheme efficient. It
is typically an element-wise loss, such as the mean
squared error (MSE) for continuous real-valued data
or the binary cross-entropy for binary data. The latter
aims to make the latent space regular by encouraging
the learned latent space to “follow” the assumed
(Gaussian) distribution. It is computed as the Kullback-
Leibler (KL) divergence between the inferred latent
distribution qφ(z|x) and the fixed prior distribution p(z),
which is chosen to be N (0, I) to evenly distribute the
representation vectors around the center of the latent
space and to penalize the clustering of points in specific
regions. Simply put, the KL divergence term punishes
the model for encoding observations into mean and
log variance vectors that deviate significantly from the
parameters of a standard normal distribution. This type
of regularization guarantees that the latent space is
both continuous (i.e., close points in the latent space
produce “similar” content when decoded) and complete
(i.e., a point sampled from the latent space produces
“meaningful” content when decoded).

During training, gradient descent or other related algorithms
are used to optimize the parameters of the encoder and
decoder networks by minimizing the total loss, which in our
case is computed as:

L = β · MSE
(

x, x̂
) + KL

(

qφ

(

z|x)‖p(z)
)

= β · MSE
(

x, x̂
) + KL

(

N (

μ, σ
)‖N (

0, I
))

= β · 1

p

p
∑

i=1

(

x̂(i) − x(i)
)2

+1

2

∑

j

(

σ 2
j + μ2

j − 1 − ln
(

σ 2
j

))

, (5)

where p is the number of OD flows (i.e., the number
of elements of x), the second summation is over the
dimensionality of the latent vector, and the hyperparameter
β controls the balance between the reconstruction loss and
the regularization term (i.e., KL divergence)—it determines
how much weight is given to the reconstruction loss to
maintain a balance between the quality of reconstruction and
the regularity of the latent space.

B. ATTENTION-ENHANCED CONVOLUTIONAL VAE
Within the context of machine learning, attention refers to
prioritizing relevant information by selectively attending to
salient features of the input while disregarding irrelevant or
redundant ones. In this way, the model focuses selectively
on the most informative parts and can better handle complex

1034 VOLUME 5, 2024

input patterns and capture long-range dependencies. In view
of this, we modify the previously described convolutional
VAE by integrating a suitable attention mechanism between
the convolutional layers hoping to enhance their repre-
sentation power. Specifically, we explore the use of two
alternative architectural units, Convolutional Block Attention
Module (CBAM) [14] and Squeeze and Excitation (SE)
block [15], which have been shown to achieve state-of-the-art
performance.
CBAM aims to improve the flow of information within

a convolutional neural network by identifying and high-
lighting meaningful features in both the channel and spatial
dimensions. It is composed of two sequential sub-modules:
channel attention and spatial attention. By applying these
components in sequence, CBAM enables the network to learn
“what” and “where” to attend, improving attention accuracy
and noise reduction. Integrating the attention module after
every convolutional layer of the overall network allows for
the adaptive refinement of the intermediate feature maps.
In other words, the features are refined at multiple stages
of the network, enhancing the representation power of the
model. The channel attention module leverages the inter-
channel relationships in features to create a channel attention
map. Each channel of a feature map F is treated like a
feature detector to determine “what” is meaningful for a
given input. The module employs max- and average-pooling
operations to create two spatial context descriptors. These
descriptors are then sent to a shared multi-layer perceptron
(MLP) with one hidden layer to calculate the channel
attention map Mc through element-wise summation of the
two output feature vectors. The spatial attention module,
on the other hand, exploits the inter-spatial relationships
of features to determine “where” the informative parts are
located. Average- and max-pooling operations are used along
the channel axis, and the results are concatenated to create
a single feature descriptor. This descriptor is then forwarded
to a standard convolutional layer to produce a 2D spatial
attention map Ms, highlighting significant spatial locations
and suppressing irrelevant ones. Putting everything together,
given an intermediate feature map F as input, CBAM
sequentially produces an 1D channel attention map Mc and
a 2D spatial attention map Ms to calculate the final output
as follows:

F′ = Mc
(

F
) � F and

F′′ = Ms
(

F′) � F′, (6)

where � denotes element-wise multiplication, F′ is the
channel-refined feature map, and F′′ is the final refined
output. Fig. 2 illustrates the above process.

Another approach to increase the representational power
of the generative model is enhancing spatial encoding
by explicitly modeling the interdependencies between the
channels of the convolutional features using the Squeeze
and Excitation (SE) block. This unit is a lightweight
gating mechanism that adaptively recalibrates channel-wise

FIGURE 2. Convolutional Block Attention Module (CBAM).

feature responses using global information to selectively
emphasize informative features and suppress less useful
ones. Specifically, the underlying mechanism comprises
two steps: squeeze and excitation. In the first step, global
spatial information is condensed (i.e., squeezed) into a
channel descriptor using global average pooling to generate
channel-wise statistics. This squeeze operation aggregates the
feature maps across spatial dimensions to create a channel
descriptor that captures the global distribution of channel-
wise feature responses. In this way, information from the
global receptive field of the network can be leveraged by its
lower layers. Then, the aggregated information is leveraged
to fully capture channel-wise dependencies by applying a
straightforward gating mechanism with sigmoid activation
in the excitation step. This step is realized using two small
fully connected (FC) layers and a channel-wise scaling
operation. Each channel’s excitation is governed by sample-
specific activations learned by the self-gating mechanism
based on channel dependencies. The feature maps are then
appropriately weighted to produce the output of the SE block,
which can be directly fed into the following layers.
In summary, we modify the convolutional VAE introduced

in Section III-A by integrating attention mechanisms after
each convolutional layer. Specifically, we develop two
variants: one employing CBAM and another utilizing SE
blocks.

C. CONVLSTM-BASED VAE
Due to the nature of network traffic, traffic matrices
exhibit spatiotemporal dependencies. In other words, the
relationships between spatial locations (OD pairs) evolve
over time. Such dependencies arise from various factors:

• The physical layout of a network affects traffic patterns
and routing decisions. The traffic between different
nodes is interconnected and influenced by the spatial
arrangement of the network (i.e., network topology),
which can change over time.

• Traffic volumes are affected by the spatial distribution
of users, resulting in spatial dependencies in traffic
patterns. Meanwhile, temporal dependencies are created
due to variations in demand across different periods
(e.g., higher demand during peak hours).

VOLUME 5, 2024 1035

KAKKAVAS et al.: GENERATIVE DEEP LEARNING TECHNIQUES FOR TME FROM LINK LOAD MEASUREMENTS

• Network conditions and performance can change
dynamically, introducing spatiotemporal dependencies
in the traffic matrices. For example, congestion or link
failures can lead to traffic rerouting and a shift in traffic
patterns.

The deep generative models examined so far considered
only the spatial dependencies in traffic matrices, which can
be effectively captured using convolutional layers thanks
to their ability to learn spatial relationships by applying
local filters across the input. However, standard convolutional
layers cannot inherently handle the temporal dimension.
Due to the aforementioned spatiotemporal dependencies,
traffic matrices can be viewed as sequential data, with each
time step representing a snapshot of the traffic patterns.
Thus, it is advantageous to model traffic matrices as
multivariate time series and utilize recurrent neural network
(RNN) architectures to capture the temporal dimension and
effectively model the dependencies between different time
steps.
Among the class of RNNs, Long Short-Term Memory

(LSTM) has been highly successful in sequence modeling
tasks due to its ability to capture long-term dependencies
and address the vanishing and exploding gradient problems
using its memory cells and gates. Nevertheless, the strengths
of CNNs and RNNs should be combined to model spatial
and temporal dependencies in data simultaneously. One
way to achieve this is through using ConvLSTM [16]
layers, a variant of LSTM that replaces the internal matrix
multiplications with convolutional operations in the input
and recurrent transformations, enabling the processing of
spatial information while maintaining sequential modeling
capabilities.
In general terms, the flow of information in ConvLSTM

is regulated by the input, forget, and output gates, while the
cell update gate determines the new cell state. Finally, the
updated cell state is combined with the output gate to form
the new hidden state. More rigorously, the equations that
describe the operations within a ConvLSTM cell in a single
time step are the following:

• input gate:

it = σ
(

Wxi ∗ xt +Whi ∗ ht−1 +Wci � ct−1 + bi
)

(7)

• forget gate:

ft = σ
(

Wxf ∗ xt +Whf ∗ ht−1 +Wcf � ct−1 + bf
)

(8)

• candidate cell state:

gt = tanh
(

Wxc ∗ xt +Whc � ht−1 + bc
)

(9)

• cell state:

ct = ft � ct−1 + it � gt (10)

• output gate:

ot = σ
(

Wxo ∗ xt +Who ∗ ht−1 +Wco � ct + bo
)

(11)

• hidden state:

ht = ot � tanh(ct) (12)

where xt is the input tensor at time step t; ht is the hidden
state tensor at time step t; ct is the cell state tensor at time
step t; W�i, W�f , W�o, and W�c denote the convolutional
kernels for the input gate, forget gate, output gate, and
candidate cell state, respectively; ∗ represents the convolution
operation; � denotes the element-wise multiplication (i.e.,
Hadamard product); b� indicates the bias vectors associated
with the respective components; σ is the sigmoid activation
function; and tanh is the hyperbolic tangent activation
function. ConvLSTM operates sequentially over multiple
time steps, updating the hidden state ht and cell state ct at
each step based on the current input xt and the previous
states.
In conclusion, using ConvLSTM layers in combination

with standard convolutional layers in the deep generative
model allows us to leverage the strengths of CNNs to extract
spatial patterns and the capabilities of LSTMs to capture
temporal dependencies and sequential dynamics.

D. SELF-ATTENTION-EXTENDED CONVLSTM-BASED
VAE
Self-attention (SA) [50] is a mechanism that allows models
to weigh the significance of different elements within
a sequence by analyzing their interdependencies. These
attention weights determine the contribution of each element
to the representation of others, with more relevant parts of the
sequence assigned higher importance and less relevant parts
lower. The input sequence is processed in parallel, enabling
the simultaneous consideration of the dependencies between
all elements. By calculating pairwise attention scores and
aggregating salient features among all spatial positions, SA
can effectively capture long-rage spatiotemporal patterns,
attending to different parts of the sequence adaptively.
As discussed earlier, traffic matrices involve complex

patterns and dependencies that extend over time and space.
An SA mechanism seems promising for effectively capturing
these long-range dependencies in traffic matrix estimation.
Incorporating self-attention into the deep generative model
should make it possible to identify the interactions and
correlations between various elements in the sequential data,
regardless of their spatial or temporal distance. In order to
investigate this, we substitute the ConvLSTM layers in the
VAE presented in Section III-C with SA-ConvLSTM [17]
layers, which have a Self-Attention Memory (SAM) module
incorporated into the regular ConvLSTM.
The Self-Attention Memory (SAM) module utilizes a

memory cell to store relevant features from previous
time steps to represent global spatiotemporal information.
The self-attention mechanism effectively combines current
and memorized features by calculating pair-wise similarity
scores, determining each element’s importance. Additionally,
SAM employs a gating mechanism similar to LSTM models
to control the flow of information from the memory cell to

1036 VOLUME 5, 2024

FIGURE 3. Self-Attention ConvLSTM.

the prediction process, allowing for the capture of long-range
temporal dependencies by selectively incorporating relevant
past features. It receives two inputs: the input feature at
the current time step and the memory from the previous
time step. The output is an updated representation that
enhances the features by considering both the current features
and the global spatiotemporal dependencies captured by the
memory cell.
The equations that describe the operations within

SA-ConvLSTM in a single time step are modified with
respect to the ones of standard ConvLSTM as follows:

• ConvLSTM updating:

ĥt−1 = SAM
(

ht−1
)

(13)

it = σ
(

Wxi ∗ xt +Whi ∗ ĥt−1 +Wci � ct−1 + bi
)

(14)

ft = σ
(

Wxf ∗ xt +Whf ∗ ĥt−1 +Wcf � ct−1 + bf
)

(15)

gt = tanh
(

Wxc ∗ xt +Whc � ĥt−1 + bc
)

(16)

ct = ft � ct−1 + it � gt (17)

ot = σ
(

Wxo ∗ xt +Who ∗ ĥt−1 +Wco � ct + bo
)

(18)

ht = ot � tanh(ct) (19)

• SAM module memory updating:

i′t = σ
(

Wm;zi ∗ Z +Wm;hi ∗ ht + bm;i
)

(20)

g′
t = tanh

(

Wm;zc ∗ Z +Wm;hc � ht + bm;c
)

(21)

Mt = (

1 − i′t
) � Mt−1 + i′t � g′

t (22)

• SAM module output:

o′
t = σ

(

Wm;zo ∗ Z +Wm;ho ∗ ht + bm;o
)

(23)

ĥt = o′
t � Mt (24)

where Wm;� and bm;� are the weights and bias of the convo-
lutional operators in SAM, Mt is the memory state of SAM
at time t, and Z are the aggregated features computed by
the self-attention mechanism. Fig. 3 illustrates the structure

of SA-ConvLSTM. If SAM is removed, we regress to the
standard ConvLSTM mentioned in Section III-C.

E. IMPLEMENTATION DETAILS
The proposed models were implemented using Python
3.11 and the Keras [51] deep learning API, running on
top of the TensorFlow [52] machine learning framework.
Specifically, we use the subclassing API to customize
models by subclassing the tf.keras.Model class. This
API provides more control and flexibility over the model’s
architecture and behavior compared to the sequential and
functional API. The constructor specifies the layers and
operations comprising each model, while the call method
defines the model’s forward pass. In other words, it defines
the model’s computation graph by connecting the layers
and applying the appropriate operations to the inputs.
After compiling and training the models per the standard
Keras workflow (i.e., specifying the loss function, optimizer,
metrics, and EarlyStopping callback), we use them to make
predictions/reconstructions.
Table 1 and Table 2 display the structure of the developed

variational autoencoders, including information on the layers
and their interconnection, relevant parameters, and output
shapes. The latter are reported with respect to the Abilene
dataset, whose traffic matrices are of size 12×12. Moreover,
the latent space dimensions are set to 8, while for the
VAEs incorporating (SA-)ConvLSTM layers, the time series
data is prepared via a preprocessing step that divides
the continuous sequence into fixed-length, non-overlapping
segments or windows. The window length in the displayed
output shapes is set to two time steps. The source code
of the examined generative models and the complete traffic
matrix estimation method (including the approach presented
in [18]) is published in https://gitlab.com/gkakkavas/gdl-tme,
accompanied by detailed documentation.

IV. PERFORMANCE EVALUATION
A. DATASETS
In order to evaluate the performance of the proposed traffic
estimation methods, we conducted numerical experiments
over two publicly available datasets comprising actual traffic
matrices recorded in real backbone networks.
The first dataset2 was collected from the Abilene network

for a period of 24 weeks. Traffic on Abilene is non-
commercial, originating from major universities and research
labs throughout the continental United States. The network
consists of 12 aggregated nodes located in North America,
resulting in 144 traffic pairs (i.e., a 12 × 12 TM), which
were captured in 5-minute intervals every week from
2004-03-01 to 2004-09-10. The network topology comprises
15 undirected edges, each associated with two links. The
link capacity is 2 480 000 kbps for the Atlanta-Indianapolis
edge and 9 920 000 kbps for all the rest edges. In addition,
each node has two external links (one for ingress and one

2. https://www.cs.utexas.edu/∼yzhang/research/AbileneTM/

VOLUME 5, 2024 1037

KAKKAVAS et al.: GENERATIVE DEEP LEARNING TECHNIQUES FOR TME FROM LINK LOAD MEASUREMENTS

TABLE 1. Structure of [attention-enhanced] convolutional variational autoencoder∗ .

for egress traffic) that connect it to the “outer world”, which
are not relevant to our analysis. Since the reported traffic
data correspond to 5-minute intervals, overall, there are (60

5)·
24 = 288 TMs per day and 288 · 7 = 2016 TMs per week.
The provided dataset also includes the routing matrix of the
network (i.e., a binary matrix with dimensions 30×144; there
are 30 links and 144 OD flows) and the OSPF weight of
every link. It does not contain the 30×1 vector of link counts,
which can be easily obtained by simple matrix multiplication
of the routing matrix with the corresponding traffic matrix
(organized in a 144 × 1 vector).

The second dataset [53] was obtained from GÉANT,
a pan-European research network connecting universities
and research institutions. It consists of traffic matrices that
capture the network traffic between 23 nodes (border routers)
interconnected by 38 links. The GÉANT network has 53
additional links to other domains that are not relevant
to our analysis. The dataset provides traffic matrices for
different days of the week and various hours within a day,
constructed using Interior Gateway Protocol (IGP) routing
information, sampled Netflow data, and Border Gateway
Protocol (BGP) routing information. Specifically, it includes
one traffic matrix for every 15-minute interval over a
period of approximately four months from 2005-01-01 to

2005-04-23. The traffic matrix values are expressed in
kilobits per second (kbps), representing the traffic intensity
or volume of data between each pair of nodes.

B. RESULTS AND DISCUSSION
To evaluate the performance of the proposed traffic matrix
estimation methods, we measure four key metrics: Root
Mean Square Error (RMSE), Normalized Mean Absolute
Error (NMAE), Spatial Relative Error (SRE), and Temporal
Relative Error (TRE). These metrics quantify the accuracy
and relative estimation errors of the OD flows in the traffic
matrix and can be computed as follows:

• Root Mean Square Error (RMSE): The RMSE measures
the average deviation between the estimated and actual
traffic matrix (i.e., the ground truth). It is computed
by finding the square root of the mean of the squared
differences between corresponding elements of the two
matrices. Mathematically, the RMSE can be defined as
follows:

RMSE(t) =
∥
∥x̂t − xt

∥
∥

2√
p

=
√
√
√
√

1

p

p
∑

i=1

(

x̂t(i) − xt(i)
)2

,

1038 VOLUME 5, 2024

TABLE 2. Structure of [self-attention-extended] ConvLSTM-based variational autoencoder∗ .

where xt is the actual traffic matrix at time t, x̂t is
the corresponding estimated traffic matrix, p ≡ n2 is
the number of OD flows (i.e., the total number of
elements in the matrices), and i = 1, . . . , p indicates
each individual OD flow.

• Normalized Mean Absolute Error (NMAE): The NMAE
is a normalized version of the Mean Absolute Error
(MAE) and measures the absolute deviation between the
estimated and actual traffic matrices at corresponding
times. It is calculated by dividing the MAE by the
average absolute value of the actual traffic matrix.
Mathematically, it is defined as:

NMAE(t) =
∥
∥x̂t − xt

∥
∥

1
∥
∥xt

∥
∥

1

=
∑p

i=1 |x̂t(i) − xt(i)|
∑p

i=1 |xt(i)| .

• Spatial Relative Error (SRE): The SRE measures the
accuracy of the estimation model at a spatial level.
It focuses on each OD flow over its lifetime and
determines the relative estimation error. In other words,
it quantifies the spatial accuracy of the estimation
model. Mathematically, it can be defined as:

SRE(i) =
∥
∥x̂1 :T(i) − x1 :T(i)

∥
∥

2
∥
∥x1 :T(i)

∥
∥

2

=
√

∑T
t=1

(

x̂t(i) − xt(i)
)2

√
∑T

t=1

(

xt(i)
)2

,

where x1:T(i) is the sequence of the ground truth
values of OD flow i across all times, x̂1:T(i) is
the sequence of the estimated values of OD flow
i across all times, and t = 1, . . . ,T denotes each
time.

• Temporal Relative Error (TRE): The TRE eval-
uates the accuracy of the model’s predictions
over time by summarizing the relative error
between the estimated and actual traffic matri-
ces at each time point. Mathematically, it is
defined as:

TRE(t) =
∥
∥x̂t − xt

∥
∥

2
∥
∥xt

∥
∥

2

=
√

∑p
i=1

(

x̂t(i) − xt(i)
)2

√
∑p

i=1

(

xt(i)
)2

.

In the following, the deep generative models are trained
using the Adam [54] optimizer on 26 208 TMs collected
over thirteen weeks from 2004-05-01 to 2004-07-30 for
the Abilene dataset, and 4669 TMs collected over seven
weeks from 2005-01-01 to 2005-02-18 for the GÉANT
dataset. For testing, 1152 and 582 TMs are used, respectively.
Besides serving as the ground truth, these testing TMs are
multiplied with the corresponding routing matrices (based
on (1) assuming ε is zero) to obtain the testing link load
vectors y, which are then used during the latent space
optimization process as described in (2). In particular, after
finding a good initial point z0 in terms of distance to the
measured link loads by iterating over M = 3000 random

VOLUME 5, 2024 1039

KAKKAVAS et al.: GENERATIVE DEEP LEARNING TECHNIQUES FOR TME FROM LINK LOAD MEASUREMENTS

FIGURE 4. Root Mean Square Error across different latent space dimensions and regularization weights on the Abilene dataset.

FIGURE 5. Root Mean Square Error across different latent space dimensions and regularization weights on the GÉANT dataset.

latent vectors according to (2), we perform 5000 iterations
for minimization (2) using again the Adam [54] optimization
algorithm.
We begin by determining the best values for the latent

space dimensions dim Z (i.e., the number of elements of
the latent vector z ∈ Z) and the regularization weight c
in (2) for each dataset. To that end, we conduct several
small-scale tests on 288 and 192 TMs for the Abilene
and the GÉANT datasets, respectively, and compare the
achieved RMSEs to select the most appropriate values.
Specifically, we first explore the dimensionality of the latent
space, considering values of 8, 10, 14, 18, and 20 while
keeping the regularization weight fixed at 0. Then, we
select the latent dimension resulting in the lowest RMSE
and vary the regularization weight among 0, 0.01, 0.1, 1,
and 10. Fig. 4 presents the results of this process for the
Abilene dataset and Fig. 5 for the GÉANT dataset. As
can be seen, the best values are {dim Z = 8, c = 0} for
Abilene and {dimZ = 20, c = 0.1} for GÉANT. These
values are used in the subsequent experiments involving
all the examined deep generative models. Table 3 reports
the employed hyperparameters of the proposed generative
models for each dataset.

TABLE 3. Hyperparameters of the employed generative models.

The approach presented in [18], which serves as a
benchmark for comparing our proposed models, is built
upon a variant of Generative Adversarial Networks known as
Wasserstein Generative Adversarial Network with Gradient
Penalty (WGAN-GP) [55]. WGAN-GP is designed to
enhance training stability and improve the quality of gen-
erated samples by using the Wasserstein-1 distance as the
training objective and incorporating a gradient penalty term

1040 VOLUME 5, 2024

FIGURE 6. Evolution of total loss along training epochs for the considered generative models on the Abilene and GÉANT datasets.

to regularize the discriminator’s gradients. Following the
experimental setup described in [18], both the generator and
the critic/discriminator of the model are fully connected neu-
ral networks with three and four dense layers, respectively.
Moreover, the training process lasts 300 epochs, and the
discriminator is updated 64 times after each training step of
the generator. Lastly, the gradient penalty is set to 10 and
the batch size to 64.
Fig. 6 depicts the evolution of total loss, as computed

by (5), across the training epochs for the examined generative
models. It should be noted that since the early stopping
technique is used to prevent overfitting and improve general-
ization to unseen data, the number of realized training epochs
is different for each model. Specifically, the loss metric is
monitored during the training process, and if it remains below
the minimum value encountered for a specified number of
epochs equal to the patience parameter reported in Table 3,
training is terminated early.
Table 4 summarizes the results achieved by the proposed

generative models and the benchmark method [18]
with respect to the four employed evaluation metrics.
Figs. 7 and 8 illustrate the temporal relative errors for
the TMs of the testing set (each TM corresponds to a
time point) and the spatial relative errors of every OD
flow, along with the corresponding cumulative distribution
functions (CDFs), for the Abilene and the GÉANT dataset,
respectively. As can be seen, using the trained decoder of
the proposed VAE-based generative models and solving the
latent space minimization problem (2) outperforms the GAN-
based benchmark method [18] on all four metrics for both
datasets.
In the specific case of the Abilene dataset, the integra-

tion of attention mechanisms, namely Convolutional Block
Attention Module (CBAM) or Squeeze-and-Excitation (SE)
block, following each convolutional layer of the VAE,
leads to an enhancement in performance across all metrics
besides SRE, albeit the magnitude of improvement is
modest. As anticipated, the overall best performance is
attained by employing ConvLSTM layers in conjunction

with standard convolutional layers, effectively capturing spa-
tiotemporal dependencies and sequential dynamics. Finally,
even though the introduction of self-attention to the
ConvLSTM-based VAE results in a slight deterioration
of the RMSE, NMAE, and TRE values when juxtaposed
with the vanilla spatiotemporal model, the enhanced model
still outperforms the other spatial models and achieves the
superior performance in terms of SRE among all considered
variants.
Concerning the GÉANT dataset, the substantial standard

deviation and maximum values indicate the presence of
outlier data points within each metric, affecting the mean
values and complicating the model comparison. However, a
more discerning analysis, focusing on median values, con-
veys a narrative akin to that observed in the Abilene dataset.
Specifically, the simple convolutional VAE experiences
marginal improvement by including attention mechanisms
(CBAM or SE) after each convolutional layer, whereas
the ConvLSTM-based VAE achieves the best performance
across all metrics, excluding SRE. Once again, introducing
self-attention to the ConvLSTM-based VAE significantly
improves SRE compared to the vanilla spatiotemporal model.
Finally, the larger number of OD flows (576 compared
to 144 for Abilene) does explain the observation of more
spikes in the spatial relative errors in Fig. 8(c) compared to
Fig. 7(c).
We have implemented the benchmark method [18], adher-

ing precisely to the authors’ description and details provided
in the respective published article. The model’s architecture,
hyperparameters, and training process were based on the
information found in the original work. Consequently, the
WGAN-GP model utilizes only feedforward/dense layers.
However, recognizing the documented performance benefits
of convolutional layers and considering the prevalence of
such layers in contemporary GAN architectures, we examine
a WGAN-GP variant. Specifically, we modify the generator
to include convolutional layers and CBAM or SE blocks.
Given that the generator maps from the latent space back
to the original domain, it is necessary to double the width

VOLUME 5, 2024 1041

KAKKAVAS et al.: GENERATIVE DEEP LEARNING TECHNIQUES FOR TME FROM LINK LOAD MEASUREMENTS

TABLE 4. Estimation errors for the developed deep generative models.

and height of the tensor at (some of the) intermediate layers
to reach the original dimensions. In our VAE variants, we
use Conv2DTranspose layers with a stride of 2 for

this purpose, inserting zero values between pixels before
performing the convolution operations. In the WGAN-GP
generator though, for compatibility with CBAM and SE

1042 VOLUME 5, 2024

FIGURE 7. Temporal and spatial relative errors for the Abilene dataset.

blocks, we employ UpSampling2D layers that double the
size by repeating each row and column of the input, followed
by standard Conv2D layers with stride 1 for the convolution
operation, and then CBAM or SE blocks for attention. We
conducted the same experiments using this variant over the
GÉANT dataset and present them in Table 5.

To conclude, in our experimental analysis, we found that
the most demanding computational task in the proposed
approach is the latent space minimization process, consuming
the majority of execution time. When comparing the “spatial”
generative models (i.e., the Convolutional VAE and its
variants featuring CBAM and SE block) with the WGAN-GP
benchmark method, we observe no significant differences in
execution time or computational cost. This observation aligns
with previous findings in the literature, emphasizing the
lightweight and versatile nature of CBAM and the SE block.
Specifically, CBAM has been proven end-to-end trainable
alongside the convolutional layers it extends, introducing
only a small overhead in parameters and computation [14].
Similarly, the SE block slightly increases runtime and com-
putational cost, primarily due to the additional parameters
in the two fully connected layers of the gating mechanism.
However, these parameters constitute a small fraction of the
total network capacity [15].

TABLE 5. Estimation errors for the modified WGAN-GP with an attention-enhanced
convolutional generator over the GÉANT dataset.

Moreover, it is important to remind that the benchmark
method only considers spatial dependencies in traffic matri-
ces. In contrast, the model variant utilizing ConvLSTM
layers aims to capture the temporal dimension and model
dependencies between different time steps. Consequently,

VOLUME 5, 2024 1043

KAKKAVAS et al.: GENERATIVE DEEP LEARNING TECHNIQUES FOR TME FROM LINK LOAD MEASUREMENTS

FIGURE 8. Temporal and spatial relative errors for the GÉANT dataset.

this incurs a higher computational overhead, as is typical
in recurrent neural network (RNN)-based architectures.
Incorporating self-attention further amplifies the computa-
tional burden, requiring correlation calculations across all
spatial positions.

V. CONCLUSION
This work explored a novel approach using deep generative
models to estimate traffic matrices (TMs) from link load
measurements. By leveraging historical TMs, traffic matrix
estimation (TME) was simplified and transformed into a
constrained minimization problem in a lower-dimensional
latent space. The proposed models are variants of the
Variational Autoencoder (VAE) architecture and include
components such as the Convolutional Block Attention
Module (CBAM), the Squeeze and Excitation (SE) block,
and ConvLSTM layers with or without self-attention memory
for modeling complex spatiotemporal dependencies. They
were evaluated on two publicly available datasets of real
backbone network traffic matrices and showed improvements
in representation learning and accuracy compared to a state-
of-the-art method from the literature.
Altogether, the experimental results demonstrated the

effectiveness of the deep generative techniques for TME

and highlighted the ability of deep generative models to
accurately estimate TMs from link load measurements.
The presented contributions offer a practical and efficient
network monitoring solution, which could enhance network
management and traffic engineering. Overall, the proposed
deep generative models were able to capture both spatial and
temporal dependencies and attend to salient locations within
the traffic data.

REFERENCES
[1] P. Tune and M. Roughan, “Internet traffic matrices: A primer,”

in Recent Advances in Networking, vol. 1, H. Haddadi and
O. Bonaventure, Eds. New York, NY, USA: ACM SIGCOMM,
2013.

[2] G. Kakkavas, D. Gkatzioura, V. Karyotis, and S. Papavassiliou, “A
review of advanced algebraic approaches enabling network tomogra-
phy for future network infrastructures,” Future Internet, vol. 12, no. 2,
p. 20, Jan. 2020, doi: 10.3390/fi12020020.

[3] G. Kakkavas, A. Stamou, V. Karyotis, and S. Papavassiliou, “Network
tomography for efficient monitoring in SDN-enabled 5G networks and
beyond: Challenges and opportunities,” IEEE Commun. Mag., vol. 59,
no. 3, pp. 70–76, Mar. 2021, doi: 10.1109/MCOM.001.2000458.

[4] R. Boutaba et al., “A comprehensive survey on machine learning
for networking: evolution, applications and research opportuni-
ties,” J. Internet Serv. Appl., vol. 9, no. 1, p. 16, Dec. 2018.
[Online]. Available: https://jisajournal.springeropen.com/articles/10.
1186/s13174-018-0087-2

1044 VOLUME 5, 2024

http://dx.doi.org/10.3390/fi12020020
http://dx.doi.org/10.1109/MCOM.001.2000458

[5] T. Panayiotou, M. Michalopoulou, and G. Ellinas, “Survey on machine
learning for traffic-driven service provisioning in optical networks,”
IEEE Commun. Surveys Tuts., vol. 25, no. 2, pp. 1412–1443,
2nd Quart., 2023. [Online]. Available: https://ieeexplore.ieee.org/
document/10050012/

[6] D. Foster, Generative Deep Learning: Teaching Machines to Paint,
Write, Compose, and Play, 1st ed. Sebastopol, CA, USA: O’Reilly
Media, Inc., 2019, p. on1083570909.

[7] L. Ruthotto and E. Haber, “An introduction to deep genera-
tive modeling,” GAMM-Mitteilungen, vol. 44, no. 2, Jun. 2021,
Art. no. e202100008, doi: 10.1002/gamm.202100008.

[8] A. G. Dimakis, “Deep generative models and inverse problems,”
in Mathematical Aspects of Deep Learning, 1st ed., P. Grohs and
G. Kutyniok, Eds. Cambridge, U.K.: Cambridge Univ. Press, 2022,
pp. 400–421. [Online]. Available: https://www.cambridge.org/core/
product/identifier/9781009025096

[9] A. Bora, A. Jalal, E. Price, and A. G. Dimakis, “Compressed sensing
using generative models,” in Proc. 34th Int. Conf. Mach. Learn.,
2017, pp. 537–546. [Online]. Available: https://proceedings.mlr.press/
v70/bora17a.html

[10] G. Daras, J. Dean, A. Jalal, and A. G. Dimakis, “Intermediate layer
optimization for inverse problems using deep generative models,”
2021, arXiv:2102.07364.

[11] G. Ongie, A. Jalal, C. A. Metzler, R. G. Baraniuk, A. G. Dimakis,
and R. Willett, “Deep learning techniques for inverse problems in
imaging,” IEEE J. Sel. Areas Inf. Theory, vol. 1, no. 1, pp. 39–56,
May 2020, doi: 10.1109/JSAIT.2020.2991563.

[12] E. Balevi, A. Doshi, A. Jalal, A. Dimakis, and J. G. Andrews, “High
dimensional channel estimation using deep generative networks,” IEEE
J. Sel. Areas Commun., vol. 39, no. 1, pp. 18–30, Jan. 2021. [Online].
Available: https://ieeexplore.ieee.org/document/9252921/

[13] G. Kakkavas, M. Kalntis, V. Karyotis, and S. Papavassiliou, “Future
network traffic matrix synthesis and estimation based on deep
generative models,” in Proc. Int. Conf. Comput. Commun. Netw.
(ICCCN), Athens, Greece, 2021, pp. 1–8. [Online]. Available: https://
ieeexplore.ieee.org/document/9522222/

[14] S. Woo, J. Park, J.-Y. Lee, and I. S. Kweon, “CBAM: Convolutional
block attention module,” in Proc. 15th Eur. Conf. Comput.
Vis., V. Ferrari, M. Hebert, C. Sminchisescu, and Y. Weiss,
Eds. Cham, Switzerland: Springer Int. Publ., 2018, pp. 3–19,
doi: 10.1007/978-3-030-01234-2_1.

[15] J. Hu, L. Shen, and G. Sun, “Squeeze-and-excitation networks,”
in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), 2018,
pp. 7132–7141.

[16] X. Shi, Z. Chen, H. Wang, D.-Y. Yeung, W.-K. Wong,
and W.-C. Woo, “Convolutional LSTM network: A machine
learning approach for precipitation nowcasting,” in Proc. 28th
Adv. Neural Inf. Process. Syst., 2015, pp. 802–810. [Online].
Available: https://proceedings.neurips.cc/paper_files/paper/2015/file/
07563a3fe3bbe7e3ba84431ad9d055af-Paper.pdf

[17] Z. Lin, M. Li, Z. Zheng, Y. Cheng, and C. Yuan, “Self-attention
ConvLSTM for spatiotemporal prediction,” in Proc. AAAI Conf. Artif.
Intell., 2020, pp. 11531–11538. [Online]. Available: https://ojs.aaai.
org/index.php/AAAI/article/view/6819

[18] S. Xu, M. Kodialam, T. V. Lakshman, and S. S. Panwar, “Learning
based methods for traffic matrix estimation from link measurements,”
IEEE Open J. Commun. Soc., vol. 2, pp. 488–499, 2021. [Online].
Available: https://ieeexplore.ieee.org/document/9369309/

[19] Y. Vardi, “Network tomography: Estimating source-
destination traffic intensities from link data,” J. Amer.
Statist. Assoc., vol. 91, no. 433, pp. 365–377, Mar. 1996,
doi: 10.1109/TCYB.2021.3062949.

[20] C. Tebaldi and M. West, “Bayesian inference on network traffic using
link count data,” J. Amer. Statist. Assoc., vol. 93, no. 442, pp. 557–573,
Jun. 1998,” doi: 10.1109/TCYB.2021.3062949.

[21] J. Cao, D. Davis, S. V. Wiel, and B. Yu, “Time-varying
network tomography: Router link data,” J. Amer. Statist.
Assoc., vol. 95, no. 452, pp. 1063–1075, Dec. 2000,
doi: 10.2307/2669743.

[22] Y. Zhang, M. Roughan, N. Duffield, and A. Greenberg, “Fast accurate
computation of large-scale IP traffic matrices from link loads,” ACM
SIGMETRICS Perform. Eval. Rev., vol. 31, no. 1, pp. 206–217,
Jun. 2003, doi: 10.1145/885651.781053.

[23] A. Soule, A. Nucci, R. Cruz, E. Leonardi, and N. Taft, “How to
identify and estimate the largest traffic matrix elements in a dynamic
environment,” in Proc. Joint Int. Conf. Meas. Model. Comput. Syst.
SIGMETRICS, 2004, pp. 73–84, doi: 10.1145/1012888.1005698.

[24] A. Soule et al., “Traffic matrices: Balancing measurements, inference
and modeling,” ACM SIGMETRICS Perform. Eval. Rev., vol. 33, no. 1,
pp. 362–373, Jun. 2005, doi: 10.1145/1071690.1064259.

[25] Y. Zhang, M. Roughan, W. Willinger, and L. Qiu, “Spatio-temporal
compressive sensing and Internet traffic matrices,” ACM SIGCOMM
Comput. Commun. Rev., vol. 39, no. 4, pp. 267–278, Aug. 2009,
doi: 10.1145/1594977.1592600.

[26] F. J. Cuberos, I. Herrera, K. Wasielewska, and J. Camacho, “Network
tomography and partial least squares for traffic matrix estimation,” in
Proc. 17th Int. Conf. Netw. Service Manage. (CNSM), 2021, pp. 259–
263, doi: 10.23919/CNSM52442.2021.9615551.

[27] J. L. Pachuau, A. Roy, G. Krishna, and A. K. Saha, “Estimation
of traffic matrix from links load using genetic algorithm,” Scalable
Comput., Pract. Exp., vol. 22, no. 1, pp. 29–38, Feb. 2021,
doi: 10.12694/scpe.v22i1.1834.

[28] Y. Ephraim, J. Coblenz, B. L. Mark, and H. Lev-Ari, “Mixed poisson
traffic rate network tomography,” in Proc. 55th Annu. Conf. Inf. Sci.
Syst. (CISS), 2021, pp. 1–6, doi: 10.1109/CISS50987.2021.9400239.

[29] Y. Ephraim, J. Coblenz, B. L. Mark, and H. Lev-Ari, “Traffic rate
network tomography via moment generating function matching,” in
Proc. 56th Annu. Conf. Inf. Sci. Syst. (CISS), 2022, pp. 148–153,
doi: 10.1109/CISS53076.2022.9751201.

[30] F. Qian, G. Hu, and J. Xie, “A recurrent neural network approach to
traffic matrix tracking using partial measurements,” in Proc. 3rd IEEE
Conf. Ind. Electron. Appl., 2008, pp. 1640–1643. [Online]. Available:
https://ieeexplore.ieee.org/abstract/document/4582797

[31] D. Jiang, X. Wang, L. Guo, H. Ni, and Z. Chen, “Accurate estimation
of large-scale IP traffic matrix,” AEU Int. J. Electron. Commun.,
vol. 65, no. 1, pp. 75–86, Jan. 2011, doi: 10.1016/j.aeue.2010.02.008.

[32] D. Jiang, Z. Zhao, Z. Xu, C. Yao, and H. Xu, “How to reconstruct
end-to-end traffic based on time-frequency analysis and artificial
neural network,” AEU Int. J. Electron. Commun., vol. 68, no. 10,
pp. 915–925, Oct. 2014, doi: 10.1016/j.aeue.2014.04.011.

[33] A. Omidvar and H. Shahhoseini, “Intelligent IP traffic matrix
estimation by neural network and genetic algorithm,” in Proc.
IEEE 7th Int. Symp. Intell. Signal Process., 2011, pp. 1–6,
doi: 10.1109/WISP.2011.6051689.

[34] L. Nie, D. Jiang, L. Guo, and S. Yu, “Traffic matrix prediction
and estimation based on deep learning in large-scale IP backbone
networks,” J. Netw. Comput. Appl., vol. 76, pp. 16–22, Dec. 2016,
doi: 10.1016/j.jnca.2016.10.006.

[35] H. Zhou, L. Tan, Q. Zeng, and C. Wu, “Traffic matrix estimation:
A neural network approach with extended input and expectation
maximization iteration,” J. Netw. Comput. Appl., vol. 60, pp. 220–232,
Jan. 2016, doi: 10.1016/j.jnca.2015.11.013.

[36] M. Emami, R. Akbari, R. Javidan, and A. Zamani, “A new approach
for traffic matrix estimation in high load computer networks based
on graph embedding and convolutional neural network,” Trans
Emerging Tel Tech, vol. 30, no. 6, Mar. 2019, Art. no. e3604,
doi: 10.1002/ett.3604.

[37] R. A. Memon, S. Qazi, and B. M. Khan, “Design and implementation
of a robust convolutional neural network-based traffic matrix estimator
for cloud networks,” Wireless Commun. Mobile Comput., vol. 2021,
pp. 1–11, Jun. 2021. [Online]. Available: https://www.hindawi.com/
journals/wcmc/2021/1039613/

[38] S. M. Atif, N. Gillis, S. Qazi, and I. Naseem, “Structured
nonnegative matrix factorization for traffic flow estimation of
large cloud networks,” Comput. Netw., vol. 201, Dec. 2021,
Art. no. 108564. [Online]. Available: https://linkinghub.elsevier.com/
retrieve/pii/S1389128621004771

[39] S. S. Hussain, M. A. Sultan, S. Qazi, and M. Ameer, “Intelligent
traffic matrix estimation using LevenBerg-marquardt artificial neu-
ral network of large scale IP network,” in Proc. 13th Int. Conf.
Math., Actuar. Sci., Comput. Sci. Statist. (MACS), 2019, pp. 1–5,
doi: 10.1109/MACS48846.2019.9024765.

[40] E. Hüllermeier and W. Waegeman, “Aleatoric and epistemic uncer-
tainty in machine learning: an introduction to concepts and methods,”
Mach. Learn., vol. 110, no. 3, pp. 457–506, Mar. 2021. [Online].
Available: https://link.springer.com/10.1007/s10994-021-05946-3

VOLUME 5, 2024 1045

http://dx.doi.org/10.1002/gamm.202100008
http://dx.doi.org/10.1109/JSAIT.2020.2991563
http://dx.doi.org/10.1007/978-3-030-01234-2_1
http://dx.doi.org/10.1109/TCYB.2021.3062949
http://dx.doi.org/10.1109/TCYB.2021.3062949
http://dx.doi.org/10.2307/2669743
http://dx.doi.org/10.1145/885651.781053
http://dx.doi.org/10.1145/1012888.1005698
http://dx.doi.org/10.1145/1071690.1064259
http://dx.doi.org/10.1145/1594977.1592600
http://dx.doi.org/10.23919/CNSM52442.2021.9615551
http://dx.doi.org/10.12694/scpe.v22i1.1834
http://dx.doi.org/10.1109/CISS50987.2021.9400239
http://dx.doi.org/10.1109/CISS53076.2022.9751201
http://dx.doi.org/10.1016/j.aeue.2010.02.008
http://dx.doi.org/10.1016/j.aeue.2014.04.011
http://dx.doi.org/10.1109/WISP.2011.6051689
http://dx.doi.org/10.1016/j.jnca.2016.10.006
http://dx.doi.org/10.1016/j.jnca.2015.11.013
http://dx.doi.org/10.1002/ett.3604
http://dx.doi.org/10.1109/MACS48846.2019.9024765

KAKKAVAS et al.: GENERATIVE DEEP LEARNING TECHNIQUES FOR TME FROM LINK LOAD MEASUREMENTS

[41] X. Wu, J. Guo, K. Xian, and X. Zhou, “Hierarchical travel
demand estimation using multiple data sources: A forward and
backward propagation algorithmic framework on a layered com-
putational graph,” Transp. Res. Part C, Emerg. Technol., vol. 96,
pp. 321–346, Nov. 2018. [Online]. Available: https://linkinghub.
elsevier.com/retrieve/pii/S0968090X18306685

[42] J. Ou, J. Lu, J. Xia, C. An, and Z. Lu, “Learn, assign, and search: Real-
time estimation of dynamic origin-destination flows using machine
learning algorithms,” IEEE Access, vol. 7, pp. 26967–26983, 2019.
[Online]. Available: https://ieeexplore.ieee.org/document/8651455/

[43] W. Ma, X. Pi, and S. Qian, “Estimating multi-class dynamic
origin-destination demand through a forward-backward algorithm
on computational graphs,” Transportation Research Part C:
Emerging Technologies, vol. 119, Oct. 2020, Art. no. 102747.
[Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/
S0968090X20306604

[44] M. Mohammed and J. Oke, “Origin-destination inference in public
transportation systems: A comprehensive review,” Int. J. Transp. Sci.
Technol., vol. 12, no. 1, pp. 315–328, Mar. 2023. [Online]. Available:
https://linkinghub.elsevier.com/retrieve/pii/S2046043022000223

[45] H. Gm, M. K. Gourisaria, M. Pandey, and S. S. Rautaray,
“A comprehensive survey and analysis of generative models
in machine learning,” Comput. Sci. Rev., vol. 38, Nov. 2020,
Art. no. 100285. [Online]. Available: https://linkinghub.elsevier.com/
retrieve/pii/S1574013720303853

[46] J. M. Tomczak, Deep Generative Modeling. Cham, Switzerland:
Springer Int. Publ., 2022. [Online]. Available: https://link.springer.
com/10.1007/978-3-030-93158-2

[47] D. P. Kingma and M. Welling, “An introduction to variational
autoencoders,” Found. Trends� Mach. Learn., vol. 12, no. 4,
pp. 307–392, 2019. [Online]. Available: http://www.nowpublishers.
com/article/Details/MAL-056

[48] E. Bisong, “Optimization for machine learning: Gradient descent,”
in Building Machine Learning and Deep Learning Models on
Google Cloud Platform. Berkeley, CA, USA: Apress, 2019,
pp. 203–207. [Online]. Available: http://link.springer.com/10.1007/
978-1-4842-4470-8_16

[49] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,”
2013, arXiv:1312.6114.

[50] A. Vaswani et al., “Attention is all you need,” in Proc.
31st Adv. Neural Inf. Process. Syst., 2017, pp. 1–11. [Online].
Available: https://proceedings.neurips.cc/paper_files/paper/2017/file/
3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

[51] F. Chollet. “Keras.” 2015. [Online]. Available: https://keras.io
[52] M. Abadi et al., “TensorFlow: A sysyem for large-scale machine

learning on heterogeneous systems,” in Proc. 12th USENIX Conf.
Oper. Syst. Design Implement., 2015, pp. 265–283. [Online]. Available:
https://www.tensorflow.org/

[53] S. Uhlig, B. Quoitin, J. Lepropre, and S. Balon, “Providing pub-
lic intradomain traffic matrices to the research community,” ACM
SIGCOMM Comput. Commun. Rev., vol. 36, no. 1, pp. 83–86,
Jan. 2006, doi: 10.1145/1111322.1111341

[54] D. P. Kingma and J. Ba, “Adam: A method for stochastic
optimization,” 2014, arXiv:1412.6980.

[55] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. Courville,
“Improved training of wasserstein gans,” in Proc. 31st Int. Conf.
Neural Inf. Process. Syst., 2017, pp. 5769–5779.

GRIGORIOS KAKKAVAS (Graduate Student
Member, IEEE) received the Diploma degree
in electrical and computer engineering from
the National Technical University of Athens in
2010, and the M.Sc. degree in management
and economics of telecommunications networks
from the National and Kapodistrian University of
Athens, Greece, in 2012. He is currently pursuing
the Ph.D. degree with the NETMODE Laboratory,
NTUA, where he is a Research Assistant. His
research interests lie in the areas of 5G/6G mobile

communications, cognitive radio, and network monitoring techniques, with
a focus on network tomography.

NIKOLAOS FRYGANIOTIS received the Diploma
degree in electrical and computer engineering
from the National Technical University of Athens,
Greece, in 2022. He is currently pursuing the
Ph.D. degree with the NETMODE Laboratory,
NTUA, where he is a Research Assistant. His
research interests lie in the areas of distributed
randomized graph coloring algorithms, game the-
ory, optimization, machine learning techniques,
and reinforcement learning.

VASILEIOS KARYOTIS (Member, IEEE) received
the Diploma degree in electrical and computer
engineering (ECE) from the National Technical
University of Athens (NTUA), Greece, in 2004,
the M.Sc. degree in electrical engineering from
the University of Pennsylvania, USA, in 2005,
and the Ph.D. degree in ECE from NTUA, in
2009. He is currently an Associate Professor
with the Department of Informatics, Ionian
University, Corfu, Greece. Since 2009, he has
been a Research Associate with the NETMODE

Laboratory, NTUA, Greece, and since October 2017, he has been an Adjunct
Lecturer with Hellenic Open University, Greece. He has coauthored the
books Evolutionary Dynamics of Complex Communications Networks and
Malware Diffusion Models for Modern Complex Networks: Theory and
Applications. His research interests focus on the modeling and analysis
of complex networks, with emphasis on resource allocation, malware
propagation, and modeling/control of information diffusion. He was awarded
a Fellowship from the Department of ESE of UPenn from 2004 to 2005,
and one of two departmental fellowships for exceptional graduate students
from the School of ECE of NTUA from 2007 to 2009. He also received a
Best Paper Award in ICT 2016.

SYMEON PAPAVASSILIOU (Senior Member,
IEEE) is currently a Professor with the School
of Electrical and Computer Engineering, National
Technical University of Athens, where he is the
Director of Network Management and Optimal
Design (NETMODE) Laboratory. From 1995 to
1999, he was a Senior Technical Staff Member
with AT&T Laboratories, NJ, USA. In August
1999, he joined the ECE Department, New Jersey
Institute of Technology, USA, where he was
an Associate Professor until 2004. He has an

established record of publications with more than 400 technical journal
and conference published papers. His main research interests lie in the
areas of modeling, optimization and performance evaluation of complex
networks and interdependent systems, mobile edge computing, and Internet
of Things. He received the Best Paper Award in IEEE INFOCOM 94, the
AT&T Division Recognition and Achievement Award in 1997, the U.S.
National Science Foundation Career Award in 2003, the Excellence in
Research Grant in Greece in 2012, and the Best Paper Awards in IEEE
WCNC 2012, ADHOCNETS 2015, ICT 2016, IEEE/IFIP WMNC 2019
and IEEE Globecom 2022, as well as the 2019 IEEE ComSoc Technical
Committee on Communications Systems Integration and Modeling Best
Paper Award (for his INFOCOM 2019 paper). He has served on several
journal editorial positions and held various leading roles in the organization
of international conferences and workshops. He also served on the board
of the Greek National Regulatory Authority on Telecommunications and
Posts from 2006 to 2009.

1046 VOLUME 5, 2024

http://dx.doi.org/10.1145/1111322.1111341

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Helvetica-Condensed-Bold
 /Helvetica-LightOblique
 /HelveticaNeue-Bold
 /HelveticaNeue-BoldItalic
 /HelveticaNeue-Condensed
 /HelveticaNeue-CondensedObl
 /HelveticaNeue-Italic
 /HelveticaNeueLightcon-LightCond
 /HelveticaNeue-MediumCond
 /HelveticaNeue-MediumCondObl
 /HelveticaNeue-Roman
 /HelveticaNeue-ThinCond
 /Helvetica-Oblique
 /HelvetisADF-Bold
 /HelvetisADF-BoldItalic
 /HelvetisADFCd-Bold
 /HelvetisADFCd-BoldItalic
 /HelvetisADFCd-Italic
 /HelvetisADFCd-Regular
 /HelvetisADFEx-Bold
 /HelvetisADFEx-BoldItalic
 /HelvetisADFEx-Italic
 /HelvetisADFEx-Regular
 /HelvetisADF-Italic
 /HelvetisADF-Regular
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

