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ABSTRACT The combination of mobile edge computing (MEC) and radio frequency-based wireless
power transfer (WPT) presents a promising technique for providing sustainable energy supply and
computing services at the network edge. This study considers a wireless-powered mobile edge computing
system that includes a hybrid access point (HAP) equipped with a computing unit and multiple Internet
of Things (IoT) devices. In particular, we propose a novel multi-user cooperation scheme to improve
computation performance, where collaborative clusters are dynamically formed. Each collaborative cluster
comprises a source device (SD) and an auxiliary device (AD), where the SD can partition the computation
task into various segments for local processing, offloading to the HAP, and remote execution by the AD
with the assistance of the HAP. Specifically, we aims to maximize the weighted sum computation rate
(WSCR) of all the IoT devices in the network. This involves jointly optimizing collaboration, time and
data allocation among multiple IoT devices and the HAP, while considering the energy causality property
and the minimum data processing requirement of each device. Initially, an optimization algorithm based on
the interior-point method is designed for time and data allocation. Subsequently, a priority-based iterative
algorithm is developed to search for a near-optimal solution to the multi-user collaboration scheme. Finally,
a deep learning-based approach is devised to further accelerate the algorithm’s operation, building upon
the initial two algorithms. Simulation results show that the performance of the proposed algorithms is
comparable to that of the exhaustive search method, and the deep learning-based algorithm significantly
reduces the execution time of the algorithm.

INDEX TERMS Mobile edge computing, multi-user collaboration, wireless power transfer, time and data
allocation, deep learning.

I. INTRODUCTION
A. BACKGROUND

THE INDUSTRIAL Internet of Things (IIoT) is an
application of Internet of Things (IoT) in the industrial

sector [1]. It represents a new stage for the development
of intelligence in traditional industries. IoT nodes with
heterogeneous sensors are deployed in an IIoT network
to perform various monitoring and control functions. The
data collected by IoT nodes can be analyzed to enhance
production effectiveness and reliability [2]. Generally, data is

collected through IoT nodes’ access points and transmitted
to a cloud computing center for processing and analysis.
However, cloud computing introduces long transmission
delays, rendering it unsuitable for real-time IIoT scenarios.
Moreover, IIoT systems place a strong emphasis on the
protection of private data, especially when dealing with con-
fidential products that may involve sensitive information [3].
To enhance data processing and privacy protection in

IIoT systems, empowering access points with mobile edge
computing (MEC) capability is under consideration [4], [5].
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MEC enables low-latency operations by extending cloud
computing and services to the network edge [6], [7], [8],
[9], [10]. It also enhances the ability to protect private
data, as data processing occurs exclusively within the plant’s
network. However, the computing capabilities of the access
point and IoT nodes are limited. Additionally, data collected
by different IoT nodes has varying levels of importance.
Therefore, we aim to analyze as much high-importance data
as possible while ensuring that each IoT node meets the
minimum data processing requirement. This goal enables
personalized and targeted data analysis in the IIoT system.
In the context of MEC, the literature extensively investi-

gates two popular offloading policies [11], [12], [13], [14],
[15]: partial offloading and binary offloading. The former
is applicable to arbitrarily divisible computing tasks. In this
case, each task is divided into two parts: one is offloaded to
the MEC server, and the other is computed locally by the
IoT device. The latter is suitable for indivisible computing
tasks, such as simple atomic tasks. Therefore, each task
is computed either by the IoT node or the MEC server.
However, in the scenario we consider, these two strategies
fail to harness the IIoT system’s computational capacity fully.
This study explores collaboration among multiple IoT nodes
and the hybrid access point (HAP) to maximize the weighted
sum computation rate (WSCR) of the IIoT system.
On the other hand, due to the stringent device size

constraint and production cost consideration, an IoT device
often carries a capacity-limited battery, which needs frequent
battery replacement and charging. However, this requirement
can result in significant labor costs and financial burdens for
service providers, particularly in large-scale IIoT systems and
harsh environments [16], [17]. Therefore, radio frequency
(RF)-based wireless power transfer (WPT) has emerged
as an effective solution to the problem of finite battery
capacity [18]. Specifically, WPT employs a dedicated RF
energy transmitter to charge the batteries of remote energy-
harvesting devices continuously [19]. According to reports,
commercial WPT transmitters can continuously supply
RF power of approximately 5W over distances exceeding
10 meters [20]. Deploying the information transceiver,
energy transmitter, and computing unit on the HAP to
provide both MEC services and WPT can yield their benefits
simultaneously. Therefore, wireless-powered mobile edge
computing has garnered significant interest as a viable
solution to address computing capacity constraints and
energy consumption issues in IIoT systems.

B. RELATED WORK
In the existing literature [11], [13], [16], [19], [21], [22],
[24], [25], [26], [27], [28], [29], MEC and WPT have been
extensively investigated in IoT systems. In [13], an MEC
network was studied to minimize the execution delay of
total tasks. The study proposed an optimized offloading
framework that allows multiple IoT devices to offload tasks
to multiple edge computing servers. In [29], the authors
focused on minimizing the overall energy consumption of

IoT devices. The research investigated resource allocation
techniques for multi-user MEC systems based on time
division multiple access (TDMA) and orthogonal frequency
division multiple access (OFDMA). However, the WPT was
not involved in [13] and [29].

The optimal design of wireless-powered MEC networks
differs significantly from traditional non-WPT-involved MEC
networks due to the trade-off between WPT and wireless
information transfer (WIT) [22]. To effectively leverage the
benefits of MEC and RF-based WPT, several recent studies
have delved into the investigation of wireless-powered MEC
networks. In [19], a single-user wireless-powered MEC
system was studied to minimize the total transmitted energy
consumption of the energy transmitter (ET). The study
developed heuristic online designs for joint energy and
task allocation. In [21], the authors presented analytical
expressions for the probability of successful computation and
the average number of successfully computed bits in a single-
user wireless-powered MEC system, aiming to maximize the
system’s utility. However, [19] and [21] only considered the
single-user network model and the derived results may not
be readily applicable to multi-user scenarios.
In practice, IIoT systems commonly consist of a large

number of IoT devices. As a result, several studies
have explored multi-user wireless-powered MEC networks.
However, most of these works primarily focus on the trade-
off between computing offloading and wireless charging,
neglecting the aspect of collaboration among users. The
study in [23] investigated a multi-user MEC network
powered by WPT. In this network, each energy-harvesting
node adheres to a binary computation offloading policy. A
joint optimization method, utilizing the alternating direction
method of multipliers (ADMM) decomposition technique,
was proposed. This method aims to maximize the weighted
sum computation rate of all nodes in the network by optimiz-
ing both individual computing mode selection and system
transmission time allocation jointly. Work in [22] studied
a wireless-powered multi-user MEC network in which
the transmit power of HAP was minimized. The authors
devised an algorithm based on the ADMM to optimize the
time allocation and computational mode selection jointly.
In [16], a wireless-powered multi-user hierarchical fog cloud
computing network was studied to maximize the minimum
energy balance among all users. To achieve the global
optimal solution, the authors proposed a generalized Benders
decomposition (GBD)-based approach. In [24], a rotary-wing
unmanned aerial vehicle (UAV)-assisted multi-user wireless-
powered MEC network was studied, aiming to minimize the
energy consumption of the UAV. The authors devised an
iterative method based on successive convex approximation
(SCA) theory to solve the non-convex problem, jointly
optimizing the UAV trajectory, the offloading amount,
and the computational resource allocation. In [25], an
OFDMA-based multi-user wireless-powered MEC system
was studied to maximize the weighted sum computation rate.
The study proposed an efficient algorithm based on block
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coordinate descent to achieve near-optimal performance.
In [11], a wireless-powered MEC network with multiple
users was studied to maximize computational efficiency. The
research considered and evaluated the offloading based on
both TDMA and non-orthogonal multiple access (NOMA)
and proposed two iterative algorithms and two alternative
optimization algorithms, respectively.
The diversity among different IoT devices has led to

considering user collaboration (UC) as an effective approach
to enhance the system’s computational capacity [28].
Consequently, numerous recent studies have explored the
design of user collaboration in multi-user wireless-powered
MEC networks. In [26], the authors investigated the
application of UC and NOMA schemes in a two-user
wireless-powered MEC network. They aimed to maximize
computational efficiency by jointly designing energy beam-
forming, time, and power allocation. In [27], the authors
proposed a NOMA-assisted UC scheme in a three-node
WPT-MEC system. The system comprises a far user (FU),
a near user (NU), and an access point (AP). The FU
employs NOMA, enabling the simultaneous offloading of
data to the NU and the AP, thereby overcoming the dual
far-near effect of the FU. However, in [26] and [27], only
two-user network models were considered, precisely the NU-
assisted FU scenario. The derived results may face challenges
when extending to multi-user scenarios. In [28], a multi-
user WPT-MEC system was studied. The authors proposed
a multi-user collaboration scheme based on OFDMA to
enhance computational efficiency. The scheme allows users
to divide computational tasks into multiple parts for local
computation, offloading to corresponding assistants, and
the HAP for remote execution. However, the collaborative
relationships among users are fixed in this work. In fact, the
optimal collaborative relationships among users may change
as the state of the network changes.
Table 1 summarizes the closely related works in wireless-

powered MEC networks. A comparison between these works
and ours primarily focuses on the number of users, collabo-
ration mode, objective, technical method, and contributions.

C. CONTRIBUTIONS
The main contributions of this paper are summarized as
follows.

• Firstly, to maximize the WSCR of the system, we
formulate a mixed-integer programming (MIP) problem
for the multi-user wireless-powered MEC network. The
problem jointly optimizes the collaboration strategy,
time allocation, and data assignment among users and
the HAP, subject to energy causality constraints and
minimum processing data volume requirements.

• Secondly, we decompose the non-convex optimization
problem into the time and data allocation sub-problem
and the collaboration strategy design sub-problem. An
interior-point method based algorithm is developed to
solve the time and data allocation sub-problem given a
fixed collaboration strategy.

• Thirdly, we propose a low-complexity priority-based
iterative search algorithm to determine the multi-user
collaboration strategy. This allows for finding a sub-
optimal solution within a reduced search space.

• Finally, to further reduce algorithm execution time, we
devise a deep learning-based algorithm building on the
first two algorithms. Simulation results are performed
to demonstrate the validity of the proposed algorithms.

It is worth noting that smart energy harvesting and edge
computing are crucial technologies and challenges in the
context of 6G [30]. Meanwhile, in the realm of 6G, the
IIoT stands out as a typical application scenario within
IoT. Therefore, the investigation of wireless-powered mobile
edge computing within the context of IIoT holds significant
importance.

D. ORGANIZATION
The organization of our work is demonstrated as follows.
The system model is introduced in Section II, and the
weighted sum computation rate maximization problem is
formulated in Section III. In Section IV, three algorithms
are proposed to solve the formulated problem. Numerical
simulation results are provided to validate the proposed
algorithms in Section V. Finally, this paper is concluded
in Section VI. The code and dataset are available at
https://github.com/CPNGroup/WPTMEC.

II. SYSTEM MODEL
A. NETWORK MODEL
In this paper, we consider a multi-user wireless-powered
MEC network. The network consists of a HAP integrated
with a computing unit and a set of single-antenna devices,
denoted as N = {1, . . . ,N}. The HAP with N antennas
provides stable wireless energy supply and enables task
offloading for the N devices, where each device can convert
the received RF signals into power for subsequent data
offloading and processing. The system time is segmented
into consecutive time frames, each with a uniform duration
of T , deliberately chosen to be smaller than the channel
coherence time. For instance, this could be on the order
of several seconds in a static IoT environment [31]. At the
beginning of each time frame, the devices are categorized
into three types based on the diversity in data importance,
computational capabilities, and channel qualities. The three
classes are source devices (SDs), auxiliary devices (ADs),
and independent devices (IDs), as illustrated in Fig. 1.
Let o = {o1, o2, . . . , om}, p = {p1, p2, . . . , pm}, and q =
{q1, q2, . . . , qN−2m} denote the sets of SDs, ADs, and IDs,
respectively, where 2m ≤ N and o ∪ p ∪ q = N . Each
pair {oi, pi}, ∀i ∈ {1, 2, . . . ,m}, forms a collaborative
cluster, where m is the number of collaborative clusters. As
shown in Fig. 2, the data of each source device (SD) is
partitioned into three parts for processing at the local device,
HAP, and corresponding auxiliary device (AD), respectively.
Specifically, for the portion of an SD’s data that is designated
for processing at the corresponding AD, it will first be
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TABLE 1. Overview of the literature related to wireless-powered MEC networks.

transmitted to the HAP and then forwarded to the AD by
the HAP. This avoids communication issues due to distance
limitations between the SD and AD. The data of each AD is
processed locally. The data of each independent device (ID)
is partitioned into two parts for processing at the local device
and HAP, respectively. The main symbols and notations are
summarized in Table 2.

B. HARVEST-AND-OFFLOADING PROTOCOL
To avoid co-channel interference and facilitate collaboration
among users as well as between users and HAP, we propose
a harvest-and-offload protocol utilizing UC and OFDMA,
as depicted in Fig. 3. This protocol achieves collaboration
among users as well as between users and HAP by planning

the time allocation for different categories of IoT devices
and HAP in each time frame. It is assumed that the same
frequency band is utilized for both RF energy signals
and data transmission. Moreover, based on OFDMA, the
system bandwidth is divided into N sub-channels. The HAP
randomly assigns each device to a sub-channel to avoid
inter-device interference. Consistent with [25], we adopt a
quasistatic scenario where the wireless channel remains static
within each time block but varies across blocks.
As shown in Fig. 3(a), the time block of the HAP is

divided into three stages. The first stage, with a duration of
α1T where α1 ∈ (0, 1], is allocated for WPT. The second
stage, lasting for α2T where α2 ∈ [0, 1), involves the HAP
receiving offloaded data from all devices, including data
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FIGURE 1. The wireless-powered MEC network with multi-user cooperation.

FIGURE 2. The data allocation for three types of devices. (The SD and AD form a
collaborative cluster.)

designated for processing at the HAP and ADs. During the
remaining time of T − (α1 + α2)T , the HAP processes data
received from ADs and IDs, which is intended for processing
at the HAP.
As illustrated in Fig. 3(b), IDs can locally process a

portion of their data throughout the entire time block.
Concurrently, during the initial α1T of each time frame, it
is dedicated to energy harvesting (EH). Subsequently, in the
following α2T , IDs offload the data prepared for processing
at the HAP through uplinks. It is noteworthy that the time
for data offloading from each ID must be less than or equal
to α2T .
Fig. 3(c) illustrates the time allocation and interaction

process between two devices in a cooperative cluster. In the
initial α1T of each time frame, both the SD oi and AD pi
undergo EH. In the subsequent α2T , SD oi offloads the data
prepared for processing at both the HAP and AD pi to the

TABLE 2. Summary of system notations.

HAP via the uplink. Notably, the actual data offloading time
from SD oi to the HAP must be less than or equal to α2T .
However, it is only after α1T + α2T that the HAP begins
transmitting data to ADs, which is designated for processing
by ADs and originates from SDs.
The time tpiap for HAP to send data to AD pi through the

downlink depends on their transmission rate and the amount
of data that SD oi allocates for processing by AD pi. Since
AD pi can only start assisting processing after receiving data
from SD oi, the assisting processing time of AD pi cannot
exceed T− (α1 +α2)T− tpiap. Before the assisting processing,
AD pi needs to process all its data locally. Additionally,
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FIGURE 3. The harvest-and-offloading protocol with UC and OFDMA.

throughout the entire time block, SD oi can process a portion
of its data locally. It is worth noting that the delay for results
collection is ignored, as the size of the results is negligible
compared to the input data size, as stated in [32], [33].
The proposed protocol utilizes OFDMA to reduce the

possibility of co-channel interference among devices. It
employs Time Division Multiplexing (TDD) on sub-
channels, enabling energy harvesting and data transmission
to share the same frequency band. This approach enhances
both spectral and energy efficiency. Simultaneously, the pro-
tocol promotes efficient collaboration among various system
components. It achieves this by strategically allocating time
among different devices, ensuring sufficient time for energy
harvesting, data transmission, and processing within each
timeframe. Nevertheless, the practical implementation of this
protocol faces potential challenges. These include communi-
cation quality fluctuations caused by dynamic environmental
factors, the influence of collaboration delays on real-time
performance, and variations in energy harvesting efficiency
due to environmental changes and device mobility. Due to
space limitations, a detailed discussion of these challenges
will not be pursued.

C. WIRELESS ENERGY TRANSMISSION
At the beginning of each time frame, the HAP broadcasts
wireless power to each user for a duration of α1T . Therefore,
the harvested energy by device n can then be expressed as

Ehn =
{

ηPhnα1T, ηPhnα1T ≤ Emaxn ,

Emaxn , ηPhnα1T > Emaxn ,
n ∈ N , (1)

where constant η ∈ (0, 1) denotes the EH efficiency factor
and P represents the transmit power at the HAP. hn represents
the wireless channel gain between the nth IoT device and
the HAP, assuming it is the same for both uplink and
downlink due to channel reciprocity [23], [34]. Emaxn denotes
the maximum battery capacity of the nth IoT device.

It should be noted that while some existing works have
discussed the non-linear EH model and argued that it
is closer to real-world scenarios [35], numerous studies
(e.g., [36], [37]) have reported that EH circuits typically
operate within the linear region when the distance between

the HAP and IoT devices is not very short. This is due to
the significant influence of path loss in WPT systems on the
amount of harvested energy. Additionally, the linear model
is frequently employed as they are tractable and accurate for
moderate harvested power [16]. Thus, similar to previous
studies [16], [23], [36], [37], we also adopt the linear EH
model when Ehn ≤ Emaxn as shown in (1) in this paper.

D. DATA PROCESSING AND CONSTRAINTS
1) SOURCE DEVICES

The data of SD oi is partitioned into three components:
local processing, processing by the HAP, and processing
by the corresponding AD pi. The data processed by AD
pi needs to be offloaded to the HAP first and then
transmitted from the HAP to AD pi for processing. Regarding
energy consumption, the SD oi’s energy expenditure can be
divided into two main parts: local processing and computing
offloading. These two aspects are analyzed as follows.

• Local processing: An IoT device can harvest energy
and process its data simultaneously [38], [39]. Let foi
denote the processor’s computational speed (cycles per
second) of SD oi, and let llocoi denote the amount of data
processed locally. Therefore, the time required for local

processing is given by tlocoi = llocoi φoi
foi

, where φoi represents
the number of cycles needed to process one bit of
task data from SD oi. Moreover, the local processing
must be completed before the time frame ends, which
can be expressed as tlocoi ≤ T . The energy consumed
by local computation is given by Elocoi = koi f

2
oi l
loc
oi φoi ,

where koi represents the computational energy efficiency
factor [28].

• Computing offloading: Let lapoi denote the amount of
SD oi’s data processed at the HAP, and lpioi denote
the amount of SD oi’s data processed at the AD pi.
Therefore, the time required for SD oi to offload its data

is given by toffoi = lapoi +l
pi
oi

Rapoi
, where Rapoi = B log2(1+ poi hoi

N0
)

denotes the data transmission rate between SD oi and
the HAP. Here, B denotes the sub-channel bandwidth,
N0 denotes the receiver noise power, and poi represents
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the transmit power at SD oi. The offloading time of SD
oi needs to satisfy toffoi ≤ α2T , since the HAP receives
the offloaded data during α2T , as shown in Fig. 3.
Additionally, the energy consumption due to offloading

the data is given by Eoffoi = poi t
off
oi = poi (l

ap
oi +l

pi
oi )

Rapoi
.

According to the energy causality property, an IoT device
cannot consume more energy than it harvests within a given
time frame. Hence, the energy consumption of SD oi must
adhere to the condition: Elocoi + Eoffoi ≤ Ehoi . Furthermore, the
minimum data processing constraint dictates that each IoT
device’s data needs to be processed at least lth bits per time
frame. Therefore, the total amount of data from SD oi that
needs to be processed must satisfy the following inequality:

llocoi + lapoi + lpioi ≥ lth. (2)

2) AUXILIARY DEVICES

The data of AD pi is processed exclusively on the local
device. However, its energy consumption can be divided into
two main components: local processing energy consumption
and auxiliary processing energy consumption. This is due to
the need to process a portion of SD oi’s data. These two
aspects are analyzed as follows.

• Auxiliary processing: The time required for AD pi
to complete auxiliary processing can be calculated as

toipi = l
pi
oiφoi
fpi

, where fpi represents the computational
speed of AD pi’s processor. Additionally, auxiliary
processing can only start after AD pi receives the data
from the HAP. The transmission time is denoted as
tpiap = l

pi
oi

R
pi
ap
, where Rpiap = Blog2(1 + Phpi

N0
) denotes the

data transmission rate between AD pi and the HAP.
Therefore, as shown in Fig. 3, the following inequality
must be satisfied:

(α1 + α2)T + tpiap + toipi ≤ T. (3)

Moreover, the energy consumption resulting from aux-
iliary processing can be calculated as Eoipi = kpi f

2
pi l
pi
oiφoi .

• Local processing: Let llocpi denote the amount of AD
pi’s data processed locally. The time required for AD
pi to complete local processing can be calculated as

tlocpi = llocpi φpi
fpi

. Additionally, the minimum data processing
constraint requires that the total amount of data from
AD pi that needs to be processed satisfies the following
inequality:

llocpi ≥ lth. (4)

And the energy consumption resulting from local
processing can be calculated as Elocpi = kpi f

3
pi t

loc
pi =

kpi f
2
pi l
loc
pi φpi .

According to the energy causality property, the energy
consumption of AD pi must adhere to the condition: Elocpi +
Eoipi ≤ Ehpi . And the total computation time of AD pi

includes both auxiliary processing and local processing, so
the following inequality must hold:

tlocpi + toipi ≤ T. (5)

3) INDEPENDENT DEVICES

The IDs do not form collaborative clusters with other
devices. Consequently, the data of ID qk is divided into two
parts: one part is processed locally, and the other is processed
on the HAP. In terms of energy consumption, the energy
expenditure of ID qk can be divided into two main parts:
local processing and computing offloading. Next, these two
aspects are analyzed as follows.

• Local processing: Let llocqk represent the amount of data
allocated for local processing by ID qk. Consequently,
the local processing delay can be calculated using

the formula tlocqk = llocqk φqk
fqk

, where fqk represents the
computational speed of ID qk’s processor. The local
processing energy consumption is given by Elocqk =
kqk f

2
qk l

loc
qk φqk . Similarly, the local processing delay needs

to satisfy the inequality: tlocqk ≤ T .
• Computing offloading: Let lapqk represent the amount of
data from ID qk that is processed at the HAP. The
offloading time can be calculated using the formula

toffqk = lapqk
Rapqk

, where Rapqk = Blog2(1 + pqk hqk
N0

) represents

the data transmission rate between ID qk and the HAP.
Similarly, the offloading time of ID qk needs to satisfy
the condition toffqk ≤ α2T . Additionally, the energy
consumption due to data offloading can be obtained as
Eoffqk = pqk t

off
qk .

Similarly, the total energy consumption of ID qk must satisfy
the energy causality constraint represented by Elocqk + Eoffqk ≤
Ehqk . Moreover, there exists a constraint on the minimum
amount of data to be processed, expressed as llocqk + lapqk ≥ lth.

4) HYBRID ACCESS POINT

The HAP initially transmits RF signals within α1T and
subsequently receives data offloaded by IoT devices within
α2T . Processing commences only after data reception.
Consequently, the processing time for the HAP is (1 −α1 −
α2)T , and the workload which needs to be processed by
the HAP is given by

∑m
i=1 l

ap
oi φoi +

∑N−2m
k=1 lapqkφqk . Thus, the

following inequality must be satisfied:∑m
i=1 l

ap
oi φoi +

∑N−2m
k=1 lapqkφqk

fap
≤ (1 − α1 − α2)T, (6)

where fap represents the processor’s computing speed (cycles
per second) of the HAP.

III. PROBLEM FORMULATION AND ANALYSIS
Our study aims to maximize the WSCR of the IIoT system by
jointly optimizing the collaboration strategy ψ = {m, o, p, q}
among IoT devices and the HAP, the system time allocation
α = {α1, α2}, and the data allocation l = {lo, lp, lq}, where
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lo = [lloco1
, lapo1 , l

p1
o1 , . . . , l

loc
om , lapom , lpmom ]T , lp = [llocp1

, . . . , llocpm ]T ,
and lq = [llocq1

, lapq1 , . . . , l
loc
qN−2m

, lapqN−2m]T . Additionally, the
optimization is conducted considering energy causality, the
minimum data processing requirements, and time constraints.
Mathematically, the WSCR can be formulated as

P1 : max
ψ,α,l

m∑
i=1

{
woi

(
llocoi + lapoi + lpioi

)
+ wpi l

loc
pi

}

+
N−2m∑
k=1

wqk
(
llocqk + lapqk

)

s.t. (7a) : |o| = |p| = m ∈
{

0, 1, 2, . . . ,

⌊
N

2

⌋}

(7b) : o ∪ p ∪ q = N

(7c) :
llocoi φoi

foi
≤ T,∀i ∈ {1, 2, . . . ,m}

(7d) :
lapoi + lpioi
Rapoi

≤ α2T,∀i ∈ {1, 2, . . . ,m}

(7e) :
φoi l

pi
oi

fpi
≤ (1 − α1 − α2)T − lpioi

Rpiap
, ∀i

(7f ) :
φpi l

loc
pi

fpi
≤ T − φoi l

pi
oi

fpi
,∀i ∈ {1, 2, . . . ,m}

(7g) :
llocqk φqk

fqk
≤ T,∀k ∈ {1, 2, . . . ,N − 2m}

(7h) :
lapqk
Rapqk

≤ α2T,∀k ∈ {1, 2, . . . ,N − 2m}

(7i) :

∑m
i=1 φoi l

ap
oi + ∑N−2m

k=1 φqk l
ap
qk

fap
≤ (1 − α1 − α2)T

(7j) :
lpioi
Rpiap

≤ (1 − α1 − α2)T,∀i ∈ {1, 2, . . . ,m}
(7k) : α1 ∈ (0, 1], α2 ∈ [0, 1), α1 + α2 ≤ 1

(7l) : koi f
2
oi l

loc
oi φoi +

poi
(
lapoi + lpioi

)
Rapoi

≤ Ehoi , ∀i
(7m) : kpi f

2
pi l

loc
pi φpi + kpi f

2
pi l

pi
oiφoi ≤ Ehpi ,∀i

(7n) : kqk f
2
qk l

loc
qk φqk + pqk l

ap
qk

Rapqk
≤ Ehqk , ∀k

(7o) : llocoi + lapoi + lpioi ≥ lth, ∀i ∈ {1, 2, . . . ,m}
(7p) : llocpi ≥ lth,∀i ∈ {1, 2, . . . ,m}
(7q) : llocqk + lapqk ≥ lth, ∀k ∈ {1, 2, . . . ,N − 2m}
(7r) : llocoi , lapoi , l

pi
oi , l

loc
qk , lapqk ≥ 0,∀i,∀k, (7)

where woi ,wpi ,wqk are unique weights assigned to SD oi,
AD pi, and ID qk, respectively. Constraints (7a) and (7b)
pertain to the formation of collaborative clusters, requiring
an SD to collaborate with a unique AD. Constraints (7c) and
(7d) concern the time overhead of SDs. Constraints (7e) and
(7f ) relate to the time overhead of ADs. Constraints (7g)
and (7h) involve the time overhead of IDs. Constraints (7i)
to (7k) govern the time allocation of the HAP. Constraints
(7l) to (7n) pertain to the energy consumption causality for
SDs, ADs, and IDs, respectively. Constraints (7o) to (7q)
specify the minimum data processing requirements for SDs,

ADs, and IDs, respectively. Constraint (7r) pertains to the
non-negativity for the data allocation.
According to our assumption, the energy consumed by

the nth device for continuous data processing within a
time frame should be greater than the energy collected.1

Mathematically, this can be expressed as knf 3
n T > Ehn. Based

on this assumption, we give the following lemma.
Lemma 1: At the end of each time frame, all devices

exhaust the energy collected during that time frame.
Proof: Assume that under the optimal solution of problem

P1, there is a device that has not exhausted its energy. Based
on the above assumption, we can increase the amount of data
processed locally by that device to exhaust the remaining
energy without violating the constraints in P1. As a result,
the WSCR is clearly enhanced, which contradicts the initial
assumptions. This proves Lemma 1. Hence, we can disregard
the remaining energy from the last time frame.
Several lemmas are given next to simplify the constraints

of the problem.
Lemma 2: Constraints (7c) and (7g) must hold.
Proof: Given knf 3

n T > Ehn, it follows that the actual
local processing time of SD oi cannot exceed T , i.e.,
llocoi φoi
foi

< T , thus satisfying constraint (7c). Similarly, it can
be demonstrated that constraint (7g) must also be met.
Lemma 3: The constraint (7j) must hold.

Proof: Due to constraint (7e),
l
pi
oi

R
pi
qp

≤ (1−α1−α2)T− φoi l
pi
oi

fpi
.

Additionally, based on constraint (7r), it can be derived that
l
pi
oi

R
pi
ap

≤ (1 − α1 − α2)T . As a result, constraint (7j) can be

removed.
Lemma 4: The constraint (7k) must hold.
Proof: From constraints (7i) and (7r), it follows that 0 ≤∑m
i=1 φoi l

ap
oi +

∑N−2m
k=1 φqk l

ap
qk

fap
≤ (1 − α1 − α2)T , which implies

α1 +α2 ≤ 1. Moreover, from constraints (7h), (7l) and (7o),
it is evident that α1 > 0 and α2 ≥ 0. Consequently, we can
infer that α1 ∈ (0, 1] and α2 ∈ [0, 1). This establishes that
constraint (7k) holds.
Additionally, according to (1), it is apparent that con-

straints (7l)−(7n) display nonlinearity. To simplify problem
resolution, we reformulate these three constraints as:

koi f
2
oi l
loc
oi φoi +

poi
(
lapoi + lpioi

)
Rapoi

≤ ηPhoiα1T,∀i,

koi f
2
oi l
loc
oi φoi +

poi
(
lapoi + lpioi

)
Rapoi

≤ Emaxoi ,∀i,
kpi f

2
pi l
loc
pi φpi + kpi f

2
pi l
pi
oiφoi ≤ ηPhpiα1T,∀i,

kpi f
2
pi l
loc
pi φpi + kpi f

2
pi l
pi
oiφoi ≤ Emaxpi ,∀i,

1In wireless-powered MEC systems, wireless devices (WDs) are typically
energy-constrained. This means a WD can exhaust all harvested energy
within a given time frame by operating at maximum computing speed.
Thus, in accordance with [22], [23], [25], [38], we adopt this assumption.
Exploring the potential remaining energy of each IoT device after a time
frame will be a future focus of our research.
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kqk f
2
qk l

loc
qk φqk + pqk l

ap
qk

Rapqk
≤ ηPhqkα1T,∀k,

kqk f
2
qk l

loc
qk φqk + pqk l

ap
qk

Rapqk
≤ Emaxqk ,∀k. (8)

Building upon the lemmas and constraint transformations
mentioned earlier, the original problem can be reduced to:

P2 : max
ψ,α,l

m∑
i=1

{
woi

(
llocoi + lapoi + lpioi

)
+ wpi l

loc
pi

}

+
N−2m∑
k=1

wqk
(
llocqk + lapqk

)

s.t. (9a) : (7a), (7b), (7d) − (7f ),

(7h), (7i), (7o) − (7r), (8) (9)

Lemma 5: The problem P2 is NP-hard.
Proof: To establish the NP-hardness of P2, we present

a specific case of the problem and demonstrate its NP-
hardness. Assume that given the number of collaborative
clusters m > 0, the construction of collaborative clusters is
specified as {(i, i+m) | i ∈ {1, 2, . . . , .m}}, where (i, i+ m)

represents the indices of the corresponding IoT devices.
Consequently, we can obtain o = {i | i ∈ {1, 2, . . . ,m}}, p =
{i+m | i ∈ {1, 2, . . . ,m}}, and q = {2m+1, 2m+2, . . . ,N}.
Based on this, problem P2 is reduced to P3. It can be
observed that the objective function and constraints of P3
are both linear. Additionally, the optimization variable m is
an integer. As a result, P3 constitutes a mixed-integer linear
programming (MILP) problem known as NP-hard. Therefore,
this shows that problem P2 is also NP-hard.

P3 : max
m,α,l

m∑
i=1

{
woi

(
llocoi + lapoi + lpioi

)
+ wpi l

loc
pi

}

+
N−2m∑
k=1

wqk
(
llocqk + lapqk

)

s.t. (10a) : (7d) − (7f ), (7h), (7i), (7o) − (7r), (8)

(10b) : m ∈
{

1, 2, . . . ,

⌊
N

2

⌋}
. (10)

IV. SOLUTION APPROACH
In this section, efficient algorithms are proposed to solve
problem P2. As shown in Fig. 4, problem (P2) can be
decomposed into two sub-problems, namely, time and data
allocation (P4) and collaboration strategy. Thus, we can
optimize the time and data allocation {α, l} for a given
collaboration strategy ψ0 first. Then, we can search among
all possible collaboration strategies to find an optimal or sat-
isfying sub-optimal collaboration strategy ψ∗. However, due
to the exponentially large search space, it is computationally
prohibitive when N is large. Therefore, a low-complexity
algorithm is needed. Next, we provide detailed solutions for
these two subproblems.

FIGURE 4. The two-level optimization structure for solving P2.

A. TIME AND DATA ALLOCATION
When the collaborative strategy ψ is fixed, P2 transforms
into the following problem:

P4 : max
α,l

m∑
i=1

{
woi

(
llocoi + lapoi + lpioi

)
+ wpi l

loc
pi

}

+
N−2m∑
k=1

wqk
(
llocqk + lapqk

)

s.t. (11a) : (7d) − (7f ), (7h), (7i), (7o) − (7r), (8)

(11)

Problem P4 is a convex optimization problem because
both the objective function and constraints are linear in
terms of the optimization variables. In order to facilitate
the solution of the problem, P4 is first transformed into the
standard matrix form:

P5 : min
x1

cT1 x1

s.t. (12a) : A1x1 	 b

(12b) : x1 
 0. (12)

The vector x1 represents the optimization variables,
and it is defined as x1 = [α1, α2, lloco1

, lapo1 , l
p1
o1 , l

loc
p1

, . . . ,

llocom , lapom , lpmom , llocpm , llocq1
, lapq1 , . . . , l

loc
qN−2m

, lapqN−2m ]T . The weight
coefficients corresponding to the optimization
variables in the objective function of P4
are represented by c1, given as c1 =
[0, 0,−wo1 ,−wo1 ,−wo1 ,−wp1 , . . . ,−wom ,−wom ,−wom ,−
wpm ,−wq1 ,−wq1 , . . . ,−wqN−2m ,−wqN−2m ]T . The matrix A1
represents the coefficients in the constraints, which has a
total of 2N + 2 columns and 4N + m+ 1 rows. The vector
b represents the constants on the right-hand side of the
inequality in the constraints, and it has a total of 4N+m+1
elements.
Introducing slack variables allows for the transformation

of problem P5 into the following form:

P6 : min
x1,x2

cT1 x1 + cT2 x2

s.t. (13a) : A1x1 + x2 = b,

(13b) : x1, x2 
 0, (13)

x2 is a vector of slack variables with 4N +m+ 1 elements,
while c2 = 0 and its length is also 4N + m+ 1.
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Let c3 = [c1; c2], x3 = [x1; x2],A2 = [A1, I], the problem
P6 can be equated to:

P7 : min
x3

cT3 x3

s.t. (14a) : A2x3 = b

(14b) : x3 
 0. (14)

To eliminate the inequality constraints in the problem P7,
a barrier function is introduced for transformation:

P8 : min
x3

cT3 x3 − μ

6N+m+3∑
i=1

log
(
xi3

)

s.t. (15a) : A2x3 = b, (15)

where xi3 represents the ith element in x3 and μ > 0.
Additionally, the solution obtained by solving problem P8
gets closer to the optimal solution of problem P7 as the
value of μ decreases.

It can be observed that problem P8 remains a con-
vex optimization problem, allowing the utilization of the
Lagrangian duality method to obtain an optimal solution
when the value of μ is given. The Lagrangian function for
P8 is given by:

Lμ(x3, v) = cT3 x3 − μ

6N+m+3∑
i=1

log
(
xi3

)

+vT(A2x3 − b), (16)

where vector v comprises Lagrange multipliers. By applying
the Karush-Kuhn-Tucker (KKT) conditions and setting λi =
μ

xi3
, λ = [λ1, . . . , λ6N+m+3]T , X = diag(x3), � = diag(λ),

and 1 = {1, . . . , 1}T , we can obtain the following results:

A2x3 = b, (17)

X�1 = μ1, (18)

and

AT2 v+ c3 = λ. (19)

Based on the above transformations, the solution to
problem P8 can be determined by solving the following
equation:

Fμ(λ, v, x3) =
⎛
⎝ A2x3 − b

X�1 − μ1
AT2 v+ c3 − λ

⎞
⎠ = 0. (20)

The Newton iterative method can be employed to solve the
problem. Specifically, in the (k+1)th iteration, the first-order
Taylor expansion of function Fμ(λ, v, x3) is given by:

Fμ(λ, v, x3) ≈ Fμ

(
λk, vk, xk3

)

+ ∇Fμ

(
λk, vk, xk3

)⎛
⎝λ− λk

v− vk

x3 − xk3

⎞
⎠. (21)

Here, λk, vk, and xk3 represent the solutions obtained in the
kth iteration. Therefore, solving the equation Fμ(λ, v, x3) =
0 is equivalent to solving the following equation:

Fμ

(
λk, vk, xk3

)
+ ∇Fμ

(
λk, vk, xk3

)⎛
⎝ λ− λk

v− vk

x3 − xk3

⎞
⎠ = 0, (22)

where

∇Fμ(λ, v, x3) =
⎛
⎝ 0 0 A2
X 0 �

−I AT
2 0

⎞
⎠. (23)

Hence, determining the optimal solution involves solving
the following equations:⎛

⎝ 0 0 A2

Xk 0 �k

−I AT2 0

⎞
⎠

⎛
⎝ �λ

�v
�x3

⎞
⎠ =

⎛
⎝−γ k1−γ k2−γ K3

⎞
⎠, (24)

where ⎛
⎝γ

k
1
γ k2
γ k3

⎞
⎠ = Fμ

(
λk, vk, xk3

)
, (25)

and ⎛
⎝ �λ

�v
�x3

⎞
⎠ =

⎛
⎝ λ− λk

v− vk

x3 − xk3

⎞
⎠. (26)

The solution obtained by the k + 1th iteration process is:⎛
⎝λ

k+1

vk+1

xk+1

⎞
⎠ =

⎛
⎝λ

k

vk

xk

⎞
⎠ + β

⎛
⎝ �λ

�v
�x3

⎞
⎠, (27)

where β is the iteration step. Thus, we can derive an
approximate optimal solution to the problem P8 for a given
value of μ. Next, we can decrease the value of μ and
utilize the solution obtained with the previous μ value as
the initial solution for the problem P8 with the updated μ

value. Afterwards, we can apply the same approach to solve
the updated problem P8. The iterative process continues
until the accuracy requirement is satisfied or the maximum
number of iterations is reached. This approach requires fewer
iterations than solving problem P8 with the minimum μ

value, accelerating the solution process for problem P5. In
order to further accelerate the solution of problem P5, we
can simultaneously decrease the value of μ while iterating to
solve problem P8. This approach is outlined in Algorithm 1.
Remark 1 (Details on the Iteration Process of

Algorithm 1): In our designed algorithm, the key factors
influencing the iterative process include the convergence
judgment criterion, the iteration step size β, and the
attenuation coefficient ϕ. The convergence criterion
determines if the algorithm has achieved a solution satisfying
the accuracy requirement. In this paper, we define it as
the largest component of the absolute error vector resulting
from substituting the current solution into equation (25)
and comparing it to the target result 0. To limit excessive
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FIGURE 5. Algorithm 1: Interior-Point Method Based Algorithm for Solving
Problem P5.

iterations, we establish a maximum iteration count L.
The iteration step size β regulates the variable updates’
magnitude in each iteration. Typically, the step size choice
involves a line search technique, such as the Goldstein
Condition [40]. Moreover, the attenuation coefficient ϕ

controls the decay of the barrier function in each iteration and
is typically chosen within the range of (0, 1). Empirically,
common choices for the attenuation coefficient include
values such as 0.1, 0.2, or smaller. Experimenting with
various values and observing their effects on the algorithm’s
performance is advisable.
Remark 2 (Computational Complexity Analysis of

Algorithm 1): In each iteration, the computational complexity
of computing the Jacobian matrix for Fμ(λk, vk, xk3) is
O(N3). Moreover, solving equation (24) requires O(N3),
while calculating the updated γ k1, γ

k
2, γ

k
3 and its paradigm

needs O(N2). Therefore, the computational complexity of
Algorithm 1 is approximately O(LN3).
The solution for problem P5 is identical to that for

problem P4. Therefore, given the collaborative strategy, we
can derive the optimal solution for time and data allocation.
Subsequently, our objective is to identify the most favorable
collaborative strategy. To achieve this, we can employ an
exhaustive search method to enumerate all feasible solutions
{ψk|k ∈ K} for collaborative strategies satisfying constraints
(7a) and (7b). Next, we can solve problem P4 for each of
these collaborative strategies. The optimal solution ψ∗ can

be determined by employing the following equation:

ψ∗ = arg max
ψk

f (ψk), (28)

where f (ψk) = maxα,l
∑mk

i=1{wok,i(llocok,i + lapok,i + l
pk,i
ok,i) +

wpk,i l
loc
pk,i} + ∑N−2mk

j=1 wqk,j(l
loc
qk,j + lapqk,j).

Remark 3 (Computational Complexity Analysis of the
Exhaustive Search Scheme): Initially, we need to determine
the number of collaborative clusters m, with a total of
N2 �+1 possible scenarios. Furthermore, for a given number
of collaborative clusters m > 0, there are C2m

N (2m − 1)!!
possible scenarios for constructing collaborative clusters. In
this case, C2m

N represents the number of scenarios in which
2m devices are selected from a total of N IoT devices
to form collaborative clusters, and (2m − 1)!! denotes the
number of scenarios in which collaborative clusters are
constructed using 2m IoT devices. In summary, there are

a total of 1 + ∑m= N2 �
m=1 C2m

N (2m − 1)!! possible scenarios
for constructing collaborative clusters. For each instance of
collaborative cluster construction, the maximum achievable
objective value needs to be determined based on Algorithm 1.
Thus, the overall computational complexity is O(LN3(1 +∑m= N2 �

m=1 C2m
N (2m− 1)!!)).

It is evident that the exhaustive search method becomes
computationally prohibitive when N is large. Therefore, we
must explore a low-complexity algorithm to identify the most
favorable collaborative strategy.

B. COLLABORATION STRATEGY
This subsection presents a low-complexity, priority-based
algorithm designed to find a suboptimal solution for collab-
oration strategy, offering a trade-off between computational
complexity and system performance.
In this study, the diversity among IoT devices is considered

in three main aspects: (1) the importance weight wn assigned
to the nth device’s data, (2) the channel quality hn between
the nth device and the HAP, and (3) the local computational
capacity fn of the nth device. Based on these three variables,
a priority function can be constructed to guide the formation
of collaborative clusters.

On = wn
knf 2

n φn
pn
Rapn

=
wnBlog2

(
1 + pnhn

N0

)
knf 2

n φn

pn
. (29)

The term knf 2
n φn represents the energy consumption

per unit of data volume processed by the nth device,
and pn

Rapn
represents the energy consumption per unit of

data volume offloaded by the nth device. Therefore, a
higher value of On indicates a higher priority for the nth
device to serve as SD. During the construction of a new
collaborative cluster, the device with the highest priority
among the current IDs is selected as SD, and the device
with the lowest priority among the current IDs is selected
as AD. Therefore, an iterative algorithm can be employed to
determine the optimal number m∗ of collaborative clusters.

VOLUME 5, 2024 975



LI et al.: COMPUTATION RATE MAXIMIZATION FOR WIRELESS-POWERED EDGE COMPUTING WITH MULTI-USER COOPERATION

FIGURE 6. Algorithm 2: Priority-Based Algorithm for Solving Problem P2.

Initially, setting m to 0 indicates that all devices are IDs,
and then Algorithm 1 is used to calculate the achievable
objective value based on the current collaboration strategy.
In each iteration, m is incremented by 1, and a new
collaborative cluster is constructed by selecting the device
with the highest priority among the current IDs as SD and
the device with the lowest priority as AD. Algorithm 1
is used again to calculate the achievable objective value
based on the current collaborative strategy. After iterating
N2 �+ 1 times, we can obtain the achievable objective value
for each value of m. Hence, the final output would be
the collaboration strategy corresponding to the maximum
achievable objective value. The summarized solution is
outlined in Algorithm 2.
Remark 4 (Computational Complexity Analysis of the

Priority-Based Iterative Algorithm): The proposed algorithm
establishes a priority function to narrow down the search
space to N2 �. Additionally, in each iteration, Algorithm 1
is employed, incurring a computational cost of O(LN3). As
a result, the overall computational complexity amounts to
O(LN4).
Nevertheless, the iterative search process for determining

the optimal number of collaborative clusters continues to
result in extended execution latency, mainly attributable to
the computational complexity of Algorithm 1. Section V
compares the algorithm’s execution time, illustrating that

the iterative search process for the optimal number of col-
laborative clusters substantially impacts the total execution
latency. Thus, we aim to ascertain the optimal number
of collaborative clusters with diminished computational
complexity. To accomplish this, we put forth a scheme
based on deep learning (DL) that encompasses the following
primary steps:

1) Step 1: Over a specified period, collect samples of
the time-varying system states, represented as {wt,ht |
t ∈ I}. In this context, wt = [wt1, . . . , .w

t
N]T , ht =

[ht1, . . . , h
t
N]T , and I denotes a set of time indices, and

| I | indicates the total number of gathered samples.
2) Step 2: Apply Algorithm 2 to ascertain the optimal

number of collaborative clusters for each system state
sample. These determined numbers of clusters serve as
labels for the system state samples, forming a training
dataset denoted as {wt,ht,m∗

t | t ∈ I}.
3) Step 3: Build a Deep Neural Network (DNN) with an

input layer dimension of 2N, which aligns with the
size of {wt,ht}, and an output layer dimension of 1,
corresponding to m∗

t .
4) Step 4: Utilize the stochastic gradient descent method

to train the DNN with the training dataset {wt,ht,m∗
t |

t ∈ I}. The training process employs the cross-
entropy loss function. Before commencing training, it
is imperative to standardize and scale the data to adhere
to a standard normal distribution with a mean of 0 and
a variance of 1. This preprocessing step facilitates a
swifter training process.

5) Step 5: Save the trained model and scaling parameters
used to normalize the training data. Next, deploy
the model to the HAP and import the corresponding
parameters.

6) Step 6: In the decision-making process, the HAP
inputs the acquired system state indicators, denoted
as {wnew,hnew}, into the DNN model following
an identical normalization procedure. Next, employ
Algorithm 3 to ascertain the suitable decision. The
particulars of Algorithm 3 are expounded upon above.

By leveraging the trained DNN, the iterative process
of finding the optimal number of collaborative clusters
is skipped. As a result, the deep learning-based scheme
achieves a computational complexity of O(LN3).

V. NUMERICAL RESULTS
In this section, some simulation results are provided to verify
our theoretical results and evaluate the performance of our
proposed algorithms. The network scenario shown in Fig. 1
is simulated. In all simulations, we use the parameters of
Powercast TX91501-3W with P = 3 Watts for the energy
transmitter at the HAP, and those of P2110 Powerharvester
for the energy receiver at each IoT device [38]. The energy
harvesting efficiency is set as η = 0.51, and the average
channel gain, denoted as hn, adheres to the free-space path
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FIGURE 7. Algorithm 3: DL-Based Algorithm for Solving Problem P2.

loss model outlined below:

hn = Ad

(
3 × 108

4π fcdn

)de

, n ∈ N , (30)

with Ad = 4.11 denoting the antenna gain, fc = 915 MHz
denoting the transmission frequency, and de = 2.8 denoting
the path loss exponent. The time-varying wireless channel
gain of the nth IoT device at time frame t is generated using
a Rayleigh fading channel model, expressed as htn = hnαtn.
Here, αtn represents the independent random channel fading
factor, which follows an exponential distribution with a unit
mean.
Without loss of generality, the time block length is set as

T = 1 s, the number of IoT devices is set as N = 20, and the
minimum data processing requirement within a time frame of
each IoT device is set as lth = 4000 bit. For local computing,
the computation energy efficiency coefficient and the number
of CPU cycles needed to process each bit of raw data are

FIGURE 8. The average WSCR of the system versus the average distance from the
IoT devices to the HAP under different minimum data processing requirements.

set as kn = 10−26 and φn = 100, n ∈ N , respectively [22].
For computing offloading, the bandwidth is set as B = 2
MHz and the noise power is set as N0 = 10−10 W. All
above parameters will not change unless otherwise stated.
Moreover, all the simulations are performed on a Pytorch
1.10.2 platform with an Intel Core i7-13650HX 4.9 GHz
CPU and 16 GB of memory.
First, we assess the performance of our two proposed

algorithms in comparison to the exhaustive search method.

In this method, all 1 + ∑m= N2 �
m=1 C2m

N (2m − 1)!! potential
scenarios for constructing collaborative clusters are explored
to achieve the highest WSCR.
Fig. 8 shows the achievable average WSCR of the system

versus the average distance d from the IoT devices to the
HAP under different minimum data processing requirements
within a time frame, i.e., lth = 4000 (the upper curve)
and lth = 8000 (the lower curve). It is evident that as d
increases, the achievable average WSCR decreases. This is
attributed to the fact that greater distances result in poorer
channel conditions. Furthermore, an increase in lth leads to
a reduction in the achievable average WSCR for all three
algorithms. Notably, the performance of our proposed DL-
based algorithm closely aligns with that of the priority-based
iterative algorithm and the exhaustive search approach. This
suggests that our proposed algorithms have the capacity to
converge towards the globally optimal solution.
In Fig. 9, we analyze the performance of the proposed

priority-based iterative algorithm by plotting the evolution of
the achievable average WSCR of the system at each iteration.
Here, we set lth = 4000 bit, N = 30, d = 4 m, while
keeping the remaining parameters consistent with Fig. 8. It
is notable that the iterative search curve does not exhibit
a monotonic or concave pattern characterized by an initial
increase followed by a decrease. Additionally, the curve
reaches its closest value to the exhaustive search result when
the number of collaborating clusters is 12. This behavior
stems from the influence of the number of collaborative
clusters on the optimal time and data allocation scheme,
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FIGURE 9. The priority-based iterative algorithm curve versus iteration number.

FIGURE 10. The average operation time versus the number of IoT devices.

resulting in irregular fluctuations in the average WSCR
with respect to the number of collaborative clusters. As a
consequence, the proposed priority-based iterative method
entails an exploration of all conceivable scenarios for the
number of collaborating clusters, leading to a substantial
increase in execution time.
In Fig. 10, the average operation time of the three

algorithms is plotted against the number of IoT devices
N, with the distance from the devices to the HAP being
randomly generated. It is noteworthy that for relatively small
numbers of IoT devices, e.g., N = 5, the average operation
time required for the priority-based iterative algorithm
closely matches that of the DL-based algorithm. However,
as N increases, the operation time required for the priority-
based iterative algorithm experiences a significant rise. This
may be attributed to the fact that an increased number
of IoT devices introduces more iterations in the process
of finding the optimal number of collaborating clusters.
In contrast, the required operation time for the DL-based
algorithm does not exhibit a substantial increase with the
growth of N. Furthermore, the average operation time of

FIGURE 11. The average WSCR of the system versus the number of IoT devices.

the two proposed algorithms is much lower than that of the
exhaustive search algorithm. Based on the observations in
Fig. 10, it is more advisable to employ the priority-based
iterative algorithm in networks with relatively small sizes,
while the DL-based algorithm is preferred for large-scale
networks. This conclusion aligns with our theoretical analysis
of the computational complexities of the two algorithms.
Subsequently, we contrast the proposed two algorithms

with the following three additional benchmark schemes.
Additionally, we include the result of the exhaustive search
method (EX) for comparison.

1) Local Computing only (LC): In this scheme, all IoT
devices’ data is processed locally.

2) Non-Collaborative Partial Offloading (NC): This
scheme does not involve collaboration among IoT
devices. The entire system follows the time and data
allocation strategy derived from Algorithm 1.

3) Stochastic collaboration (SC): In this scheme, the
collaboration strategy of IoT devices is randomly
selected.

Fig. 11 illustrates the achievable average WSCR of the
system versus the number of IoT devices N. It is observed
that as N increases, the average WSCR decreases for all
schemes except the LC strategy. This can be attributed to
the gradual decrease in the average computational resources
allocated by the HAP to the IoT devices with the increasing
number of IoT devices. Additionally, the performance of the
SC scheme consistently lags behind that of the NC scheme,
underscoring the importance of a meticulously designed
collaboration strategy among users. As the number of IoT
devices N increases, the gap between the proposed schemes
(priority-based iterative algorithm (PI) and DL-based algo-
rithm (DL)) and the NC scheme widens. This underscores
the imperative of optimizing collaboration among users
in scenarios with a large number of IoT devices, while
the benefits of such collaboration are less pronounced in
scenarios with a small number of IoT devices. Finally,
both of our proposed schemes demonstrate performance
that is highly comparable to that of the exhaustive search
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FIGURE 12. The average WSCR of the system versus the processor’s computing
speed of the HAP.

FIGURE 13. The average WSCR of the system versus the path loss exponent de .

algorithm, indicating their capability to achieve nearly
optimal performance.
Fig. 12 illustrates the average WSCR of the system versus

the processor’s computing speed of the HAP fhap. It is
evident that as fhap increases, the average WSCR increases
for all schemes except the LC strategy. When fhap > 1 GHz,
the NC scheme surpasses the SC scheme in performance.
Additionally, with the increase of fhap, the performance of the
NC scheme gradually converges towards that of the proposed
schemes. This emphasizes that collaboration among devices
becomes less crucial when the computational resources of
the HAP are ample. Conversely, when fap < 1GHz, the SC
scheme outperforms the NC scheme.
Fig. 13 displays the average WSCR of the system with

respect to the path loss exponent de. It is evident that with an
increase in de, the average WSCR of all schemes experiences
a significant decrease. When de < 2.7, the SC scheme
outperforms the NC scheme. However, for de ≥ 2.8, the NC
scheme surpasses the SC scheme and gradually approaches
the performance level of the proposed schemes. This may be
attributed to the fact that, as the channel quality deteriorates,
the energy harvested by the devices decreases, while the

FIGURE 14. The optimal number of collaborating clusters m obtained by the
priority-based iterative algorithm versus various parameters.

energy required for offloading increases. Consequently, the
performance enhancement resulting from user collaboration
gradually diminishes. Therefore, collaboration among users
becomes unnecessary when the channel quality is poor.
Lastly, we examine the influence of various parameters

on device collaboration. In particular, we plot the variation
in the optimal number of collaborating clusters obtained
through the priority-based iterative algorithm under different
parameters.
Fig. 14 presents the optimal number of collaborating clus-

ters m obtained through the priority-based iterative algorithm
versus various parameters. It is evident that with an increase
in the energy harvesting efficiency η or the number of IoT
devices N, the optimal number of collaborative clusters also
increases. Conversely, as the processor’s computing speed of
the HAP fhap or the minimum data processing requirement
within a time frame for each device increases, the optimal
number of collaborative clusters decreases. Consequently,
in scenarios where energy is the primary limiting factor,
collaboration among devices is restrained, while in scenarios
where the computational capacity of the HAP is the main
limiting factor, collaboration among users is encouraged.
Furthermore, an increase in the minimum data processing
requirement within a time frame for each device hinders
collaboration among users.
Based on the simulation results above, it is evident that

the DL-based algorithm achieves near-optimal performance
within a short runtime. Hence, the proposed scheme exhibits
significant feasibility and advantages for real-time decision-
making in real-world fading environments. Nevertheless, the
scheme possesses potential limitations, such as inadequate
adaptation to IoT devices joining or exiting the network. To
mitigate this issue, in practical deployment, DNN models
corresponding to different numbers of IoT devices can be
pre-trained and switched based on the varying number of
IoT devices. However, this approach necessitates the upfront
collection of extensive data for different IoT device counts,

VOLUME 5, 2024 979



LI et al.: COMPUTATION RATE MAXIMIZATION FOR WIRELESS-POWERED EDGE COMPUTING WITH MULTI-USER COOPERATION

incurring high costs. In contrast, an alternative scheme
employs the priority-based iterative algorithm for initial
decision-making, saving samples and labels for subsequent
use. Upon accumulating sufficient training data for a specific
number of IoT devices, the corresponding DNN model
is trained. Subsequently, when encountering the specified
number of IoT devices, the trained DNN is utilized. Over
time, DNN adoption will become the norm.

VI. CONCLUSION
This paper investigates the design for maximizing the
weighted sum computation rate in a wireless-powered
MEC network with multi-user cooperation. A mathematical
optimization problem is formulated by jointly optimizing
collaboration, time allocation, and data distribution among
multiple IoT devices and the HAP while adhering to
constraints on energy causality and devices’ computing rate
requirements. To efficiently address this mixed-integer pro-
gramming problem, an interior-point method based algorithm
and a priority-based iterative algorithm are initially proposed.
Then, a deep learning-based approach is introduced to
accelerate the algorithm’s operation further. Simulation
results demonstrate that the proposed algorithms achieve
comparable performance with the exhaustive search method.
Furthermore, the deep learning-based approach significantly
reduces the algorithm’s execution time compared to the
priority-based iterative algorithm and the exhaustive search
method.
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