
Received 9 November 2023; revised 12 December 2023; accepted 1 January 2024. Date of publication 9 January 2024; date of current version 24 January 2024.

Digital Object Identifier 10.1109/OJCOMS.2023.3351706

Adaptive In-Network Traffic Classifier: Bridging the
Gap for Improved QoS by Minimizing

Misclassification
MUHAMMAD SAQIB 1 (Graduate Student Member, IEEE), HALIMA ELBIAZE 1 (Senior Member, IEEE),

AND ROCH H. GLITHO2

1Department of Computer Science, Université du Québec à Montréal, Montreal, QC H3C 3P8, Canada

2Concordia Institute of Information Systems Engineering, Concordia University, Montreal, QC H3G 2W1, Canada

CORRESPONDING AUTHOR: M. SAQIB (e-mail: saqib.muhammad@courrier.uqam.ca)

This work was supported by CHIST-ERA Program under the “Smart Distribution of Computing in Dynamic Networks (SDCDN)” 2018 Call.

ABSTRACT In-network traffic classification presents an innovative approach to developing early-stage
and accurate traffic classification solutions. However, despite its initial accuracy, the one-size-fits-all
Machine Learning (ML) model becomes obsolete as traffic patterns evolve. This evolution in traffic patterns
inevitably leads to misclassification, resulting in the erroneous mapping of traffic flows to Quality of Service
(QoS) classes. Consequently, misclassification may lead to service quality violations, imposing penalties
on Infrastructure Providers (InPs). The impact, however, is not solely tied to misclassification rates, as a
multi-path network with paths of varying capacities can redirect traffic from low data rate classes to high
data rate paths and vice versa, thereby influencing the overall outcome. Therefore, precisely quantifying
the impact of misclassification on network performance, i.e., QoS, is paramount. This research aims to
investigate and address the effects of traffic misclassification on Service Level Agreement (SLA) violations
within multi-class, multi-path networks. To achieve this, we propose a novel framework to quantify SLA
violations caused by misclassification, an economic model to assess its impact on provider profitability, and
adaptive ML techniques to enhance traffic classification accuracy continually. The evaluation results reveal
that the optimal path allocation for various traffic classes determines the targeted revenue. Meanwhile,
the adaptivity of the classifier maintains prediction accuracy, ensuring the integrity of SLA through
precise QoS class assignments. Hence, implementing an adaptive traffic classifier can mitigate penalties
and sustain profitability. This work provides valuable insights for network operators, enabling effective
misclassification management, resource optimization, and the maintenance of SLA integrity.

INDEX TERMS Programmable data plane, in-network traffic classification, traffic misclassification, QoS,
network economics.

I. INTRODUCTION

WITH the proliferation of latency-sensitive services
and applications within the Internet of Things (IoT)

domain, the application of diverse Quality of Service
(QoS) policies and efficient utilization of network resources
becomes paramount. Network Slicing (NS) has emerged as a
promising solution for resource orchestration, enabling QoS
isolation through the overlay of multiple virtual networks
on a shared network domain [1]. NS facilitates the efficient
utilization and management of network resources while
offering differentiated services at scale, allowing specific

services to leverage dedicated network slices to meet their
QoS requirements [2].
In network management, network traffic classification

plays a pivotal role. It serves as the foundation for mapping
incoming traffic flows to their appropriate QoS slices,
thereby ensuring the provision of application-specific QoS
guarantees [3]. This simplifies the enforcement of Service
Level Agreements (SLAs). Given the dynamic nature of
traffic patterns and the growing diversity of IoT behaviors,
early-stage traffic classification is indispensable for timely
and accurate QoS provisioning. The programmability of

c© 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME 5, 2024 677

HTTPS://ORCID.ORG/0000-0001-5476-7985
HTTPS://ORCID.ORG/0000-0001-5681-6445

SAQIB et al.: ADAPTIVE IN-NETWORK TRAFFIC CLASSIFIER: BRIDGING THE GAP FOR IMPROVED QoS

the data plane allows for the definition of customized
matching criteria for traffic type identification [4], enabling
fine-grain classification at a near-line rate. This concept is
known as in-network traffic classification, which involves
implementing rule-based Machine Learning (ML) models,
such as Decision Trees (DTs), within switches to achieve
high-speed processing [5], [6], [7].

In-network traffic classification turned out to be the
key enabler in accurate and early-stage traffic classification
solutions [8]. However, in the IoT domain, the traffic
presently includes a variety of behaviours such as com-
munication types, events, sources, patterns and volumes,
etc. [9], [10]. These behaviours considerably impact traffic
patterns, management, and control. Based on the number
and type of active devices in the network, the devices’
behaviour might generate a variety of characteristics, i.e.,
variability in data transmission period and payload size.
Learning-based models have rapidly become a viable option
for identifying the source devices and application types
from Internet traffic [11]. Despite having a learning model
with good accuracy, a single-time trained model becomes
outdated as the traffic pattern changes over time [12].
This changing traffic pattern leads to misclassification, i.e.,
incorrect mapping of traffic flows to the QoS classes.
The researchers approached misclassification from a risk-

free or cost-aware model training perspective, with minimal
inaccuracy risk. For example, the authors in [13] argue that
a solution for device identification (or classification) should
priorly consider features extraction cost (computational and
memory). Similarly, another work in [14] considers a cost-
sensitive learning strategy to ensure the robustness of traffic
classifiers against unbalanced datasets. They consider the
misclassification cost during training and minimize the
training model’s cost. However, despite having a cost-
effective model with good classification accuracy, the one-fit
ML model loses its relevance over time as the traffic pattern
changes. This loss of accuracy leads to incorrect mapping of
traffic flows to the QoS classes, which further results in SLA
violations and affects customer satisfaction in return. As a
result, on the one hand, the service provider tries to increase
revenue through priority-based traffic scheduling [15]. On
the other hand, incorrect QoS class mapping by the classifier
may lead to SLA violations, resulting in the addition of
penalties that negatively impact the provider’s profit. A
significant challenge for Infrastructure Providers (InPs) is
ensuring multi-priority traffic demands while maintaining
maximum profit. To the best of the authors’ knowledge, no
existing works investigate the implications of traffic misclas-
sification on network performance or network operators.
In our prior work [16], we examined the effect of traffic

misclassification on InP profitability. We developed an eco-
nomic model that directly calculates penalties based on class
priority and misclassification rate. We assumed that SLA
violations are directly proportional to the misclassification
rates of traffic classes. However, this is only sometimes the
case in multi-class, multi-path networks. In other words,

the misclassification rate is not the sole metric for SLA
violation, as misclassification does not necessarily result
in SLA breaches. Instead, there is a need for precise
measurement of the QoS status of network paths to calculate
SLA violations. Hence, there remain unanswered questions.
For instance, what if traffic flows from a high data rate class
are incorrectly directed to a low data rate path, or vice
versa? What if traffic from multiple classes is poorly mapped
to a single network path? These open questions underscore
the importance of measuring the misclassification impact
on network performance and quantifying SLA violations to
establish equitable penalties for the InP.
This research aims to investigate and mitigate the impact

of traffic misclassification on SLA violations within multi-
class, multi-path network environments. Our contributions
encompass a novel framework for quantifying SLA violations
caused by misclassification, an economic model to evalu-
ate its impact on provider profitability, and adaptive ML
techniques for continuous improvement of traffic classifi-
cation accuracy. This work provides valuable guidance to
network operators for effectively managing misclassification,
optimizing resources, and ensuring the integrity of SLAs.
The proposed research investigates and mitigates the

impact of traffic misclassification through a two-phase
system design: the control plane and the data plane. In
the control plane, we determine optimal routing paths to
maximize revenue and employ adaptive ML techniques to
generate updated classification rules for the data plane.
The data plane features an in-network traffic classifier
and performance monitoring for the quantification of SLA
violations. By jointly monitoring classifier performance and
network path utilization, we precisely measure the impact
of misclassification on the QoS of network paths and
enable adaptive model updates to improve accuracy, thereby
reducing the negative impact of classifier.
The remainder of this paper is organized as follows.

Section II provides an overview of the related work.
Section III presents the problem definition and network
model. Section IV introduces the proposed solution. The
validation plan is discussed in Section V, followed by the
presentation of experimental results in Section VI. Finally,
Section VII contains the concluding remarks.

II. RELATED WORK
This section provides an overview of the most relevant
approaches in the literature concerning the traffic misclassi-
fication problem, exploring how researchers have addressed
this crucial issue from various perspectives.
In [18], the authors present two novel types of online

Internet traffic classifiers designed to ensure performance
guarantees for false alarm and false discovery rates. These
classifiers aim to minimize overall misclassification rates
while meeting specific constraints, with one classifier
focused on reducing false alarm rates and the other on
reducing false discovery rates. The proposed techniques

678 VOLUME 5, 2024

enhance network monitoring, service quality, and security
measures.
Some researchers have approached misclassification as

an optimal feature selection problem, primarily focusing
on minimizing inaccuracy risks. For instance, in [19], the
authors select the optimal set of features for IoT device
fingerprinting on edge infrastructure to reduce the feature
set’s size while maintaining classification accuracy. This
approach enables efficient device identification on resource-
constrained edge nodes. Similarly, another study [13]
addresses misclassification in an IoT environment by intro-
ducing a new variable called risk into the classification
algorithm. They emphasize the importance of identifying
whether misclassification occurred and determining the
misclassified class, as this information can have significant
implications for actions and costs. Incorporating the notion
of risk aims to improve the accuracy and effectiveness of
IoT device classification.
Another perspective on misclassification treats it as an

imbalanced class problem. The authors tackle misclassifi-
cation in [14] by proposing a cost-sensitive deep learning
approach. They divide the dataset into partitions and create a
cost matrix for each partition based on the data distribution.
These costs are applied to the cost function layer to penalize
classification errors, ensuring diverse costs for each type of
misclassification. By incorporating these costs into the deep
learning classifiers, the proposed approach aims to enhance
the robustness of classifiers against the imbalanced class
problem in network traffic classification.
Similarly, a different approach is presented in [20],

where a deep learning model named the Cost Matrix
Time-Space Neural Network (CMTSNN) is introduced.
The CMTSNN model utilizes a cost penalty matrix and
an improved cross-entropy loss function to enhance the
classification accuracy of minority categories and overall
multi-classification performance. The cost penalty matrix is
applied to the cost penalty layer, and the improved cross-
entropy loss function is used to calculate the loss, reducing
the impact of data imbalance on model classification. This
approach helps mitigate the effects of misclassification and
improves the identification of encrypted abnormal traffic in
the IoT network.
It is worth noting that the term misclassification is not new

but has been explored in the state-of-the-art literature from
risk-free or cost-aware perspectives. Researchers consider
the misclassification risk or cost during the training process,
focusing on minimizing the risk of inaccuracy or the cost
of the model training. However, even with a risk-free or
cost-effective model with good classification accuracy, a
one-size-fits-all ML model can lose relevance over time as
traffic patterns change due to concept or data drift [12].
This loss of accuracy leads to the incorrect mapping of
traffic flows to QoS classes, resulting in SLA violations
and reduced customer satisfaction. Considering the impact
of post-classification processes becomes highly desirable in
the context of multi-class, multi-path networks. Surprisingly,

the reviewed work has not investigated the implications of
incorrectly mapped traffic flows on network performance
or InP.

III. PROBLEM FORMULATION AND NETWORK MODEL
A. TOWARD TRAFFIC CHARACTERIZATION
We begin by discussing the motivation for categorizing
Internet traffic. Instead of relying on a well-known QoS
classifier identifier (QCI) table, which usually offers a
predetermined set of values linked to specific QoS char-
acteristics, we aim to address the diverse and evolving
nature of emerging applications and services. These entities
often have distinct data rates, latency, and priority needs,
and the rigid structure of QCI tables may need to be
revised to accommodate such variability effectively. Our
approach seeks a more flexible and adaptive method for
classifying traffic flows to better align with the dynamic
requirements of contemporary applications. For example, the
chosen applications in TABLE 1 exhibit varying sensitivity
to service quality requirements. We translated these service
quality metrics, such as latency ϕ and data rate γ , to various
classes having different priorities. Each class is characterized
by specific traffic attributes, including high definition HD,
real-time Rt or non-real-time traffic Xt - indicating the
bandwidth and latency requirements; critical Ra or non-
critical data rate Xa - to express the delay tolerance level [21].
In Fig. 1, we illustrate the given classes’ latency and data

rate requirements to establish their priorities. The require-
ments become more critical as the data rate increases while
latency decreases. The higher the data rate and the lower
the latency, the more critical these requirements become.
Consequently, the priority of each class is determined by
its specific service quality requirements. A service priority
factor, denoted as α, is assigned to each class based on
these requirements. The α value increases as the required
data rate and latency become more stringent. Hence, this
α is intricately linked to the criticality level, proportionally
related to the necessary data rate while inversely associated
with latency. The blue line visually emphasizes the expansion
of the criticality level for each class, while the black line
represents the α value. Given that α reflects the relative
importance of the classes, it is utilized to define penalty and
revenue generation functions in the proposed method. By
delineating unique traffic classes and corresponding param-
eters for each application, our solution aims to optimize
resource allocation based on the specific requirements of
these diverse use cases.

B. PROBLEM DEFINITION
Let c ∈ C be the set of priority classes, each with different
service quality parameters, namely the latency ϕ and data
rate γ . Here, the latency ϕ is defined in terms of end-to-
end packet delay on the chosen route, and the data rate γ

is given in bits per second (bps) as specified by the user
capacity requirement. As a result, each class c is bounded

VOLUME 5, 2024 679

SAQIB et al.: ADAPTIVE IN-NETWORK TRAFFIC CLASSIFIER: BRIDGING THE GAP FOR IMPROVED QoS

TABLE 1. Service Quality Requirements of a Few Emerging Applications [17]

FIGURE 1. Service priority factor calculation.

TABLE 2. Notations

by threshold values of latency ϕ
(c)
max and data rate γ

(c)
min. All

the defined variables are summarized in TABLE 2.
Substrate network and constraints: We represent the

underlying physical infrastructure as a directed graph G =
(N,L) with a set of nodes n ∈ N and links l ∈ L, each
link with a bandwidth bl > 0 (measured in bps). On top
of the substrate network, we consider the co-existence of
multiple network slices indexed by s ∈ S = {1, . . . , S}. For
clarity and simplicity, we focus on a scenario where each
slice s serves network traffic from a single traffic class c
with a single source to a single destination pair [22] having
different service parameters in terms of ϕ and γ . Hence, we

represent a slice by a source-destination (S/D) pair (u, v)
where the following constraints must be respected for traffic
flows between any pair:

ϕ
(c)
p,i ≤ ϕ(c)

max, ∀ p ∈ f (c)i ∈ F(c) (1)

γ
(c)
l,i ≥ γ

(c)
min, ∀ l ∈ L, ∀f (c)i ∈ F(c) (2)

The above constraint (1) ensures an end-to-end delay
threshold along the multi-hop route. The associated end-
to-end delay ϕ with a packet p across the multi-hop path
between source node u and destination node v, in particular,
shall not exceed the maximum latency limit for a given class
c, i.e., ϕ

(c)
max. Furthermore, constraint (2) assures that the data

rate γ at any link l ∈ L should be sufficient to meet the
capacity demand of passing flow i belongs to class c.
In addition, the paths between (u, v) pairs over links L

are indexed by k ∈ K = {1.,K}. We denote the traffic
volume each slice s generates as x(s)k going through path
k. Since multiple slices share the same physical network,
the bandwidth consumption at each path k may be, at most,
the available bandwidth bk. Thus, we also define the paths’
bandwidth constraint:

∑

s∈S

∑

k∈K
x(s)k ≤ bk (3)

Provider’s revenue: The service provider generates rev-
enue by optimal resource (i.e., bandwidth) allocation to
heterogeneous traffic demands. The revenue mainly depends
on the resources requested by the service. That is the product
of the selling price of a bandwidth unit and a class’s service
priority factor. The pricing policy determines the charge per
unit bandwidth for each substrate link l ∈ L. A differential
pricing policy is considered based on the class’s criticality
level. Thus, the revenue gained by the provider at the time
t by selling the bandwidth resource can be expressed as:

σ(t) =
∑

c∈C

∑

f∈F(c)

∑

s∈S

∑

k∈K
δ ∗ α

(c)
f ∗ x(s)k (t) (4)

The selling price for a bandwidth unit is δ. The priority of
flow f of class c (i.e., service quality priority) is represented
as α

(c)
f , and x(s)k (t) stands for satisfying bandwidth over a

path k between (u, v) pairs of slices s ∈ S.
Network traffic classifier: The InP increases revenue by

allocating resources to various traffic classes. Meanwhile, a
traffic classifier at the network’s edge assigns the incoming
traffic flows to the correct traffic class, i.e., QoS slice. In
the case of incorrect traffic class mapping, the InP could
not implement the appropriate QoS policies, which would
impact the Customer Satisfaction Level (CSL). In order

680 VOLUME 5, 2024

FIGURE 2. System design.

to maintain good classification accuracy, it is crucial to
regularly check the classifier’s prediction and penalize the
classifier for inaccurate mappings.
Let C be the classifier that classifies the incoming traffic

flows fi to the corresponding class. Any misclassification,
i.e., incorrect QoS slice mapping, might result in an SLA
violation, adding a penalty that can be calculated as the
per-class criticality level.
Misclassification rate: We use f1-score as a performance

metric to measure the per-class misclassification rate.
f1-score assesses the classification model’s performance
starting from the confusion matrix; it aggregates Precision
and Recall measures under the concept of harmonic
mean [23]. The formula of f1-score can be interpreted as a
weighted average between Precision and Recall:

f1 = 2 ∗ (Precision ∗ Recall)
(Precision+ Recall)

(5)

where

Precision = TP

(TP+ FP)
(6)

Recall = TP

(TP+ FN)
(7)

TP means the observation is positive, and the sample is
predicted to be positive. FN is that the observation is positive,
but the sample is predicted to be negative. TN describes that
observation is negative, and the sample is predicted to be
negative. And FP represents that the observation is negative,
but the sample is predicted to be positive.
The f1-score reaches its best value at one and the worst

score at 0. Hence, the misclassification rate of a particular
class c can be defined as:

λ(c) = 1 − f1(c), ∀ c ∈ C (8)

Penalty: The provider must return the penalty incurred due
to the misclassification. The penalty ρ for a particular class
c over time t can be calculated as a product of the monetary
penalty unit, the class’s priority, the misclassification rate,

and the path utilization rate of the class. The total penalty ρ

associated with each class c at the time t can be computed
as follows:

ρ(t) =
∑

t∈T

∑

c∈C
β ∗ α(c) ∗ λ

(c)
k ∗ μk (9)

where β is the monetary penalty unit, α(c) is the class
priority, λ(c) is the misclassification rate of class c and μk

is the bandwidth utilization rate of path k.
Objective function: The objectives are to maximize the

provider’s profit and minimize SLA violations. Maximizing
the provider’s profit can be achieved by maximizing σ and
minimizing ρ. The objective function P can therefore be
written as follows:

max
P

∑

t∈T
(σ (t) − ρ(t))

Subject to constraint (1)(1)(1), (2)(2)(2) and (3)(3)(3). (10)

IV. PROPOSED SOLUTION
In this section, we introduce a framework designed to
investigate the impact of traffic misclassification and an
adaptive learning-based approach to mitigate this impact.
Fig. 2 shows the high-level system design, encompassing two
primary phases: (i) optimizing routing paths and offline ML
model training within the control plane and (ii) identifying
traffic classes for network slice allocation and performance
monitoring within the data plane. In the following subsec-
tions, we explore the details of our integrated and smart
design for addressing the traffic misclassification problem.

A. CONTROL PLANE
The control plane comprises three essential logical com-
ponents: route optimization, ML model training, and an
economic model for quantifying SLA violations and guiding
updates to the ML model.

VOLUME 5, 2024 681

SAQIB et al.: ADAPTIVE IN-NETWORK TRAFFIC CLASSIFIER: BRIDGING THE GAP FOR IMPROVED QoS

1) DETERMINE OPTIMAL ROUTES

The control component first utilizes a routing module
to identify the most efficient paths for accommodating
heterogeneous traffic demands. Subsequently, it sets the
targeted revenue, determined by the revenue generation
function, as defined in Eq. (4). The function considers
traffic demands and available routes with bandwidth capacity
as inputs, resulting in the calculation of the maximum
achievable revenue. To solve the allocation problem for
traffic demands across multiple classes and paths in the
network, we formulate this optimization problem as an
Integer Linear Program (ILP). Our ILP can be generalized as
a 0/1 Multi-Knapsack Problem (MKP) [24]. The complete
formulation is detailed below:

max
σ

∑

c∈C

∑

k∈K
δ · α(c) · x(c)k (11)

subject to
∑

k∈K
x(c)k ≤ 1 ∀c (12)

∑

c∈C
γ (c) · x(c)k ≤ bk ∀k (13)

∑

c∈C
ϕk · x(c)k ≤ ϕ(c)

max ∀k (14)

x(c)k ∈ {0, 1} ∀c, k (15)

where

1x(c)k =
{

1 if class c allocated to path k
0 otherwise

(16)

Equation (13) guarantees that traffic demand from a
specific class c is accommodated by being assigned to at
most one path k. Constraint (14) ensures that the allocation
adheres to the capacity of each designated path, while
constraint (15) ensures that the cumulative latency on the
allocated path does not surpass the predetermined limit
for each traffic class. Finally, the binary decision variables
represent the pivotal choices in allocating traffic demands
to the network paths. We utilized the Gurobi optimizer to
solve the ILP (see Section V-B).

2) LEARNING MODULE

Additionally, the control plane employs a learning module
to gain insights into multi-priority traffic patterns from a
given dataset. The dataset, denoted as S, comprises packets
pj from sub-flows (fi(1 : j)) and is divided into two subsets:
a training set, ST , and a testing set, SP. The learning
module initially trains the ML model on ST . Subsequently,
it translates the resulting output, represented as if-else
conditions, into Match-Action Tables (MATs) within a P4-
enabled programmable switch [25] for real-time inference.
This translation process is facilitated through a control plane
API called P4Runtime [26].
Numerous supervised learning approaches are available

in the literature for traffic characterization, but not all are

suitable for implementation in P4 [6]. Our objective is
to seamlessly integrate the ML model’s output into the
data plane, necessitating compatibility with the available
operations in P4. Consequently, we opted for a classical
decision tree algorithm to circumvent the limitations of
P4. Given the current primitives in the P4 language [27],
a Decision Tree Classifier (DTC) proves to be the more
suitable choice for this task. It requires a comparison
operation to classify an element x, which can be readily
expressed in P4 using match-action rules.

B. DATA PLANE
The data plane comprises an in-network traffic classifier and
performance monitoring logic responsible for detecting SLA
violations.

1) IN-NETWORK TRAFFIC CLASSIFIER

After embedding the learning-based model’s output into the
data plane, the next step is predicting the incoming packet
class. Our in-network traffic classifier is designed using a
novel and effective method capable of quickly and accurately
classifying diverse traffic classes. What makes our approach
unique is its reliance on a single stable feature, specifically
the sequential packet size information that can be directly
extracted from the packet’s header.
The switch maintains registers to track flow IDs, packet

sizes, and packet counters for the initial packets of each
flow. For incoming packets, the switch’s parser extracts the
flow ID and relevant features, such as the five-tuples (i.e.,
IPs, Ports and protocol) and packet size, from the header
and stores these feature values in the pipeline’s metadata.
The flow ID register records all classified flows, allowing
the switch to handle packets belonging to these classes
efficiently. This means that packets from the classified flows
do not need to undergo the decision tree process and are
processed at a line rate, according to the identified class or
QoS policy.
When a flow is not classified, the switch checks the packet

counter for that flow. The parser extracts packet sizes and
stores them in a size vector until the packet counter reaches
a certain threshold. Once the packet counter reaches the
threshold, the MATs are used for classification based on the
size vector. Subsequently, the switch directs subsequent flow
packets to the appropriate slice (i.e., QoS group). We refer
to [8] for more details about the traffic flow classification
process inside a programmable data plane.

2) PERFORMANCE MONITORING

The next step involves calculating the misclassification
rate for each class based on the classifier’s predictions.
We continuously monitor the classifier’s performance by
computing the f1-score from the data plane’s predictions.
Due to evolving traffic patterns, the deployed model’s
accuracy diminishes over time, resulting in flows being
incorrectly mapped to the wrong QoS classes.

682 VOLUME 5, 2024

In our design, traffic flows from a set of classes, denoted
as C, are mapped to a corresponding set of slices, denoted
as S. As illustrated in Fig. 2, the colored arrows, such as
red, green, and blue, represent distinct slices with varying
bandwidth capacities and propagation delays. For instance,
misclassification causes approximately 8% of flows from
class c2 and 5% of flows from class c3 to be routed through
slice s1. Similarly, about 5% of flows from class c1 and
2% of flows from class c2 are routed through s2 and s3,
respectively.
Due to these misclassifications, the intended QoS policies

may not be applied to a fraction of the flows, resulting in
degrading service quality. The switch captures the flow IDs
and associated routing paths to address this issue. Based
on the generated traffic load T(c) for each class and the
classifier’s predictions, we calculate the traffic load on each
network path k and determine the bandwidth utilization rate
uk for each path.
Since the available bandwidth capacity varies across

network paths, some misclassified traffic flows from a partic-
ular class may be directed to paths with either higher or lower
capacity. This can lead to underutilization or overutilization
of certain paths, affecting service quality. Measuring the
precise impact on service quality, such as how each traffic
class receives its allocated resources, is a complex task in
a multi-class and multi-path network. Therefore, we employ
a joint approach, periodically monitoring the classifier’s
predictions and the QoS status of the paths to assess the
impact of traffic misclassification on service quality.

C. INTEGRATED AND ADAPTIVE DESIGN
The entire process for assessing and mitigating the impact
of traffic misclassification is outlined in Algorithms 1-3.
Algorithm 1 iterates T times, invoking path scheduling and
penalty calculation algorithms at lines 7 and 8, respectively.
Algorithm 2 aims to maximize revenue through optimal path
allocation, while Algorithm 3 calculates the misclassification
rate for each traffic class, the utilization rate of each
network path, and the associated penalties. The InP profit is
periodically determined by deducting the estimated penalties
from the generated revenue at line 9.
Algorithm 2 utilizes a solver to iterate over traffic classes

and network paths. For each item (i.e., traffic demand from a
class c), we have K choices (paths) for allocation. Therefore,
we must allocate C items to K choices over each period t. For
each feasible allocation, where a network path can adequately
meet the service quality requirements of a traffic class,
the revenue is calculated by multiplying the class’s priority
factor with the price for a bandwidth unit and the satisfiable
bandwidth. The generated revenue is temporarily assigned
to a variable σ at line 5. The solver aims to maximize the
revenue through optimal allocation and returns the maximum
generated revenue as a result of the optimal assignment
of C to K. The algorithm’s computational complexity
is inherently tied to the performance characteristics and
algorithms implemented within the solver. However, in the

Algorithm 1: Maximizing InP’s Profit
Input: C, F, T, K

1 C: A list of classes with varying QoS requirements
2 F(c): Network traffic flows of class c
3 T(c): Generated traffic load for each class c
4 K: A list of capacity-varying routes
Output: P: Profit

5 P = 0;
6 for t ∈ T do
7 σ(t) = PathScheduling(C, K) ; // Algorithm 2
8 ρ(t) = PenaltyCalculation(C,F,T,K) ;

// Algorithm 3
9 P (t) = σ(t) - ρ(t) ; // Profit over time t

Algorithm 2: PathScheduling
Input: C, K
Output: max_revenue

1 max_revenue = 0;
2 for c ∈ C do
3 for k ∈ K do
4 for each feasible solution do
5 σ = ∑

c∈C
∑

k∈K δ · α(c) · x(c)k ;
6 if σ > max_revenue then
7 max_revenue = σ ;

8 return max_revenue

worst case, the algorithm may need to explore all possible
combinations of C and K. Hence, the worst-case complexity
can be approximated as O(KC).

Algorithm 3 is designed to monitor network performance,
specifically path utilization rates, and precisely calculate the
penalties for InP as a result of SLA violations. The first
nested loop from lines 1 to 8 runs for K × C, calculating
the network path utilization rates. Initially, the classifier’s
predictions, denoted as λ

(c)
k , are derived from classification

results where columns represent paths, and rows represent
classes. The network path utilization rate, i.e., μk at line
4, is then determined by multiplying the generated traffic
load T(c) for a specific class c by the classifier’s prediction
λ

(c)
k and dividing it by the network path’s capacity bk. This

utilization rate reflects how efficiently each path is being
used. Furthermore, to ensure fairness and uniformity in the
penalty calculation, we scale the utilization rate for each path
by dividing the over-utilization by 100 at line 7, allowing
for a consistent assessment.
The second nested loop from lines 9 to 14 runs for C×K,

calculating penalties for each traffic class based on traffic
misclassification and path utilization rates. The sub-loop
iterates over network paths, assessing penalties for traffic
incorrectly mapped to paths other than its intended route.
Line 11 indicates that if the traffic is directed to a path
other than its planned route, then calculate the penalty for
that portion of traffic on the assigned path. The penalty is
computed as the product of a penalty unit, class priority,
path utilization rate, and misclassification rate at line 12. At

VOLUME 5, 2024 683

SAQIB et al.: ADAPTIVE IN-NETWORK TRAFFIC CLASSIFIER: BRIDGING THE GAP FOR IMPROVED QoS

Algorithm 3: PenaltyCalculation
Input: C, F, K, T
Output: ρ

// Calculate path utilization
1 for k ∈ K do
2 for c ∈ C do
3 λ

(c)
k = pr(F(c)

k);
4 μk+ =

(
T(c)·λ(c)

k
bk

)
· 100;

5 c = c+ 1;
6 if μk > 100 then
7 μk = μk

100 ;
8 k = k + 1;
// Calculate penalty

9 for c ∈ C do
10 for k ∈ K do
11 if c �= k then
12 ρ(c)+ = β · α(c) · μk · λ

(c)
k ;

13 k = k + 1;
14 c = c+ 1;
15 ρ = ∑

c∈C ρ(c);
16 return ρ

the end of the iterations, the algorithm calculates and returns
the accumulated penalty for each time (i.e., days).
The combined performance monitoring of the classifier

and network paths enables us to measure and quantify the
misclassification effects accurately. Based on this quantifica-
tion, the economic model determines the appropriate updates
to adapt to newly obtained traffic patterns and improve
the classifier’s performance. Consequently, we incrementally
regularly incorporate freshly acquired data into the existing
model to keep an up-to-date ML model within the data plane.
This approach ensures that flows are predicted correctly
and misclassification rates are minimized. The complete
computational complexity of the proposed algorithms can be
approximated as:

O
(
a(T) ×

(
a2

(
KC

)
+ a3(K × C + C × K)

))

• a1(T): Represents the computational complexity of
running the solver for periods.

• a2(KC): Signifies the solver’s complexity, linked to its
internal logic. In the worst case, the algorithm explores
all possible combinations, resulting in an approximate
worst-case complexity of O(KC).

• a3(K × C + C × K): Represents the complexity of
calculating the path utilization rates and penalty for each
class on the associated path.

The overall worst-case complexity depends on the number
of traffic classes C and network paths K.

V. VALIDATION METHODOLOGY
This section presents the dataset employed, describes the
experimental setup, and outlines the distinct performance
analysis cases covered in Sections V-A–V-C, respectively.

TABLE 3. Dataset Summary

FIGURE 3. Network topology.

A. DATASET DESCRIPTION
We have utilized packet capture (PCAP) traces of IoT devices
from [9] as our dataset. Among the available instances in
the dataset, we consider the PCAP files spanning seven
days, from September 23 to September 29, 2016. These files
contain flows associated with four distinct applications and
involve various IoT devices.
These IoT devices have been categorized into different

classes, each with varying degrees of priority. To ensure
diversity, we selected devices capable of being assigned to
various QoS groups, ranging from high bandwidth and low
latency to best effort. Devices within the same class exhibit
similar traffic characteristics. Consequently, for validation,
we select a single device from each class. An overview of the
dataset about these chosen devices is shown in TABLE 3.

B. EXPERIMENTAL SETUP
We organized our experiments into three steps. First, we
define the network topology for finding optimal paths using a
solver in Section V-B.1. Then, we discuss the model training
and deployment in Section V-B.2. Finally, we present the
simulation setup for the in-network traffic classifier and
performance monitoring in Section V-B.2.

1) NETWORK TOPOLOGY

Since we consider the performance requirements for various
classes of traffic defined in TABLE 1, the InP generates
revenue by satisfying traffic demands with varying service
quality parameters. We define a network topology with
diverse paths (see Fig. 3) and employ Gurobi solver to
identify the optimal paths for fulfilling the traffic demands.

684 VOLUME 5, 2024

FIGURE 4. Simulation setup.

2) MODEL TRAINING AND DEPLOYMENT

We relied on Python’s scikit-learn1 implementation for
model training, and we used cross-validation to choose the
best hyperparameters (e.g., tree height and the minimum
number of items per leaf) to avoid overfitting. The DTC
classifier produces output translated into MATs in the form
of match-action rules using P4Runtime API. A single table
handles a single packet’s size range from the first few
packets’ sequences of an individual flow. The number of
tables equals the input length plus a class prediction table.
Before applying MATs, the P4 code extracts the payload
sizes of the sequential packets from an individual flow and
stores them as a size vector in SRAM. Once the input length’s
threshold is reached, the switch traverses the size vector
through the MATs to predict the traffic class.

3) SIMULATING DATA PLANE

The logical components of the simulation setup are shown
in Fig. 4. The Measurement Component (on the left) is
responsible for generating, collecting, and analyzing the
network traffic, whilst the Data Plane Component (on the
right) is the target to be evaluated. The data plane is
implemented in P4, compiled with a target of behavioural
model version 2 (BMv2) [25]. The structure of the simulation
setup is organized as follows:

• Host send the packets with Pktgen-DPDK2 and also
receives the packets back already classified and
timestamped. This component reports the classifier’s
predictions and network performance for the packets.

• Switch contains the traffic classification algorithm
responsible for classifying and mapping incoming traffic
to the appropriate QoS slices.

C. CASES FOR PERFORMANCE ANALYSES
Traffic misclassification doesn’t solely equate to SLA viola-
tions. In other words, misclassification doesn’t necessarily
lead to SLA breaches. For instance, traffic from a low-priority
and low-data-rate class can be erroneously mapped to a
high-priority and high-data-rate path without impacting that

1. https://scikit-learn.org/
2. https://pktgen-dpdk.readthedocs.io/en/latest/

class significantly. Conversely, misclassifying traffic from a
high-priority, high-rate class to a low-priority, low-data-rate
path can severely affect SLA compliance. Therefore, SLA
violations for a specific class may or may not be linked to
misclassification.
In a multi-class, multi-path network, numerous possi-

bilities exist, necessitating precise measurement of SLA
violations for equitable calculation of per-class penalties.
We’ve defined three validation and performance analysis
cases to simplify our approach, facilitating a foundational
understanding of SLA violation quantification.

• Case 1: When traffic from a low-priority class is
incorrectly mapped to multiple high-priority paths;

• Case 2: When traffic from a high-priority class is
incorrectly mapped to multiple low-priority paths;

• Case 3: When traffic from multi-priority classes is
incorrectly mapped to a single path.

VI. EXPERIMENTAL RESULTS
The experimental results are divided into three main parts:
firstly, determining optimal paths to achieve the targeted
revenue by satisfying diverse traffic demands; secondly,
assessing the impact of traffic misclassification; and thirdly,
evaluating the adaptivity of the machine ML to mitigate the
effects of misclassification. These results are presented in
Sections VI-A–VI-C.

A. SATISFYING MULTI-PRIORITY TRAFFIC DEMANDS
The InP generates revenue by meeting traffic demands while
considering distinct service quality parameters. The selling
price for a single unit of bandwidth is set at 5$. The provider
allocates the optimal routing paths the solver determines
to meet diverse traffic demands. Based on these satisfiable
traffic demands, the provider calculates the targeted revenue
using the revenue generation function defined in (Eq. (4)).
The generated revenue, as depicted in Fig. 6, is shown for the
specified classes from Table 1. The bar graph illustrates
the correlation between bandwidth demand and revenue.
This correlation is particularly robust for classes with a
high criticality level, such as class-4, while Class-2 exhibits
the opposite behavior due to its lower criticality level.
Consequently, the InP identifies the optimal route for each
traffic class to maximize revenue while meeting the demands.

B. IMPACT OF TRAFFIC MISCLASSIFICATION
The next step involves assessing the impact of misclas-
sification on the provider’s profit. Since network traffic
patterns evolve rather than remain constant, an ML model’s
accuracy naturally degrades over time as traffic patterns
change. We employ three distinct cases to measure the
impact of misclassification and quantify SLA violations (see
Section V-C).

We divided the chosen dataset into multiple chunks for
analysis, each representing daily streaming data. The initial
data chunk was dedicated to training, while subsequent

VOLUME 5, 2024 685

SAQIB et al.: ADAPTIVE IN-NETWORK TRAFFIC CLASSIFIER: BRIDGING THE GAP FOR IMPROVED QoS

FIGURE 5. Confusion matrix for case 1 (left), 2 (middle), and 3 (right).

FIGURE 6. Per-class revenue determined by optimal path allocation.

fragments were used for testing. We examined new data
patterns on the 2nd, 3rd, and 4th day to identify the ML
model drift, validating the cases mentioned earlier. We
then periodically monitored the model’s performance on
contemporary data patterns.

1) CLASSIFICATION RESULTS

The following day’s confusion matrix for each case can be
seen in Fig. 5. In the first case, a substantial portion of
traffic from a low-priority class (i.e., class 1) is erroneously
mapped to high-priority classes. In contrast, the second case
involves a minor portion of traffic from a higher-priority
class being inaccurately assigned to low-priority classes.
The third case illustrates a scenario where there is no

misclassification within specific classes (i.e., classes 1 and
3), but traffic from other classes is directed towards their
paths due to misclassification. Fig. 7 draws the f1-score for
the complete simulation encompassing all these cases. Given
that incoming traffic patterns are unknown to the existing
model, the f1-score of the classifier’s predictions diminishes
in the subsequent days. This underscores the necessity for
model adaptivity to address the evolving traffic patterns and
tackle the misclassification problem.

2) IMPACT ON NETWORK PERFORMANCE

Fig. 8 illustrates the network path capacities for each traffic
class. Dotted lines without markers represent the path’s
capacity (i.e., available bandwidth), while dotted lines with
markers indicate the network traffic load on each path. Fig. 9
presents the path utilization rates from traffic mapping to
the predicted network paths.
In the first case, despite a higher misclassification rate

from class 1, the traffic load on all network paths remains
below their capacities. Consequently, the influence of mis-
classification in case 1 on network performance is almost
negligible, as depicted by the network traffic load on
each corresponding path in Fig. 9. This is attributed to
the incorrect mapping of traffic from low to high data
rate classes, which imposes minimal overhead on high-
capacity network paths and can be accommodated by the
network.
Conversely, a minor portion of traffic flows (approximately

1.6%) from a high-priority class is mistakenly mapped to
the low-priority class in case 2, resulting in a significant
increase in the utilization rate of the corresponding path (i.e.,
path 1).
The final case visualizes the impact of traffic misclassifi-

cation from another perspective. In this scenario, there may
be no misclassification within specific classes (e.g., class 1
or 3). Still, traffic from other classes may be erroneously
mapped due to misclassification from other classes (e.g., 2
and 4). This can lead to over-utilization of the associated
paths.
The three presented cases demonstrate the impact of traffic

misclassification on network performance, which results
from the incorrect mapping of traffic to designated network
paths. It’s important to note that this impact isn’t solely
determined by the rate of traffic misclassification but also
hinges on the specific QoS requirements of the traffic
classes and the QoS status of the associated network paths.
Therefore, in addition to considering factors such as the
penalty unit, class priority, and misclassification rate [16], the
final penalty calculation for traffic classes also incorporates
network path utilization.

686 VOLUME 5, 2024

FIGURE 7. Classification result (i.e., f1-score) from complete simulation for cases 1 (left), 2 (middle), and 3 (right).

FIGURE 8. Network path capacities and traffic load for cases 1 (left), 2 (middle), and 3 (right).

FIGURE 9. Network path bandwidth utilization rates for cases 1 (left), 2 (middle), and 3 (right).

FIGURE 10. Improved penalty calculation for cases 1 (left), 2 (middle), and 3 (right).

3) IMPACT ON PENALTY

The impact of traffic misclassification on penalties is
illustrated in Fig. 10. In the initial scenario, despite a
heightened rate of traffic misclassification, no supplementary
penalty is imposed, as the network path utilization rate stays
below 100%. Conversely, a marginal portion of erroneously
mapped traffic from class 4 leads to the imposition of a

penalty, even for class 1, owing to QoS degradation on
the path of class 1 caused by traffic congestion. Similarly,
class 3 traffic was correctly mapped to its designated path,
but the associated path became congested due to misclassi-
fication from other classes, leading to a higher penalty for
class 3.
Hence, the impact of traffic misclassification on the final

penalty is not solely determined by the misclassification rate

VOLUME 5, 2024 687

SAQIB et al.: ADAPTIVE IN-NETWORK TRAFFIC CLASSIFIER: BRIDGING THE GAP FOR IMPROVED QoS

FIGURE 11. Adaptive classifier results for cases 1 (left), 2 (middle), and 3 (right).

or class priority but also depends on the QoS status of the
network paths.

4) RESULTS FROM ADAPTIVE CLASSIFIER

The final set of results offers valuable insights into the
impact of adapting to evolving traffic patterns and how this
adaptation diminishes the influence of misclassification on
network performance. We periodically incorporated newly
received traffic patterns into the existing ML model to
achieve this. The adaptation process was designed to alleviate
the impact of misclassification on the network’s QoS.
The results, as illustrated in Fig. 11, clearly demonstrate

that enhancing the accuracy of our classifier has a direct and
positive effect on the InP profit. Specifically, we observe
a reduction in the total penalty as accuracy improves. In
simpler terms, as we enhance the classifier’s accuracy, it
becomes more proficient at precisely assigning incoming
traffic to the appropriate QoS classes. This, in turn, leads to
diminished penalties while sustaining higher profits.
In summary, adapting to changing traffic patterns empow-

ers the proposed approach to minimize the adverse effects
of misclassification, ultimately maximizing the InP’s profit
and overall service quality.

VII. CONCLUSION
This paper presents an approach that investigates the network
performance and economic implications of traffic misclas-
sification, introducing an adaptive classification method to
address this challenge effectively. Our validation process
involved characterizing multi-priority traffic, optimizing path
allocation, and mapping incoming flows to various QoS
classes. We found that in a multi-class, multi-path network,
the impact of misclassification on penalty charges varies
due to several factors, including the criticality level of each
class, the misclassification rate, and the associated paths’
utilization rate. Furthermore, we observed that the classi-
fier’s adaptivity significantly improves prediction accuracy,
ensuring precise QoS class assignments and thus reducing
penalties while increasing profits. This research contributes
to a better understanding of the complex nature of traffic
misclassification and its impact on SLA violations within
intricate network environments.

REFERENCES
[1] Y. Wu, H.-N. Dai, H. Wang, Z. Xiong, and S. Guo, “A survey of

intelligent network slicing management for industrial IoT: Integrated
approaches for smart transportation, smart energy, and smart fac-
tory,” IEEE Commun. Surveys Tuts., vol. 24, no. 2, pp. 1175–1211,
2nd Quart., 2022.

[2] J. J. A. Esteves, A. Boubendir, F. Guillemin, and P. Sens, “Optimized
network slicing proof-of-concept with interactive gaming use case,” in
Proc. 23rd Conf. Innov. Clouds, Internet Netw. Workshops (ICIN),
2020, pp. 150–152.

[3] H. Yao, P. Gao, J. Wang, P. Zhang, C. Jiang, and Z. Han, “Capsule
network assisted IoT traffic classification mechanism for smart
cities,” IEEE Internet Things J., vol. 6, no. 5, pp. 7515–7525, Oct.
2019.

[4] E. F. Kfoury, J. Crichigno, and E. Bou-Harb, “An exhaustive survey
on p4 programmable data plane switches: Taxonomy, applications,
challenges, and future trends,” IEEE Access, vol. 9, pp. 87094–87155,
2021.

[5] Z. Xiong and N. Zilberman, “Do switches dream of machine learning?:
Toward in-network classification,” in Proc. 18th ACM Workshop Hot
Topics Netw., 2019, pp. 25–33.

[6] B. M. Xavier, R. S. Guimarães, G. Comarela, and M. Martinello,
“Programmable switches for in-networking classification,” in Proc.
IEEE Conf. Comput. Commun. INFOCOM, 2021, pp. 1–10.

[7] G. Xie, Q. Li, Y. Dong, G. Duan, Y. Jiang, and J. Duan, “Mousika:
Enable general in-network intelligence in programmable switches
by knowledge distillation,” in Proc. IEEE Conf. Comput. Commun.
INFOCOM, 2022, pp. 1938–1947.

[8] M. Saqib, Z. A. Hmitti, H. Elbiaze, and R. H. Glitho, “An accurate &
efficient approach for traffic classification inside programmable data
plane,” in Proc. IEEE Global Commun. Conf., 2022, pp. 6331–6336.

[9] A. Sivanathan et al., “Classifying IoT devices in smart environments
using network traffic characteristics,” IEEE Trans. Mobile Comput.,
vol. 18, no. 8, pp. 1745–1759, Aug. 2019.

[10] I. Žliobaitė, M. Pechenizkiy, and J. Gama, “An overview of concept
drift applications,” in Big Data Analysis: New Algorithms a New
Society. Cham, Switzerland, Springer, 2016, pp. 91–114.

[11] A. Azab, M. Khasawneh, S. Alrabaee, K.-K. R. Choo, and
M. Sarsour, “Network traffic classification: Techniques, datasets, and
challenges,” Digit. Commun. Netw., to be published.

[12] J. Lu, A. Liu, F. Dong, F. Gu, J. Gama, and G. Zhang, “Learning
under concept drift: A review,” IEEE Trans. Knowl. Data Eng., vol. 31,
no. 12, pp. 2346–2363, Dec. 2019.

[13] B. Chakraborty, D. M. Divakaran, I. Nevat, G. W. Peters, and
M. Gurusamy, “Cost-aware feature selection for IoT device classifica-
tion,” IEEE Internet Things J., vol. 8, no. 14, pp. 11052–11064, Jul.
2021.

[14] A. Telikani, A. H. Gandomi, K.-K. R. Choo, and J. Shen, “A
cost-sensitive deep learning-based approach for network traffic clas-
sification,” IEEE Trans. Netw. Service Manag., vol. 19, no. 1,
pp. 661–670, Mar. 2022.

[15] Y. Xu and D. Xu, “Maximizing profit of network InP by cross-
priority traffic engineering,” in Proc. IEEE Global Commun. Conf.
(GLOBECOM), 2018, pp. 1–6.

[16] M. Saqib, H. Elbiaze, and R. Glitho, “A profit-aware adaptive
approach for in-network traffic classification,” in Proc. IEEE Int. Conf.
Commun., 2023, pp. 3351–3356.

688 VOLUME 5, 2024

[17] C. De Alwis et al., “Survey on 6G frontiers: Trends, applications,
requirements, technologies and future research,” IEEE Open J.
Commun. Soc., vol. 2, pp. 836–886, 2021.

[18] D. Nechay, Y. Pointurier, and M. Coates, “Controlling false
alarm/discovery rates in online Internet traffic flow classification,” in
Proc. IEEE INFOCOM, 2009, pp. 684–692.

[19] S. S. Wanode, M. Anand, and B. Mitra, “Optimal feature set selection
for IoT device fingerprinting on edge infrastructure using machine
intelligence,” in Proc. IEEE Conf. Comput. Commun. Workshops
(INFOCOM WKSHPS), 2022, pp. 1–6.

[20] S. Zhu, X. Xu, H. Gao, and F. Xiao, “CMTSNN: A deep learning
model for multi-classification of abnormal and encrypted traffic
of Internet of Things,” IEEE Internet Things J., vol. 10, no. 13,
pp. 11773–11791, Jul. 2023.

[21] B. Afzal, S. A. Alvi, G. A. Shah, and W. Mahmood, “Energy efficient
context aware traffic scheduling for IoT applications,” Ad Hoc Netw.,
vol. 62, pp. 101–115, Jul. 2017.

[22] M. Leconte, G. S. Paschos, P. Mertikopoulos, and U. C. Kozat, “A
resource allocation framework for network slicing,” in Proc. IEEE
Conf. Comput. Commun. INFOCOM, 2018, pp. 2177–2185.

[23] M. Grandini, E. Bagli, and G. Visani, “Metrics for multi-class
classification: An overview,” 2020, arXiv:2008.05756.

[24] L. Zhang and S. Geng, “The complexity of the 0/1 multi-knapsack
problem,” J. Comput. Sci. Technol., vol. 1, no. 1, pp. 46–50, 1986.

[25] “bmv2.” Accessed: Nov. 12, 2022. [Online]. Available: https://github.
com/p4lang/behavioral-model/,

[26] “P4 language consortium 2019. P4Runtime specification. P4 language
consortium. rev. 1.3.0.” Accessed: Nov. 1, 2023. [Online]. Available:
https://github.com/p4lang/p4runtime

[27] P. Bosshart et al., “P4: Programming protocol-independent packet
processors,” ACM SIGCOMM Comput. Commun. Rev., vol. 44, no. 3,
pp. 87–95, 2014.

MUHAMMAD SAQIB (Graduate Student Member,
IEEE) received the master’s degree in computer
science from the University of Engineering and
Technology, Taxila, Pakistan, in 2019. He is
currently pursuing the Ph.D. degree in com-
puter science with the Université du Québec à
Montréal, Montreal, Canada. His research interests
include traffic classification and quality of service
management in next-generation networks.

HALIMA ELBIAZE (Senior Member, IEEE)
received the Ph.D. degree in computer science
from Telecom Sud-Paris, France, in 2002.
Since 2003, she has been with the Department
of Computer Science, Universite du Quebec
a Montreal, Montreal, QC, Canada, where
she is currently a Full Professor. Her current
research interests include network performance
evaluation, traffic engineering, and quality of
service management in next-generation networks.

ROCH H. GLITHO is a Full Professor with
Concordia University, where he holds the
Ericsson/ENCQOR Industrial Research Chair in
Cloud/Edge for 5G and Beyond. He has held a
Canada Research Chair from 2010 to 2020, and
prior to joining academia in 2010, he has held
several senior technical positions with Ericsson.
He is also a Professor Extraordinaire with the
University of Western Cape, South Africa.

VOLUME 5, 2024 689

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Helvetica-Condensed-Bold
 /Helvetica-LightOblique
 /HelveticaNeue-Bold
 /HelveticaNeue-BoldItalic
 /HelveticaNeue-Condensed
 /HelveticaNeue-CondensedObl
 /HelveticaNeue-Italic
 /HelveticaNeueLightcon-LightCond
 /HelveticaNeue-MediumCond
 /HelveticaNeue-MediumCondObl
 /HelveticaNeue-Roman
 /HelveticaNeue-ThinCond
 /Helvetica-Oblique
 /HelvetisADF-Bold
 /HelvetisADF-BoldItalic
 /HelvetisADFCd-Bold
 /HelvetisADFCd-BoldItalic
 /HelvetisADFCd-Italic
 /HelvetisADFCd-Regular
 /HelvetisADFEx-Bold
 /HelvetisADFEx-BoldItalic
 /HelvetisADFEx-Italic
 /HelvetisADFEx-Regular
 /HelvetisADF-Italic
 /HelvetisADF-Regular
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

