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ABSTRACT Hierarchical Federated Learning (HFL) has emerged to overcome the shortcomings of
conventional Federated Learning (FL) due to communication obstacles between the end users and the
cloud server and the congestion at the backhaul of wireless network implementations. In this paper,
we consider a wireless user-edge-cloud HFL network where the transmissions of the users’ local model
parameters to the edge are multiplexed via the Non-Orthogonal Multiple Access (NOMA) technique.
The joint problem of association and uplink transmission power allocation of the users to the edge is
formulated and solved as a non-cooperative game in satisfaction form. Diverging from the prevailing
research that proposes centralized solution concepts, each user makes autonomous decisions regarding
its association and power level so as to attain a minimum acceptable tradeoff of three vital network
factors. The latter includes the global model’s training accuracy and the users’ consumed energy and
time during transmission. Different types of equilibria are explored, i.e., the Satisfaction Equilibrium (SE)
and Minimum Efficient Satisfaction Equilibrium (MESE) which not only fulfills users’ minimum tradeoff
but also minimizes the overall network’s cost. Algorithms based on Reinforcement Learning (RL) and
Best Response Dynamics (BRD) are, then, devised to conclude the SE and MESE points. The proposed
framework is evaluated via modeling and simulation, verifying its efficiency in achieving an equitable
balance in the network.

INDEX TERMS Hierarchical federated learning, game theory, games in satisfaction form, user association,
power allocation.

I. INTRODUCTION

THE PROLIFERATION of the Internet of Things (IoT)
and social networking has provoked individuals to

generate massive amounts of data through interconnected
devices. This offers great potential for leveraging Machine
Learning (ML) models in various applications, such as
natural language processing, image processing, and 6G
wireless communications, just to name a few of them.
However, centralized ML faces challenges due to the increase
in the complexity of the aforementioned applications and
the growing concerns about data privacy. In this context,
Federated Learning (FL) offers a viable solution by enabling

collaborative training of ML models across distributed end-
user devices while preserving data privacy [1]. The end users
collectively train a global ML model based on their local data
by solely exchanging their local model updates with a remote
server. From a communication perspective, though, several
challenges arise related to increased backhaul network traffic
or even connectivity issues that hinder the performance of
distributed learning when considering implementations of FL
over wireless networks [2].
Hierarchical Federated Learning (HFL), in turn, introduces

the notion of hierarchy in the FL procedure by empowering
devices at different levels across the computing continuum to
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collaborate effectively with each other [3]. In particular, HFL
suggests adding an extra layer of edge model aggregation
where edge servers facilitate the aggregation and transmis-
sion of end users’ model parameters to a remote server in
the cloud. In this way, better resource utilization across the
continuum can be achieved while reducing backhaul network
traffic and communication costs in both the convergence
time of the FL procedure and consumed energy at the end-
user devices. Nevertheless, an inconvenient assignment of
users to the different edge servers can cause an unequal
distribution of data among the servers and an imbalanced
traffic load on the Radio Access Network (RAN), bringing
exactly opposite effects in the HFL procedure. To reap the
maximum benefits of such a hierarchical structure, several
research works, e.g., [4], [5], [6], [7], [8], are devoted to
the appropriate user association to the available edge servers
and the allocation of the wireless resources.
In this paper, we strive to address this particular problem

in a wireless HFL network, where the users’ transmissions
of their local model parameters to the edge are multiplexed
using the Non-Orthogonal Multiple Access (NOMA) tech-
nique. Different from [4], [5], [6], [7], [8], we focus on the
socio-economic perspective of wireless HFL networks. We
specifically target the tradeoff between the global model’s
training accuracy and users’ incurred communications energy
and time overhead, serving as an incentive for the users to
invest their resources and participate in the HFL procedure.
Each user pursues its individual minimum acceptable tradeoff
by autonomously determining its association and uplink
transmission power to the edge, while the interactions
and interdependent decisions among the different users are
modeled as a game in satisfaction form [9], [10]. Contrary
to the conventional normal-form non-cooperative games that
aim at the players’ utility maximization, this form of games
targets the satisfaction of the players’ minimum acceptable
Quality of Service (QoS) requirements, which are mapped
to the users’ minimum acceptable accuracy-time-energy
tradeoff value [11].

Overall, in this paper, the joint problem of user association
and uplink transmission power allocation in a wireless HFL
network employing power-domain NOMA is addressed as
a game in satisfaction form to achieve a tradeoff among
accuracy, time, and energy overheads for the individual users.
Different types of equilibria are scrutinized therein, such
as the Satisfaction Equilibria (SE) and Minimum Efficient
Satisfaction Equilirbia (MESE) that not only satisfy the
users’ minimum desired tradeoff but also result in the overall
network’s minimum cost. Appropriate algorithms are also
designed for the derivation of the corresponding equilibria.

A. RELATED WORK
Numerous studies have delved into FL’s application and
demonstrated its effectiveness under various settings so
far [12]. Especially for implementations over wireless
networks, HFL is currently a vibrant field of investigation
due to its capability to address several hurdles encountered in

traditional FL. A particular implementation of HFL considers
the organization of the different users in the network
into clusters and the determination of a corresponding
cluster-head to serve as a mediator to the rest of the
users’ transmissions of their local model parameters to
the cloud [13]. Other HFL implementations are founded
on the typical user-edge-cloud structure, e.g., [14], [15].
Specifically, the work in [14] constitutes one of the first
in the field to provide convergence guarantees for the
HFL procedure over wireless networks. Going one step
further and accounting for user mobility, the work in [15]
demonstrates how the latter can be leveraged to enhance
learning performance by properly selecting the users that
participate in the HFL procedure at each learning round
based on their position. This allows for the application of
HFL (and FL in general) in the context of the Internet
of Vehicles (IoV) [16] for collaborative training of an ML
model while keeping data locally, while more elaborate
applications of HFL can be used hereupon to combat
malicious attacks [17].
The performance of wireless FL is heavily contingent

upon the quality of the communication between the various
network entities and the allocation of radio resources.
Considering a single-server multi-user FL system, to begin
with, several research works exist tackling the joint user
selection/scheduling and resource allocation problem under
different network settings and optimization objectives,
e.g., [18], [19], [20], [21], [22]. Both [18] and [19] con-
sider the implementation of FL over Orthogonal Frequency
Division Multiple Access (OFDMA) networks and optimize
the user selection, uplink transmission power, bandwidth,
and CPU frequency allocation at the user devices. In [18],
the minimization of the consumed energy is pursued,
while [19] accounts additionally for the FL procedure’s
convergence time minimization. Nevertheless, Orthogonal
Multiple Access (OMA) techniques impose significant limi-
tations regarding the number of concurrently supported users
over the same time, frequency, or code-domain resources,
reducing the network’s spectral efficiency. To combat this
issue, NOMA has also been considered in FL networks,
e.g., [20], [21], allowing multi-user multiplexing by employ-
ing advanced interference cancellation techniques at the
receiver. In [20] and [21] a similar variable set with [18], [19]
is optimized, focusing on the sum-rate maximization and
energy consumption minimization, respectively. Aiming at
the global model’s accuracy enhancement, the maximization
of the number of users utilized in the FL procedure is
targeted in [22] by optimally controlling the transmission
power, network bandwidth, and user selection.
In HFL structures, instead, the joint problem of association

and resource allocation between the user and edge tiers is
mainly studied in the literature to manage the imbalanced
user and data distribution across the RAN, e.g., [4], [5], [6],
[7], [8]. In [4], an analysis of the impact of user association in
HFL networks with Independent Identically Distributed (IID)
and non-IID data distributions to the different edge servers
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is performed, which is extended in [5] by concurrently
accounting for the effect of resource allocation in terms
of bandwidth. The joint problem of user association and
resource allocation is, then, solved in [5] to minimize the
learning latency of the FL procedure while a similar problem
is addressed in [6] to minimize the weighted sum of energy
and time overheads across an HFL network. Contrary to
the aforementioned works that consider OFDMA-based envi-
ronments, the authors in [7] seek the minimization of both
latency and energy consumption and the maximization of the
learning model’s accuracy under a NOMA implementation
by optimizing the users’ uplink transmission power along
with their association. A centralized solution is proposed
there which, however, is difficult to scale as the size of the
network increases, given that the optimization falls in the
Mixed Integer Non-Linear Programming (MINLP) NP-hard
problems. Distributed optimization frameworks based on
Game Theory provide effective alternatives to this scalability
issue. The work in [8] provides a particular example where
Stackelberg and evolutionary non-cooperative games are
used in HFL networks to give solutions to optimization
problems.
However, what has been significantly neglected so far

is that the users engaged in HFL aim at high model
accuracy without necessarily excessively consuming their
power resources. The latter describes a tradeoff that needs to
be satisfied, different from maximizing the global model’s
accuracy subject to the users’ energy and time constraints.
In this context, the theory of non-cooperative games in
satisfaction form [9] allows us to achieve a minimum
acceptable tradeoff between model accuracy and consumed
energy and time for communication in a distributed manner.
The users can self-organize by determining their asso-
ciation and uplink transmission power as players in a
non-cooperative game while pursuing the satisfaction of a
tradeoff value instead of its maximization. Concurrently,
the benefits of a game-theoretic solution are inherited by
distributing decision-making across the users related to
reduced computational complexity, enhanced user privacy,
and dynamic adaptation to changing conditions. Especially
under this form of games, different types of equilibria can
be achieved that consider either the exclusive satisfaction of
the involved users (i.e., SE [23]) or even the simultaneous
minimization of the cost that is incurred to the overall
network (i.e., MESE [24]). A wide range of applications of
the games in satisfaction form exist, including user associa-
tion in heterogeneous networks [25], channel allocation [26],
and minimization of base stations’ energy consumption [27].

B. CONTRIBUTIONS & OUTLINE
In this paper, we introduce and solve – for the first time in
the literature of wireless HFL networks – the joint problem
of association and uplink transmission power allocation
between the users and the edge while targeting to achieve
a minimum acceptable accuracy-time-energy tradeoff from
the users’ side in a distributed way. The pursued tradeoff

regards the produced global model’s accuracy and the
incurred energy and time consumption to the users due to
communication with the edge. In this context, the main
contributions of this paper are summarized as follows.
1) The joint problem of association and uplink transmis-

sion power allocation of the users to the edge in a
wireless HFL network using power-domain NOMA,
is modeled as a game in satisfaction form, such that
each user pursues its accuracy-time-energy tradeoff
autonomously.

2) Different types of equilibria, i.e., SE and MESE, are
analyzed and discussed in terms of their existence
and uniqueness, concluding with different solution out-
comes that range from the users’ minimum acceptable
tradeoff satisfaction to the overall network’s optimal
performance in terms of minimum incurred cost.

3) Distributed algorithms are introduced that are executed
autonomously by the users in the network to con-
clude the different equilibria based on Reinforcement
Learning (RL) [9] and Best Response Dynamics
(BRD) [28].

4) Numerical evaluation based on modeling and simu-
lation demonstrates the effectiveness of the proposed
framework in achieving the desired global model’s
accuracy and users’ incurred energy and time overhead
tradeoff, successfully fulfilling the HFL procedure’s
learning objective while securing the end users’ ben-
eficial participation.

The remainder of the paper is organized as follows.
Section II presents the modeling of the HFL procedure,
user interference, and accuracy-time-energy tradeoff. In
Section III, the formulation of the game in satisfac-
tion form is provided and the different equilibria are
analyzed. Section IV presents the devised algorithms to
derive the different equilibria and thus, solution outcomes.
Section V regards the framework’s performance evaluation
and Section VI concludes the paper.

II. SYSTEM MODEL
We consider a wireless HFL network, as illustrated in Fig. 1,
where multiple edge servers and users collaboratively train
a global learning model, coordinated by a model owner. We
denote the set of edge servers as M = {1, . . . ,m, . . . ,M}
and the set of users as N = {1, . . . , n, . . . ,N}. The
edge servers, participating in the training phase, are hosted
and collocated with the RAN’s base stations, whereas the
model owner resides in a cloud server. Each edge server
m ∈ M assembles the local models of its connected users
and produces an intermediate edge model, while the same
procedure is followed by the cloud server that gathers and
aggregates the edge models to create the global model. We
suppose that the serving areas of the different edge servers
are overlapping, such that each user autonomously selects
the one edge server to associate with and broadcast its
local model parameters. The set of users that are associated
with each edge server m ∈ M is indicated by Nm =
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FIGURE 1. Overview of the wireless hierarchical federated learning (HFL) network.

{1, . . . , n, . . . ,Nm}. Moreover, we define variable an,m ∈
{0, 1} to capture the relationship between a user and an edge
server, such that a user n is associated with edge server m
if an,m = 1, and vice versa.
To perform the learning task, each user n possesses

a set of training data denoted by Dn = {xj, yj}Dnj=1 of
cardinality Dn. Considering that the HFL procedure regards
a classification learning task, xj is the j-th input sample and
yj is the corresponding class. Overall, we consider that there
exist C different sample classes indicated by the set C =
{1, . . . , c, . . . ,C}. The data volume resulting from the users
n ∈ Nm that are associated with edge server m is represented
as Dm = ⋃

∀n∈Nm
Dn = {xj, yj}Dmj=1. The total dataset of the

network is D = ⋃
∀n∈N Dn = {xj, yj}Dj=1. Table 1 lists the

key notation of the paper.

A. HIERARCHICAL FEDERATED LEARNING MODEL
The considered HFL process comprises three sequential and
iterative phases, as shown in Fig. 1, that regard the local
model training and the edge and cloud model aggregations. In
more detail, the operation of the HFL procedure is as follows.
In the local model training phase, the users practically aim
to minimize the loss of their local model that is expressed
by the function:

Fn(Dn,wn) = 1

Dn

Dn∑

j=1

fn
(
xj, yj,wn

)
. (1)

where fn is the empirical loss function of the j-th data
sample of the local dataset Dn, expressing the classification
error of the model for this sample. In this paper, we adopt
the cross-entropy loss function [29]. Toward minimizing
the aforementioned loss, a number of κ1 local model
updates/iterations is performed, where each user’s n local
model parameters wn are updated via the typical gradient
descent rule:

wi
n = wi−1

n − η∇Fn
(
Dn,wi−1

n

)
, (2)

TABLE 1. Table of key notation.

with i denoting the iteration index and η being the training’s
learning rate.
In the second edge model aggregation phase, each server

m gathers the local parameters wi
n of its associated users n ∈

Nm and derives an updated edge model wm,i by employing
the following model aggregation rule [30]:

wm,i =
∑Nm

n=1 Dnw
i
n

Dm
, if i mod κ1 = 0. (3)

The updated edge model is then transmitted back to the
users to replace their existing local model. This second phase
is repeated for κ2 iterations until the overall HFL procedure
is concluded.
Last, similar to the edge model aggregation phase, the

model owner, i.e., cloud server, aggregates the intermediate
learning models of the edge servers and produces the global
model parameters wi [30]:

wi =
∑M

m=1 D
mwm,i

D
, if i mod κ1κ2 = 0. (4)

The updated global model is fed back to the users to
facilitate the next HFL iteration. The overall HFL process
is repeated for K iterations until a desired accuracy level is
reached.

B. WIRELESS COMMUNICATION MODEL
The transmissions performed in the wireless access part of
the network, i.e., between the users and the edge servers,
are facilitated over a total bandwidth of W [Hz]. The
total bandwidth is further divided equally and allocated
to the different base stations and their corresponding edge
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servers, such that Wm = W
M [Hz] is the available bandwidth

for communication with edge server m. Subsequently, the
different users’ n ∈ Nm transmissions to edge server m are
multiplexed via the power-domain Non-Orthogonal Multiple
Access (NOMA) technique.
We denote as Gn,m the channel gain between user n ∈

Nm and edge server m, defined as Gn,m = ρd−α
n,m, where

ρ [dB] is the path loss at the reference distance of 1 m,
dn,m [m] is the Euclidean distance between user n and edge
server m, and α is the path loss exponent. Without loss of
generality, we assume that the channel gains between users
n ∈ Nm and edge server m are sorted in ascending manner,
G1,m ≤ · · · ≤ Gn,m ≤ · · · ≤ GNm,m, and the decoding of the
signals begins from the highest channel gain user using the
Successive Interference Cancellation (SIC) technique. The
achieved uplink throughput of user n ∈ Nm to edge server
m is calculated as:

Rn,m = Wm log2

(

1 + pnGn,m
∑n−1

n′=1 an′,mpn′Gn′,m + Im0

)

, (5)

where pn [W] is the corresponding uplink transmission power
of user n and Im0 [dBm/Hz] is the power spectral density
of zero-mean Additive White Gaussian Noise (AWGN).
Well-aligned with relative works that focus on the resource
allocation aspect of the considered problem, e.g., [7], [8], we
assume perfect Channel State Information (CSI) at both edge
server and user sides to perform SIC and distributed decision-
making, respectively. Specifically, we assume that the CSI
is estimated at the edge server by the training sequences
transmitted by the users that are a priori known to the edge
server, and this information is also reported to the user.
Given the communication model between the users and

the edge servers, the time overhead of user n for transmitting
its local model parameters to its associated edge server m is
given by [31]:

Ttxn,m = Z(wn)

Rn,m
[s]. (6)

where Z(wn) is the data size in bits of its local model
parameters’ vector wn transmitted to update the edge model.
Furthermore, the corresponding incurred energy overhead is:

Etxn,m = Z(wn)pn
Rn,m

[J]. (7)

It should be noted that the modeling of the communica-
tions performed at the backhaul network between the edge
servers and the model owner, i.e., the cloud, is beyond the
scope of this paper. Although the latency in the backhaul
due to interference among the transmissions and limited
bandwidth can affect the speed of model updates at the
cloud server, the emphasis of this paper is placed on the
wireless access network part. Joint uplink transmission power
control and bandwidth allocation at the backhaul network
are required, which can follow the related literature in
Integrated Access and Backhaul (IAB) networks [32], [33],
[34], [35]. The joint optimization of access and backhaul

network communications in wireless HFL networks is part
of our future work.

C. ACCURACY-TIME-ENERGY TRADEOFF MODEL
In this section, we define each end user’s n utility function
un that serves as a measure of the achieved tradeoff between
the global model’s training accuracy, and the incurred time
and energy overheads at the users’ side. Precisely, a user’s
n utility is given by:

un =
M∑

m=1

an,m

∑M
m′=1 Hm′(Dm)

weEtxn,m + wtTtxn,m
. (8)

The numerator of (8) captures the users’ data distribu-
tion among the different edge servers quantified by the
information entropy metric denoted as Hm(Dm),∀m, while
the denominator represents the weighted consumed time and
energy for transmitting the local model parameters from the
users to the edge, with we,wt ∈ [0, 1] are appropriate weight
factors, such that we + wt = 1.

Especially with reference to the numerator, the information
entropy Hm(Dm) at edge server m that possess data volume
Dm is [36]:

Hm
(
Dm) = −

C∑

c=1

Pcm
(
Dm) · log

(
Pcm

(
Dm))

, (9)

where Pcm(Dm) is the percentage of samples of class c in Dm.
Apparently, high values of the information entropy metric
indicate a network configuration that closely resembles the
IID case. In that case, all edge servers are associated
with users whose aggregated data set includes samples
from all present classes in the classification problem. The
latter ideal scenario enhances the training accuracy in the
HFL network [4], implying a direct relation between the
value of the information entropy and the achieved training
model accuracy. Capitalizing on this relation allows us
to indirectly account for the HFL model’s accuracy in
the users’ utility function while disentangling the users’
optimization problem from a variable directly tied to the
learning process. In this way, the proposed joint user
association and resource allocation framework is executed
independently and before the HFL procedure, such that the
complexity and convergence behavior of the HFL procedure
remain unaffected, following the related analyses in the
literature [14].
As a concluding remark, by selecting convenient actions

concerning its association and uplink transmission power,
each end user can guarantee a utility threshold uthrn , i.e., un ≥
uthrn , targeting a desirably high network’s entropy and low
time and energy consumption for the whole learning process.

III. JOINT USER ASSOCIATION & RESOURCE
ALLOCATION BASED ON GAMES IN SATISFACTION
FORM
In this section, the joint problem of user association and
uplink transmission power allocation in the access part of the

VOLUME 5, 2024 461



CHARATSARIS et al.: JOINT USER ASSOCIATION AND RESOURCE ALLOCATION FOR HFL

HFL network is studied to accommodate the transmission
of the users’ local model parameters to the edge. This joint
problem is a MINLP NP-hard problem, and thus, deriving
an optimal solution within polynomial time is practically
infeasible. For this reason, we propose an approach based
on a non-cooperative game in satisfaction form and examine
different types of equilibria that satisfy the minimum
acceptable accuracy-energy-time tradeoff for each user in the
HFL network. The concluded equilibria dictate the selected
associations and transmission powers of the users that are
not necessarily optimal in strict terms but constitute stable
solution outcomes, from which no user has the motivation
to deviate.

A. GAME IN SATISFACTION FORM
The non-cooperative game in satisfaction form between the
users is described by the following tuple:

G = (
N , {Sn}n∈N , {fn}n∈N

)
, (10)

consisting of three components.

1) The set of players N , i.e., the users participating in
the learning process.

2) The space Sn = {sn = (pn, xn)|pn ∈ [0, pmax], xn ∈
M} of user’s n actions of cardinality Sn, where xn ∈
M is an integer variable indicating the edge server
m ∈ M that user n chooses to associate with, and pmax
[W] is the maximum feasible power level of each user.
The action space Sn includes all possible combinations
sn of transmission powers and edge server selections.
Given the edge server selection parameter xn, the
corresponding binary association indicators an,m can
be derived by backward induction as:

an,m =
{

1, if m = xn,
0, otherwise.

(11)

3) The requirements set fn(s−n) : S−n −→ 2Sn which is
defined as:

fn(s−n) =
{
sn ∈ Sn|un(sn, s−n) ≥ uthrn

}
, (12)

where s−n denotes the actions of all users n ∈ N
except for user n. In particular, the set fn consists of all
the actions of user n that guarantee the satisfaction of
its minimum acceptable tradeoff uthrn , supposing having
knowledge of the actions selected by the rest of the
users.

Given that the users are not aiming at the maximization of
their utility function under the considered game structure, the
typical Nash Equilibrium (NE) [37] derived as an outcome
from the Best Response Dynamics algorithm [37] is not the
solution we are seeking for. In the sequel, different types of
satisfaction equilibria – as they are called – are scrutinized,
yielding different, though suitable, solutions to our problem.

B. SATISFACTION EQUILIBRIUM (SE)
The general outcome of a game in satisfaction form that takes
into consideration the users’ satisfaction is called Satisfaction
Equilibrium (SE). The definition and existence of this type
of equilibrium are provided in the following proposition.
Definition 1 (Satisfaction Equilibrium and Existence): An

action profile s∗ = (s∗1, . . . , s∗n, . . . , s∗N) is an SE for game
G if:

s∗n ∈ fn(s−n),∀n ∈ N . (13)

Therefore, based on Kakutani’s fixed point theorem [38],
game G has at least one SE if the action spaces {Sn}n∈N are
non-empty, convex, and compact sets, and the requirements
set F(s) = {f1(s−1), . . . , fN(s−N)} of all players is a non-
empty, convex set of their actions {Sn}n∈N , and has a closed
graph.
Apparently, when an SE is achieved, all users’ minimum

acceptable tradeoff is satisfied and none of them has the
incentive to change its action. The existence of at least one
SE for the examined game G depends exclusively on the
requirements set of each user and is irrelevant to the form or
the properties of the utility function. Consequently, to find
the necessary conditions for the existence of this equilibrium,
we can extend an existing fixed point theorem.
Definition 1 implies the necessity for feasible system

initialization to guarantee the satisfaction of all users. The
existence, however, of an SE point cannot guarantee its
uniqueness. Specifically, it is challenging to define different
subsets of the requirements set {fn}n∈N that can imply a
unique combination of actions of the users that keeps them
satisfied.

C. EFFICIENT SATISFACTION EQUILIBRIUM (ESE)
In the general case discussed above, the SE of the problem
under investigation is not unique, meaning that there exist
multiple combinations of user actions that keep them satis-
fied. Nevertheless, these combinations can be distinguished
from each other with respect to the cost incurred to the users.
In our analysis, we consider that a user’s cost is a

function of the power level required to transmit its local
model parameters to the edge, i.e., cn(sn) = cn(pn), taking
indirectly into account its particular association with respect
to its actual distance from the selected edge server, their
in-between wireless channel conditions, and the interference
sensed from the rest of the users communicating with the
same server. Obviously, it is more beneficial for the users to
satisfy their minimum acceptable tradeoff with the minimum
possible cost at the same time. As a logical consequence of
the above observation, in the sequel, we define the Efficient
Satisfaction Equilibrium (ESE) point.
Definition 2 (Efficient Satisfaction Equilibrium): An

action profile s∗ = (s∗1, . . . , s∗n, . . . , s∗N) is an ESE for
game G, with cost function {cn}n∈N , if the following two
conditions concurrently hold true:

s∗n ∈ fn(s−n),∀n ∈ N , (14a)
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cn(sn) ≥ cn
(
s∗n

)
,∀n ∈ N ,∀sn ∈ fn

(
s∗−n

)
. (14b)

Given that at least one SE exists for the studied game,
as declared in Definition 1, it suffices to confirm that
there exists an SE where the users satisfy their minimum
acceptable tradeoff with the minimum possible individual
cost. Under this prism, we define the best response function
BRn(s−n) of each user n that yields the optimal action sn,
given the actions of the rest users, as: BRn(s−n) = {sn =
(pn, xn) ∈ Sn:sn = arg minsn∈fn(s−n) cn(pn). Alternatively, the
optimization problem that each user n seeks to solve to
determine an ESE is:

(P) : min
(pn,xn)

pn

s.t. pn ∈ [
0, pmax

]
, xn ∈ M,

un(sn, s−n) ≥ uthrn . (15)

The existence of a solution for problem (15), i.e., an
ESE for the game G, is guaranteed under the case that
the requirements set fn,∀n ∈ N is non-empty, as stated
in Proposition 1. To facilitate the analysis regarding the
existence of at least one ESE, subsequently, we summarize
the fixed point theorem of Knaster and Tarksi [39].
Theorem 1 (Tarski and Knaster’s Fixed Point Theorem):

Let T be a complete lattice and let h : T −→ T be a
monotonic function. Then, the set of fixed points of h in T
is also a complete lattice.
Proposition 1 (Existence of ESE): If the non-cooperative

game G in satisfaction form with cost function {cn}n∈N
and utility function {un}n∈N has non-empty requirements set
fn,∀n ∈ N , then it possesses at least one ESE.
Proof: We define a lattice T = <S,≤>, where S =

∪n∈NSn is the overall action space of game G and ≤
represents the component-wise less or equal operation. All
subsets of the lattice have both a supremum and an infimum,
as the transmission power of the users lies within an interval
of a closed set [0, pmax], and thus, T is a complete lattice.
Concerning the monotonic function h : T −→ T , it is
defined as follows:

h(s) = (BR1(s−1, . . . ,BRN(s−N)),∀s = (s1, . . . , sN) ∈ S.

Each user’s n utility is a quasiconcave function with
respect to its power pn, i.e., strictly increasing on pn [35].
Accordingly, in case all competing users change their actions
to alternatives with higher or equal transmission power, user
n will either still satisfy its minimum acceptable tradeoff or
will have to increase its power. This can be formally written
as: ∀s, s′ ∈ S:p(s)

n ≤ p(s′)
n ⇒ (BR1(s−1), . . . ,BRN(s−N)) ≤

(BR1(s′−1), . . . ,BRN(s′−N)) ⇐⇒ h(s) ≤ h(s′), where

p(s)
n indicates the user’s n uplink transmission power as
determined based on action profile s. This proves that h is
an order-preserving function, and based on Tarski-Kraskel’s
theorem a fixed point of function h exists:

∃ s ∈ S : s = h(s)

⇐⇒ (s1, . . . , sN) = (BR1(s−1), . . . ,BRN(s−N)).

This means that all users have played their best response
to the rest of the users’ actions, and therefore s is an ESE
for game G.

D. MINIMUM EFFICIENT SATISFACTION
EQUILIBRIUM (MESE)
The equilibria studied so far address the users’ satisfaction,
even with minimum cost for them when referring to the ESE,
but provide no guarantees for the total cost that is incurred
to the network. The equilibrium point that is complementary
to the above and results in the minimum total cost from the
overall network’s perspective is called Minimum Efficient
Satisfaction Equilibrium (MESE). It should be noted that the
term “minimum network cost” refers to the summation of
the individual users’ costs.
Definition 3 (Minimum Efficient Satisfaction

Equilibrium): An action profile s∗ = (s∗1, . . . , s∗n, . . . , s∗N) is
a MESE for game G, with cost function {cn}n∈N and set of
action profiles {E} that are ESEs if the following conditions
concurrently hold true:

s∗n ∈ fn(s−n),∀n ∈ N , (16a)

cn(sn) ≥ cn
(
s∗n

)
,∀n ∈ N ,∀sn ∈ fn

(
s∗−n

)
, (16b)

∑

n∈N
cn(en) ≥

∑

n∈N
cn

(
s∗n

)
,∀e ∈ E. (16c)

The existence of a MESE is closely related to that of an
SE and is discussed in the following proposition.
Proposition 2 (Existence of MESE): If the non-

cooperative game G in satisfaction form with cost function
{cn}n∈N and utility function {un}n∈N has fn(·) �= ∅,∀n ∈ N
for every input, then it possesses at least one MESE.
Proof: Based on Proposition 1, if a game G possesses a

combination of actions that satisfy the constraints fn,∀n ∈
N , then the game admits at least one ESE. As a logical
consequence, one combination of them yields the minimum
cost for the network, implying the existence of at least one
MESE point.
A particular feature of the MESE point is that upon its

existence, the obtained MESE point is also unique.
Proposition 3 (Uniqueness of MESE): If the non-

cooperative game G has a MESE point s∗, that point is
unique considering a given association between the users
and the edge servers.
Proof: Let {E} denote the set of all action profiles in the

action space S that are ESEs for game G. The proposition
is proved by contradiction.
Consider that two different MESE points ŝ and s̄

exist for game G, such that ∃ n ∈ N , cn(ŝn) �= cn(s̄n)
and the points are not identical profiles regarding the
power allocation. Note that the uniqueness of the MESE
point is proved upon a given association that is also
considered to be identical for the two MESE points ŝ
and s̄. According to Definition 3, the two MESE points
should offer exactly the same network cost, which will

VOLUME 5, 2024 463



CHARATSARIS et al.: JOINT USER ASSOCIATION AND RESOURCE ALLOCATION FOR HFL

be lower than that offered by any other ESE denoted as
sESE, i.e.,

∑

∀n∈N
cn

(
ŝn

) =
∑

∀n∈N
cn(s̄n) ≤

∑

∀n∈N
cn

(
sESEn

)
,∀s ∈ {E}.

Furthermore, since the two points are not identical and the
cost function depends exclusively on the uplink transmission
power, it holds that ∃ n1 ∈ N , p(ŝ)

n1 �= p(s̄)
n1 , for which, without

loss of generality, we assume that p(ŝ)
n1 ≤ p(s̄)

n1 . Given that
the two MESE points yield the same network cost, ∃ n2 ∈
N , p(ŝ)

n2 ≥ p(s̄)
n2 , such that the summation of all users’ cost

leaves the total network cost over the two MESE points
unchanged, i.e.,

∑
∀n∈N cn(ŝn) = ∑

∀n∈N cn(s̄n).
Let now choose randomly an action profile s ∈ S , such

that p(s)
n1 = p(ŝ)

n1 and p(s)
n2 = p(s̄)

n2 , meaning that the actions
of users n1 and n2 under profile s result in the minimum
cost for them, since ŝn is a MESE for n1 and s̄n is a
MESE for n2. Repeating this process for every user n in
the network, i.e., defining the action profile sn such that
p(s)
n = min{p(ŝ)

n , p(s̄)
n }, we conclude with an action profile

s that yields lower network cost than the MESE points ŝ
and s̄. Apart from lower network cost, s maintains all users’
satisfaction, since both ŝ and s̄, from where their actions are
selected, are MESE points. Therefore, s∗ = s is a MESE for
game G, which contradicts our initial assumption and proves
that the MESE of game G is unique.

IV. LEARNING SATISFACTION EQUILIBRIA
In this section, we introduce two algorithms to determine
the SE and the MESE points. The algorithms are executed
in a distributed manner by the different users in the network
over several iterations until convergence is met. Each user
autonomously selects the action implied by the respective
equilibrium type (i.e., SE, MESE) by observing its utility,
which is either provided as feedback from the networking
environment or calculated separately by each user given the
actions selected by its competitors at the previous iteration.
In this work, both algorithms assume that the players make
simultaneous decisions instantaneously observable by the
rest of the players. However, they can be extended to adapt
to environments where deviations by users are detected
with some time delay by others. For this purpose, locks or
timestamps can be used to force the users to play in turns
such that only one makes changes to the environment at
a time or to specify what actions to take at different time
points, respectively.

A. REINFORCEMENT LEARNING-BASED SE
ALGORITHM
At the SE, it suffices for each user to satisfy its mini-
mum acceptable tradeoff value without accounting for any
optimality, such as the maximization of its utility or the
achievement of the minimum possible cost to itself or to
the whole network. As a result, no complete knowledge of
the actions selected by the rest of the users is required. This

gives the opportunity to devise an RL-based algorithm to
determine one of the available SE points for the game [9].
The RL algorithm is performed over several iterations, and
at each iteration τ , each user selects an available action sn
from its action set Sn based on some probability distribution
over its action space.
To facilitate the analysis, we assign an index ln ∈ Ln =

{1, . . . ,Ln} to each element in a user’s action set Sn, allowing
us to arrange them in any desired order. Therefore, we can
represent the ln-th action of user n as sn,ln . The probability
distribution that indicates the preference of each user at
iteration τ towards each of its available actions is described
by the vector πn(τ ) = (πn,1(τ ), . . . , πn,ln(τ ), . . . , πn,Sn(τ )).
For the first algorithm iteration (τ = 0), a uniform
distribution is selected, i.e., πn,ln(0) = 1

Sn
,∀sn,ln ∈ Sn, so

as equal probabilities are assigned to all feasible actions of
the users. At each of the subsequent iterations, each user’s n
probability distribution πn is updated by taking into account
the satisfaction (or not) of its minimum acceptable tradeoff,
the achieved utility, and the current values of the probability
distribution vector. Specifically, the update rule is as follows:

πn,ln(τ + 1) =
{

πn,ln(τ ), if un(τ ) ≥ uthrn ,

g
(
πn,ln(τ )

)
, otherwise,

(17)

where

g
(
πn,ln(τ )

) = πn,ln(τ ) + λτ rn,τ
(
1{sn(τ )=sn,ln} − πn,ln(τ )

)
.

(18)

In this rule, sn(τ ) is the action selected by user n at
iteration τ and λτ = 1

τ+1 is the learning rate of the
algorithm. A high learning rate leads to faster convergence
and responsiveness to changes but may also cause instability.
Furthermore, rn,τ is the reward function of the RL process,
which is defined as:

rn,τ = umaxn − un(τ ) − uthrn
2 · umaxn

, (19)

where umaxn is the maximum utility of user n and un(τ ) is
the utility of user n at iteration τ . Specifically, the term
maximum utility umaxn of user n signifies the highest value of
utility attained when user n is the sole user associated with its
nearest server from a geographical viewpoint, encountering
no interference from other users. Meanwhile, the remaining
users are associated with the remaining edge servers in a
manner that maximizes the overall entropy, i.e., the different
sample classes are evenly distributed among the servers. In
this way, the rule expressed in (18) intends to allocate greater
probabilities to actions that increase the utility value and are
more likely to meet the constraint of uthrn .
The RL algorithm for determining an SE for game G is

presented in Algorithm 1. It is worth noting that the selection
of the initial actions can affect its convergence. In particular,
the algorithm’s convergence depends on the presence of
clipping actions for the users that are defined as follows.
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Algorithm 1 RL-Based SE Algorithm
1: Initialize τ = 0;
2: for each n ∈ N in parallel do
3: for each sn,ln ∈ Sn do
4: πn,ln(0) = 1

Sn
;

5: end for
6: Select an action sn(0) ∼ πn(0);
7: end for
8: while ∃ n ∈ N , un(τ ) < uthrn do
9: for each n ∈ N in parallel do
10: Update distribution πn(τ + 1) according to (17);
11: if un(τ ) ≥ uthrn then
12: sn(τ + 1) = sn(τ );
13: else
14: sn(τ + 1) ∼ πn(τ + 1);
15: end if
16: end for
17: Update τ = τ + 1;
18: end while

Definition 4 (Clipping Action): In the game G, action sn
is a clipping action for user n if and only if:

sn ∈ fn(s−n),∀s−n ∈ S−n, (20)

where S−n = ∪∀n′ �=nSn′ .
In other words, an action is considered as clipping when

the corresponding user remains satisfied upon its selection,
regardless of the choices of the other users. The existence of
such actions affects the convergence of Algorithm 1 since
their selection by a user leads the latter to remain attached
to them. To avoid running into infinite loops, Algorithm 1
is terminated after a maximum number of iterations τmax in
case convergence has not been achieved up to this point.
Concerning the complexity of Algorithm 1, it depends

only on the number of iterations performed until conver-
gence. Specifically, the different steps of the algorithm
include algebraic calculations of O(1) complexity while its
execution is performed in an entirely distributed and parallel
manner. Furthermore, given that the non-cooperative game
among the users is played only once, preceding the FL
procedure, the complexity of the FL is not affected by the
complexity of the RL-based algorithm and vice versa.

B. BEST RESPONSE DYNAMICS-BASED MESE
ALGORITHM
As introduced earlier, the MESE point yields the minimum
possible cost for each user separately and the whole network
while satisfying all users’ minimum acceptable tradeoff
value. As a result, each user must address a correspond-
ing minimization problem that necessitates the use of an
algorithm based on more deterministic steps. Specifically,
the BRD algorithm is used, according to which each user
selects the best response action that achieves the minimum
cost based on the actions of the rest asynchronously [28].

The devised algorithm comprises two stages that are
sequentially executed by the users. To accommodate the
description of the first stage, consider that each user’s action
space Sn is ordered following the set Ln defined in the
previous section. Then, for each action sn,ln ∈ Sn, the user
n determines the one action sn,zn ∈ {sn,ln, . . . , sn,Sn} that
minimizes its cost, where by zn ∈ Ln we denote the index
of this particular action. The index zn is appended to a
corresponding list Bn of user n. Each user initializes its BRD
algorithm’s execution by selecting as its initial action the
first one from the list Bn, i.e., the action that yields the
minimum individual cost, sn,Bn[0]. The aim of the algorithm
is subsequently to select the first action that satisfies the
minimum acceptable tradeoff. The latter action is termed as
Minimum Satisfying Action (MSA) in the following.
The second stage of the algorithm is performed over

several iterations until all users are satisfied. At each iteration
τ , each user calculates its MSA denoted as MSAn(τ ). Owing
to the monotonicity of the users’ utility function with respect
to their experienced cost, i.e., uplink transmission power, it
suffices to perform a binary search from the MSA of the
previous iteration MSAn(τ − 1) to the last action sn,Sn ∈
Sn. In this way, the user n derives the MSAn(τ ). Then, the
action that incurs the minimum cost to the user from the
set {sn,MSAn(τ ), . . . , sn,Sn} can be easily determined by the
index Bn[MSAn(τ )] of the already created list. By utilizing
the list Bn, the algorithm prevents each user from performing
a binary search over the whole action space Sn, reducing
in this way the algorithmic complexity. The overall BRD
algorithm is summarized in Algorithm 2. Similarly, with
Algorithm 1, if convergence has not been achieved after a
maximum number of iterations τmax, the process concludes
to prevent potential infinite loops in case the MESE of the
game doesn’t exist.
Proposition 4: The BRD-based MESE algorithm con-

verges to an action profile s∗ under a finite number of
iterations if an SE exists for game G.
Proof: At each iteration of the algorithm, each user

examines whether its selected action satisfies its minimum
acceptable tradeoff. In case the latter condition is not met,
the user is forced to increase its uplink transmission power
due to the monotonicity of its utility function with the
transmission power level. Thus, a user either sticks to its
selected transmission power from the previous iteration or
selects a higher one while randomly associating with an edge
server that maintains its satisfaction. Given that an SE exists
for the game based on Definition 1, the requirements set fn()
will never be empty, and thus, there will always exist the
best response to the actions of the rest of the users, securing
the algorithm’s convergence.
Proposition 5: The action profile s∗ concluded by the

BRD-based MESE algorithm is a MESE point for game G.
Proof: Let s+ be an ESE point for game G and s∗ be the

particular point where the BRD algorithm converges, which
is also an ESE. To prove that s∗ is a MESE, it should hold
true that p(s∗)

n ≤ p(s+)
n ,∀n ∈ N , i.e., the cost incurred to
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Algorithm 2 BRD-Based MESE Algorithm
1: for each n ∈ N in parallel do
2: Initialize min = cn(sn,Sn), minindex = Ln;
3: Bn[Ln] = Ln;
4: for ln = Ln−1 to 1 do
5: if cn(sn,ln) ≤ min then
6: Bn[ln] = ln;
7: minindex = ln;
8: min = cn(sn,ln);
9: else
10: Bn[ln] = minindex;
11: end if
12: end for
13: end for
14: Initialize τ = 0, sn(0) = sn,Bn[0],∀n ∈ N ;
15: while ∃ n, un(τ ) < uthrn do
16: for each n ∈ N in parallel do
17: if un(τ ) < uthrn then
18: sn(τ + 1) = sn(τ );
19: else
20: MSAn(τ ) = BinarySearch(Sn,MSAn(τ − 1));
21: sn(τ + 1) = sn,Bn[MSAn(τ )];
22: end if
23: end for
24: Update τ = τ + 1;
25: end while

the users at s∗ is lower that at s+. The proposition will be
proved by contradiction. Note that, in this proof, a fixed
user-to-edge-server association is considered that is identical
for the two ESE points.
Assume that ∃i ∈ N , p(s∗)

i > p(s+)
i . Given that at

each iteration of the algorithm, each user is forced to
increase its uplink transmission power, in order for the latter
inequality to hold, it means that user i chooses a power
level pexci that exceeds p(s+)

i at some iteration. Denote as
p = [p1, . . . , pn, . . . , pN] the powers selected by all users at
the exact previous iteration. Then, for user i it holds:

pi ≤ p(
s+)
i < pexci , (21)

while for the rest of the users, it holds:

pn ≤ p(
s+)
n ,∀n �= i, n ∈ N . (22)

Also, the action p(s+)
i satisfies the requirements,

i.e., p(s+)
i ∈ fi(p

(s+)
−i ), as it constitutes an ESE and thus, an

SE. Because of (22) and the fact that the user’s i utility
increases as the summation of powers of the rest of the users
decreases, the power vector p−i increases the user’s i utility
and maintains its satisfaction, i.e.,

p(
s+)
i ∈ fi(p−i). (23)

Based on the above discussion, we conclude that the power
level p(s+)

i is the best response, as it satisfies the requirements

for the rest of the users’ vector p−i (Eq. (23)) and is lower
than pexci . This contradicts our assumption that some user i
will select a power level pexci , such that p(s∗)

i > ps
+
i can hold

at the point when the algorithm’s convergence is reached.
Based on the above:

p(
s∗)
n ≤ p(

s+)
n

c(·)↗=⇒ cn
(
p(

s∗)
n

)
≤ cn

(
p(

s+)
n

)
,∀n ∈ N

=⇒
∑

∀n∈N
cn

(
p(

s∗)
n

)
≤

∑

∀n∈N
cn

(
p(

s+)
n

)
,

(24)

and the action profile s∗ is a MESE for game G.
The complexity of Algorithm 2 is calculated as follows.

In the first stage, the action space Sn of a user n is sorted in
ascending order with respect to its uplink transmission power
with algorithmic complexity equal to O(Snlog(Sn)). At every
iteration of the second stage of the algorithm, the users
increase their uplink transmission power or the algorithm
converges. In the worst case, this iterative procedure will be
repeated for S = S1 + · · · + SN times and user n will be
satisfied in S−Sn iterations. At each of the S−Sn iterations,
the users perform a binary search to determine their MSA
in O(Snlog(Sn)). Given that the algorithm is executed in a
fully distributed manner, its overall complexity is O((S −
Sn) + Snlog(Sn)). Similar to the RL-based algorithm, the
complexity of the BRD-based algorithm does not affect the
complexity of the FL and vice versa.

V. EVALUATION & RESULTS
In this section, we evaluate the performance and effectiveness
of the proposed framework via modeling and simulation. The
simulation topology is initialized as follows. We consider
a wireless HFL network arranged within a circular area of
300m radius. M = 3 edge servers are randomly positioned
along the perimeter of the circular area, and N = 10 users
are uniformly distributed within the area, unless otherwise
explicitly stated. The total network bandwidth is W =
10MHz. The remaining communication parameters are set
as: ρ = −20 dB, α = 3.5, pmax = 1W, and Im0 = WmN0 =
W
N N0,∀m ∈ M, where N0 = −174 dBm/Hz [14].
For the implementation of the HFL procedure, we consider

k1 = 6 local model updates, k2 = 10 edge model updates,
and K = 100 overall HFL iterations, while for the training
learning rate and the data size of the local model parameters,
we assume η = 10−3, and Z(wn) = 28.1Kbits, ∀n ∈
N [14], [40]. The MNIST dataset [41] is used, and the
60000 total samples are equally divided among the N users
following in a non-IID manner by ensuring that no individual
user possesses samples of all classes included in the dataset.
The local classification models of the users are trained
using a commonly used in the literature Convolution Neural
Network (CNN) configuration and training, as presented
in [42], which consists of two 2-D convolution layers with
5 × 5 filter size and the Rectified Linear Unit (ReLU) as
the activation function. These layers are followed by an
additional 2-D Max Pooling layer with pool size 2 × 2.
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FIGURE 2. Achieved (a) utility value, (b) experienced cost, and (c) mean consumed energy and time under SE and MESE points.

Considering the related modeling to the games in satis-
faction form, the users’ minimum acceptable tradeoff value
is defined as uthrn = (2 + n

10 ) · 105,∀n ∈ N , where n is
the value of the user index, such that the users’ tradeoff
requirements become stricter as the user ID increases. The
range of values of uthrn has been experimentally determined
to yield reasonable tradeoffs and individual accuracy, time,
and energy values, while the aforementioned increasing trend
with the user ID has been used for demonstration purposes
to facilitate the subsequent numerical results analysis. The
convergence limit of the RL-based SE algorithm is set equal
to 500 iterations. Also, each user’s n action set comprises 100
power levels determined within the feasible range [0, pmax]
with step 0.01. For statistical purposes, the results presented
in the following have been averaged over 100 different
initializations corresponding to different data distributions
among the users.

A. PERFORMANCE EVALUATION OF DIFFERENT
EQUILIBRIA
First, we study the pure operation of the proposed framework
and the behavior that the network exhibits based on the type
of equilibrium selected for the satisfaction game. Fig. 2(a)
illustrates the utility value achieved by each user in the
network under the two main types of satisfaction equilibria,
i.e., the SE and the MESE, in comparison to the minimum
acceptable tradeoff of each user. Note that a high user ID
in the horizontal axis indicates a high value for the users’
minimum acceptable tradeoff uthrn , as explained earlier in
this section. The numeral results show that independently
of the selected equilibrium point, the framework achieves to
satisfy all users’ minimum acceptable tradeoff value, while
a small increase of the latter has as a result a large increase
in the users’ utility value. Due to the MESE seeking to
satisfy the users’ tradeoff with the lowest possible cost for
them individually and for the network, the achieved utility
at this point is lower than the one achieved by the SE.
Specifically, given that the cost of each user equals its
transmission power and the fact that the utility function un
is increasing with respect to pn, the users are forced to lower

their satisfaction, maintaining however their tradeoff above
its minimum acceptable value.
The results of Fig. 2(a) are further corroborated by

Fig. 2(b), where the cost experienced by the users under
the two different equilibria is depicted. It is easily deduced
that the MESE point concludes with a much lower cost for
all users participating in the learning process contrariwise
to the SE point that targets exclusively the users’ minimum
tradeoff value satisfaction. As a result, at the SE point, a
remarkable number of the users end up transmitting their
local model parameters to the edge with a power level
close to its maximum power budget, i.e., pmax. Considering
the particularly achieved mean consumed energy and time
by the users in the network, this is further examined in
Fig. 2(c) under different values of the weight factor we in the
horizontal axis. As expected, a higher value of the weight
factor causes a decrease in the energy consumption of the
users at the SE point, as higher significance is given to
this quantity in the utility function. On the contrary, the
users’ mean transmission time follows the opposite trend
(we+wt = 1) at the SE point as the we factor increases with
a quite slow rate of increase though. Especially regarding the
MESE point, the resulting energy consumption is maintained
at the lowest possible value regardless of the value of the
weight factor we as implied by the specific equilibrium point,
whereas the mean transmission time of the users increases
as we gets higher.

Continuing the analysis of the pure operation of the
proposed framework, we then evaluate the derived user-
to-edge-server association under the two different solution
concepts. In more detail, in Fig. 3, the simulated topology
is graphically illustrated in terms of the associations derived
after the convergence of the RL-based SE (Fig. 3(a)) and
BRD-based MESE (Fig. 3(b)) algorithms. The results reveal
that the users exhibit a seemingly more random connection
pattern to the servers under the SE point, as a means of
creating a user data distribution that aligns the network closer
to the IID scenario. In contrast, at the MESE point, the users
opt for those servers that are in close proximity to them to
minimize the incurred transmission cost due to distance and
signal attenuation.
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FIGURE 3. Concluded user-to-edge-server association under (a) SE and (b) MESE points.

FIGURE 4. Achieved tradeoff in terms of (a) global model’s accuracy and (b) network’s total entropy, cost, mean consumed energy, and time under SE, MESE, and the
benchmark scenarios.

B. PERFORMANCE EVALUATION OF OVERALL
PROPOSED FRAMEWORK
Next, we investigate the performance of the proposed
satisfaction game-based framework pertaining to the tradeoff
achieved between the targeted quantities (networks’ entropy,
energy consumption, transmission time). For this purpose,
we compare the proposed framework against the following
three benchmarking scenarios. (i) “Scenario 1”: The users
randomly select an available edge server to associate with
and a power level that lies within the feasible range [0, pmax].
(ii) “Scenario 2”: The users are associated with their closest
available edge server and their transmission power is selected
as the SE of the game in satisfaction form that is similar
to the proposed framework, with the difference that only
one variable (i.e., the power) is optimized and considered
in the action space Sn,∀n ∈ N . (iii) “Scenario 3”: Similar
to “Scenario 2” with the difference that the MESE point
is selected for the users’ uplink transmission power when
playing the game in satisfaction form.
Fig. 4(a) depicts the variation of the achieved global

model accuracy over the test set as a function of the cloud

iterations, i.e., epochs, for both the proposed approach and
the benchmarking scenarios. It is important to note that
Scenarios 2 and 3 present identical data distribution among
the servers due to the user-to-edge-server association based
on proximity, which results in identical values regarding
the metric of the achieved accuracy too. For this reason,
Scenarios 2 and 3 are represented using a single line (red)
in Fig. 4(a), labeled as the “Closest Server” scenario. The
results reveal that our proposed framework under both types
of equilibria (i.e., SE and MESE) attains the highest model
accuracy (approximately 80%-90%) among all alternatives,
confirming its superior performance in the learning pro-
cess. The HFL procedure’s convergence is achieved after
approximately 20 iterations, with the accuracy gradually
reaching its final value. Once again it is highlighted that the
MESE point sacrifices concluding the best possible accuracy
for the sake of its cost minimization objective, yielding a
lower accuracy of about 10%. However, still, the proposed
framework under the MESE point outperforms all the rest
benchmarking scenarios in terms of the achieved model
accuracy. Especially for Scenarios 2 and 3, in which the
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FIGURE 5. Achieved (a) network’s entropy and (b) mean consumed energy and time under SE and MESE points for different numbers of users.

users are associated with the nearest server, distant servers
are not given the opportunity to collect samples for all the
different classes, leading to worse accuracy in the end.
Fig. 4(b) presents a comprehensive overview of the total

network’s entropy and cost (left axis) and the users’ mean
energy consumption and transmission time (right axis) under
the two types of equilibria of the proposed framework
and the three benchmarking scenarios. First, concerning the
networks’ entropy, we observe that it precisely follows the
same trend as the global model’s accuracy in Fig. 4(a),
with the entropy of Scenarios 2 and 3 having the same
value due to the reason already explained. This confirms
that the network entropy, capturing the user data distribution
across the different edge servers, constitutes a representative
metric for the achieved global model’s accuracy. Considering
the total network cost and energy consumption, the lowest
values are achieved under the proposed framework using
MESE and Scenario 3 which also considers the MESE point
for determining the uplink transmission power allocation.
Especially among these two alternatives, Scenario 3 achieves
even lower power levels and, thus, energy consumption, as
each user selects the closest edge server. However, this comes
with the cost of degraded accuracy of the global model, as
discussed earlier. Conversely, the proposed framework under
SE and Scenario 2 results in a reduction of the required
transmission time, which is due to higher transmission
power selected by the users, enabling them to achieve
higher data rates and thus, lower transmission times. Finally,
we can observe that for Scenario 1, where all optimized
parameters are randomly selected, the network’s performance
experiences a substantial degradation and is characterized by
notably high energy consumption and transmission time.

C. SCALABILITY EVALUATION
To further examine the impact of the number of network
entities in the studied framework in terms of both end
users and edge servers, we conduct a scalability evaluation.
Specifically, Fig. 5 presents the behavior of the framework
as more users are added to the network, ranging from 2
to 15 users. In particular, Fig. 5(a) presents the network’s

entropy under the proposed framework and the two types of
equilibria, i.e., the SE and MESE. Apparently, an increase
is shown as more users enter the HFL procedure owing to
the inclusion of more (and potentially unique) data samples
during model training. Nevertheless, apart from the increase
in the network’s entropy, an increasing trend is also observed
in the mean energy consumption and transmission time of the
users as their number gets higher under both SE and MESE
(Fig. 5(b)). The increase in the number of users leads to
higher congestion in the network and thus, more interference
is sensed and caused between them. Consequently, lower
data rates are achieved, leading to a longer time required
for the transmission of their local model parameters to the
edge, along with higher power consumption.
Fig. 6 regards the same network metrics, considering

however the case that the number of edge servers increases
instead, ranging between 2 and 10 for a fixed number of
users equal to N = 10. In this simulation case, the trend is
entirely the opposite. The presence of a larger number of
edge servers implies that the same amount of data samples
are shared among more servers, which prevents the network
from reaching an IID data distribution case. For small
increments in the number of servers, the decrease in entropy
is not significant, indicating that the hierarchical structure
can provide beneficial support to the overall network, while
the rate of decrease of the training’s performance is also
contingent on the number of users existing in the network
(Fig. 6(a)). However, the latter also results in a more uniform
distribution of users among the servers, leading to reduced
interference and, consequently, lower energy consumption
and transmission time (Fig. 6(b)). The comparison between
the SE and MESE points results in the same observations
as the discussions made so far.

VI. CONCLUSION & FUTURE WORK
In this paper, the joint problem of user-to-edge-server
association and uplink transmission power allocation was
studied in the radio access part of a wireless HFL network
using the NOMA technique. The main objective was to strike
an optimal balance for the users participating in the HFL
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FIGURE 6. Achieved (a) network’s entropy and (b) mean consumed energy and time under SE and MESE points for different numbers of edge servers.

procedure, effectively managing the tradeoff between their
individual energy consumption, the required transmission
time, and the overall performance of the trained global
model. In order to address this challenge, a non-cooperative
game in satisfaction form was formulated, allowing the
different users competing with each other to conclude the
respective equilibrium point that satisfies their minimum
acceptable accuracy-time-energy tradeoff value. Specifically,
different types of equilibria, i.e., SE and MESE, were studied
regarding their existence and uniqueness, which take into
account different network characteristics, including the users’
individual incurred cost and the cost of the whole network.
To identify these equilibria, an RL-based and a BRD-based
algorithm were devised, respectively. Extensive numerical
experiments were conducted to scrutinize the effectiveness of
the proposed framework and validate its superiority, concern-
ing the desired energy-time-accuracy tradeoff, comparing
also against other benchmarking scenarios.
Part of our current and future work aims to extend

the proposed framework to take into account the commu-
nications performed at the backhaul network part of the
HFL network between the edge servers and the cloud.
Furthermore, user mobility and imperfect CSI are crucial fac-
tors that introduce stochasticity to the studied HFL network,
impacting the proposed solution. Designing Bayesian non-
cooperative games to account for these stochasticities is
another interesting extension of the current work.
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