
Received 31 October 2023; revised 9 December 2023; accepted 18 December 2023. Date of publication 20 December 2023;
date of current version 10 January 2024.

Digital Object Identifier 10.1109/OJCOMS.2023.3345166

REDiP: Ranked Entanglement Distribution
Protocol for the Quantum Internet

LEONARDO BACCIOTTINI 1,2 (Graduate Student Member, IEEE),
LUCIANO LENZINI2, ENZO MINGOZZI 2 (Member, IEEE), AND GIUSEPPE ANASTASI2

1Dipartimento di Ingegneria dell’Informazione (DINFO), University of Florence, 50121 Florence, Italy
2Dipartimento di Ingegneria dell’Informazione, University of Pisa, 56122 Pisa, Italy

CORRESPONDING AUTHOR: L. BACCIOTTINI (e-mail: leonardo.bacciottini@phd.unipi.it)

This work was supported by the Italian Ministry of Education and Research (MIUR) in the framework of the ForeLab Project (Departments of Excellence).

ABSTRACT The distribution of entangled qubit pairs to end nodes is the key requirement of a
quantum network to enable qubit state transmission through quantum teleportation. Existing protocols for
entanglement distribution fix a specific swapping order on the involved quantum repeaters and delegate
entanglement purification to upper-layer protocols. This limitation is problematic because entangled states
tend to degrade due to quantum noise, and they cannot be purified if their fidelity (i.e., quality) falls
below a certain threshold. It is therefore of the utmost importance to co-plan entanglement swapping and
purification to achieve a target end-to-end fidelity. In this work, we present the Ranked Entanglement
Distribution Protocol (REDiP), which overcomes the aforementioned limits by including the “ranks”
mechanism to configure the ordering of both purification and entanglement swapping steps. We show how
REDiP can easily be configured to implement custom entanglement swapping and purification strategies,
including (but not restricted to) those adopted in two recent works. We also propose an algorithm to
estimate the bandwidth to allocate on every link of the REDiP path, and we provide a set of guidelines on
how REDiP ranks can be configured depending on user requirements and hardware configuration. Such
guidelines are driven by original insights into purification performance. We conduct simulations to verify
our results and assess the impact of different REDiP configurations on the performance of a repeater
network, in terms of throughput and fidelity.

INDEX TERMS Entanglement distribution, entanglement purification, entanglement swapping, quantum
Internet, quantum network protocol, quantum repeater networks.

I. INTRODUCTION

ENTANGLEMENT is a phenomenon typical of quantum
mechanics where two or more systems (in our case,

qubits) become so intertwined that their state must be
described as a single, global entity, even if the systems
are spatially separated. Quantum networks exploit shared
entangled states and classical communication infrastructures
to enable a whole new set of disruptive applications, such
as distributed quantum computing [1], blind quantum com-
puting [2], quantum key distribution [3], [4], and quantum
secret sharing [5].

The key challenge at this early stage of quantum networks
is to generate entangled qubit pairs locally and distribute
them to the end nodes of the network. The problem is

made much harder by the no-cloning theorem of quantum
mechanics, which prevents us from employing classical
repeaters to propagate quantum information stored into
photons. A solution to this problem is the adoption of
quantum repeaters to distribute entanglement over physical
links and then propagate it through a protocol called
entanglement swapping. Quantum noise plays another crucial
role as it introduces errors in both entanglement generation
and swapping protocols. Failure to adequately mitigate
quantum noise results in the exponential degradation of
entanglement fidelity—a metric indicating the quality of
entanglement—over both time (quantum memory deco-
herence) and distance (subsequent entanglement swaps).
Early-stage quantum networks, which will likely employ

c© 2023 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.

For more information, see https://creativecommons.org/licenses/by/4.0/

VOLUME 5, 2024 397

HTTPS://ORCID.ORG/0000-0002-2319-5256
HTTPS://ORCID.ORG/0000-0001-8876-4176

BACCIOTTINI et al.: REDiP FOR THE QUANTUM INTERNET

FIGURE 1. The system model. A path B = [B0, B1, B2, B3, B4] is determined to
connect two end nodes Alice (B0) and Bob (B4) of the quantum network. The
entangled qubit pairs generated on the physical links of the path are employed to
distribute entanglement shared among Alice and Bob.

first-generation quantum repeaters [6], can restore the fidelity
of entangled qubits through a probabilistic procedure called
entanglement purification (or distillation). In the future, as
the technology evolves, it will also be possible to employ
quantum error correction techniques [7], but these solutions
are not achievable with near-term hardware [8].

Several architectures for a Quantum Internet have been
proposed over the last few years [9], [10], [11], [12], and
they all share the common goal of achieving entanglement
distribution to end nodes through combinations of entangle-
ment swapping and purification, following a scheme called
Purify-and-Swap [13].
We show the model of our system in Fig. 1. A path

is established on the quantum network to connect two
(quantum) end nodes, Alice and Bob, willing to share entan-
glement. Entangled qubit pairs are continuously generated as
a background process on the physical links along the path,
which may exploit diverse media such as optics fiber or
open space. The goal of this work is to describe the Ranked
Entanglement Distribution Protocol (REDiP): a configurable
protocol that schedules and carries out the Purify-and-
Swap operations required to propagate entanglement to the
interested end nodes.
Entanglement swapping is a two-step protocol involving a

Bell-state measurement (BSM) followed by the transmission
of a final measurement outcome, namely two classical bits,
so that the recipient is able to determine in which of the four
maximally-entangled states the qubit pair has landed. This
requirement introduces a new problem, that is determining
the order in which this classical synchronization between
repeaters takes place. Such a decision is very important
because it defines –and is defined by- the order of performing
entanglement swapping among nodes. With reference to
Fig. 1, the three repeaters B1,B2,B3 may carry out their
BSM in parallel, consecutively, or in any other order. We
call this choice Entanglement Swapping Strategy (ESS).

Entanglement purification can be carried out at any time
on two or more entangled qubit pairs shared between the
same nodes. Its outcome is a smaller number of pairs with
higher fidelity than the input ones, with a certain success
probability. If we include the possibility of performing
purification in our discussion, we define the Purification and
Entanglement Swapping Strategy (PESS) as the policy that
determines both the order of entanglement swapping other
than when and where (i.e., at what node) purification rounds
are to be carried out.
In this work, we extend the presentation of REDiP

from [14]. The main contributions of this work with respect
to [14] can be summed up as follows: (i) providing additional
details about REDiP design, (ii) implementing an algorithm
to estimate the bandwidth (pairs/s) that a REDiP instance
requires on every link of the path connecting the end
nodes, and (iii) describing a set of hands-on guidelines
to configure REDiP ranks so that a target end-to-end
fidelity is achieved with the least amount of resources.
This last contribution is supported by our insights on the
performances of the popular DEJMPS (from the authors’ last
names) purification protocol [15]. Our simulation campaign
evaluates the performances of different PESSs implemented
on REDiP, showcasing the impact of different sources of
quantum noise on the resulting throughput and fidelity.
Results show that REDiP configurability is essential to
meeting user requirements in a quantum network subject to
quantum errors and link conditions that may change over
time and space.
This work is structured as follows: Section II gives an

overview of the main concepts behind REDiP and how it
can be configured, then Section III describes the protocol
with a more technical and detailed approach. Section IV
shows the algorithm used to estimate the bandwidth on every
link of the path. Section V provides the guidelines on how
REDiP connections can be configured to meet specific user
requirements. Section VI shows the results of a simulation
campaign that evaluates the performances of different PESSs
implemented on REDiP under varying scenarios. Finally,
Section VII draws some final remarks and future work.

A. RELATED WORK
A major distinction arises in the literature between two
architectural model classes for quantum networks, which
we divide into time-slotted and asynchronous. Time-slotted
architectures, from which we point out [12], [16], [17], [18],
assume that the whole quantum network evolves according
to discrete time slots of a fixed duration. A centralized or
distributed clock-sharing procedure is therefore employed by
all these proposals. Such a time-slotted approach introduces a
significant simplification in the management of entanglement
distribution: At each time slot, the control plane (either
centralized or distributed) evaluates which quantum network
nodes currently share entangled qubit pairs, and a virtual
graph is generated where every edge represents an available
entangled qubit pair. Within the same time slot, the control

398 VOLUME 5, 2024

plane schedules the requests to serve and routes every request
for end-to-end entanglement over a dedicated path on the
virtual graph. The algorithms used for scheduling and routing
requests depend on the solution; we point out the work by
Cicconetti et al. [16], which features a very clear formulation
of the problem.
The advantage of time-slotted architectures is that they

can be very responsive: requests for a reasonable amount of
end-to-end entangled qubits can often be served in a single
time slot. Contrarily, their intrinsic drawback is the under-
utilization of network resources: Entanglement generation
is attempted only at the beginning of every time slot,
leading to a loss in the overall throughput in exchange
for easier management of available resources. Some works
such as [18] try to partially counter this downside by
accumulating entangled qubit pairs on specialized quantum
network devices, and making them available when needed.
An additional critical challenge is that the maximum duration
of the time slot is given by the quantum memories coherence
time, since entangled qubits are allocated at the beginning
of a time slot and delivered to the application at the end of
the same time slot (in the best case).
On the other hand, asynchronous architectures

like [10], [11], [19] adopt a greedier approach where
entanglement generation on every physical link is considered
a continuous, stochastic process that delivers new entangled
qubit pairs at an average throughput over time. Protocols
designed for such architectures do not work within a
specified time slot and must face the possibility that not
enough entangled qubits may be available at a given time.
The consequence is that quantum network protocols for
entanglement distribution must be robust to the temporary
unavailability of qubits, and feature a higher complexity
in terms of control and synchronization messages across
different nodes. Asynchronous quantum networks are thus
potentially able to guarantee a higher utilization of the
network resources, but the overhead likely required to
reconfigure the quantum network and serve new scheduled
requests can be very high.
Overall, we expect time-slotted quantum networks to be

effective for short-lived applications that require a small
number of end-to-end entangled qubits, thus privileging
responsiveness. Asynchronous quantum networks promise
instead to be optimal for applications that require long
streams of entangled qubits over time (e.g., to share several
secrets using quantum key distribution), thus privileging
throughput.

Some connection-oriented protocols for entanglement dis-
tribution, suitable for asynchronous architectures, have been
recently proposed in the literature, from which we point
out [20], [21], [22]. One of the limits of these previous
works is that they are tightly bonded to a single ESS, i.e.,
a specific order in which entanglement swapping is carried
out among the nodes along the path.
The three different ESSs adopted in these works are shown

in Fig. 2 on a five-node path: (i) Consecutive ESS (Fig. 2(a)),

FIGURE 2. Three entanglement swapping strategies on a five-node path (two end
nodes and three repeaters): (a) Consecutive, (b) Nested, (c) Parallel. The arcs
represent entanglement between the two connected nodes, whereas the arrows and
the legend specify the entanglement swapping order.

employed in [20], where a node performs its BSM only after
receiving the outcome from the previous node on the path
and then sends the outcome to the next node. (ii) Nested
ESS (Fig. 2(b)), employed in [21], where the BSM ordering
is recursively determined by extracting the nodes of the path
in odd positions -with positions starting from zero- until
only the end nodes remain. This definition means that B1
and B3 can perform the BSM concurrently, and B2 must
wait to receive the outcomes from both B1 and B3. Note
that this strategy is applicable only if the number of nodes
can be written as 2n + 1 for some n ∈ N. (iii) Parallel ESS
(Fig. 2(c)), employed in [22], where all repeaters perform
their BSM concurrently and transmit the outcome directly
to at least one of the end nodes.
More specifically, Kozlowski et al. protocol [22] exploits

Parallel ESS to counter the effect of low memory coherence
times. The proposal by Li et al. [20] features a detailed
description of the connection establishment phase, involving
a resource allocation mechanism based on quantum memory
slots partitioning. Their protocol uses Consecutive ESS to
have strict control over the timing of the actions performed
by each node. Finally, the proposal by Aparicio et al. [21]
is not exactly a protocol, but a recursive protocol stack
that schedules entanglement swapping and purification as
separate protocols, one on top of the other.
Another key limitation of these existing protocols is

that they do not support entanglement purification as an
integrated mechanism. Together with the forced ESS, this
leads to a lack of flexibility when it comes to meeting
user requirements in terms of fidelity and throughput. Of
course, it is always possible to have a recursive protocol
stack where several connections and purification protocols
are installed one on top of the other to implement an arbitrary

VOLUME 5, 2024 399

BACCIOTTINI et al.: REDiP FOR THE QUANTUM INTERNET

PESS, as done in [21], [23] and suggested in [22], but this
inevitably introduces additional overhead and complicates
network reconfiguration, which is already one of the critical
problems of asynchronous solutions.
REDiP is a novel protocol for entanglement distribution in

asynchronous quantum networks. It incorporates these state-
of-the-art protocols, as all of them can be implemented as
special REDiP configurations. Moreover, REDiP enables a
whole set of custom strategies that would not be achievable
with existing protocols. This result is obtained through the
“ranks” mechanism, which enables an arbitrary ESS and
includes entanglement purification as a native feature, which
was not taken into account within the most recent protocols.
Moreover, the same REDiP connection can potentially be
dynamically reconfigured to adapt to changes in require-
ments and failures, without having to dismantle and set up
a new connection.

II. PROTOCOL OVERVIEW
REDiP is a connection-oriented protocol. Therefore, a
connection on a path between the two end nodes must be
created before distributing the entanglement. This connection
conveys classical bits and is provided by a conventional
infrastructure (for example, the classical Internet). To avoid
ambiguities with entangled connections, we will refer to this
preliminary connection as tunnel.

Taking as reference the quantum protocol stack introduced
in [10], REDiP is placed at the Network layer. The underly-
ing Link layer has the task of generating heralded entangled
Bell pairs on physical links that are consumed by Network
layer protocols to distribute end-to-end entanglement. We
will refer to upper layer protocols as Users of REDiP.
Finally, we assume that the quantum network architecture

where REDiP is used has an addressing scheme where each
entangled qubit pair has an identifier shared at least among
the nodes holding the two ends of the pair. For the sake
of clarity, we call an entangled qubit pair between adjacent
nodes an entangled link or just a link. We also use the
term entangled segment or just segment when the entangled
pair resides on non-adjacent nodes. Finally, we call end-to-
end entangled connection or just connection an entangled
segment that resides on the end nodes. Clearly, the two
qubits of an entangled pair embody the endpoints of a link,
segment, or connection.
REDiP comprises three consecutive phases, namely

(i) establishment, (ii) active, and (iii) closing. The next
sections will give an overview of all the tasks carried out
during each phase.

A. ESTABLISHMENT PHASE
The establishment phase is the preliminary sequence of
actions taken by the nodes where they agree to be part of
a REDiP tunnel. During this phase, nodes also determine
the bandwidth (average pairs/s) to be reserved for the tunnel
on each physical link of the path. As shown in Fig. 3, The
establishment phase starts at an end node A when a user,

FIGURE 3. Simplified example of REDiP tunnel establishment.

typically an upper layer protocol, submits a NEW_TUN
message that is forwarded to all nodes on the path toward
the other end node B. The NEW_TUN message contains the
identifiers of all the nodes on the path, together with a set
of parameters used to configure the connection (e.g., ranks).
We also include an optional confirmation phase where a
TUN_ACK message is propagated back to the originating
end node A to confirm the tunnel establishment. When the
TUN_ACK reaches the A node, all nodes reserve the agreed
bandwidth on their physical links, and entanglement gen-
eration can start. This approach is borrowed from classical
Internet protocols like the Resource Reservation Protocol
(RSVP). The format of the aforementioned messages is
provided in the technical part, Section III.

B. ACTIVE PHASE
During the active phase, the REDiP tunnel continuously
generates end-to-end connections and delivers them to the
users. Before delving into the operational description, we
introduce the concept of ranks and how they can be used to
configure the tunnel and suit user requirements. Each node
belonging to the REDiP tunnel is assigned a rank, namely
an integer value. Ranks can assume values between 0 and
N−1, where N is the total number of nodes. Ranks are used
to determine the order in which entanglement swapping is
carried out: nodes with a lower rank swap earlier, whereas
two nodes sharing the same rank can swap concurrently. By
design, we impose that the end nodes of the tunnel share the
highest rank. The ranks of all the nodes are grouped inside a
rank vector R, which is distributed during the establishment
phase. As an example, we implement the three ESSs from
Fig. 2. REDiP realizes the three strategies by assigning the
rank vectors R = [3, 0, 1, 2, 3], R = [2, 0, 1, 0, 2], and R =
[1, 0, 0, 0, 1] respectively.

The user can also add entanglement purification. We
assume DEJMPS protocol [15] (from the authors’ last names)
to be used as the default purification protocol, as it has been
proven to be optimal for Werner states (worst case scenario).
The user can add an arbitrary number of purification rounds
to be performed at each rank. In the example of Fig. 4,
we can see the purification vector P = [1, 1, 0] applied on
the Nested ESS. Such assignment configures REDiP so that
0-ranked and 1-ranked nodes apply one purification round

400 VOLUME 5, 2024

FIGURE 4. Example of purification assignment on the Nested ESS.

to all qubit pairs before they can be swapped. Contrarily,
2-ranked nodes (i.e., the end nodes) do not perform any
purification on the end-to-end connections.
The active phase terminates when a certain number

K of end-to-end connections, pre-determined during the
establishment phase, has been delivered and consumed by the
user. During the closing phase, nodes free up the allocated
resources, and the tunnel is dismantled.

III. REDIP TECHNICAL DESCRIPTION
In this section, we delve into the design of REDiP,
comprising message formats, internal states, and flows of
communication. The main focus of this section is the active
phase, which is the core of REDiP operation.
We define some reference variables, called REDiP param-

eters, that will be used across this section:

• N is the number of nodes composing the REDiP path.
• B is the vector of node identifiers along the REDiP
path, in the order they are traversed. Bi indicates the
ith node on the path, i ∈ {0, . . . ,N − 1}.

• R is the REDiP rank vector, where each element Ri is
an integer indicating the rank of node Bi.

• P is the REDiP purification vector, where each element
Pr is an integer indicating how many purification rounds
must be performed by nodes whose rank is r, r ∈
{0, . . . ,max{Ri ∈ R}}.

• K is the number of end-to-end pairs that a given tunnel
must deliver to the destination end nodes.

Furthermore, as in [22], we assume that the Link layer
protocol continuously generates entangled links once the
tunnel is open. For any given node, from now on we will refer
to the directions towards the rightmost and leftmost nodes
on the path L as upstream and downstream respectively.
For what concerns the REDiP establishment phase, its

functionality has been fully unraveled in the previous section.
We are now ready to briefly complete its description
by defining the information conveyed within NEW_TUN
and TUN_ACK messages. The NEW_TUN message is
initialized by the user and contains the REDiP parameters
(B,R,P,K) and a unique identifier for the REDiP tunnel.
Additionally, every node that receives and forwards the
NEW_TUN message appends the fidelity and the maximum
bandwidth available on the attached physical links (expressed
in generated pairs/s), and its hardware noise parameters,
which can be represented by the accuracies (i.e., the
success probabilities) of unary, binary quantum gates, and

FIGURE 5. Finite state machine for an endpoint on a node with rank r . Blue labels
indicate the conditions for the state transition, whereas red labels indicate the action
performed during the transition.

measurement apparatus. When the last node BN−1 receives
the NEW_TUN message, it has all the information required
to derive the bandwidth to be allocated on all links of the
path. The algorithm used to derive the bandwidth is discussed
in Section IV.
The TUN_ACK message is initialized by the last node

BN−1 with the REDiP tunnel identifier, the bandwidth to be
allocated on each link of the path, and a timestamp indicating
the time at which the active phase may start. This timer
does not assume a tight synchronization between nodes, it is
used to prevent nodes from entering the REDiP active phase
before the TUN_ACK message has been forwarded back to
the first node B0.

The control operations of the REDiP active phase
are carried out by three classical messages called
(i) SWAP_UPDATE, used to notify nodes about the result
of an entanglement swapping, (ii) PURIF_SOLICIT and
(iii) PURIF_RESPONSE used during the entanglement
purification procedure. We will gradually go through their
definition and usage as the description moves forward.

A. ENDPOINT LOGICAL STATES
During the active phase, Link layer protocols continuously
generate and deliver new endpoints (i.e., entangled qubits)
to REDiP on every node along the path. At a given time, as
shown in the state diagram of Fig. 5, every endpoint held
by an r-ranked node of the REDiP path can be in one of
the following possible logical states:

• WAIT is the initial state for endpoints signaled by the
Link layer when an entangled qubit pair is generated.

• PURIF is immediately entered if r = 0, otherwise it
is entered when a SWAP_UPDATE message for this
endpoint arrives from a node whose rank is r − 1. An
endpoint stays in this state if the link, segment, or
connection must be purified.

• PENDING is entered when an endpoint is submitted to
the purification procedure. If the procedure succeeds,
the state transitions back to PURIF and the purification
counter i is increased by one.

VOLUME 5, 2024 401

BACCIOTTINI et al.: REDiP FOR THE QUANTUM INTERNET

• RELEASE is the transitional state of endpoints that are
about to be released back to the Link layer. It is reached
when the endpoint is used as an ancilla for purification,
when the endpoint is swapped, or when purification
fails.

• ELIGIBLE is the state for endpoints that are ready for
entanglement swapping (on intermediate nodes), or that
are ready to be delivered to the user (on end nodes). It
is entered when the endpoint in PURIF state has been
successfully purified a number of times equal to Pr.

B. SWAP UPDATES
As soon as the REDiP tunnel has been established, each
intermediate node Bi processes the parameters (B,R,P,K)

and infers the following variables:

• Bi Swapping Destinations (SDi), a two components
vector where its components SDi0 and SDi1 are picked
as the downstream and upstream nodes closest to Bi
whose rank is strictly higher than Ri,

• Bi Swapping Neighbors (SNi), a two components vector
where its components SNi0 and SNi1 are picked as the
downstream and upstream nodes closest to Bi, whose
rank is equal or higher than Ri.

SWAP_UPDATE messages share some similarities with
the TRACK message from [22], in the sense that they serve
the purpose of keeping track of what endpoints have been
swapped and the final Bell state of the new segment. The
difference lies in the fact that TRACK messages are always
forwarded by all nodes on the path towards an end node,
whereas SWAP_UPDATEs are generated and forwarded by
swapping neighbors, and delivered to a swapping destination
which may or may not be an end node. The idea is that
REDiP ranks partition the path into several nested chains
of swapping neighbors. At any time, there exist multiple
SWAP_UPDATEs running at different ranks, which are
forwarded upstream or downstream by swapping neighbors
toward a swapping destination.
An intermediate node Bi generates a SWAP_UPDATE

message after the execution of the entanglement swapping
only if SNi0 ≡ SDi0 or SNi1 ≡ SDi1, i.e., only if at least one
of its swapping neighbors is also a swapping destination.
Fig. 6(a) shows the behavior of an r-ranked node Bi when

its swapping neighbors and destinations do not coincide. We
can see that Bi receives an upstream SWAP_UPDATE from
SNi0 (time T0), but it has not swapped its two local endpoints
yet, so the message cannot be immediately forwarded. As
soon as Bi has an upstream endpoint in ELIGIBLE state, it is
swapped with the endpoint specified by the received message
(time T1). The final Bell state measurement is collected and
saved in a temporary record as it is done in [22], and the
two swapped endpoints transition to the RELEASE state. At
this point Bi can add the stored measurement result to the
upstream SWAP_UPDATE, which is forwarded to SNi1 (time
T2). When Bi receives the SWAP_UPDATE from SNi1, it
immediately updates and forwards downstream the message

(time T3). When both SWAP_UPDATEs are delivered to the
corresponding swapping destination, the two endpoints of
the new segment between SDi0 and SDi1 transition to the
state PURIF (time T4). Fig. 6(b) shows the complementary
case where the upstream swapping neighbor and destination
coincide. The key difference with the previous example
is that after the swap (time T1), Bi must generate the
downstream SWAP_UPDATE and send it to SNi0 (time T3).
Of course, in the mirror case of downstream coincidence
(SNi0 ≡ SDi0), then Bi would generate and send the upstream
SWAP_UPDATE instead of the downstream one.
Now that we sketched the role and the information

conveyed by SWAP_UPDATEs, we describe their format.
When it is generated, a SWAP_UPDATE is meant to be
delivered to a specific swapping destination node, which
is marked within the message as its target. The other
swapping destination is instead marked within the message
as its origin. The SWAP_UPDATE is forwarded to one
of the swapping neighbors, marked within the next-hop
field. The BSM measurement outcome is encoded by means
of two message fields, namely (i) the identifier of the
swapped segment (segment_id field), which is shared with
the next-hop, and (ii) the new quantum state of the EPR
pair (new_state field), to discriminate in which of the four
Bell states the segment has landed after the measurement.
These last three fields are updated every time that the
SWAP_UPDATE is received and forwarded so that when it
reaches its target node, it is able to determine which endpoint
should transition to the PURIF logical state, as well as the
final Bell state of the entangled segment.

C. PURIFICATION
What is still missing to generate connections is the link (or
segment) purification procedure that takes endpoints from
PURIF state and eventually turns them into ELIGIBLE. Even
though REDiP is not intrinsically bound to a specific purifi-
cation protocol, from now on we consider the DEJMPS [15]
(from the authors’ last names) as the default purification
protocol employed by REDiP, which has been proven optimal
when the purified pairs are isotropic Werner states (worst
case scenario). Since we cannot make any assumption on
the quantum hardware installed by REDiP nodes, DEJMPS
is the standard choice. The inexpert reader may find details
about DEJMPS in Section IV.
In REDiP each rank has a dedicated purification step.

Every purification step can be composed by zero, one
or more purification rounds, as specified by the REDiP
purification vector P. The number of purification rounds
determines how many consecutive times the endpoints of
an r-ranked node have to (successfully) go through the
purification protocol before they can reach the ELIGIBLE
state. In the following, we show the purification procedure
employed by REDiP nodes to realize a purification step.
The purification procedure can be carried out between

two swapping neighbors or between a node and one of
its swapping destinations. In the latter case, the endpoint

402 VOLUME 5, 2024

FIGURE 6. Example sequence of REDiP when (a) swapping neighbors and destinations are distinct and (b) upstream swapping neighbor and destination coincide. Waved
arrows indicate that endpoints of an entangled link (or segment) between the two nodes have transitioned to a new state. The generation of a SWAP_UPDATE message is
highlighted in red.

residing on the swapping destination starts in WAIT state
instead of PURIF and it never transitions to ELIGIBLE in
case of successful purification. The two actors are called
Initiator node and Solicited node, where the former has
the initial task of choosing the link to purify and one
other link as ancilla. The policy used for this choice
depends on the adopted purification scheme. For example,
a recurrence scheme requires the ancilla to have the same
fidelity as the purified link, whereas an entanglement
pumping scheme like the one proposed in [13] (which
still uses the DEJMPS protocol under the hood) allows
the exploitation of ancillas with a lower fidelity than the
purified link. The Initiator node then executes the purification
protocol and sends a PURIF_SOLICIT message containing
the identifier of both the link to purify and the ancilla, and
their purification measurement outcome. The Solicited node
receives the message and applies the purification algorithm
itself. If the measurement outcome matches the one within
the PURIF_SOLICIT message, then the purification was
successful. In any case, the Solicited node replies with
a PURIF_RESPONSE message, containing the purified
and ancilla link identifiers (piggyback approach), and the
purification outcome (“ok” or “fail”). If the purification is
successful, the purification counter i is increased by one,
signifying that the link is ready for the next purification
round, otherwise both endpoints are released back to the
Link layer. Ancillas are always released to the Link layer
right after their measurement. We show an example in Fig. 7,
where pair A is purified and pair B is used as ancilla.
The procedure is repeated until the purification counter i
reaches the value Pr, where r is the rank of the Initiator
node. To determine the actor roles there is a simple rule: the
lowest ranked node is the Initiator. The tie-breaking rule is
left up to REDiP implementation; one could simply set the

FIGURE 7. Example sequence of REDiP purification. Waved arrows indicate that
both endpoints of the link (or segment) have transitioned to a new state. For the
PURIF state, there is also the new value of the purification counter i .

downstream node to always be the Initiator when the ranks
are equal.

D. IMPLEMENTING DIFFERENT STRATEGIES
In this section, we show how REDiP configurability allows
to implement the Parallel ESS, Consecutive ESS, and Nested
ESS. For each one of these strategies, we provide a way to
compute the rank vector R given the number of nodes N.

VOLUME 5, 2024 403

BACCIOTTINI et al.: REDiP FOR THE QUANTUM INTERNET

1) CONSECUTIVE STRATEGY

The rank vector R = [N−2, 0, 1, 2, . . . ,N−3,N−2] repro-
duces the Consecutive ESS from [20], where entanglement
swapping is sequentially carried out by intermediate nodes
along the path in the upstream direction. According to this
REDiP version, it is not up to the downstream end node to
trigger entanglement swapping on the successive repeater,
which is instead the approach used in [20]. This saves one
transmission hop for each SWAP_UPDATE, leading to a
slight performance improvement.

2) NESTED STRATEGY

The Nested ESS is implemented by a rank vector R where
each element Ri is defined as follows:

Ri = max
r∈{0,1,...,k}{r | i mod 2r = 0}, (1)

where N = 2k + 1 for some k > 0. This last condition is an
assumption for the applicability of this strategy.

3) PARALLEL STRATEGY

If we set the ranks as R = [1, 0, 0, . . . , 0, 0, 1], we reproduce
the Parallel ESS used in [22]. However, this REDiP config-
uration performs slightly better because SWAP_UPDATEs
are generated by the nodes adjacent to the end node.
TRACK messages from [22] are instead generated by the
end nodes themselves. This saves one transmission hop for
each SWAP_UPDATE, which translates into less idle time
spent by qubits inside of the end nodes’ quantum memories.

IV. ESTIMATING RESOURCES AND BANDWIDTH
REDiP nodes utilize NEW_TUN and TUN_ACK messages
during the establishment phase to estimate the bandwidth
(average pairs/s) that should be allocated on each link
along which the connection is routed, so as to meet
the user requirements in terms of target fidelity. In this
section, we put forward the necessary information leveraged
by nodes, along with an algorithm they can employ to
find out the aforementioned bandwidth. The algorithm we
propose is based on two initial assumptions: (i) The average
entanglement generation rate on physical links does not
depend on the quantum memory occupancy. (ii) Quantum
memory decoherence is not taken into account. We will
remove these two hypotheses in the simulation analysis,
where we will delve into practical applications of this
algorithm in a real-world scenario.
To start, let’s establish the notion of insistence: A purifi-

cation step, which encompasses one or more purification
rounds, between two REDiP nodes denoted as A and B, is
said to insist on a link denoted as l if the REDiP sub-path
connecting A to B includes l.
The objective is to evaluate, for each link l within the

REDiP path, the average consumption of entangled pairs
resulting from all purification steps that insist on l. From
now on, we will use the expression resources consumed
by a physical link, which we define as the number of

noisy entangled pairs required during all purification steps
insisting on that physical link, to propagate a single end-to-
end entangled pair with a target fidelity.

A. DEJMPS AND SWAPPING PRELIMINARIES
Every DEJMPS purification round is characterized by the
initial fidelity F of the pairs that are subject to purification,
a probability of success Ps, and a final fidelity F′. If F does
not fall below a certain threshold, then F′ > F. We implicitly
assume that the pairs subject to purification are in a Werner
state ρ̂ with fidelity F

ρ̂ =
(

4F − 1

3

)
|φ+〉〈φ+| +

(
4− 4F

3

)
Î

4
, (2)

where |φ+〉 = |00〉+|11〉√
2

is the reference Bell state, and Î
4 is

the completely mixed state. In general, the output state ρ′
with fidelity F′ remains diagonal in Bell basis after DEJMPS,
but not as an isotropic Werner state [13].

The final fidelity F′ and the success probability Ps can be
computed through the formulas provided by Dür et al. [13],
which are extremely verbose but not hard to evaluate. Both
F′ and Ps depend on F and the hardware noise parameters of
the devices, namely binary quantum gates and measurement
accuracies, referred to as p2 and η respectively.

Given a purification step i, composed of K rounds, we
can compute the average number of qubit pairs consumed
to get a single distilled pair as [13]

Mi =
K∏
j=1

2

Pjs
, (3)

where Pjs is the success probability of the j-th round.
Regarding entanglement swapping, we can again apply

equations from [13] to determine the output state after S
consecutive swaps. If the quantum states of all swapped pairs
are diagonal in Bell basis, the output state ρ̂S is diagonal
with a fidelity FS lower than the fidelities of all swapped
pairs. FS can be computed as a function of all input states
and the noise parameters of the involved devices. We report
here the formula in the case all the S swapped pairs are in
Werner states sharing the same fidelity F:

(
4FS − 1

3

)
=

(
p2

4η2 − 1

3

)S−1(
4F − 1

3

)S

. (4)

B. COMPUTE RESOURCES ON EACH LINK
The number of purification steps that insist on a link l of
the REDiP path is at most equal to the highest REDiP rank.
The algorithm we propose aims to compute the average
number of resources (i.e., entangled qubit pairs) required on
each link l in the REDiP path to establish a single end-to-
end connection. The procedure is outlined in Algorithm 1.
Leveraging the REDiP rank mechanism, it employs a bottom-
up recursive strategy, initially focusing on purification and
subsequently swapping on each rank.

404 VOLUME 5, 2024

The total resources consumed by purification steps insist-
ing on every physical link of the path are computed and
stored in a vector variable M, which is the output of
the algorithm. The segments fidelity is also updated after
every purification step. Following entanglement swapping,
the algorithm is recursively called on a reduced set of
nodes B′, excluding nodes that have already participated in
swapping. The exit condition is simple: if only the two end
nodes remain, the end-to-end connection is ready.
The algorithm integrates three fundamental subroutines,

employing Dür’s formulas [13] as referenced in the previous
section:
• ResourcesDEJMPS: computes the average resources
needed for a successful purification step, given the
initial fidelity, the number of purification rounds, and
the noise parameters. It applies (3). Complexity: O(1)

• FidelityDEJMPS: computes the final fidelity of
a purification step, has the same arguments as
ResourcesDEJMPS. Complexity: O(1)

• FidelitySwap: computes the final fidelity after entan-
glement swapping, given the list of swapping nodes,
the initial fidelity of every segment, and the noise
parameters. Complexity: O(number of swapping nodes)

The overall complexity of Algorithm 1 is given by the
first loop, as it potentially iterates over all the links of the
REDiP path. In the worst-case scenario (corresponding to
the Consecutive ESS), the algorithm involves O(N) recursive
calls, so we can state that its complexity is at most O(N2).
Anyway, since the number of hops of a network path is
expected to be at most in the order of a hundred nodes, we
can safely assume the algorithm to be computationally easy
to solve.

C. DERIVE THE BANDWIDTH
Now that we are able to compute the amount of resources
that are needed to generate a single end-to-end connection,
we apply a trivial water filling optimization to derive the
bandwidth to allocate on each physical link. The optimization
problem is as follows:

maximize t (5)

subject to:

rl = t ∗Ml ∀l ∈ L (6)

rl ≤ rmaxl ∀l ∈ L (7)

where L is the set of all physical links on the REDiP path,
the quantities Ml are the elements of the M vector computed
with Alg. 1, and rmaxl is the maximum bandwidth that we can
allocate on that link, which is given by hardware parameters.
The solution of this problem can be obtained analytically as

topt = min
L

{
rmaxl

Ml

}
, (8)

where topt is the estimated end-to-end throughput, and rl =
topt ∗Ml is the bandwidth to be allocated on each physical
link l ∈ L.

Algorithm 1 Compute Resources on Each Link
1: input variables:
2: B← [b0, . . . , bN−1] //List of all nodes in the REDiP path
3: F // Fidelities (F(bi, bi+1) fidelity of segments between
bi, bi+1)

4: R //REDiP rank vector (R(bi) ≡ rank of bi)
5: P //REDiP purification (P(r) ≡ # purification rounds at rank
r)

6: H //Noise parameters (H(bi) ≡ parameters of bi, namely η and
p2)

7: output variables:
8: //Counts the resources on each link
9: M← [1∀ physical link l]

10: //Estimated end-to-end fidelity
11: fe2e ← 0
12: procedure GETRESOURCES(B,F,R,P,H,M)
13: //Purify on lowest rank nodes
14: r← minB {R(bi)}
15: F′ ← ∅,B′ ← ∅, Z← ∅, //Auxiliary variables
16: for each pair bi, bi+1 ∈ B do
17: if R(bi) = r or R(bi+1) = r then
18: m← ResourcesDEJMPS(F(bi, bi+1),P(r),H)
19: fD ← FidelityDEJMPS(F(bi, bi+1),P(r),H)
20: F(bi, bi+1)← fD //Update segment fidelity
21: for each physical link l on which (bi, bi+1) insist

do
22: //Update resources on “insisted” physical link
23: Ml ← Ml ∗ m
24: end for
25: end if
26: end for
27: //Exit condition: only end nodes remain (highest rank)
28: if length(B) = 2 then
29: fe2e ← F(b0, b1)
30: exit
31: end if
32: //And Finally Swap
33: B′ ← B \ {bi ∈ B:R(bi) = r}
34: for each pair b′i, b′i+1 ∈ B′ do
35: // b′i, b′i+1 may not be consecutive in B...
36: //...all nodes in B between them must swap
37: Z← {bj ∈ B:bj between b

′
i and b

′
i+1}

38: fS ← FidelitySwap(Z,F,H)
39: F′(b′i, b′i+1)← fS //Set the fidelity of this segment
40: end for
41: //Recursive call on a reduced set of nodes
42: GetResources(B′,F′,R,P,H,M)
43: end procedure

In conclusion, the REDiP establishment phase, among its
other tasks, has the goal of distributing the input variables
of Alg. 1 to all REDiP nodes, so that they have the tools to
derive the bandwidth to be allocated on every link.

V. GUIDELINES FOR ASSIGNING RANKS
The assignment of REDiP rank and purification vectors are
left to the control plane of the quantum network, which has
visibility over: (i) the whole network status, (ii) the current
set of user requests and their fidelity requirements. In this
section, we present a set of guidelines to assign REDiP
ranks and purification rounds with the aim of attaining a

VOLUME 5, 2024 405

BACCIOTTINI et al.: REDiP FOR THE QUANTUM INTERNET

FIGURE 8. Fidelity gain of DEJMPS purification, i.e., the difference between output
and input fidelities. Each curve is relative to a different value of device noise
parameters η, p2, representing measurement and gate success probabilities. Every
curve is bound between its Fmin and Fmax . Black dots highlight the initial fidelity for
which DEJMPS grants the highest fidelity gain.

target fidelity FT while maximizing throughput in end-to-
end connections. The guidelines underscore the key role of
REDiP’s flexibility in customizing a PESS to meet user
requirements while minimizing the consumed resources.
DEJMPS purification is the tool that REDiP uses to

recover the fidelity of entangled links, segments, and con-
nections. However, purification results in a fidelity increase
only if the input fidelity falls within the interval (Fmin,Fmax),
with Fmin > 0.5 and Fmax < 1. The specific values of Fmin
and Fmax are contingent upon the noise parameters of the
involved devices (namely p2, η). The interested reader can
find all the details about these thresholds in [13].

In his seminal work [13], Dür also proposes a PESS tuned
on the values of Fmin, Fmax. His PESS comprises a sequence
of purification and swapping steps. During this process,
entangled segments are constantly purified until they reach
a “working fidelity” FW [13] (assumed lower than Fmax).
Subsequently, they are swapped by as many repeaters as
possible, ensuring that the fidelity remains higher than Fmin.
The problem with this strategy is that DEJMPS purification
performs poorly on segments with a fidelity close to Fmin: in
many cases, it may be convenient to decrease the number of
swapping nodes to keep the fidelity higher, even at the cost
of an additional purify and swapping step (i.e., an additional
rank in REDiP notation).
In Fig. 8, we emphasize this concept by showcasing

the fidelity gain, defined as the difference between output
and input fidelities of DEJMPS purification. The noise
parameters η and p2 are set equal as done in [13], and
justified by the noise specifications of current quantum
devices like the ones in the IBM cloud.1 We observe
that DEJMPS operates at its best when the input fidelity

1. https://quantum-computing.ibm.com

FIGURE 9. A setup where nL rounds of purification are carried out at the link level,
then all intermediate nodes swap concurrently, and then nE purification rounds are
carried out at the end-to-end level.

approaches Fopt ≈ 0.78. We can readily observe that the
fidelity gain achieved by DEJMPS peaks around this value
for all the curves depicted in the plot, as indicated by the
black dots. This is what makes our guidelines conceptually
independent of the noise parameters η, p2: the idea is keeping
the fidelity equal or higher than Fopt so that even a few
purification rounds yield a substantial reward.

A. SINGLE SWAPPING STEP
For simplicity, we assume that all devices in the REDiP path
have the same noise parameters η, p2, and all entangled links
have the same fidelity Flink. We expect that these assumptions
will be met by first-generation quantum networks, where
very likely all devices and connections share the same
technology. We first consider the case where the number
of hops H on the path is relatively2 low, such that all
intermediate nodes can concurrently swap without the fidelity
dropping too close to Fmin. We show this scenario in Fig. 9:
in REDiP notation, we can implement the PESS shown
in the picture as a Parallel ESS. The rank vector is R =
[1, 0, . . . , 0, 1], and the purification vector is P = [nL, nE].
We named the intermediate fidelities reached after the first
purification and swapping steps FW (working fidelity) and
Flow respectively. The final fidelity Fe2e must be higher than
or equal to the target fidelity FT specified by the user. For
any H, we can derive the optimal values for nL and nE
by determining which combination reaches Fe2e ≥ FT by
consuming the lowest amount of resources M (here equal
for all links), which can be computed using Alg. 1.

B. MULTIPLE SWAPPING STEPS
With longer repeater paths, we might not be able to resolve
entanglement distribution in a single swapping step. The
idea is to operate recursively: we partition the path into two
equal-length sub-paths and apply a nested single swapping

2. relatively to the noise parameters

406 VOLUME 5, 2024

TABLE 1. Rank and purification (R, P) vectors on different REDiP paths. Grey rows highlight the R, P configuration obtained through our guidelines. The link and target
fidelities are set to Flink = FT = 0.95. The minimum fidelity field represents the minimum fidelity value reached by any pair along the path after a swapping step. The resources
per link field indicates the average resources consumed by any physical link on the REDiP path (the maximum value was picked in case of imbalances).

step on every sub-path independently. Finally, we stitch
together the sub-paths by applying a second single swapping
step on the central repeater connecting the sub-paths. This
recursion can even be pushed forward, as sub-paths can be
further partitioned into sub-sub-paths, and so on. We can
express this entanglement swapping strategy as a hybrid
between the Nested and Parallel strategies, which can easily
be implemented in REDiP. As an example, if we partition
the path only once, the rank vector can be set with the shape

R = [2, 0, . . . , 0, 1, 0 . . . , 0, 2]. (9)

The generalization to include additional nested partitions in R
is straightforward. The purification vector P has r elements,
where r, the highest rank, is equal to the number of nested
partitions plus one.
Now that we fixed the structure of the adopted PESS, we

want to determine the optimal configuration, given a REDiP

path, and a target end-to-end fidelity FT . Differently from
the single swapping step case, now we have two degrees of
freedom: (i) how many nested partitions, and (ii) how many
purification rounds to perform at each nested step. In REDiP
terms, this translates into determining the number of ranks
inside R, and the purification vector P. Even though the
domain of this problem is larger than the single swapping
step case, the total number of possible combinations remains
relatively low, so that the optimal solution can be efficiently
found through a full exploration of the domain.
We implemented these guidelines and found the optimal

R,P combination on a set of REDiP paths. Table 1 shows
our results on twelve representative paths. From these results,
we point out some interesting insights.
• First of all, we notice that the Resources per link,
computed using Alg. 1, are very high when noise
parameters η and p2 are set to 0.98. This highlights the

VOLUME 5, 2024 407

BACCIOTTINI et al.: REDiP FOR THE QUANTUM INTERNET

fact that noisy hardware has a destructive effect on the
performances of quantum networks deployed within the
Noisy-Intermediate Scale Quantum (NISQ) [8] era of
quantum computing.

• Second, we can appreciate that optimal Purification
Vectors (grey rows) apply at least one round of
purification on the link level (i.e., at rank zero) only
when η and p2 are equal to 0.995 or 1. This can easily
be explained by the fact that DEJMPS purification on
the link level is applied to the input fidelity Flink = 0.95.
This value is above or very close to Fmax when the
hardware is noisier, making DEJMPS unrewarding.

• Third, we observe that in the absence of noise (η, p2 =
1), it is always optimal to purify on the link level
to reach a very high fidelity, and then swap on all
intermediate nodes in a single round.

• Fourth, we tracked the fidelity after each swapping
step and reported the minimum value for each path
in the Minimum Fidelity column. We can appreciate
that the optimal configurations (grey rows) respect the
observation we derived from Fig. 8: fidelity never drops
far below Fopt ≈ 0.78.

• Finally, guidelines can guarantee a significant reduction
of consumed resources. Numerical evidence of this
statement is shown in Table 1, where we appreciate
the difference in performances between the optimal
configurations (grey rows) and other representative
configurations (white rows) under identical physical
parameters η, p2. As expected, the guidelines prove
particularly effective for near-term noise parameters
(η, p2 ≤ 0.995). For example, we see that the estimated
resources consumed on each link to reach the target end-
to-end fidelity decreases by a factor that even surpasses
5 when η, p2 = 0.98.

Our findings indicate that both rank and purification
vectors play a crucial role in maintaining resource efficiency.
They effectively prevent a significant drop in fidelity
following entanglement swapping steps, thereby enabling
subsequent DEJMPS processes to swiftly restore high fidelity
values within just a few rounds. This strategy minimizes
resource consumption while maximizing fidelity restoration
during the entanglement manipulation.

VI. EXPERIMENTS
We implemented a REDiP simulator to estimate the impact
of several PESSs on the protocol performances in terms
of throughput (pairs/s) and fidelity. The simulator was
implemented as a Python package on top of Netsquid [24],
a simulation engine for quantum networks. Below we define
the assumptions of the simulation campaign and then we
show some representative scenarios. From the simulation
outcomes, it is clear that the assignments of REDiP ranks and
purification rounds have a significant impact on the entan-
glement distribution performance, confirming the estimations
of Sections IV and V.

A. ASSUMPTIONS
In our simulation scenarios we assume all repeaters and
links have the same hardware specifications. In particular,
we modeled an implementation of the Midpoint Source
(MS for short) Link layer protocol defined in [25], and we
set its parameters according to the optimistic parameter set
used in [26]. The rationale behind this choice is that [26]
employs the most advanced emerging technology for multi-
mode quantum memories.
To model quantum errors, we introduced three sources of

noise: (i) An initial depolarization probability pd0 applied on
both endpoints of a newly generated link, so that its initial
fidelity is Flink < 1. (ii) A quantum memory exponential
dephasing rate rd, which simulates the decoherence of a
qubit state ρ̂ stored inside a quantum memory, so that after
�t time the new state ρ̂′ of the qubit can be written as

ρ̂′ = f
(
ρ̂, �t

) = e−rd�tρ̂ + (
1− e−rd�t)Zρ̂Z. (10)

We also define the coherence time Tc of a quantum memory
as the time after which the dephasing probability reaches
5%. Formally,

Tc = − log 0.95

rd
. (11)

(iii) A depolarization probability pderr applied right before
each measurement and 2-qubit quantum gate, to introduce a
noise component in entanglement swapping and purification.
We point out that since depolarization is a Pauli noise, then
pderr is bound to the accuracy p2 of 2-qubit gates by the
following relationship [27], [28]:

(1− p2) = 5

2
pderr. (12)

All physical links between the devices were modeled as 15km
long fiber-optic links. We employed the DEJMPS protocol
whenever entanglement purification was required.

B. GUIDELINES VERIFICATION
First of all, we employed simulations to validate the
estimations from Table 1. As anticipated, we dropped the
two assumptions that guarantee the perfect accuracy of
the estimations. This setup was reached by using only
free quantum memory slots to generate new entanglement,
and by introducing a quantum memory coherence time
Tc = 5ms, which is in line with near-term hardware
specifications [22], [26].
We show our results in Table 2. As we could expect, the

estimated results of end-to-end fidelity are upper bounds to
the end-to-end fidelity reached in these simulated scenarios.
Moreover, the estimated number of consumed resources is
a lower bound to the values obtained in the simulations.
This is due to two main factors: (i) the dephasing noise
introduced by the realistic quantum memory reduces both
the fidelity and the probability of success of every DEJMPS
round. Moreover, (ii) some entangled qubits reach their cutoff
time of 5ms and are automatically released to the Link

408 VOLUME 5, 2024

TABLE 2. Simulated results of the set of PESSs shown in Table 1, obtained from the
guidelines. We show the actual resources per link and end-to-end fidelity on a realistic
scenario with Tc = 5ms. For simplicity, we also report in red the estimated values from
Table 1.

layer for new entanglement generation. These qubits are
considered wasted resources, increasing the total number
of consumed resources. The impact of cutoff qubits grows
with the number of purification rounds and with the number
of nodes on the path. As an example, we take the 9-
and 11-node paths with η, p2 = 0.995 (seventh and ninth
rows of Table 2): the resources per link are more than
double for the 11-node path because the path is longer
and purification is performed at a higher rank, inducing
a larger delay. These two factors cause a large fraction
of qubits stored in the quantum memory to reach their
cutoff time. The scenarios that are missing in Table 2
are those where the coherence time is not long enough,
and we are not able to deliver end-to-end entanglement
to applications. From these results, we conclude that our
estimations are much closer to the experimental result if
the fraction of cutoff qubits is negligible with respect to
the total consumed resources. We point out that these
PESSs obtained through our guidelines are confirmed
to be good choices by the simulations. We tested all
other PESSs obtainable according to the scheme from
Section V-B, and we verified that even though the estimation
accuracy varies depending on the scenario, the guidelines
still get the PESS that consumes the least amount of
resources.

C. SIMULATION RESULTS
We also carried out a set of simulated experiments on
a representative network topology composed of 9 nodes
connected as a linear chain. We set pd0 = 0.01334 so that
the initial fidelity of link-generated pairs is approximately
Flink = 0.98. We analyze the performances of different
PESSs, all implemented with REDiP, under varying quantum
noise.
Fig. 10 reports the results of our simulations. Specifically,

Figs. 10(a) and 10(b) plot the end-to-end throughput (pairs/s)
and average (squared) fidelity as a function of coherence time

TABLE 3. PESS specifications used within the simulated experiments.

Tc, keeping pderr = 0.005 as a constant, whereas Figs. 10(c)
and 10(d) plot the same metrics as a function of pderr, keeping
Tc = 5ms as a constant. Such constant values were picked
in line with near-term hardware specifications [22], [26]. In
all these plots, we compare the performances of a set of
eight representative PESSs. For the sake of readability, we
named each PESS by the name of the entanglement swapping
strategy and postponed a number of stars (“∗”) equal to the
total rounds of purification applied. To avoid ambiguities,
we provide in Table 3 the vectors R and P used on each
PESS (we do not repeat R across strategies sharing the same
ESS). Regarding the Hybrid* PESS, it has been added to
highlight how REDiP flexibility allows to mix up different
strategies: 0-ranked nodes are assigned as in the Nested ESS,
but all remaining repeaters are 1-ranked, so that they swap in
parallel. This behavior makes this strategy a hybrid between
Nested and Parallel.
We can see from Figs. 10(a) and 10(c) that the throughput

highly depends on the total number of purification rounds
and that purification performed at higher ranks costs slightly
more in terms of throughput due to the longer transmission
time of purification control messages. REDiP can be set up
by the user with a suitable PESS that aims to maximize the
throughput while delivering entanglement with a guaranteed
minimum fidelity. For example, Parallel is a good option
for low fidelity requirements, especially when Tc is critically
low. If instead, requirements impose a very high fidelity,
then the best option is Nested**, which outperforms all
other PESSs involved in these simulations (Figs. 10(b)
and 10(d)), at the cost of a lower throughput. A good trade-
off between the two is the Hybrid* PESS, which exploits
part of the benefits from both strategies: it has indeed a
higher throughput than Nested* and a comparable fidelity.
As a general consideration emerging from these results, we
can say that purification combined with the Consecutive
ESS, given its intrinsic asymmetry, does not provide good
performances with respect to other strategies. Finally, we
see from Fig. 10(a) that some strategies with one and two
degrees of purification are not able to deliver entanglement
if the coherence time Tc is below a certain threshold. This
happens because qubits are automatically released by a cutoff
mechanism if they stay in a quantum memory for a time
higher than Tc.

VOLUME 5, 2024 409

BACCIOTTINI et al.: REDiP FOR THE QUANTUM INTERNET

FIGURE 10. Results of the simulation campaign on a nine nodes chain, showing (a) throughput, (b) fidelity as a function of memory coherence time Tc , and (c) throughput,
(d) fidelity as a function of gate error pd

err . Each marker was obtained as the average of 31 independent runs. Confidence intervals are not shown as their size is smaller or
comparable to the markers.

VII. CONCLUSION
REDiP is a configurable protocol for entanglement distribu-
tion in quantum networks. It exposes a flexible service to
the upper layer, which is able to set up a custom Purify-and-
Swap chain by means of a single protocol instance. REDiP
design relies on implementing the intuitive mechanism of
“ranks”, that define a timing hierarchy among all REDiP
nodes.
In this work, we also provided an algorithm to estimate

the target fidelity of end-to-end connections obtained with
REDiP, and the amount of resources consumed on each
physical link for each end-to-end connection. We leveraged
this algorithm and the properties of DEJMPS purification
to delineate guidelines for the assignment of REDiP ranks
that achieve a target fidelity with a reasonable amount of
resources. We brought numerical evidence that a correct
assignment of ranks leads in many cases to a massive saving
of resources, that may even surpass a factor of 5 with noisy
hardware.
Our simulated experiments validated our observations and

showed that in a real-world scenario, the selection of an
appropriate swapping and purification strategy is of even
greater importance. For instance, implementing the Nested
strategy resulted in a 5 percent increase in end-to-end fidelity
compared to an asymmetric choice such as the Consecutive
strategy, while maintaining a similar throughput. Results
suggested a line of further research in the analysis of

quantum memory occupancy of REDiP nodes. Such a study
would potentially refine the estimations of our algorithm to
include the impact of the average memory occupancy and
decoherence of each device on REDiP performances.
As research on the Quantum Internet continues to develop,

protocols like REDiP play a pivotal role in addressing the
intricate data plane requirements. By thoroughly investigat-
ing these issues and enabling fine-tuning solutions, REDiP
guarantees the flexibility required to adapt to evolving
quantum technologies and standards.

REFERENCES
[1] J. I. Cirac, A. K. Ekert, S. F. Huelga, and C. Macchiavello,

“Distributed quantum computation over noisy channels,” Phys. Rev.
A, vol. 59, no. 6, pp. 4249–4254, Jun. 1999. [Online]. Available:
https://doi.org/10.1103/physreva.59.4249

[2] A. Broadbent, J. Fitzsimons, and E. Kashefi, “Universal blind quantum
computation,” in Proc. 50th Annu. IEEE Symp. Found. Comput. Sci.,
2009, pp. 517–526.

[3] A. K. Ekert, “Quantum cryptography based on bell’s theorem,” Phys.
Rev. Lett., vol. 67, pp. 661–663, Aug. 1991. [Online]. Available:
https://link.aps.org/doi/10.1103/PhysRevLett.67.661

[4] C. H. Bennett and G. Brassard, “Quantum cryptography:
Public key distribution and coin tossing,” Theor. Comput.
Sci., vol. 560, pp. 7–11, Dec. 2014. [Online]. Available:
https://doi.org/10.1016/j.tcs.2014.05.025

[5] M. Walter, D. Gross, and J. Eisert, Multipartite Entanglement.
Hoboken, NJ, USA: Wiley, 2016, pp. 293–330. [Online]. Available:
http://arxiv.org/abs/1612.02437

[6] S. Muralidharan, L. Li, J. Kim, N. Lutkenhaus, M. Lukin, and
L. Jiang, “Optimal architectures for long distance quantum commu-
nication,” Nature, Jun. 2016.

410 VOLUME 5, 2024

[7] L. Jiang, J. M. Taylor, K. Nemoto, W. J. Munro, R. Van Meter, and
M. D. Lukin, “Quantum repeater with encoding,” Phys. Rev. A, vol. 79,
Mar. 2009, Art. no. 032325. [Online]. Available: https://link.aps.org/
doi/10.1103/PhysRevA.79.032325

[8] J. Preskill, “Quantum computing in the NISQ era and
beyond,” Quantum, vol. 2, p. 79, Aug. 2018. [Online]. Available:
https://doi.org/10.22331%2Fq-2018-08-06-79

[9] J. Illiano, M. Caleffi, A. Manzalini, and A. S. Cacciapuoti, “Quantum
Internet protocol stack: A comprehensive survey,” Comput. Netw.,
vol. 213, Aug. 2022, Art. no. 109092. [Online]. Available: https://
www.sciencedirect.com/science/article/pii/S1389128622002250

[10] A. Dahlberg et al., “A link layer protocol for quantum
networks,” in Proc. ACM Spec. Interest Group Data Commun., 2019,
pp. 159–173. [Online]. Available: https://doi.org/10.1145/3341302.
3342070

[11] R. Van. Meter et al., “A quantum internet architecture,” in
Proc. IEEE Int. Conf. Quantum Comput. Eng. (QCE), 2022,
pp. 341–352. [Online]. Available: https://doi.ieeecomputersociety.org/
10.1109/QCE53715.2022.00055

[12] A. Pirker and W. Dür, “A quantum network stack and protocols
for reliable entanglement-based networks,” New J. Phys., vol. 21,
no. 3, Mar. 2019, Art. no. 033003. [Online]. Available: https://doi.org/
10.1088%2F1367-2630%2Fab05f7

[13] W. Dür, H.-J. Briegel, J. I. Cirac, and P. Zoller, “Quantum
repeaters based on entanglement purification,” Phys. Rev. A, vol. 59,
pp. 169–181, Jan. 1999. [Online]. Available: https://link.aps.org/doi/
10.1103/PhysRevA.59.169

[14] L. Bacciottini, L. Lenzini, E. Mingozzi, and G. Anastasi, “A
configurable protocol for quantum entanglement distribution to
end nodes,” in Proc. IEEE Int. Conf. Commun. (ICC), 2023,
pp. 3485–3490.

[15] D. Deutsch, A. Ekert, R. Jozsa, C. Macchiavello, S. Popescu, and
A. Sanpera, “Quantum privacy amplification and the security of
quantum cryptography over noisy channels,” Phys. Rev. Lett., vol. 77,
pp. 2818–2821, Sep. 1996. [Online]. Available: https://link.aps.org/
doi/10.1103/PhysRevLett.77.2818

[16] C. Cicconetti, M. Conti, and A. Passarella, “Request scheduling in
quantum networks,” IEEE Trans. Quantum Eng., vol. 2, pp. 2–17,
Jun. 2021.

[17] M. Pant et al., “Routing entanglement in the quantum Internet,” npj
Quantum Inf., vol. 5, p. 25, Dec. 2019.

[18] S. Pouryousef, N. K. Panigrahy, and D. Towsley, “A quantum
overlay network for efficient entanglement distribution,” 2023,
arXiv:2212.01694.

[19] K. Chakraborty, F. Rozpedek, A. Dahlberg, and S. Wehner,
“Distributed routing in a quantum internet,” 2019, arXiv:1907.11630.

[20] J. Li, Q. Jia, K. Xue, D. S. L. Wei, and N. Yu, “A connection-oriented
entanglement distribution design in quantum networks,” IEEE Trans.
Quantum Eng., vol. 3, pp. 1–13, May 2022.

[21] L. Aparicio, R. Van Meter, and H. Esaki, “Protocol design for
quantum repeater networks,” in Proc. 7th Asian Internet Eng.
Conf., 2011, pp. 73–80. [Online]. Available: https://doi.org/10.1145/
2089016.2089029

[22] W. Kozlowski, A. Dahlberg, and S. Wehner, “Designing a quantum
network protocol,” in Proc. 16th Int. Conf. Emerg. Netw. EXp.
Technol., 2020, pp. 1–16. [Online]. Available: https://doi.org/10.1145/
3386367.3431293

[23] R. van Meter, J. Touch, and C. Horsman, “Recursive quantum repeater
networks,” Prog. Inform., pp. 65–79, Mar. 2011. [Online]. Available:
https://www.nii.ac.jp/pi/

[24] T. Coopmans et al., “NetSquid, a NETwork simulator for QUantum
information using discrete events,” Commun. Phys., vol. 4, no. 1,
p. 164, Jul. 2021. [Online]. Available: https://doi.org/10.1038/s42005-
021-00647-8

[25] C. Jones, D. Kim, M. T. Rakher, P. G. Kwiat, and T. D. Ladd,
“Design and analysis of communication protocols for quantum
repeater networks,” New J. Phys., vol. 18, no. 8, Aug. 2016,
Art. no. 083015. [Online]. Available: https://doi.org/10.1088%2F1367-
2630%2F18%2F8%2F083015

[26] D. Yoshida, K. Niizeki, S. Tamura, and T. Horikiri, “Entanglement
distribution between quantum repeater nodes with an absorp-
tive type memory,” Int. J. Quantum Inf., vol. 18, no. 5,
Aug. 2020, Art. no. 2050026. [Online]. Available: https://doi.org/
10.1142%2Fs0219749920500264

[27] Y. R. Sanders, J. J. Wallman, and B. C. Sanders, “Bounding quantum
gate error rate based on reported average fidelity,” New J. Phys.,
vol. 18, no. 1, Dec. 2015, Art. no. 012002. [Online]. Available: https://
doi.org/10.1088%2F1367-2630%2F18%2F1%2F012002

[28] E. Magesan, J. M. Gambetta, and J. Emerson, “Characterizing
quantum gates via randomized benchmarking,” Phys. Rev. A, vol. 85,
Apr. 2012, Art. no. 042311. [Online]. Available: https://link.aps.org/
doi/10.1103/PhysRevA.85.042311

Open Access funding provided by ‘Università degli Studi di Firenze’ within the CRUI CARE Agreement

VOLUME 5, 2024 411

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Helvetica-Condensed-Bold
 /Helvetica-LightOblique
 /HelveticaNeue-Bold
 /HelveticaNeue-BoldItalic
 /HelveticaNeue-Condensed
 /HelveticaNeue-CondensedObl
 /HelveticaNeue-Italic
 /HelveticaNeueLightcon-LightCond
 /HelveticaNeue-MediumCond
 /HelveticaNeue-MediumCondObl
 /HelveticaNeue-Roman
 /HelveticaNeue-ThinCond
 /Helvetica-Oblique
 /HelvetisADF-Bold
 /HelvetisADF-BoldItalic
 /HelvetisADFCd-Bold
 /HelvetisADFCd-BoldItalic
 /HelvetisADFCd-Italic
 /HelvetisADFCd-Regular
 /HelvetisADFEx-Bold
 /HelvetisADFEx-BoldItalic
 /HelvetisADFEx-Italic
 /HelvetisADFEx-Regular
 /HelvetisADF-Italic
 /HelvetisADF-Regular
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

