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ABSTRACT Synchronizing the local oscillators in multibeam satellites with the objective of coherent
communications is still an open challenge. It has to be addressed to implement full-frequency reuse
approaches, such as precoding techniques using the already deployed multibeam satellites. This article
addresses the required phase synchronization to enable precoding techniques in multibeam satellite systems.
It contains the detailed design of a frequency and phase compensation loop based on the proportional-
integral controller, which deals with the phase drift introduced by the hardware components. Specifically,
the phase noise of the local oscillators used for up and down conversion at each system element (gateway,
satellite, and user terminals). The implementation of the two-state phase noise model used to emulate
this phase drift is included in the article. Besides, a comparative analysis of several methods to combine
the frequency and phase measurements obtained from the user terminals is also included. Finally, the
performance of the proposed closed-loop synchronization method is validated through simulations using
our in-house developed MIMO end-to-end satellite emulator based on SDR platforms.

INDEX TERMS Geosynchronous orbit, multi-beam satellite, phase noise, phase synchronization,
precoding, software-defined radio.

I. INTRODUCTION

MULTIBEAM high throughput satellites are the primary
providers for meeting the broadband needs of remote

regions [1]. Realizing their full potential relies on advanced
technologies such as precoding implementations [2], [3], [4].
Precoding is a signal processing technique to mitigate
interference and enhance system performance. In multiple-
input and multiple-output (MIMO) systems, precoding

algorithms calculate the optimal transmission weights for
the antennas at the transmitter, considering the channel
conditions, interference, and system constraints [5], [6].
These weights are then applied to the data symbols before
transmitting them over the wireless channel. By using
precoding, the transmitted signals can be tailored to exploit
the channel characteristics, such as reducing the impact of
interference and fading and improving the overall spectral
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efficiency of the system [2]. However, because it involves
manipulating the transmitted signal phase, its effectiveness
depends on the accurate synchronization of the clock
references, i.e., local oscillators (LOs) across all beams.
Unless this issue is addressed, none of the widely studied and
proposed approaches in non-terrestrial networks [2], [7], [8]
would be feasible.
Most synchronization algorithms reported in the litera-

ture for distributed MIMO systems rely on inter-satellite
links [9], [10], [11]. However, this approach is not feasible
in multi-beam satellite systems. While using a common LO
as a clock reference may seem like a potential solution,
it is not a practical alternative in satellite systems. This
limitation arises from various technical constraints, including
independence between payloads, autonomy, robustness, pre-
vention of cross-interference between radio frequency (RF)
channels, and the incorporation of redundancy, as outlined
in [12]. Additionally, the work in [13] formally demonstrated
that even when a common clock reference is used at the
transponder, the Doppler effect and the oscillator’s phase
noise degrade the system performance.
Practical implementations of precoding-enabled satellite

systems must address the phase drift introduced by different
system components, such as the phase noise introduced
by the LOs used for up and down conversion at each
system element (gateway (GW), satellite, and user terminals
(UTs)). The phase noise is an inherent characteristic of
the oscillators, and it can be attributed to factors such
as aging, thermal noise, mechanical vibrations, and more.
This phenomenon means that the output of an oscillator
is not limited to a single spectral line at the nominal
frequency; instead, it exhibits side-band power, leading to
phase and frequency instabilities, as noted in Rutman’s
work [14]. However, in many cases, oscillators are assumed
to be ideal during the precoding design process. For
instance, [15] and [16] proposed the design and performance
analysis of precoding-enabled satellite systems considering
the time-varying phase noise introduced by onboard satellite
oscillators. Both studies modeled the phase uncertainty as a
Gaussian random process with a mean of zero and a standard
deviation within the range of 2° to 20°. Another example can
be found in Mubarak Umar Aminu’s work [17], where the
authors investigated the effects of non-ideal oscillators in a
multi-antenna hybrid digital-analog beamforming transceiver
architecture. Through simulations, they determined that the
system performance is more affected when the phase noise is
modeled as a Wiener process rather than a Gaussian process.
In practice, oscillator noise is influenced by various

other phenomena not considered in the above-mentioned
models. Many researchers have delved into this topic, aiming
to develop advanced models for characterizing oscillator
near-carrier power spectral density (PSD) [18], [19]. One
such model, the Two-state Phase Noise Model proposed
by Galleani in [20], accounts for the frequency deviation
of a cesium clock using two components: a white noise
and a Wiener process. The latter is responsible for the

random walk nature of the frequency deviation, while the
white noise represents the local oscillations. This model
balances complexity and rigor, making it a suitable choice.
Consequently, we have chosen the two-state phase noise
model to emulate the phase noise in our system, thus
validating our synchronization algorithm design.
During precoding operations, the differential phase errors

product of the phase noise are perceived by the UT as part
of the channel state information (CSI), which the precoding
matrix will compensate for. However, the variation rate of
this differential phase error is faster than CSI estimation loop
frequency, implying that the compensation applied by the
precoding matrix is insufficient, thus degrading the system
performance [13]. To solve this problem, we propose a phase
synchronization loop with a faster response than the typical
precoding loop. Our design estimates and compensates for
the phase error between beams in a sample-based mode.
Meanwhile, the precoding matrix is calculated and applied
by groups of symbols or frames following a conventional
precoding implementation.
Additionally, we compare several methods for combining

the differential phase estimations between beams. Given that
all the UTs report the differential phase between beams,
while the compensation loop requires a single measurement
as input, we have examined four approaches to address
this problem effectively. In this context, some authors
have highlighted the advantages of the weighted average
algorithm over the equal gain combining method [21], [22].
Nevertheless, the effectiveness of the weighted average
algorithm depends on the careful selection of weights for
each estimation [21], [22].
Combining estimations from different sensors also

presents challenges in cognitive radio systems engaged in
cooperative spectrum sensing [23], [24]. Despite some sim-
ilarities between this scenario and satellite communication
systems, a key distinction preventing the direct application
of cooperative spectrum sensing methods is that, in the
former case, decision fusion involves a binary problem—
detecting the presence or absence of the primary user.
Meanwhile, in the scenario discussed in this paper, our
objective is to combine different angle measurements, which
can assume any value within the interval (−π, π). While
other methods proposed for multi-sensor data fusion, such as
the evidence theory [25], fuzzy theory [26], Z-number [27],
and D-number [28], [29], do consider the combination of
angle measurements, they tend to be more complex due to
their objective of combining different types of data. For
this reason, we have incorporated the well-known Weighted
Average algorithm and three selective approaches named
the Basic, the Best Receiver, and the Best Estimation
approaches. These choices were made to strike a balance
between effectiveness and complexity in addressing the input
requirements of our phase synchronization loop.
Unlike cooperative spectrum sensing in cognitive radio

and multi-sensor data fusion, the problem of phase combin-
ing in precoding-enabled satellite systems remains largely
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unexplored. This is primarily due to the relative novelty
of precoding-enabled satellites; all practical demonstrations
thus far have involved only a single receiver [30], [31].
We propose incorporating some simple and well-known
combinatorial approaches to address this gap. For instance,
using the sensor’s signal-to-noise ratio (SNR) as a decision
fusion metric has shown promise in cooperative spectrum
sensing [32], [33]. In addition to this metric, we consider
each beam’s received power and explore various combination
approaches.
Precoding techniques have been employed in commercial

wireless networks for several years, starting from the 802.11n
Wi-Fi standard [34]. However, there are only a few field trials
of precoding-enabled satellite systems [30], [31]. Both exam-
ples [30], [31] considered two transmitters and two receivers
and synchronization algorithms based on phase-locked loops
(PLLs). In [30], the frequency synchronization is guaranteed
using a digital PLL with 7 Hz bandwidth. According to
the theoretical analysis presented in [30], the system could
achieve 5° of phase uncertainty after compensation by using
their solution. Meanwhile, the over-the-air demonstration
in [31] used a frequency and phase tracking and compensa-
tion loop implemented in the GW. The article demonstrates
how this compensation effectively stabilizes frequency and
phase drift. However, it is important to note that none of the
previously mentioned articles provide an in-depth analysis
of the synchronization algorithm’s design or its impact
on the system’s performance. The present article addresses
this gap by comprehensively explaining the synchronization
algorithm employed in [31]. Additionally, we analyze the
impact of the synchronization on the system performance.
In brief, this article presents the design of the phase

synchronization method required to enable the precoding
implementations in the geostationary orbit (GEO) scenario.
The proposed solution requires only small modifications to
the already deployed satellite systems. The only modification
with respect to traditional precoding design is including a
controller at the GW. As a further step in the validation
of the proposed solution, we performed experiments over
an FPGA-based system emulator. This approach enables
us to achieve a more realistic approximation to the actual
precoding-enabled satellite system scenario without incurring
the expenses associated with conducting over-the-air tests.
For instance, this method helps us address challenges such
as the return link variable delay, which are often overlooked
in traditional MATLAB simulations.
Summarizing, the main contributions of this article are:
• Modeling the phase drift introduced by the LOs in a
multi-beam satellite as a two-state clock model.

• The design of the closed-loop phase synchronization
method from a practical implementation point of view,
considering the phase drift introduced by the hardware
components.

• The analysis of different approaches for using the phase
estimation reported by the UTs in combinatorial and
selective algorithms.

• The hardware implementation of the closed-loop phase
synchronization and the combinatorial phase estimation
algorithms.

• The experimental real-time validation of the proposed
solution using the in-house developed MIMO end-to-
end satellite emulator based on software-defined radio
(SDR) platforms.

The rest of this article is organized as follows: Section II
describes the system model. Meanwhile, Section III details
the design of the proposed phase synchronization method.
The hardware implementation is described in Section IV.
Section V contains the validation of the proposed solu-
tion using the MIMO end-to-end satellite emulator, and
Section VI concludes the article.

A. LIST OF ACRONYMS
CFO carrier frequency offset
ChEm channel emulator
CSI channel state information
DVB-S2X extension of the Digital Video Broadcasting

- Satellite second generation
FLL frequency-locked loop
FM frequency modulated
GEO geostationary orbit
GW gateway
IF intermediate frequency
LO local oscillator
MAE mean absolute error
MIMO multiple-input and multiple-output
MMSE minimum mean square error
NCO numerically-controlled oscillator
PI proportional-integral
PLL phase-locked loop
PSD power spectral density
SDR software-defined radio
SNIR signal-to-noise-plus-interference ratio
UT user terminal
USRP universal software radio peripherals.

II. SYSTEM MODEL
We consider a GEO satellite generating N beams towards
K ≤ N single-antenna UTs as represented in Fig. 1. We
collect in hi ∈ C

N×1 the complex (i.e., magnitude and
phase) coefficients of the frequency-flat slow fading channels
between the beams generated at the GW and the i-th UT.
At a given symbol period, independent data symbols {si:1 ≤
i ≤ K} are to be transmitted to the UTs, where si denotes
the symbol intended for the i-th user. Under the above
assumptions, the received vector containing the symbol-
sampled complex baseband signals of all K UTs can be
modeled as

r = HWs+ z, (1)

where H = [h1 . . . , hK]T denotes the K × N complex-
valued channel matrix, W stands for the N × K precoding
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FIGURE 1. System model.

matrix, s = [s1 . . . , sK]T is a K × 1 complex-valued vector
containing the UTs’ intended modulated symbols, and z
collects independent additive noise components at the UTs’
receivers, which are circularly symmetric complex Gaussian
random variables with zero mean and variance σ 2 = kBTeB,
where kB is the Boltzmann’s constant, Te is the equivalent
noise temperature at the input of the receiver [35], and B is
the UT bandwidth.
The UTs estimate the channel amplitude and phase using

the non-precoded pilots periodically transmitted by the GW.
The non-precoded pilots contain octogonal Walsh-Hadamard
sequences that allows to the UTs to estimate the channel
response for each of the received beams. This CSI is sent to
the GW where it is used to calculate the precoding matrix
W using linear or symbol-level precoding techniques. The
experimental results included in Section V were obtained
using the linear precoding method minimum mean square
error (MMSE). However, the synchronization algorithm
proposed in this article is also suitable for symbol-level
precoding techniques.
The actual channel matrix can be written as

H =

⎡
⎢⎢⎢⎣

|h11|ejψ11 · · · |h1N |ejψ1N

|h21|ejψ21 · · · |h2N |ejψ2N

...
. . .

...

|hK1|ejψK1 · · · |hKN |ejψKN

⎤
⎥⎥⎥⎦, (2)

where hi,j = |hi,j|ejψi,j denotes the channel coefficient
between the i-th UT and the j-th generated beam in
the transmit antenna, for any i ∈ {1, 2, . . . ,K} and j ∈
{1, 2, . . . ,N}, and |hi,j| and ψi,j respectively represent its
magnitude and phase.

However, we have to include a time-varying matrix �(t)
to represent the estimated channel matrix available at the
GW after collecting the measurements from all the K UTs.
�(t) � diag(ejφ1(t), ejφ2(t), . . . , ejφN (t)) accounts for each
beam phase drift due to the hardware impairments described
in [13]. It was formally demonstrated in [13] that precoding
techniques performance is only affected by the phase errors
in the uplink channel. The phase noise of the UTs’ LOs
doesn’t impact precoding performance [8]. As a result, �(t)
only includes the phase drift in the uplink channel, which
is caused by the phase noise of the transponder’s LOs. The
complete channel matrix can then be written as

Ĥ(t) = H�(t). (3)

The following section shows a more detailed description
of the model used to emulate �(t).

A. TWO-STATE PHASE NOISE MODEL
The output voltage u0(t) of a generic oscillator with nominal
frequency f0 is

u0(t) = [A+ a(t)] cos
[
2π f0t + φ(t)

]
, (4)

where A is the mean amplitude of the oscillator output, a(t)
is the zero-mean amplitude noise and φ(t) is an error term
due to the LO phase noise. We consider that the effects of
amplitude noise are overshadowed by the effects of phase
noise, which is a common assumption in published work in
this field [19], [20].
From (4), we can obtain two fundamental quantities used

to characterize clocks: phase and frequency deviation. The
frequency deviation y(t), is defined as the derivative of the
phase deviation x(t) = φ(t)

2π f0
:

y(t) = dx(t)

dt
. (5)

Numerous measurements have shown that the continuous
phase noise PSD Sφ(f ) tends to be well approximated by a
sum of power-law processes

Sφ(f ) =
{∑0

α=−4 hαf
α 0 < f < fh

0 f ≥ fh, (6)

where fh is the high-frequency cut-off of an infinitely sharp
low-pass filter [18]. These hαf α terms are related to random
walk frequency modulated (FM), flicker FM, white FM,
flicker, and white phase noise, respectively [36].
As described in [37], the output phase noise combines

contributions from the reference oscillator and a PLL
synthesizer. At offset frequencies above 10 kHz, the noise
power is dominated by the PLL synthesizer’s voltage-
controlled oscillator (VCO) phase noise as well as spurs
due to digital-to-analog converter (DAC) quantization noise
and nonlinearities. For synchronization purposes, we are
concerned with oscillator drift at time scales larger or
equal to 100 μs, which is determined by noise power at
offset frequencies below 10 kHz. At this frequency range,
performance is dominated by the reference oscillator and
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FIGURE 2. Two-state clock noise model.

shows two regions: white FM phase noise (α = 2) and
random walk FM phase noise (α = 4) [19]. This is known
as the two-state phase noise model.
Experimental evidence confirms that the frequency devi-

ation of a cesium clock is made by the white noise and
Wiener process [19]. The last one is responsible for the
random walk nature of the frequency deviation, while the
white noise accounts for the local oscillations. Therefore,
the frequency deviation can be written as

y(t) = ξ1(t)+
∫ t

0
ξ2
(
ṫ
)
dṫ, (7)

where ξ1(t) and ξ2(t) are two independent zero-mean
Gaussian random processes with variance q1 and q2 respec-
tively. The term

∫ t
0 ξ2(ṫ)dṫ represents a Wiener process

resultant from the integration of the ξ2(t) � N (0, q2).
To obtain the two-state model of the phase noise, we

substitute (5) in (7) and we integrate both sides

x(t) =
∫ t

0

(
ξ1
(
ẗ
)+

∫ ẗ

0
ξ2
(
ṫ
)
dṫ

)
dẗ. (8)

Equation (8), shown in graphical form in Fig. 2, describes
the two-state phase noise model [19].
According to [38], q1 and q2 are directly related to the

Allan variance σ 2
y (τ ) through

σ 2
y (τ ) =

q1

τ
+ q2τ

3
. (9)

This is a typical tool used to characterize the noise
in oscillators and could be obtained from experimental
measurements. Besides, the IEEE Standard Definitions of
Physical Quantities for Fundamental Frequency and Time
Metrology [36] relates the Allan variance to the noise PSD
in (6) by

σ 2
y (τ ) = h−4

2π2

3
τ + h−32ln2+ h−2

1

2τ

+ h−1
1.038+ 3ln(2π fhτ)

4π2τ 2
+ h0

3fh
4π2τ 2

. (10)

For the two-state model implemented in this paper, we
only consider the first and the third terms in (10). Then,
equalling (9) and (10) we obtain

q1 = h−2

2
q2 = 2π2h−4. (11)

Using these equations, we can emulate the phase noise
for any real or theoretical phase noise PSD. For instance,

FIGURE 3. Estimated PSD of the phase noise samples generated with the Two-state
model.

FIGURE 4. Two-state model’s output. Some realizations of the phase noise random
process.

Fig. 3 shows the PSD of the phase noise emulated with the
Two-state model using h−2 = 1.25× 10−4 and h−4 = 0.49.
The target phase noise mask −75 dBc @ 10 Hz is
also represented in the figure for comparison. As can be
appreciated, the PSD obtained with the emulator is very
similar to the target one. Besides, the model output has both
slopes: −40 dB/dec and −20 dB/dec, corresponding to f−4

and f−2 terms in (6) and it is −72.81 dBc/Hz at 10 Hz which
is very close to the expected value −75 dBc/Hz. With these
points in mind, we can conclude that our implementation of
the two-state clock model is accurate, and it can be used to
emulate the impairments in our simulations.
Besides, Fig. 4 shows 20 realizations with a duration of

one second. As the figure suggests, the two-state phase noise
behavior is smoother than that of a simple Wiener process
since it contains a Wiener process plus an integrated Wiener
process. This is confirmed by Fig. 5, which represents the
mean and variance of the realizations shown in Fig. 4. As can
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FIGURE 5. Mean and variance of the realizations represented in Fig. 4.

be appreciated, the variance grows quadratically with time,
while the variance of a Wiener process increases linearly.

III. DIFFERENTIAL PHASE COMPENSATION LOOP
The proposed closed-loop phase synchronization method
is depicted in Fig. 6, where only phase and frequency
variables are represented. In the figure, φ[k] =[
φ1[k] φ2[k] · · · φN[k]

]T is an N × 1 vector containing the
phase drift of each beam. We define k as the discrete-
time variable such that t[k] = kTs with sampling time
Ts. The objective of our design is to pre-compensate
the superframe data streams to minimize the value of
φe[k] = φ[k] − φc[k] towards zero. From now on, we will
refer to φe[k] as the phase error. The variable φc[k] =[
φc1[k] φc2[k] · · · φcN[k]

]T is an N× 1 vector representing the
phase of the transmitted beams after compensation. The input
� represents the phase rotation introduced by the channel
matrix H.

The vector θ [k] = [θ1[k] θ2[k] · · · θK[k]
]T in Fig. 6 is a

K × 1 vector representing the phase of the received signals
at the UTs. The objective of the CSI Estimation block at
the UTs is to estimate the attenuation and phase rotation
introduced by the channel for each beam using the non-
precoded pilots. In a formal notation, the CSI estimated
by the kth UT can be represented as a 1 × N complex-
valued vector ĥi[k] =

[
ĥi1[k] ĥi2[k] · · · ĥiN[k]

]
where each

element ĥij[k] = |ĥij[k]|ej(θ̂ij[k]), j ∈ {1, 2, . . . ,N}. Note
that θ̂ij[k] are relative phase measurements of the jth beam
with respect to the intended beam i. These relative phase
estimations are the only measurements in practical precoding
implementations, as stated in [13]. In a mathematical
notation, θ̂ij[k] = ψij[k] + φej [k] − ψii[k] − φei [k], where
ψij[k]+ φej [k] and ψii[k]+ φei [k] are the respective absolute
phases of the jth and the ith beams received at the ith
UT. Besides, it is essential to note that θ̂ij[k] contains the
differential phase rotation introduced by the channel (ψij −
ψii) but also the differential phase drift experienced for the

beam (φej [k]−φei [k]). However, it is not possible to measure
each of them independently. Additionally, we calculate the
carrier frequency offset between beams f̂ [k] at each UT to
use it in the compensation loop. This operation is represented
as the derivative block in Fig. 6. f̂ [k] is a K × 1 vector
with elements

f̂j[k] =
(
θ̂j[k]− θ̂j[k − 1]

)
/2πTs. (12)

At the GW, the CSI estimation from all the UTs is
grouped in a K × N complex-valued matrix Ĥ[k] =[
ĥ1[k] ĥ2[k] · · · ĥK[k]

]T
which is used to calculate the

precoding matrix W in (1). For a given set of UTs, the
precoding matrix is not calculated continuously but rather
at sufficient intervals to capture the very slow temporal
variations of the channel matrix. On the other hand, the
compensation loop can operate in a sample-based mode,
calculating a compensation phase from each transmitted non-
precoded pilot. Our solution was designed as a two-step
algorithm that uses the carrier frequency offset at the ‘coarse’
synchronization step and the differential phase at the ‘fine’
synchronization step.
Unlike the precoding matrix calculation, which relies

on CSI from all the UTs, the compensation loop’s input
requires the phase difference between beams that can
be estimated without requiring measurements from every
UT. Consequently, we designed the ‘Combine Estimates’
block to merge estimations from all the UTs and generate
the inputs for the compensation loop. In simpler terms,
this block utilizes either a K × N matrix, F[k] for the
‘coarse’ step or �[k] for the ‘fine’ step, to produce a
N × 1 vector, f [k] for the ‘coarse’ step or θ [k] for the
‘fine’ step. Within this block, the algorithm selects the
reference beam (RB), whose frequency and phase act as
a reference and remain uncompensated. Further details
regarding the design of this block will be discussed in
Section III-B.

The core of our solution is to calculate a compensation
phase vector using the combined estimates vectors previously
described. This operation is done by the N−1 proportional-
integral (PI) Controllers represented in Fig. 6. The design
of this block is addressed in Section III-A.

The numerically-controlled oscillator (NCO) blocks are
fed with fctrl[k] during the first or ‘coarse’ synchronization
state. This allows shorter lock times. When the differential
frequency between beams fn[k] decreases below a pre-
defined threshold γ , the algorithm starts feeding the NCOs
with θctrl[k]. We refer to this state as the ‘fine’ synchroniza-
tion step.
Variable φctrl[k] =

[
φctrl1 [k] φctrl2 [k] · · · φctrlN

]T
is an N× 1

vector containing the outputs of the N NCOs. For the sake
of the design simplicity, φctrl[k] is defined as an N × 1
vector, but the element corresponding to the reference beam
is zero. The election of the reference beam is described in
Section III-B.
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FIGURE 6. Differential phase-error compensation loop. In the diagram, the highlighted blocks—NCO, PI Controller, and Combine Estimates—are the only modifications
necessary to implement this solution in a precoding-enabled multibeam satellite system.

A. PI CONTROLLER DESIGN
The following equation describes the system response of the
j-th PI Controller:

G[z] =
{
GFLL[z] σφe < γ

GPLL[z] σφe ≥ γ, (13)

where GFLL[z] and GPLL[z] are the system responses for the
‘coarse’ and ‘fine’ synchronization steps, respectively. The
parameter γ is the threshold to enable the ‘fine’ synchroniza-
tion, and it is related to the lock-in bandwidth of GPLL[z].
Both system responses can be designed independently [39],
as discussed in the following sections.

1) FREQUENCY SYNCHRONIZATION

The ‘coarse’ or frequency synchronization step can be
described as a first-order frequency-locked loop (FLL).
Fig. 7 represents the main components of a digital FLL as
described in [39]. As previously described, the Frequency
Detector is implemented as a maximum likelihood phase
detector plus an integrator. Besides, there is the first-order
Loop Filter with gain K0, an Integrator, and the NCO as a
Frequency Controller [39]. The operation of the FLL can be
described by its closed-loop frequency response represented
in (14).

GFLL[z] = φout[z]

φin[z]
= K0z

zD(z− 1)− K0z
, (14)

where K0 is the loop gain, and D is a natural number
representing the loop delay in samples. Considering that the

FIGURE 7. Differential phase-error compensation loop. First state: frequency
compensation.

compensation loop works with the estimations obtained from
the non-precoded pilots, D is calculated as the ratio between
the round-trip delay τ (considering that the UTs-GW loop
is closed through the satellite) and the pilots’ repetition
interval Tp.

Considering the stability criterion for digital PLLs with
loop delays [39], the loop gain K0 must satisfy (15) to
guarantee the FLL stability. Fig. 8 shows the maximum delay
allowed before the loop becomes unstable for a range of
loop gains K, 10−6 < K < 1,

0 < K0 < 2 sin

(
π

2(2D+ 1)

)
. (15)

We can calculate the maximum loop delay by knowing the
satellite orbit and the UT position. For the GEO case, where
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FIGURE 8. Maximum delay allowed to guarantee the stability of the compensation
loop during the first state: frequency compensation.

FIGURE 9. System error response of the frequency compensation loop with gain
K = 4 · 104.

the maximum slant range is around 41 127 km, D = 3731,
which leads to a loop gain K ≤ 4 · 10−4. The FLL with
loop gain K0 = 4 · 10−4 will remain stable for any delay
D ≤ 3731 pilots. Figure 9 shows the error response of the
resultant frequency synchronization loop.

2) PHASE SYNCHRONIZATION

The ‘fine’ or phase synchronization step is based on a
second-order PLL. In this case, the system response is [40]

GPLL[z] = KP1z+ (KI1 − KP1)

zD+1 − 2zD + zz−1 + KP1z+ (KI1 − KP1)

(16)

where KP1 and KI1 are the filter loop’s proportional and
integral gains, and D is the loop delay in samples.
The design of the ‘fine’ synchronization step is strongly

related to the transfer function of the system Gp[z], also

FIGURE 10. Comparison of the phase drift of one beam in a 4x4 GEO multibeam
satellite system with and without the frequency compensation loop (K = 4 · 104).

FIGURE 11. Frequency domain PI Controller design.

known as the forward-path transfer function. Fig. 11 repre-
sents a simplification of the diagram in Fig. 6, where Gc[z] =
KP1 + KI1

1−z−1 is the transfer function of the PI controller.
For the ‘coarse’ synchronization state, the transfer function
Gp[z] contains the response of the NCO and the loop delay
in pilots D, Gp[z] = z−D

1−z−1 .
The PI controller was designed following the frequency-

domain design described in [41]. This procedure calculates
the values of KP1 and KI1 considering the desired phase
margin (PM) of the compensated system. The PM is a
parameter closely linked to the system’s stability. It is defined
in [41] as the amount of pure phase delay that can be added
before the system becomes unstable.
Theoretically, a system is stable if the PM of the open-loop

transfer function of the compensated system is in the interval
0 ≤ PM ≤ 90°. Meanwhile, practical implementations aim
for a PM between 45° and 60° [42]. However, the exact
value is left to the designer’s discretion. Figure 12 shows the
parameters of the PI controller obtained with the frequency-
domain design method mentioned above. To generate the
figure, we used as input the interval 0 ≤ PM ≤ 90°.
The left axis in Fig. 12 represents the natural frequency

of the second-order loop ωn =
√
KI1

2πTp
while the right axis

represents the damping factor ζ = KP1
2
√
KI1

. We select these
parameters to exploit the similarities of the second step
of our compensation loop with a classical second-order
PLL. Additionally, the natural frequency and damping factor
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FIGURE 12. Design of the phase compensation loop as a second-order PLL. Values
of ωn (left y-axis) and ζ (right y-axis) for the PM of the open-loop transfer function in
the interval 0 ≤ PM ≤ 90°.

FIGURE 13. System error response of the phase compensation loop designed for
an open-loop PM = 35° (ωn = 0.102 Hz; ζ = 0.751).

parameters offer a more intuitive description of the closed-
loop system response. For instance, the natural frequency
is directly related to the loop bandwidth, which makes
it inversely proportional to the residual phase drift after
compensation. This implies that a high value of ωn is desired
to decrease the residual phase drift. Additionally, it is well
known that the damping factor of second-order PLLs should
be in the interval 0.7 ≤ ζ ≤ 1.5 to guarantee stability.
Considering these design criteria, we selected ωn = 0.102 Hz
and ζ = 0.751 for a PM = 35°. Fig. 13 shows the error
response of the system for these parameters.
Similarly to Fig. 8 for the FLL, we obtained the delay

margin of the system for the set of parameters 10−2 Hz ≤
ωn ≤ 100 Hz and ζ ∈ {0.5, 0.75, 1, 1.5}. This is represented
in Fig. 14. This figure suggests that the maximum delay
allowed before the loop becomes unstable for the selected
parameters (ωn = 0.102 Hz; ζ = 0.751) is higher than the
previously considered D = 3731 pilots.

Fig. 15 shows the PM of the open-loop system response
with parameters (ωn = 0.102 Hz; ζ = 0.751) for a loop
delay in the interval 100 < D < 9000. As mentioned before,

FIGURE 14. Maximum delay allowed to guarantee the stability of the compensation
loop during the second state: phase compensation.

FIGURE 15. Phase Margin of the open-loop system response with parameters
(ωn = 0.102 Hz; ζ = 0.751) when the actual delay of the loop is in the interval
100 ≤ D ≤ 9000 pilots. The grey zone represents the values of loop delay that make
the loop unstable.

for loops delays below the value used for the design D the
system remains stable. However, this is not always the case
when the loop delay is higher than the value considered for
the design (D = 3731). The gray zone in Fig. 14 represents
the loop delay values for which the system is unstable
D ≥ 7700 pilots.
Figure 16 is an example of the phase drift of one beam

in a 4x4 GEO multibeam satellite system with and without
the compensation loop (ωn = 0.102 Hz; ζ = 0.751). In this
figure, the yellow line represents the drift in the phase of the
estimated CSI when the compensation loop is not enabled,
the red curve is the phase of the estimated CSI with the
compensation loop, and the blue line represents the ideal
scenario where there is no phase drift. This simulation was
run in MATLAB for a symbol rate Rs = 6.5 Msps.
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FIGURE 16. Comparison of the phase drift of one beam in a 4x4 GEO multibeam
satellite system with and without the phase compensation loop (ωn = 0.102 Hz;
ζ = 0.751).

B. COMBINE ESTIMATIONS METHODS
As part of normal precoding o DVB-S2X operations, the UTs
send to the GW their estimated thermal noise σ 2

i , with i ∈
{1, 2, . . . ,K}. Using these measurements, and the estimated
CSI‘s amplitude |Ĥ[k]| we can define a K×N matrix 	 as:

	 = 
|Ĥ[k]|2

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

|ĥ11[k]|2
σ 2

1

|ĥ12[k]|2
σ 2

1
· · · |ĥ1N [k]|2

σ 2
1

|ĥ21[k]|2
σ 2

2

|ĥ22[k]|2
σ 2

2
· · · |ĥ2N [k]|2

σ 2
2

...
...

. . .
...

|ĥK1[k]|2
σ 2
K

|ĥK2[k]|2
σ 2
K

· · · |ĥKN [k]|2
σ 2
K

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
, (17)

where 
 = diag( 1
σ 2

1
, 1
σ 2

2
, . . . , 1

σ 2
K
) is a diagonal matrix

containing the thermal noise estimation from each UT.

FIGURE 17. Combine estimates block.

From now on, we will refer to 	 as the Weight matrix
since we use it as a metric for the accuracy of the interference
measurement in �[k] and F[k]. For the sake of clarity, we
rewrite both matrices as (18) and (19) shown at the bottom
of the page.
It is essential to notice that the elements in �[k] are phase

measurements with intrinsic estimation errors. Then, the
Combine Estimates block’s objective is to provide the most
accurate differential phase and frequency estimation vectors
θ [k] and f [k] with respect to a reference beam. The resultant
combined phase vector θ [k] can be expressed as θ[k] = [C1+
(φe1[k] − φeRB[k]) . . . 0 . . . CN + (φeN[k] − φeRB[k])],
where Cj ∈ (−π, π ] for all j ∈ {1, 2, . . . ,N} are constants
related to the channel phase rotation �. Meanwhile, Cj ≈ 0
for all j ∈ {1, 2, . . . ,N} in the resultant combined frequency
vector f [k].

For the explanation of the estimates combination, we
will consider as input the matrix F[k] and as output the
vector f , as it is represented in Fig. 17. The main reason
for this selection is that the derivative operation attenuates
the effect of � in F[k] matrix since Cj ≈ 0. Consequently,
combinatorial approaches such as Equal-gains combining
and Weighted averages are feasible, which is not the case
when using �[k] as input.

There are two main groups of possible ways to combine
phase measurements: by selection or by combination. The

�[k] =

⎡
⎢⎢⎢⎣

0 θ12[k] · · · θ1N[k]
θ21[k] 0 · · · θ2N[k]
...

...
. . .

...

θK1[k] θK2[k] · · · θKN[k]

⎤
⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎣

0 · · · ψ1N + φeN[k]− ψ11 − φe1[k]
ψ21 + φe1[k]− ψ22 − φe2[k] · · · ψ2N + φeN[k]− ψ22 − φe2[k]

...
. . .

...

ψK1 + φe1[k]− ψKK − φeK[k] · · · ψKN + φeN[k]− ψKK − φeK[k]

⎤
⎥⎥⎥⎦

(18)

F[k] = �[k]−�[k − 1]

=

⎡
⎢⎢⎢⎣

0 · · · φeN[k]− φe1[k]− φeN[k − 1]+ φe1[k − 1]
φe1[k]− φe2[k]− φe1[k − 1]+ φe2[k − 1] · · · φeN[k]− φe2[k]− φeN[k − 1]+ φe2[k − 1]

...
. . .

...

φe1[k]− φeK[k]− φe1[k − 1]+ φeK[k − 1] · · · φeN[k]− φeK[k]− φeN[k − 1]+ φeK[k − 1]

⎤
⎥⎥⎥⎦

(19)
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first case refers to the approaches that select the “best”
measurement and discard the rest. In contrast, the second
case intends to combine the measurements of a unique
physical process obtained from different estimators. Among
the most popular combinatorial measurement approaches,
we can find Equal-gains combining and Weighted averages.
However, in this article, we will analyze only the last one
since its superiority has been extensible proven. In addition,
we will discuss the basic approach and two other selective
approaches.

1) BASIC APPROACH

This implies using the estimations from the UT with less
thermal noise,

(i, j) = argmax{
}. (20)

Since 
 is a diagonal matrix, i = j

f = F(i, :), (21)

and the Reference beam is the i-th UT intended beam. Note
that this approach does not consider the CSI‘s amplitude
matrix |Ĥ[k]|.
2) BEST RECEIVER APPROACH

The second approach considers that depending on their
geographical location, the UTs receives the interference
beams with different power. This implies that more accurate
estimations can be obtained from the UT that receives more
power for the higher number of beams. The goal of this
approach is to select that UT and use its phase measurements
for the compensation loop.
First, we calculate the “total weight” for each UT as qk =∑N
n=1(

|ĥkn[k]|2
σ 2
k

), where |ĥkn[k]|2
σ 2
k

are the elements of matrix

	. In a vector form q = [q1 · · · qk · · · qK
]
is a vector that

contains a metric of the quality of the UTs. Notice that this
approach requires making zero the main diagonal of 	 to
remove the influence of the intended beam.
Then, the reference beam is the intended beam for the

receiver i = argmax{q} and the output vector is

f = F(i, :). (22)

The Best receiver approach is very similar to the Basic
approach since all the measurements are obtained from
a single UT. However, as can be seen in (18), choosing
a different UT can improve the accuracy of the phase
estimations. Another interesting fact about this approach is
that it is possible to know in advance which may be the “Best
receiver” by knowing the UTs’ location and the footprint of
the beams.

3) BEST ESTIMATION APPROACH

The Best estimation approach explores the idea that there
is no need to use the measurements from only one UT.
The phase difference between two beams is estimated in the
intended receiver of each of them. Then, the Best estimation

Algorithm 1 Best Estimation Algorithm
procedure BESTEST(F,	)

[Nu,Nt]← size(F)
for j = 1 : Nt do

for i = 1 : Nu do
if j �= i then

if 	(j, i) > 	(i, j) then
weight(j, i) ← 	(j, i)
phBestEst(j, i) ← F(j, i)

else
weight(j, i) ← 	(i, j)
phBestEst(j, i) ←−1 ∗ F(i, j)

end if
end if

end for
end for
rowSum← sum(weight) 
 Sum by row
refBeam← index(max(rowSum))
combinedEst← wrapToPi(phBestEst(refBeam))
return (combinedEst, refBeam)

end procedure

approach compares the weight of both estimations to select
the more accurate measurement.
The algorithm takes two input arguments: the estimated

CFO F and the Weight matrix 	. Basically, it iterates over
each beam (j) and UT (i) pair to calculate the weights and
select the best estimates. This loop performs the following
steps:
• Check Conditions: The algorithm compares the weights
of the current pair of estimations (	(i, j) and 	(j, i). If
	(i, j) is greater, it selects the weight and value of the
ith UT measurement, (	(i, j) and F(i, j)). Otherwise, it
selects the weight and the negated phase value of the
jth UT measurement (	(j, i) and −1F(i, j)).

• Update the recorded Weight and Phase arrays: The
algorithm updates the weight and phBestEst arrays with
the selected weight and phase values.

Then, the algorithm identifies the reference beam by sum-
ming the weights for each beam in weight and selecting
the one with the maximum sum. Finally, it selects in
phBestEst the measurements relative to the reference beam.
The pseudocode for this algorithm is shown in Algorithm 1.

4) WEIGHTED AVERAGE APPROACH

The Weighted average approach combines all the measure-
ments from all the UTs using the values in 	 as weights.
This method selects as RB the beam received by the highest
number of UTs. Formally, the beam i = argmax{q} is the
RB, where q is a 1× N vector of elements

qn =
K∑
k=1

{ |ĥkn[k]|2
σ 2
k

}
. (23)

The elements fn, n ∈ {1, . . . ,N} of the resultant
frequency estimation vector f are calculated as follows:

fn =
K∑
k=1

(
γkn∑K
k=1 γkn

(F(k, n)− F(k,RB))
)
, (24)
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FIGURE 18. Frequency combination.

where γkn =
√

|ĥkRB|2|ĥkn|2
σ 2
k (|ĥkRB|2+|ĥkn|2)

is a metric for the accuracy of

the differential estimation between beams n and RB measured
at the k-th UT. It is worth noting that γkn is obtained as a

combination of the weights |ĥkn[k]|2
σ 2
k

and |ĥkRB[k]|2
σ 2
k

from (17)

for the measurements F(k, n) and F(k,RB) respectively.

5) COMPARISON OF THE COMBINATION APPROACHES

Figure 18 represents the mean absolute error (MAE) of the
different combination approaches. The MAE is calculated
as the average of the absolute difference between the actual
value α, and the result of the combination α̂i, as it is
described in (25),

MAE = 20 log

(
1

N

N∑
i=1

|α − α̂i|
)
. (25)

The curves in Fig. 18 were generated by Monte Carlo
simulations of the phase drift estimation and combination in
a 4×4 system. The objective of our experiment is to compare
the accuracy of the combination approaches described before.
To that end, a phase drift vector α was added to the pilots
and transmitted through a randomly generated channel. At
the UTs, the CSI‘s phase estimates were combined using
the four approaches to calculate the MAE of each of them.
The experiments were run for a set of energy per bit to
noise power spectral density ratio EsN0 ∈ {−10, . . . , 25}.
This parameter only refers to the intended beam and doesn’t
consider the interference power.
The phase drift vector α = [

α1 · · · α4
]T had four inde-

pendent elements αn uniformly distributed with values αn ∈
(−π;π). The transmitted pilots were predefined orthogonal
Walsh-Hadamard sequences of 32 BPSK-modulated sym-
bols, and the channel matrix was independently generated for
each simulation as a 4×4 complex random matrix. The UTs
performed the correlation between the received signal and
the expected Walsh-Hadamard sequences to obtain the CSI
estimation. Then, we calculated the frequency drift between

FIGURE 19. SDR-based MIMO end-to-end satellite emulator.

consecutive pilots using (12) and applied the combination
approaches described before. The MAE between the resultant
vectors after combination α̂, and the original phase drift α

were averaged over 10 thousand independent iterations and
represented in Fig. 18.

As illustrated in Fig. 18, all the combination approaches
considering (17) outperform the Basic approach with a
constant ratio over the EsN0 set of values. Numerically, the
accuracy improvement of each approach with respect to the
basic one is: 4.4% for the Best estimation approach, 1.2%
for the Best receiver approach and 17.5% for the Weighted
average approach.

IV. HARDWARE TEST-BED IMPLEMENTATION
For the experimental validation, we employ the in-house
developed MIMO end-to-end satellite emulator based on
SDR platforms. The proposed architecture consists of a
multichannel GW with precoding capabilities, a MIMO
satellite channel emulator (ChEm), a set of independent UTs,
and a return-link emulator.
In general terms, the demonstrator can be described

as follows. The GW subsystem generates the data pack-
ets according to the extension of the Digital Video
Broadcasting - Satellite second generation (DVB-S2X) stan-
dard, using Superframe Format II structure, and applies the
selected precoding method: zero-forcing (ZF), MMSE, or
MMSE per-antenna power-constrained (MMSE PAC). The
ChEm replicates the whole forward link chain, from the
intermediate frequency (IF) input of the gateway block up-
converter, toward the low-noise block down-converter IF
output at the UT. It emulates the impairments present in the
GW, the payload, the downlink channel, and the UTs. The
UT subsystems implement the synchronization and decoding
features in the DVB-S2X compliant receivers and perform
the CSI estimation. Finally, the return-link emulator allows
each UT to send its estimated CSI to the GW.
The GW, ChEm, and UT subsystems are being imple-

mented using a set of SDR platforms, specifically the
USRP-2944R from National Instruments, as depicted in
Fig. 19. The physical interfaces of the channel emulator
with the gateway and the user terminals are provided by the
interconnection of the 50-
 ports of the SDRs, employing
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FIGURE 20. Block diagram of the Two-state model implementation.

FIGURE 21. Hardware implementation of the two-state model.

IF modulated signals. The SDR platforms in the GW and
the ChEm are synchronized with the same clock reference.
This eliminates any timing misalignment due to their LOs,
allowing precise control of the time mismatch according to
the implemented impairment models.
All system components have been successfully tested

considering a GEO satellite scenario [31], [43], [44]. This
includes the use of implementations of the GW and UTs
subsystems in the precoding validation over a live GEO
link [31]. The test-bed is upgraded by including the two-
state phase noise model at the ChEm and the PI controller
and combine estimations blocks at the GW. The following
subsections will describe the implementation of these blocks.

A. TWO-STATE PHASE NOISE MODEL IMPLEMENTATION
Figure 20 represents the block diagram of the two-state
model hardware implementation. The model requires as input
two independent zero-mean Gaussian random vectors with
unitary variance, p1[k] and p2[k]. Inputs σ1 and σ2 represent
the standard deviation of p1[k] and p2[k] respectively.

The diagram in Fig. 20 was implemented as an intellectual
property block using Vivado HLS. Figure 21 shows the
hardware implementation of the Phase Noise Generator
block. In the figure, the two pseudo-random generators
provide p1[k] and p2[k], and the values of sigma_1 (σ1) and
sigma_2 (σ2) are defined at the user interface. The inputs
sigma_1 and sigma_2 are obtained from the desired phase
noise mask using Algorithm 2.
The target phase noise mask, in logarithmic scale, can be

described by the parameters: h−2 for the −20 dB/dec slope

Algorithm 2 Calculate Variance Algorithm
procedure VAR_CALC(Aφ, fφ, fs)

h4 ← 10Aφ/10 ∗ (2π fφ)4
h2 ← 10Aφ/10 ∗ (2π fφ)2
q1 ← h2/2
q2 ← 2π2h4
σ1 ← q1/fs + q2/(3f 3

s )

σ2 ← q2/fs
return (σ1, σ2)

end procedure

FIGURE 22. PI controller block.

and h−4 for the −40 dB/dec slope:

Sφ(f ) = 10log

(
h−4

f 4
+ h−2

f 2

)
. (26)

Additionally, the PSD obtained from the two-state model
can be described by the coordinate pair (fφ;Aφ) where both
regions (α = 4 and α = 2) intercept. Hereafter this point
(fφ;Aφ) will be used to identify the phase noise masks.
For instance, (10 Hz; −75 dBc/Hz) refers to the two-state
PSD with a −40 dB/dec slope region for f < 10 Hz
and −20 dB/dec slope region for f > 10 Hz; Sφ(10) =
−75 dBc/Hz as shown in Fig. 3.

The Phase Noise Generator block was integrated with the
MIMO end-to-end satellite emulator presented in [45] as part
of the ChEm‘s universal software radio peripherals (USRP).
This allows including the phase noise for the LOs in the
uplink and the downlink independently.

B. PI CONTROLLER IMPLEMENTATION
The PI controller was implemented as an intellectual property
block using Vivado HLS. Figure 22 shows the resultant block
in LABVIEW. As can be appreciated, it has two main inputs:
gamma and fed. The first one is an array with the values of
the proportional KP and integral KI gains. The second input,
fed, is the differential frequency or phase used to calculate
the output fnco, which is the compensation phase calculated
by the PI controller. Four block instances were connected
in the GW‘s USRP, where the compensation calculated by
the PI controller is applied to the superframe data streams
by NCO-mixer blocks.

C. COMBINE ESTIMATIONS IMPLEMENTATION
The Combine Estimations block was implemented as a
switch-case structure in the GW‘s Host PC. A drop-
down menu at the user interface shown in Fig. 24 allows
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FIGURE 23. Combine estimations: Best Receiver approach implementation.

FIGURE 24. Combine estimations: Graphic user interface to select the combination
approach.

TABLE 1. Combine estimations’s user interface naming equivalence.

selecting the desired approach. Table 1 represents the naming
equivalence between the user interface in Fig. 24 and the
rest of this article. We added the option of manually setting
the reference beam in addition to the previously described
methods: basic approach, best receiver, best estimation, and
weighted average. Due to their simplicity, the Basic approach
and the Best Receiver methods were implemented using
LABVIEW’s blocks. However, for the Best Estimation and
the Weighted Average cases, the Interface for MATLAB
functionality allowed us to run the MATLAB functions from
LABVIEW. Fig. 23 shows the implementation of the Best
Receiver Combine estimation approach. In this figure, the
inputs are represented in orange, while the outputs are in
green.
To validate the hardware implementation of this block, we

showcase the input matrices F[k] and �[k], as well as the
output vectors f [k] and θ [k], in the graphic user interface
(see Fig. 24). The user interface also presents the amplitude

FIGURE 25. Frequency and phase drift with LOs phase noise at the uplink and
downlink: a) Ideal case without LOs’ phase noise, b) Phase noise only in the uplink,
c) Phase noise only in the downlink.

of the CSI estimation |Ĥ[k]|2 and the noise variance
measured by the UTs. Using these displayed parameters,
the Combine Estimations algorithm computes the Weight
matrix as defined in (17). Subsequently, we calculate the
resultant vectors for each input matrix across all proposed
approaches. For instance, Fig. 24 shows one example using
the Basic approach. In this case, the UT with less noise
is the UT 2 since the minimum value of the UT‘s noise
variance is 0.008099. As can be seen in the figure, the out-
put differential phase vector [119.371, 61.865, 0,−86.0963]
and the output carrier frequency offset (CFO) vector
[0.081097, 13.4486, 0, 0.212494] are the third row of the
corresponding input matrices. Notably, the results obtained
using the hardware block, the MATLAB algorithm, and our
calculations align consistently in all instances.

V. EXPERIMENTAL PERFORMANCE EVALUATION
In this section, we evaluate the impact of the phase
noise and the proposed solution on the performance of a
multibeam satellite system. To that end, we set the MIMO
end-to-end satellite test-bed to emulate a 4 × 4 precoding-
enabled GEO satellite system.
As a first experiment, we set the phase noise mask

(−75 dBc/Hz @ 10 Hz) in Fig. 3 for the LOs in the
uplink and the downlink independently. Fig. 25 shows the
differential frequency and phase for beam 1 measured at
the UT 0. These are the differential frequency and phase
measurements between beams 0 and 1. In the figure, we
included the ideal case, where the LOs do not have phase
noise, as a comparison baseline. Note that unlike the
downlink case (c)), the phase noise in the uplink channel
(b)) does affect the system performance.
The second experiment was designed to validate the

design of the phase compensation loop. In this case, we set
the phase noise mask (10 Hz; −75 dBc/Hz) in the uplink
and analyzed the differential frequency and phase between
beams 0 and 1 measured at UT 0. The results of this
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FIGURE 26. Frequency and phase drift during the phase synchronization: a) Phase
noise in the uplink channel, phase compensation loop disabled, b) Phase
compensation loop enabled, working in the first state (frequency synchronization),
phase noise only in the uplink channel, c) Phase compensation loop enabled, working
in the second state (phase synchronization), phase noise only in the uplink channel.

experiment are shown in Fig. 26. As can be appreciated in
the figure, the first state of the proposed compensation loop
reduces the frequency drift below 1 Hz. However, this is
insufficient to keep the differential phase stable, see Fig. 26
b). Finally, the differential phase is compensated when the
phase synchronization state is enabled Fig. 26 c).
In addition, Fig. 27 illustrates the impact of the compen-

sation loop on system performance. Specifically, the received
symbols and signal-to-noise-plus-interference ratio (SNIR)
of UT 1 are presented with and without precoding for two
scenarios: a) when the compensation loop is disabled and
b) when enabled. As depicted in Fig. 27a, disabling the
compensation loop results in no increase in received SNIR
with the precoding technique. However, in Fig. 27b, with
the compensation loop enabled, the precoding technique
significantly enhances the received SNIR by at least 10 dB.
These experiments highlight the main contributions of

our article: the proposed synchronization algorithm, or an
equivalent, is essential for practical implementations of the
precoding techniques. Without synchronizing the phases of
the transmitted beams, the performance benefits promised
by precoding techniques remain unattainable. The primary
challenge in implementing our solution in multibeam satellite
systems lies in the need for periodic feedback from the
UTs to the GW. While this requirement is also present
in implementing precoding, our solution demands more
data and more frequent feedback than traditional precoding
methods. A potential resolution to this challenge could
involve selecting which UTs should report their phase
estimations, considering the combine estimation approaches
discussed in this article.

VI. CONCLUSION
This article contains the design and implementation of
the phase compensation loop required to enable the

FIGURE 27. Received symbols and UT’s SNIR: a) with the compensation loop
disabled, b)with the compensation loop enabled.

precoding technique in GEO scenarios. One key strength
of the proposed solution is its simplicity, requiring only
small modifications to the previously considered precoding
implementations—specifically, incorporating a phase com-
pensation loop at the GW. The compensation loop proposed
in this article is based on PI controllers, widely used in
industrial control systems for their proven effectiveness.
Moreover, the article introduces various approaches for

combining the phase and frequency measurements from
the UTs and assesses their performance using MATLAB
simulations. The choice of the combine estimates algorithm
is expected to influence the practical implementation of the
proposed synchronization algorithm, potentially reducing the
amount of feedback data needed for the compensation loop.
Subsequent research should extensively investigate the trade-
offs among achievable accuracy, algorithm complexity, and
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the volume of feedback data for the combined estimation
methods. Additionally, it is worth noting that the combination
approaches explored in this article represent straightforward
and well-known cases. Future research may explore more
complex algorithms such as the methods used in multisensor
data fusion [25], [26], [27], [28], [29].
The hardware implementation of the compensation loop

and the combination of phase measurements were described,
along with the implementation of the two-state phase
noise model. These blocks were integrated into the in-
house developed MIMO end-to-end satellite emulator based
on SDR platforms to validate the proposed closed-loop
synchronization method’s performance. The hardware exper-
imentation validates the viability of the proposed solution
for real-world scenarios. The primary challenge in imple-
menting this solution within an actual multibeam satellite
system lies in the periodic transmission of measurements
from the UTs to the GW. Moreover, this work can be
extended by considering other combinatorial approaches for
the Combine Estimations block. In this regard, exploring
methods proposed for multisensor data fusion in wireless
sensor networks could be beneficial.
In summary, the successful implementation of our phase

compensation loop, grounded in PI controllers, demonstrates
the proposed solution’s simplicity and adaptability and
underscores its robust performance in real-world scenarios.
The comprehensive validation through hardware experimen-
tation and integration into the MIMO satellite emulator
showcases the practical effectiveness of our closed-loop
synchronization method, paving the way for enhanced GEO
multibeam satellite systems.
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