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ABSTRACT Anomaly detection for the Internet of Things (IoT) is a major intelligent service required
by many fields, including intrusion detection, state monitoring, device-activity analysis, and security
supervision. However, the heterogeneous distribution of data and resource-constrained end nodes in
ubiquitous IoT systems present challenges for existing anomaly detection models. Due to the advantages
of flexible deployment and multi-dimensional resources, high altitude platform stations (HAPSs) and
unmanned aerial vehicles (UAVs), which are important components of vertical heterogeneous networks
(VHetNets), have significant potential for sensing, computing, storage, and communication applications
in ubiquitous IoT systems. In this paper, we propose a novel VHetNet-enabled asynchronous federated
learning (AFL) framework by adopting the compound-action actor-critic (CA2C) algorithm for UAV
selection, which enables decentralized UAVs to collaboratively train a global anomaly detection model
based on their local sensory data from IoT devices. In the VHetNet-enabled AFL framework, the UAV
selection process aims to prevent UAVs with low local model quality and large energy consumption from
affecting the learning efficiency and model accuracy. Due to the wide coverage as well as strong storage
and computation capabilities, a HAPS operates as a central aerial server for aggregating local models
of UAVs asynchronously and making decisions intelligently. Moreover, we propose a CA2C-based joint
device association, UAV selection, and UAV placement algorithm to further enhance the overall federated
execution efficiency and detection model accuracy under UAV energy constraints. Extensive experimental
evaluation on real-world datasets demonstrates that the proposed algorithm can achieve high detection
accuracy with short federated execution time and low energy consumption.

INDEX TERMS Anomaly detection, asynchronous federated learning, compound-action actor-critic,
ubiquitous Internet of Things (IoT), vertical heterogeneous network (VHetNet).

ABBREVIATIONS
AFL Asynchronous Federated Learning
AI Artificial Intelligence
CA2C Compound-Action Actor-Critic
DDPG Deep Deterministic Policy Gradient

DNN Deep Neural Network
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DRL Deep Reinforcement Learning
FL Federated Learning
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HAPS High Altitude Platform Station
IoT Internet of Things
MDP Markov Decision Process
ML Machine Learning
RL Reinforcement Learning
UAV Unmanned Aerial Vehicle
VHetNet Vertical Heterogeneous Network
WGAN-GP Wasserstein Generative Adversarial Network

with Gradient Penalty

I. INTRODUCTION

COMPARED to existing wireless technologies including
5G, 6G and beyond networks represent more than an

improvement of basic performance requirements, such as
increased data rates, reduced latency, and enhanced spectrum
and energy efficiency [1]. 6G and beyond networks are
envisioned to have some unique characteristics. First, space
networks (including satellites in low, medium and geosta-
tionary Earth orbits), air networks (including high altitude
platform stations (HAPSs) and unmanned aerial vehicles
(UAVs)), and terrestrial networks (including macro and micro
base stations), are integrated into vertical heterogeneous
networks (VHetNets) to provide global coverage [2], [3].
Second, numerous devices, such as environmental moni-
toring sensors, healthcare wearables, and industrial control
agents, are joining Internet of Things (IoT) networks. The
ubiquitous IoT is expected to support seamless connectivity
anytime, anywhere, and for everything [4]. Third, artificial
intelligence (AI) penetrates into every corner of networks,
ranging from end devices to the core. Network nodes
are being endowed with built-in AI, which will support
diversified AI services as well as facilitate intelligent network
management [5].

Anomaly detection is defined as a process of automatically
detecting whether devices, components, or systems are
running normally or not [6]. Anomaly detection is one of
the indispensable AI services required by IoT devices for
early warnings of abnormal behaviors and uninterrupted
operations. Data is the basis of anomaly detection, and
machine learning (ML) is the most commonly used tech-
nique [7]. Traditional anomaly detection schemes in IoT
usually utilize static sensors to perform data sensing and
IoT gateways to forward the sensory data to a central server
to learn a global ML model [8], [9], [10]. However, in
situations where sensing targets are continually moving or
are located in far-flung regions, traditional sensing solutions
will experience significant challenges. In addition, due to
the explosion of data in ubiquitous IoT, privacy concern
and limited communication resources for data transmission
present a major impediment to any centralized learning
framework.
To implement anomaly detection in ubiquitous IoT,

HAPSs and UAVs represent advanced approaches for smart
sensing and data analysis [11], [12], [13], [14], [15]. A
three-layer VHetNet consisting of a HAPS, UAVs, and IoT
devices is a promising architecture for learning a global

anomaly detection model, where UAVs are deployed as
flying sensors for data sensing from IoT devices, and the
HAPS is deployed as a central aerial server for data analysis
and network control. Compared to static sensors, using UAVs
as aerial nodes to provide wireless sensing support is a
promising paradigm due to their wider field of view, highly
flexible and controllable 3D mobility, and the capability
of sensing performance optimization through UAV position
adjustment [16]. In addition, a HAPS can work as an
efficient central aerial server due to its quasi-stationary
position, line-of-sight communication, wide coverage, and
multiple energy sources, including conventional energy
(electrical batteries and fuel tanks), energy beams, and solar
energy [17].
As an emerging decentralized learning framework, fed-

erated learning (FL) has been shown to be effective in
overcoming the challenges of privacy concerns and limited
communication resources [4]. By using FL, a UAV can
perform local model training based on sensory data from its
associated IoT devices, and all local models are uploaded
to the HAPS periodically for global aggregation. Compared
to a centralized training framework, FL allows the VHetNet
to learn a global anomaly detection model in a secure
and efficient way. However, since there must be a periodic
exchange of all UAV models with the HAPS during the
model training process, the VHetNet-enabled FL framework
still faces some challenges.

• The FL convergence will inevitably be affected by the
learning latency and model quality of each UAV.

• Because UAVs and HAPSs operate in the sky and com-
municate through wireless communication technologies,
their sensitive information is more likely to be inferred
by the shared parameters between them.

• UAVs are generally energy-constrained, and hence bal-
ancing energy usage between tracking moving targets,
computation, and transmitting data for model training
is a thorny problem.

The challenges mentioned above require an in-depth
investigation into the efficient implementation of anomaly
detection in the VHetNet-enabled FL framework.

A. RELATED WORK
In recent years, research on FL-based distributed learn-
ing frameworks has received much attention in wireless
networks [18], [19], [20], [21], [22], [23], where the
main role of FL has been to preserve data privacy and
improve learning efficiency. Liu et al. [18], for instance,
formulated an FL reinforcement learning framework in
radio access network slicing to achieve an efficient device
association scheme, where FL was adopted to promote
the collaboration between smart devices while reducing
the bandwidth consumption for learning. In [19], FL was
used with edge intelligence–powered networks to decrease
the signaling overhead and computing complexity of base
stations when collaborating to learn a computation offloading
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and interference coordination scheme. Wang et al. [20]
proposed an FL-based edge caching framework to enable
all local users to cooperatively learn a content popularity
prediction model, which could accelerate the convergence
speed and improve the hit rate. However, in [18], [19], [20],
all local agents were required to participate in each global
aggregation, which neglected the influence of poor model
quality and slow model updates of some local agents on
learning efficiency and accuracy. To solve this problem, some
studies have applied asynchronous FL (AFL) frameworks to
allow participating node selection in each global aggregation
process [21], [22], [23]. Zhao et al. [21] formulated a joint
resource allocation, data management, and user selection
optimization problem to balance the tradeoff between model
accuracy and FL costs in wireless networks. In [22], a
big-data-enabled classification of encrypted mobile traffic
was investigated through applying AFL to deep learning
to improve time efficiency. A deep reinforcement learning
(DRL)–based node selection algorithm was developed in [23]
to improve efficiency and training accuracy in an AFL frame-
work. In a distributed IoT environment, AFL frameworks
have great potential to establish a global ML model with
improved learning efficiency and model accuracy.
Using ML models to detect abnormal behaviors among

IoT devices has attracted many research efforts with a view
to securing critical infrastructure [10], [24], [25], [26], [27].
In [10], the authors designed an integrated model involving a
convolutional neural network with long-short term memory
for anomaly detection in an IoT time series. A one-class
support Tucker machine method was designed in [24] for
unsupervised outlier detection of IoT big data. However, the
framework used in [10] and [24] relied on a central server to
detect anomalies, which would cause network congestion and
computing pressure for the central server. Some studies have
proposed distributed frameworks to address these challenges,
where FL is the prevailing technique [25], [26], [27]. In [25],
the authors used clustering and classification methods to
build a novel anomaly detection framework for hypertext
transfer protocol, which drew on edge intelligence for
IoT to distribute the entire detection process. To secure
manufacturing processes for the industrial IoT, an FL-
based distributed learning framework was proposed in [26]
to combine all edge devices to train a global anomaly
detection model. To address the efficiency, robustness, and
security challenges facing FL, Cui et al. [27] proposed a
differentially private AFL-based anomaly detection scheme
for IoT infrastructure. However, in the literature on anomaly
detection methods for IoT, there is a lack of discussion about
the issue of continually moving sensing targets. Yet this is
an issue that increases the difficulty of data sensing and
collection.
UAVs and HAPSs can provide wireless sensing support

from the sky to track moving sensing targets [15], [28], [29].
In [28], a cooperative Internet of UAVs was established
to execute integrated sensing and transmission tasks for
ground sensing targets. In [29], the authors proposed a joint

sensing and transmission protocol to enable UAV-to-Device
communication to improve UAV sensing services. Kurt and
Yanikomeroglu [15] leveraged the sensing capability of a
HAPS to serve autonomous devices for future aerial delivery
networks. In addition to providing sensing capabilities, UAV-
enabled and HAPS-enabled wireless technologies also play
key roles in enhancing wireless connectivity and computation
capability [30], [31], [32], [33]. Considering the con-
strained energy capacity in UAVs, [30], [31], [32] studied the
UAV-enabled energy-efficient computation offloading, data
uploading, and coverage enhancement systems, respectively.
Compared to UAVs, HAPSs can provide wider coverage and
stronger computational capabilities in a sustainable manner.
Ren et al. [33] proposed a HAPS-assisted caching and com-
putation offloading framework for intelligent transportation
systems, where a HAPS played the dual role of a powerful
computing server and a data library. Nevertheless, how
to utilize the limited onboard energy storage in UAVs to
complete different network tasks is still a vexing problem.
The secure information transmission between IoT devices

and aerial networks is necessary to ensure data privacy
and security. In [34], a secure identity-free transmission
strategy was proposed to support UAV-aided IoT networks,
where IoT devices uploaded their data packets to UAVs
without location and identity information. Tang et al. [35]
proposed a UAV-assisted data collection scheme for clustered
IoT devices with a proof-of-stake blockchain-based security
technique. In a VHetNet-enabled FL framework, a security
strategy is needed to avoid parameter inference attacks.
In [11], a privacy-preserving AFL framework for multi-UAV-
enabled networks was developed for distributed ML model
training, and a DRL-based algorithm was proposed to select
high-quality devices to improve the efficiency. However, to
the best of our knowledge, there are no studies that have
considered anomaly detection and network scheduling jointly
in a VHetNet-enabled FL framework, which is of great
importance to achieve intelligent network management for
6G and beyond networks. We compare our work with the
most relevant studies in Table 1.

B. CONTRIBUTIONS AND ORGANIZATION
To tackle the aforementioned challenges, we propose a
VHetNet-enabled AFL framework to implement the self-
scheduling anomaly detection model, which can achieve
high learning efficiency and model accuracy with the
assistance of a network scheduling strategy. The proposed
framework enables UAVs to train the anomaly detection
model locally and upload model parameters to a HAPS
for global aggregation without raw data transmission. The
UAV selection process is introduced into the AFL framework
to prevent UAVs with low local model quality and large
energy consumption from affecting the learning efficiency
and detection accuracy of the global model. To ensure
the secure transmission between UAVs and the HAPS
via wireless links, we add designed noise to local model
parameters to achieve differential privacy (DP) during
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TABLE 1. Comparison of our work with relevant studies.

the information exchange process. Considering the limited
onboard energy storage and distinct model quality of UAVs,
we also propose a compound-action actor-critic (CA2C)–
based network scheduling algorithm to facilitate the efficient
implementation of the self-scheduling anomaly detection
model. More specifically, the main contributions of this paper
are as follows:
• We develop a novel VHetNet-enabled AFL framework
to provide an anomaly detection service for ubiquitous
IoT. In the proposed framework, UAVs are responsible
for sensing data from IoT devices and local model
training, and the HAPS works as the control agent and
aggregation node. UAVs with high local model quality
and low energy consumption are selected to participate
in the global aggregation instead of waiting for all UAVs
to complete their local model update.

• A differentially private Wasserstein generative adver-
sarial network with gradient penalty (WGAN-GP) is
proposed as the basic anomaly detection model in
UAVs, where DP is achieved by adding designed noise
to gradients during the learning process.

• A joint device association, UAV selection, and UAV
placement problem is formulated as a dynamic non-
convex combination problem to maximize the number of
sensed IoT devices and minimize the overall federated
execution time and learning accuracy loss. To solve the
dynamic problem, we introduce a CA2C-based network
scheduling solution to determine both the discrete
(including device association and UAV selection) and
continuous (including UAV placement) actions, which
will facilitate the efficient implementation of the self-
scheduling anomaly detection model.

• To validate the efficiency and effectiveness of the
proposed CA2C-AFL-based anomaly detection algo-
rithm, we compare it with its three sub-algorithms,
i.e., a deep deterministic policy gradient (DDPG)-FL
algorithm, a deep Q-network (DQN)-AFL algorithm,
and a standalone algorithm. Moreover, we introduce
a centralized anomaly detection algorithm as the limit
of performance. We conduct the simulation on both
unlabeled and labeled real-world datasets. Simulation

FIGURE 1. A three-layer VHetNet-enabled AFL framework.

results demonstrate that the proposed algorithm can
achieve superior detection accuracy with short federated
execution time and low energy consumption.

The rest of the paper is organized as follows. Section II
presents the system model and problem formulation of the
VHetNet-enabled AFL-based anomaly detection framework.
The CA2C-based network scheduling solution is proposed
in Section III to facilitate the efficient implementation of
the formulated framework. The performance of the proposed
CA2C-AFL-based anomaly detection algorithm is evaluated
in Section IV, and Section V concludes the paper.

II. SYSTEM MODEL AND PROBLEM FORMULATION
Fig. 1 shows a three-layer VHetNet-enabled AFL frame-
work, which consists of a HAPS, N UAVs, and K
single-antenna IoT devices, denoted by N = {1, . . . ,N} and
K = {1, . . . ,K}, respectively. In the proposed framework,
the main roles of each layer are elaborated as follows:
Ground plane. The ground plane consists of various IoT

devices, such as monitoring sensors and control agents.
Multiple IoT devices will produce large amounts of data,
which can provide data support for the implementation of

VOLUME 5, 2024 335



WANG et al.: VHetNet-ENABLED AFL-BASED ANOMALY DETECTION FRAMEWORK FOR UBIQUITOUS IoT

the anomaly detection model. By collecting and analyzing
the sensory data from IoT devices, the anomaly detection
model can be constructed to detect abnormal behaviors and
provide early warnings before the occurrence of failure.
Sensing and data plane. This plane is composed of UAVs.

A UAV is responsible for sensing IoT devices within its
coverage and training the local learning model using its
sensory data. Using UAVs as aerial nodes to provide wireless
sensing support from the sky is a promising paradigm due
to their wider field of view, highly flexible and controllable
3D mobility, and the capability of sensing performance
optimization through UAV position adjustment [16].
Control and aggregation plane. A HAPS in the control

and aggregation plane works as the aerial center server. As
a quasi-stationary network node, a HAPS operates in the
stratosphere at an altitude of around 20 km [17]. Due to the
advantages of its wide coverage and strong computational
capabilities, a HAPS can control and manage the whole
network intelligently using AI techniques. In the proposed
framework, the HAPS is responsible for network control
and the global aggregation of local models from UAVs.
Compared to cloud servers, HAPSs can be deployed flexibly
and powered by abundant energy sources, so HAPSs can
work as the aerial center server efficiently. To decrease the
single point of failure chances for the HAPS, regular backup
of system data and configuration information is required
in the HAPS, and the HAPS will coordinate with other
neighboring HAPSs periodically.

A. UAV SENSING
In our proposed VHetNet-enabled AFL framework, each
UAV needs to sense data from its associated IoT devices
and store the sensory data to update its local learning model
periodically. A UAV is required to support the sensing and
the local model update for T time slots with its constrained
energy. At time slot t ∈ T (T = {1, . . . ,T}), we denote the
locations of device k ∈ K and UAV n ∈ N by xk(t) =
(xk(t), yk(t), 0) and xn(t) = (xn(t), yn(t), zn(t)), respectively.
We assume that the altitude zn(t) of each UAV n does
not change during any T time slots, such that zn(t) �
H, ∀n, t. Hence, the distance between UAV n and device k
is calculated by

dn,k(t) =
√

(xn(t)− xk(t))2 + (yn(t)− yk(t))2 + H2. (1)

The successful sensing probability for IoT device k by
UAV n can be expressed as an exponential function of the
distance between them [14], [29], which is defined as

Pn,k(t) = e−ξdn,k(t), ∀k, n, (2)

where ξ is a parameter reflecting the sensing performance.
To count up the total number of sensed IoT devices, we
set a minimum successful sensing probability threshold Pth
for UAVs. When UAV n senses device k at time slot t, the

successful sensing probability should satisfy

Pn,k(t) ≥ Pth, ∀k, n, t. (3)

We introduce the expression λn,k(t) to denote whether or
not device k is associated with UAV n, with λn,k(t) = 1
indicating that device k is associated with UAV n, and
λn,k(t) = 0 indicating otherwise. If λn,k(t) = 1, then UAV
n is responsible for the sensing of device k at time slot t.
Hence, the total number of successfully sensed IoT devices
at time slot t is expressed as follows:

CS(t) =
K∑
k=1

N∑
n=1

λn,k(t)1{Pn,k(t)≥Pth}. (4)

To protect the data transmission process from IoT devices
to UAVs, we introduce the secure identity-free transmission
strategy proposed in [34] to transmit the sensing data and the
location and identity information of IoT devices separately.
By using this strategy, the sensing data of IoT devices are
transmitted to UAVs for model training, and the location and
identity information of IoT devices is uploaded to the HAPS
for network control through different wireless links, so the
privacy and anonymity of IoT devices are enhanced.

B. AFL-BASED ANOMALY DETECTION MODEL
The occurrence of abnormal behaviors is rare, so the
sensing data from IoT devices will form an imbalanced
dataset. For this reason, we implement the anomaly detection
model by first building a normal behavioral representation
and then determining abnormal behaviors based on its
deviation from the normal representation. In this paper,
we use an improved generative adversarial network (GAN),
namely WGAN-GP [36], as the basic anomaly detection
model for its powerful ability to capture distribution from
high-dimensional complex data. The AFL-based anomaly
detection model assisted by WGAN-GP is illustrated in
Fig. 2.
Similar to GAN, WGAN-GP consists of two models:

generator G and discriminator D. G generates fake data X̄
using a random noise z that follows a known distribution Pz,
and D attempts to distinguish X̄ from real data X. G and D
are trained through adversarial learning until G can generate
X̄ sharing the same distribution with X [37]. Let PX and PX̄
represent the distributions of real and fake data, and D(X)

denote the probability of X following the distribution PX.
The training objective of WGAN-GP is given by

min
G

max
D

V(G,D) = E
X∼PX

[D(X)]− E

X̄∼PX̄

[
D

(
X̄

)]

+ η E
X̂∼PX̂

[(∥∥∇X̂D(X̂)
∥∥

2 − 1
)2

]
, (5)

where the last term represents a penalty on the gradient norm
of D’s output with respect to random samples X̂, which is
defined as the weighted sum of X and X̄, and η is the penalty
coefficient. During the training process of WGAN-GP, G
and D are updated alternately.
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FIGURE 2. AFL-based anomaly detection framework assisted by differentially private WGAN-GP.

WGAN-GP is used as the local anomaly detection model
in UAVs. First, we define the discriminator and generator
parameters of UAV n as wn and θn, respectively. In each
local update, UAV n performs Nd training iterations on
discriminator Dn between two generator training rounds.
Assuming that m is the batch size, we sample m random noise
{zin}mi=1 to generate fake data {X̄in}mi=1, and sample m real
data {Xin}mi=1 to train the local discriminator jointly. Hence,
for UAV n, the loss function of Dn is calculated by

LDn(wn, θn) = − 1

m

m∑
i=1

{
D

(
Xin

)
− D

(
X̄
i
n

)

+ η
[∥∥∥∇X̂inD

(
X̂
i
n

)∥∥∥
2
− 1

]2
}
. (6)

The proposed VHetNet-enabled AFL framework allows to
execute local training in UAVs using their own sensory data
and avoid raw data transmission to the HAPS for privacy
preservation and communication efficiency. Meanwhile, the
UAV selection strategy is introduced into the framework
to keep UAVs with low local model quality and large
energy consumption from affecting the learning efficiency
and model accuracy. At the HAPS, the average loss function
of the global discriminator is expressed as follows:

LD(w, θ) = − 1

m|Ns|
∑
n∈Ns

m∑
i=1

{
D

(
Xin

)
− D

(
X̄
i
n

)

+ η
[∥∥∥∇X̂inD

(
X̂
i
n

)∥∥∥
2
− 1

]2
}
,

(7)

where w and θ represent the global D and G parameters,
respectively. NS ⊂ N is the selected UAV subset for global
aggregation, and |Ns| is the number of selected UAVs. To
avoid missing the important parts of training data stored in
unselected UAVs, data that miss some training rounds will
be tagged in these UAVs. When these UAVs return to better
energy conditions or better model quality after a few idle
periods or being recharged, these UAVs will join the global
aggregation again, and the unused data will participate in
the local training along with the new sensing data.
Similarly, the loss function of Gn is calculated by

LGn(wn, θn) = − 1

m

m∑
i=1

[
D

(
X̄
i
n

)]
. (8)

Accordingly, at the HAPS, the average loss function of
the global generator is expressed as

LG(w, θ) = − 1

m|Ns|
∑
n∈Ns

m∑
i=1

[
D

(
X̄
i
n

)]
. (9)

The AFL framework aims to search for the optimal model
parameters that minimize the global loss accordingly:

w∗ = arg min
w

LD(w, θ)

θ∗ = arg min
θ

LG(w, θ). (10)

Although AFL has privacy advantages like FL, current
research shows that sensitive information can still be inferred
by using shared parameters [27]. To address this issue, we
propose a differentially private WGAN-GP model, where DP
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is achieved in WGAN-GP by adding designed noise to
gradients during the learning process.
Definition 1: A randomized function F is considered as

(ε, δ)-differentially private if the following inequality is
satisfied for any two databases X and X′ differing in a single
point and for any output subset S [38]:

Pr(F(X) ∈ S) ≤ eε · Pr
(
F(X′) ∈ S)+ δ, (11)

where F(X) and F(X′) are the outputs of the function F for
inputs X and X′, respectively.

Adding noise to the gradients of the Wasserstein distance
is more efficient than adding noise to the final parameters
directly with respect to preserving privacy [38]. The gradients
�wn of discriminator parameter wn after adding noise can
be expressed as follows:

�wn = − 1

m

m∑
i=1

{
∇wnLDin + N

(
0, σ 2

n c
2
gI

)}
, (12)

where σn represents the noise scale, and cg is the bound on
gradients of the Wasserstein distance.
According to [38, Lemma 1], given the sampling rate p =

m
M (where m is the batch size and M is the total number of
training data used in each discriminator iteration) and privacy
violation δ, for any positive ε, the discriminator parameter
guarantees (ε, δ)-DP with respect to all data used in the
generator iteration if we choose

σn = 2p

√
Nd log

(
1

δ

)/
ε. (13)

The AFL-based differentially private WGAN-GP algo-
rithm is summarized in Algorithm 1. The proposed algorithm
can be extended to the dynamic dataset scenarios. Since
UAVs collect data from IoT devices in real-time, when new
sensing data accumulates to a certain scale, we continue to
update the well-trained anomaly detection model with new
datasets to adapt to dynamic dataset scenarios.

C. COMMUNICATION MODEL
The information exchange between UAVs and the HAPS
includes the processes of UAVs uploading local models to
the HAPS for global aggregation and the HAPS distributing
the global model to all UAVs after the averaging operation.
We consider line-of-sight (LoS) links for both UAV-HAPS
and HAPS-UAV wireless transmission. The LoS path loss
in dB between UAV n and the HAPS is modeled by

lLoSn (t) = 20 log(4πdn(t)fc/c)+ hLoS, (14)

where fc is the carrier frequency, and dn(t) is the distance
between UAV n and the HAPS at time t. c denotes the speed
of light, and hLoS is the mean additional loss of LoS links
caused by the free space propagation [11]. So the uplink
transmission rate from UAV n to the HAPS is given by

Run(t) = Bu log2

(
1+ Pun10−lLoSn (t)/10


BuN0

)
, (15)

Algorithm 1 AFL-Based Differentially Private WGAN-GP
Input: The number of time slots T; initial generator and

discriminator parameters θ and w; the number of iterations
Nd between two generator training rounds; the number of
local iterations Nl per time slot; batch size m; Adam hyper-
parameters α, β1, β2; noise scale σn; bound on the gradient of
Wasserstein distance cg.

Output: Converged global model parameters θ and w.
1: for t = 1 : T do
2: Select the UAV subset Ns(t) by CA2C algorithm.
3: For each UAV n ∈ N , initialize local parameters by θn = θ ,

wn = w.
4: for t1 = 1 : Nl do
5: for t2 = 1 : Nd do
6: Sample a batch of noise {zin}mi=1 ∼ Pz and a batch of

real data {Xin}mi=1 ∼ PX .
7: For each UAV n ∈ Ns(t), calculate Dn’s loss function

LDn(wn, θn) according to (6).
8: Add noise to the gradients �wn of discriminator

parameter wn according to (12).
9: Update wn using Adam optimizer: wn ←

Adam(�wn,wn, α, β1, β2).
10: end for
11: Sample another batch of noise {zin}mi=1 ∼ Pz.
12: For each UAV n ∈ Ns(t), calculate Gn’s loss function

LGn(wn, θn) according to (8).
13: Calculate the gradients of generator parameter �θn by

�θn = 1
m

∑m
i=1 {∇θnLG

i
n}.

14: Update θn using Adam optimizer: θn ←
Adam(�θn, θn, α, β1, β2).

15: end for
16: HAPS collects local parameters {wn}n∈Ns(t) and {θn}n∈Ns(t)

from selected UAVs, and updates the global parameters
w = ∑

n∈Ns(t) |Xn|wn/|X |, θ = ∑
n∈Ns(t) |Xn|θn/|X |,

where |Xn| is the cardinality of training set Xn and |X | =∑
n∈Ns(t) |Xn|.

17: end for

where 
 > 1 accounts for the gap from the channel capacity
due to the practical modulation and coding scheme used [39],
Bu is the uplink channel bandwidth, which is assumed to
be the same for all UAVs. Pun is the transmission power
of UAV n, and N0 is the Gaussian noise power spectrum
density.
Similarly, the downlink transmission rate from the HAPS

to UAV n is calculated by

Rdn(t) = Bd log2

(
1+ Pdn10−lLoSn (t)/10


BdN0

)
, (16)

where Bd is the downlink channel bandwidth, which is also
assumed to be the same for all UAVs. Pdn is the transmission
power that HAPS allocates to UAV n.

D. AFL MODEL UPDATE LATENCY
Due to the different quality of local models and different
battery power remaining in different UAVs, we try to select
a subset of UAVs in each training round to participate in the
global aggregation with the goal of minimizing the federated
execution time and learning accuracy loss. We introduce
γn(t) to denote whether or not UAV n is selected for global
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aggregation at time slot t, with γn(t) = 1 indicating that
UAV n is selected, and γn(t) = 0 indicating otherwise.
The one-round federated execution time includes local

model update and upload latency, and global model aggre-
gation and distribution latency.
1) Local model update latency. We define ξan (t) to

represent the computation capability of UAV n to execute
training tasks at time slot t, and ρn represents the number
of CPU cycles needed to train the local model on one unit
of data. Therefore, the local model update latency of UAV
n at time slot t is given by

Tupdate
n (t) = |Xn(t)|ρn

ξan (t)
, (17)

where |Xn(t)| is the cardinality of dataset Xn(t).
2) Local model upload latency. Let L(|θn| + |wn|) denote

the total number of bits required by UAV n to upload its
local parameters to the HAPS. So for UAV n, the local model
upload latency is expressed as

Tupload
n (t) = L(|θn| + |wn|)

Run(t)
. (18)

3) Global model aggregation latency. We define Ns(t) =
{n|γn(t) = 1,∀n} to represent the UAV subset that is selected
for global aggregation at time t. Assuming that the global
model aggregation latency is linearly related to the number
of participating UAVs, which is given by

Taggregation
n (t) = ς |Ns(t)|, (19)

where |Ns(t)| represents the number of selected UAVs, and
ς denotes the unit time for global aggregation.
4) Global model distribution latency. Let L(|θ | + |w|)

denote the total number of bits required by the HAPS to
distribute the global model to UAVs. So the global model
distribution latency for UAV n is expressed as

Tdistribution
n (t) = L(|θ | + |w|)

Rdn(t)
. (20)

The time cost for AFL is expressed as the maximum one-
round execution time in Ns(t), which is given by

T(t) = max
n∈Ns(t)

(
Tupdate
n (t)+ Tupload

n (t)

+Taggregation(t)+ Tdistribution
n (t)

)
. (21)

Hence, we define the time cost function as

CT(t) = 1

|Ns(t)|
∑

n∈Ns(t)

(
Tupdate
n (t)+ Tupload

n (t)

+Taggregation(t)+ Tdistribution
n (t)

)
.

(22)

E. UAV ENERGY MODEL
UAV energy consumption mainly consists of three important
parts: propulsion energy, computational energy, and trans-
mission energy.

1) Propulsion energy. According to [14] and [39], the
propulsion energy of UAV n during a flight is modeled by

EPn (t) = ‖xn(t)− xn(t − 1)‖
Vn︸ ︷︷ ︸

flying time

×
[
κ1V

3
n +

κ2

Vn
+ κ3

(
1+ V2

n

g2

)]

︸ ︷︷ ︸
propulsion power

,

(23)

where κ1, κ2, κ3, and g are constants related to the type of
UAVs, and Vn denotes the flying velocity of UAV n.
2) Computational energy. We define Pcn as the compu-

tational power of UAV n. Accordingly, the computational
energy consumption of UAV n at time slot t is calculated by

ECn (t) = γn(t)P
c
nT

update
n (t). (24)

3) Transmission energy. As Pun is the transmission power
of UAV n, the transmission energy consumption of UAV n
at time slot t is given by

EMn (t) = γn(t)P
u
nT

upload
n (t). (25)

The onboard energy storage of each UAV is limited and
represented by Emax

n . To support the system for T time slots,
the total energy consumption of UAV n should satisfy

T∑
t=1

EPn (t)+ ECn (t)+ EMn (t) ≤ Emax
n . (26)

F. PROBLEM FORMULATION
In the three-layer VHetNet, we use UAVs to sense data from
IoT devices and employ an AFL framework to establish a
global anomaly detection model without local data central-
ization at the HAPS, which can enhance the data privacy and
communication efficiency. For this AFL framework, a UAV
selection strategy is desirable to select UAVs with high local
model quality and low energy consumption to participate
in the global aggregation at the HAPS. In addition, it
is necessary to schedule locations of UAVs and device
association to provide the best coverage for IoT devices
with minimum energy consumption. Overall, our objective
is to maximize the total number of sensed IoT devices
by UAVs and minimize AFL model execution time and
learning accuracy loss over all time slots, which leads to an
efficient anomaly detection model. Therefore, we formulate
the optimization problem as follows:

min{xn(t)},{λn,k(t)}
{γn(t)},{w(t)}

1

T

T∑
t=1

(
− μ1C

S(t)+ μ2C
T (t)+ μ3LD(w(t), θ(t))

)

s.t. a) θ(t) = arg min
θ(t)

LG(w(t), θ(t))

b) λn,k(t) ∈ {0, 1}, γn(t) ∈ {0, 1}, ∀n, k, t

c)
N∑
n=1

λn,k(t) ≤ 1, ∀k, t

d)
T∑
t=1

EPn (t) + ECn (t) + EMn (t) ≤Emax
n , ∀n,

(27)
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where μ1, μ2, and μ3 are constant weight parameters for
the total number of sensed IoT devices CS(t), the execution
time CT(t), and the learning accuracy loss LD(w(t), θ(t)). In
this system, the learning accuracy losses LD(w(t), θ(t)) and
LG(w(t), θ(t)) are measured at the end of each time slot.
Constraint (c) indicates that each IoT device can only asso-
ciate with one UAV to perform sensing tasks. Constraint (d)
is used to limit the maximum energy consumption.
The optimization problem (27) is challenging to solve

because it is a non-convex combination and NP-hard
problem. In addition, due to the time-varying feature
of IoT device locations and UAV battery power, it is
difficult for traditional optimization algorithms to address
this problem. Model-free reinforcement learning (RL) is a
promising dynamic programming technique that is capable
of handling sequential decision-making processes in dynamic
environments [40], [41]. Therefore, we introduce RL to solve
this problem.

III. CA2C-BASED NETWORK SCHEDULING SOLUTION
A. MODELING OF RL ENVIRONMENT
We model the sequential decision-making problem (27)
as a Markov decision process (MDP) represented by
<S,A,P, r>, where S , A, P , and r denote state space,
action space, state transition function, and reward, respec-
tively. In the three-layer VHetNet, the HAPS is responsible
for observing the dynamic environment and tries to maximize
the expected cumulative reward. RL is used to tackle
the joint UAV selection, device association, and UAV
placement problem for assisting the implementation of the
self-scheduling anomaly detection. According to the system
model, four elements in the MDP are defined as follows.
State: At each time slot t, the network state s(t) ∈ S

consists of current locations of IoT devices {xk(t)}k∈K, UAV
locations {xn(t−1)}n∈N at last time slot t−1, and remaining
energy of UAVs {ERe

n (t)}n∈N . Therefore, the network state
at time slot t is expressed as

s(t) = {{xk(t)}k∈K, {xn(t − 1)}n∈N , {ERe
n (t)}n∈N }. (28)

Action: At time slot t, the HAPS is responsible for
selecting an action a(t) ∈ A based on the observed state s(t).
a(t) consists of UAV locations {xn(t)}n∈N , device association
indicators {λn,k(t)}k∈K,n∈N , and UAV selection indicators
{γn(t)}n∈N , which is expressed as

a(t) = {xn(t)}n∈N , {λn,k(t)}k∈K,n∈N , {γn(t)}n∈N }. (29)

State transition function: Let P(s(t + 1)|s(t), a(t)) repre-
sent the transition probability of the network environment
from the current state s(t) to a new state s(t+1) after taking
an action a(t).
Reward: Aiming to maximize the total number of sensed

IoT devices while minimizing the federated execution time
and learning accuracy loss under energy constraints, the
instant reward r(t) is required to evaluate the quality of
policy π under the current state-action pair (s(t), a(t)) [11].
To obtain the optimal policy π∗ under energy constraints,

we adopt the ReLu function f (k) = max(k, 0) to calculate
the variable �n(t) with respect to the constraint 27(d) as

�n(t) = max

(
(EPn (t)+ ECn (t)+ EMn (t))− Emax

n

T
, 0

)
, ∀n.

(30)

Therefore, the instant reward function is defined as

r(t) = −(C(t)+ ν‖�(t)‖1), (31)

where C(t) = −μ1CS(t) + μ2CT(t) + μ3LD(w(t), θ(t)) is
the total weighted cost. �(t) denotes the penalty function,
which is the vector of �n(t). ||·||1 is the L1-norm operator.
The objective for the MDP model is to find a policy π

mapping the state s(t) to action a(t), i.e., a(t) = π(s(t)),
which is capable of maximizing the total accumulative
reward denoted by

R(t) =
T∑
t′=t

χ t′−tr
(
t′
)
, (32)

where χ ∈ (0, 1) is a discount factor indicating the impact
of future rewards on current reward.
In the three-layer VHetNet, since both state and action

spaces are large, DRL algorithms that combine deep neural
networks (DNNs) and RL are more effective for solving
the large-scale decision-making problems. However, existing
DRL algorithms cannot be applied directly to solve the
combinatorial optimization problem (27). This is because
that actions taken in problem (27) involve both continuous
UAV position variables {xn(t)}n∈N as well as discrete device
association {λn,k(t)}k∈K,n∈N and UAV selection indicators
{γn(t)}n∈N , whereas existing DRL algorithms are suitable
for problems with purely continuous or purely discrete action
spaces.

B. CA2C ALGORITHM
To overcome this challenge, we introduce the CA2C algo-
rithm proposed by [28], which combines the advantages
of DDPG for dealing with continuous decision variables
and DQN for dealing with discrete decision variables. The
training and implementation processes of the CA2C-based
network scheduling algorithm are illustrated in Fig. 3.
DQN: In DQN, DNNs are utilized to approximate the

Q-function, which is denoted by Q(s(t), a(t);ϑ), where ϑ

denotes DNN parameters. We train the deep Q-function to
achieve the best fitting by minimizing the loss function
L(ϑ) in each iteration, which is defined as the expectation
of mean squared error between the estimated Q-value and
target value, given by L(ϑ) = E[(y(t) − Q(s(t), a(t);ϑ))2].
In L(ϑ), y(t) = r(t)+χ maxa′ Q(s(t+ 1), a′;ϑ) is the target
value, and a′ is the action generated by ε-greedy to strike a
balance between exploration and exploitation. By ε-greedy,
the agent selects a random action a′ ∈ A with probability ε

and selects the best action that follows the greedy policy a′ =
arg maxa′ Q(s(t + 1), a′;ϑ) with probability 1 − ε. Despite
the accurate approximation, DNNs may cause divergence
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FIGURE 3. Training and implementation processes of the CA2C-based network scheduling algorithm.

or ineffective learning due to non-stationary target values
and the correlation among samples. To overcome these
difficulties, a pair of techniques are introduced in DQN,
namely fixed target network and experience replay [42].
Hence, the loss function is re-written as

L(ϑ) = EU
[
(r(t)+ χ max

a′
Q(s(t + 1), a′;ϑ−)

−Q(s(t), a(t);ϑ))2], (33)

where ϑ− represents parameters of the target network. At the
beginning of the training process, ϑ and ϑ− are initialized
with the same values. However, ϑ− only updates with ϑ

every Nu steps and keeps unchanged between two individual
ϑ updates (slower than updates of ϑ) to avoid a divergence
in the training process. U represents the replay memory, and
random mini-batches are uniformly sampled from U when
performing updates to break the correlation among samples.
DQN is only suitable for environments with discrete action
spaces. Since problem (27) includes both continuous actions
(UAV placement) and discrete actions (device association
and UAV selection indicators), it is difficult to solve the
problem optimally with the DQN method.
DDPG: Policy gradient-based RL methods can be used to

handle sequential decision-making problems with continuous
action spaces. These methods aim to optimize a policy
using gradients of the expected reward. To speed up the
convergence of policy gradient-based methods, DDPG has
been proposed to combine the policy-based and value-based

methods to estimate the policy gradient more efficiently [43].
In DDPG, there are two different neural networks, an
actor and a critic, with parameters � and ϑ , respectively.
For state s(t), the actor obtains the continuous action a(t)
based on a deterministic policy π(s(t);� ), and the critic
evaluates the quality of actions taken via the Q-function
Q(s(t), a(t);ϑ). Both the deterministic policy π(s(t);� ) and
the Q-function Q(s(t), a(t);ϑ) are approximated by DNNs.
DDPG also uses the target network and experience replay
to facilitate the training process. Sampling random mini-
batches from experience replay U, the critic is updated by
minimizing its loss function L(ϑ), which is expressed as the
expectation of a mean squared error between the estimated
value Q(s(t), a(t);ϑ) and the target value y(t) = r(t) +
χQ(s(t + 1),π(s(t + 1);�−);ϑ−), given by

L(ϑ) = EU

[
(y(t)− Q(s(t), a(t);ϑ))2

]
, (34)

where �− and ϑ− represent parameters of the target actor
and the target critic, respectively. The actor is updated using
the policy gradient method as follows [43]:

∇� J(� ) = EU[∇� π(s(t);� )∇aQ(s(t), a(t);ϑ)]. (35)

CA2C: To solve problem (27), which includes both contin-
uous and discrete actions, we decompose the optimal policy
π∗ into two parts, i.e., the policy for finding the optimal
continuous UAV positions π∗c(ad(t)|s(t);� ), and the policy
for selecting the optimal discrete device association and UAV
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Algorithm 2 Training Processes for Critic

Input: Sample I experience samples ei = (s̃, ã, r̃, s̃′)|Ii=1 from
replay buffer U; critic parameter ϑ ; target critic parameter ϑ−;
soft update parameter τ .

Output: Updated parameters ϑ and ϑ−.
1: Obtain the UAV location πc(ãd|s̃′;� ) for state s̃′.
2: Determine device association and UAV selection actions a′d for

state s̃′ based on the Q-value estimated by the target critic.
3: Target actor calculates the UAV location a′c for state s̃′.
4: According to (34), calculate y by adding r̃ and the output

Q-value Q(s̃′, [a′d,πc(a′d|s̃′;�−)];ϑ−) of target critic.
5: Update ϑ by using the Adam optimizer in the critic.
6: Update ϑ− in the target critic via soft update ϑ− = (1−τ)ϑ−
+ τϑ .

Algorithm 3 Training Processes for Actor

Input: Sample I experience samples ei = (s̃, ã, r̃, s̃′)|Ii=1 from
replay buffer U; actor parameter � ; target actor parameter
�−; soft update parameter τ .

Output: Updated parameters � and �−.
1: According to (37), calculate the gradients of Q-value
Q(s̃, [ãd, ãc];ϑ) with respect to the UAV locations for all the
sampled experiences.

2: Update � by using the Adam optimizer in the actor.
3: Update �− in the target actor via soft update �− = (1 −

τ)�− + τ� .

selection indicators a∗d(t) given the optimal UAV positions.
More specifically, the optimal discrete policy of device
association and UAV selection a∗d(t), which maximizes the
Q-value for the network state s(t), is determined by

a∗d(t) = arg max
ad(t)

Q∗
(
s(t),

[
ad(t),π∗c(ad(t)|s(t);� )

];ϑ)
,

(36)

where policy π∗c(ad(t)|s(t);� ) provides the optimal UAV
positions given state s(t) and discrete policy a∗d(t). DNNs
are adopted to approximate functions Q∗ and π∗c in view
of large state and action spaces. Moreover, the training of
DNNs in CA2C is executed by combining training methods
used in DQN and DDPG.
Algorithm 2 and 3 summarize the training processes of the

actor and critic, respectively. The loss function of the actor is
J(� (t)) = EU[(Q(s(t), [ad(t),πc(ad(t)|s(t);� )];ϑ)]. The
actor is updated by using the policy gradient method as

∇� J(� ) = EU[∇� πc(ad(t)|s(t);� )

×∇ac Q(s(t), [ad(t), ac(t)];ϑ)|ac(t)=πc(ad(t)|s(t);� )

]
.

(37)

The corresponding loss function of the critic network is
expressed as follows:

L(ϑ) = EU

[
(y(t)− Q(s(t), a(t);ϑ))2

]

y(t) = r(t)+ Q(s(t + 1),
[
a′d,πc

(
a′d|s(t + 1);�−)];ϑ−)

a′d = arg max
a′d

Q(s(t + 1),
[
a′d,πc(a′d|s(t + 1);� )

];ϑ).

(38)

Algorithm 4 CA2C-Based Network Scheduling Algorithm

Input: Initial parameters ϑ , � , ϑ−, �−; replay buffer U =
∅; exploration parameter ε; the maximum number of training
episodes Nep; the number of time slots T; mini-batch size I.

Output: Converged model parameters ϑ and � .
1: for episode = 1 : Nep do
2: Receive initial observation state s.
3: for t = 1 : T do
4: With probability ε, choose random device association

and UAV selection actions ad(t), otherwise choose ad(t)
according to (36).

5: Determine the UAV locations for the selected device
association and UAV selection actions as ac(t) =
πc(ad(t)|s(t);� ).

6: Transition to a new state s(t + 1) and get instant reward
r(t).

7: Store experience s(t), a(t) = [ad(t), ac(t)], r(t) and s(t+
1) in replay buffer U as ei = (s̃, ã, r̃, s̃′).

8: Sample I experience samples ei = (s̃, ã, r̃, s̃′)|Ii=1 from
replay buffer U.

9: Train the critic according to Algorithm 2.
10: Train the actor according to Algorithm 3.
11: end for
12: end for

In (38), we choose an action for the next state according
to the trained networks (i.e., the actor and the critic, with
parameters � and ϑ , respectively), while we estimate the Q-
value for the next state using target networks (i.e., the target
actor and the target critic, with parameters �− and ϑ−,
respectively) [28]. The detailed steps of the CA2C algorithm
are presented in Algorithm 4.
Computational complexity: The HAPS is responsible for

the action selection, training processes of the CA2C algo-
rithm, and the global aggregation of local WGAN-GP models
from UAVs. According to [28], the computational complexity
of calculating the output given an input is proportional to
the sum of input and output sizes of DNNs. Based on the
state and action spaces defined in MDP, the sizes of inputs
in actor and critic networks are 4N+2K+1+NK and 6N+
2K + 1+ NK, respectively. Meanwhile, the sizes of outputs
in actor and critic networks are 2N and 1, respectively. So
the computational complexity of determining UAV locations
and of estimating the Q value for a state-action pair is
O(NK). Since the HAPS needs to estimate Q values of all
discrete actions, the computational complexity for the action
selection is O(N2K2). The computational complexity of the
model training is proportional to the product of input and
output sizes of DNNs [28]. So the computational complexity
for training processes is O(IN2K2), where I represents the
size of training batch. The computational complexity for the
global aggregation is O(N).
UAVs are responsible for the training of local WGAN-

GP models. In the WGAN-GP model, the sizes of inputs
in generator and discriminator networks are dim(X) and
dim(X) + dim(z), respectively, where dim(X) and dim(z)
represent the dimensionality of real data and random noise,
respectively. Meanwhile, the sizes of outputs in generator
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and discriminator networks are dim(z) and 1, respectively.
Since the discriminator will train Nd times between two
generator training rounds, the computational complexity for
the training of local WGAN-GP model is O(Ndm · dim(z) ·
dim(X)), where m represents the size of training batch..

IV. SIMULATION RESULTS AND ANALYSIS
In this section, we conduct simulations to evaluate the
performance of the proposed self-scheduling anomaly detec-
tion scheme for ubiquitous IoT. In doing so, the proposed
CA2C-AFL algorithm is implemented in pytorch1.11
(Python 3.7) and carried out by a computer with a CPU
capacity of 12 Intel Core i7-10750H CPU 2.6 GHz and
a RAM of 16 GB. We compare the proposed algorithm
with the following four algorithms in terms of the detection
performance, the energy consumption, and the execution
time:
1) DQN-AFL: This algorithm uses DQN to implement the

discrete device association and UAV selection strategies, and
the continuous UAV placement is implemented in a random
manner, so we can evaluate the effect of UAV placement
strategy by comparing it with the proposed algorithm.
2) DDPG-FL: This algorithm adopts DDPG to learn

the continuous UAV placement strategy, and the device
association is based on the minimum distance. No UAV
selection process is included, so all UAVs participate in
the training of the FL-based anomaly detection model. By
comparing it with the proposed algorithm, we can evaluate
the effect of including and excluding the UAV selection
strategy.
3) Standalone: In the standalone algorithm, the continuous

UAV placement is implemented in a random manner, the
device association is based on the minimum distance, and
no UAV selection process is included. Moreover, each UAV
trains its own anomaly detection model without any data or
information exchange, so we can evaluate the effect of AFL
framework by comparing it with the proposed algorithm.
3) Centralized: In the centralized algorithm, the HAPS

is responsible for collecting sensing data from all UAVs,
and trains the centralized WGAN-GP model for anomaly
detection. The CA2C is also trained in HAPS for learning
joint device association and UAV placement strategies. The
centralized algorithm is taken as the limit of performance.
Note that the DQN-AFL, the DDPG-FL, and the stan-

dalone algorithms also use WGAN-GP as the local anomaly
detection model in UAVs.

A. EXPERIMENT SCENARIO
For our simulations, we consider a VHetNet that consists of a
HAPS and five airborne UAVs to support a coverage area of
1 km × 1 km, where 20 target devices are randomly located.
The sensing parameter ξ and the minimum successful
sensing probability Pth of a UAV are set as 0.0001 and 0.99,
respectively. In this case, the maximum sensing distance
of a UAV is 100 m. the The transmission power of the
HAPS and each UAV is set as 33 dBm and 26 dBm,

TABLE 2. Simulation parameters.

FIGURE 4. Convergence of the CA2C approach in terms of system cost with
different learning rates.

respectively. The total energy storage of each UAV is 50 kJ
and the computation capability of each UAV is assumed to be
80,000 cycles/s. The bandwidth of the uplink and downlink
between the HAPS and each UAV is set as 5 MHZ and
20 MHZ, respectively.
The size of the transmitted data for the model parameters

is 5 kbits, and the unit computation power is set as 5 W.
The batch size for the CA2C training is assumed to be 256.
Other relevant simulation parameters are listed in Table 2,
where the UAV setting parameters follow the UAV energy
model established in [39].
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FIGURE 5. Convergence of the differentially private WGAN-GP model under different training frameworks.

Datasets: We choose an unlabeled dataset and a labeled
dataset as sensing data from ground IoT devices to validate
the effectiveness of the proposed algorithm. The unlabeled
dataset is the LabData published by Intel Berkeley Research
Lab [44], which includes temperature, humidity, light, and
voltage features collected from 54 distributed Mica2Dot
sensors. The labeled dataset is the X-IIoTID published on
IEEE Dataport platform, which includes 31 network traffic
features collected from 13 industrial IoT service types with
normal and attack (abnormal) labels [45]. Each UAV dataset
is built on the sensing data from its associated IoT devices.
We divide each UAV subset into three disjoint datasets: a
training dataset for model training, a validation dataset for
setting the discriminant criterion of anomalies, and a test
dataset to evaluate the detection performance [37].

B. CONVERGENCE COMPARISON
We first evaluate the convergence performance of the
proposed CA2C approach with different learning rates, which
are set as 0.01, 0.001, 0.0001, and 0.00001, sequentially.
Fig. 4 shows the convergence of the system cost during
the training processes of the CA2C approach. The system
cost is the objective function defined in (27), which is the
weighted combination of the total number of sensed IoT
devices, the execution time, and the learning accuracy loss.
Note that an episode includes 50 time slots. Learning rates
have a major impact on system cost and convergence speed.
From Fig. 4, we can see that although a larger learning rate
will mean a faster convergence process, it will lead to a
higher system cost. However, the smaller learning rate does
not always lead to less system cost. As shown in Fig. 4,
when the learning rate is smaller than 0.0001 (i.e., equal
to 0.00001), the convergence process becomes slower, but
the achieved system cost is not smaller than the situation
when the learning rate is set as 0.0001. Therefore, we set the
learning rate as 0.0001 to account for both the convergence
speed and system cost.
Fig. 5 compares the convergence of the proposed differ-

entially private WGAN-GP-based anomaly detection model
under five different training frameworks, which are built on
the centralized, the proposed CA2C-AFL, the DQN-AFL,
the DDPG-FL, and the standalone approaches, respectively.
From Fig. 5, we can see that both the discriminator
and generator losses can converge after certain episodes,
which indicates that the generator and discriminator can be

FIGURE 6. The relationship among precision, recall, and F1-score.

successfully trained in all five training frameworks. However,
under the standalone training framework, the convergence
speed is slow, and the training process is hard to converge
to a stable value. This is because the standalone algorithm
trains the proposed model in each UAV without any
information exchange, which causes poor data abundance
and model robustness. Because the proposed CA2C-AFL
algorithm will determine the best UAV placement strategy
and select the best UAV subset with high model quality
in the training process, it achieves the best convergence
performance compared to the other four training frameworks.

C. ANOMALY DETECTION PERFORMANCE
There are three basic evaluation metrics used to reflect
the performance of different anomaly detection algorithms,
namely precision, recall, and F1-score, whose meanings are
explained as follows:
Precision: The ratio of correctly identified abnormal

behaviors relative to all behaviors identified as abnormal.
Recall: The ratio of correctly identified abnormal behav-

iors relative to all behaviors set as abnormal in advance.
F1-score: The weighted average of precision and recall,

given by F1-score = 2 × (precision × recall)/(precision +
recall).
Once the proposed CA2C-AFL-based anomaly detection

model is trained well, it can be used to identify abnormal
behaviors by calculating their anomaly scores, which are
defined as the weighted combination of the discriminator
loss and generator loss [37]. If the anomaly score of new
data is greater than a preset threshold, it will be determined
as abnormal. The threshold values have a major impact on
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FIGURE 7. Detection performance comparison among five different algorithms.

the performance of the proposed anomaly detection model.
We obtain the threshold by using the validation dataset.
First, to simulate the abnormal behaviors in the unlabeled
dataset, we inject the noise factor to samples in the validation
dataset with a probability 0.5, where the noise factor
follows the Gaussian distribution N(μ, σ 2) with the mean
μ = 0.1 and the variance σ 2 = 0.1. Then, we calculate the
average anomaly scores Anormal and Aabnormal of the normal
and abnormal data in the validation dataset. Finally, we
choose different threshold values in range [Anormal,Aabnormal]
to capture the relationship among precision, recall, and
F1-score, which is shown in Fig. 6. As we can see, when
we set the threshold as (Anormal + Aabnormal)/.2, precision,
recall, and F1-score metrics all achieve their best values.
Therefore, the threshold for the anomaly score is defined
as (Anormal + Aabnormal)/.2 to achieve the best detection
performance.
Fig. 7 shows the detection performance of five different

algorithms: the centralized, the proposed CA2C-AFL, the
DDPG-FL, the DQN-AFL, and the standalone anomaly
detection algorithms. The test dataset is used to evaluate the
performance of different algorithms, and precision, recall,
and F1-score are used as the evaluation metrics. For the
unlabeled dataset, we also inject the noise factor to samples
in the test dataset to simulate the abnormal behaviors,
where the noise factor also follows the Gaussian distribution
N(0.1, 0.1). We can see that the convergence trends of the
three evaluation metrics are nearly consistent with those
of discriminator and generator losses, which are shown in
Fig. 5. It indicates that the five anomaly detection algorithms
can capture the accurate data distribution from the training
dataset with enough training episodes. By contrast, the
proposed CA2C-AFL algorithm is superior to the DDPG-
FL, the DQN-AFL, and the standalone algorithms, and
slightly inferior to the centralized algorithm in terms of
all three evaluation metrics. The detection performance of
the DDPG-FL and DQN-AFL algorithms is inferior to our
proposed algorithm because these two include either the
UAV placement strategy or the UAV selection strategy,
but not both as our algorithm does. Besides, the detection
performance of the standalone algorithm is the most unstable

and inaccurate due to the lack of information fusion and
exchange.
Fig. 8 presents the detection performance achieved by five

different algorithms with different numbers of IoT devices.
The number of IoT devices changes from 20, 40, 60, 80
to 100, and the number of UAVs changes from 5, 10,
15, 20 to 25, accordingly. There exist data losses in UAV
sensing due to the mobility of IoT devices and UAVs. To
evaluate the influence of sensing data losses on the anomaly
detection model, we have further compared the detection
performance of five different algorithms between models
trained with the complete dataset and models trained with the
incomplete dataset that has 10% random data losses. From
Fig. 8, we can see that the centralized algorithm can achieve
the best detection performance, and the proposed CA2C-
AFL algorithm and the DQN-AFL algorithm have better
detection performance than the DDPG-FL and standalone
algorithms under different numbers of IoT devices. The
superior detection performance of CA2C-AFL and DQN-
AFL algorithms benefit from their UAV selection processes,
which prevent UAVs with low model quality from affecting
the overall accuracy. The precision, recall, and F1-score
values achieved by CA2C-AFL and DQN-AFL algorithms
increase with the increase of IoT devices, but the detection
performance achieved by the other three algorithms without
UAV selection processes maintains at a stable level with
some fluctuations when the number of IoT devices increases.
Moreover, we can see that the influence of sensing data
losses will become smaller with the increase of IoT devices,
and when the total number of IoT devices reaches 80,
anomaly detection models trained with the complete dataset
and the incomplete dataset can achieve nearly the same
recall, precision and F1-score values. Therefore, to reduce
the influence of sensing data losses on model accuracy,
improving the network coverage to connect with more IoT
devices is necessary.
To evaluate the effect of adding noise on the detection

performance, we compare the performance of the CA2C-
AFL algorithm without DP with the proposed CA2C-AFL
algorithm with DP. The six different algorithms mentioned
above are evaluated with both the unlabeled and labeled
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FIGURE 8. Detection performance comparison with different numbers of IoT
devices.

datasets, and the comparison results are summarized in
Table 3. By contrast, the detection performance of the
centralized algorithm performs best among the six algorithms
in terms of both the unlabeled and labeled datasets. Although
the performance of the proposed CA2C-AFL algorithm is
degraded by adding noise, it is not much different from the
CA2C-AFL algorithm without DP. It proves that we can use

TABLE 3. Detection performance comparisons.

FIGURE 9. Comparison of average UAV energy consumption among five different
algorithms.

the DP method to further protect the data privacy, and there
is little degradation in the detection performance.

D. ENERGY CONSUMPTION AND LEARNING DELAY
We also compare the UAV energy consumption of the
proposed CA2C-AFL algorithm with the centralized, DDPG-
FL, DQN-AFL, and standalone algorithms. Fig. 9 shows
the average UAV energy consumption of different activities,
including propulsion, computation and transmission. The
energy values presented in Fig. 9 are averaged over five
UAVs, then further averaged over the total 200 episodes.
From Fig. 9, we can see that the centralized algorithm
consumes the least UAV energy among the five algorithms,
because it centralizes the training of the anomaly detection
model to the HAPS, and the computational energy is
excluded from the UAV energy consumption. The proposed
CA2C-AFL algorithm consumes less energy than the other
three algorithms. The reason is that the proposed CA2C-
AFL algorithm will determine the optimal locations of
UAVs with the aim of saving energy, so it consumes
less propulsion energy than the DQN-AFL and standalone
algorithms. Besides, unlike FL, in AFL, just a subset of
UAVs need to update and upload their local models in one
global training round, so the proposed CA2C-AFL algorithm
consumes less transmission and computational energy than
the DDPG-FL algorithms. The standalone algorithm does
not need to consume energy in transmission activities, but
its computational energy is the highest among the five
algorithms.
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FIGURE 10. Comparisons of execution time for anomaly detection model training.

FIGURE 11. Comparisons of average execution time with different uplink
bandwidths.

Fig. 10 shows the average execution time and maximum
execution time of the five different algorithms over the
total 200 episodes. The execution time is measured by the
consumed time for training within all 50 time slots. By
contrast, the centralized algorithm consumes the longest
execution time because it requires the HAPS to collect
sensing data from all UAVs for the centralized processing.
The DDPG-FL algorithm needs longer execution time than
the other three algorithms because it needs to wait for
all UAVs to complete their local model updates before
the global aggregation process. The proposed CA2C-AFL
algorithm has the shortest execution time. Note that the
average execution time of the proposed algorithm and the
DQN-AFL algorithm is less than their maximum execution
time due to the presence of the UAV subset selection process.
The data transmission rates from UAVs to the HAPS

will greatly influence the system performance considered
in this paper, especially the federated execution time. To
show the impact of data transmission rates on the federated
execution time, we change the uplink bandwidth from 1
MHZ to 5 MHZ with the interval of 1 MHZ. Fig. 11 shows
the average execution time of five algorithms with different
transmission rates. From Fig. 11, we can see that the
average execution time will decrease with the increase of
data transmission rates. Moreover, the proposed CA2C-AFL
algorithm can achieve the shortest execution time under
different transmission rates.

V. CONCLUSION AND FUTURE DIRECTIONS
In this paper, we studied a VHetNet-enabled AFL-based
anomaly detection framework for ubiquitous IoT devices
with the assistance of a network scheduling strategy, which
aimed to improve learning efficiency and detection accuracy.
More specifically, the framework was designed to train
local anomaly detection models at UAVs based on their
sensory data and aggregated local models at a HAPS in an
asynchronous manner. This aimed to decrease the federated
learning execution time as well as the computation and
transmission overheads. To ensure the secure transmission
between UAVs and the HAPS, we adopted a differentially
private WGAN-GP as the local anomaly detection model.
Moreover, considering the limited onboard energy storage of
UAVs, we formulated a joint device association, UAV selec-
tion, and UAV placement problem, which we solved using
the CA2C approach to facilitate the efficient implementation
of the self-scheduling anomaly detection model. Simulation
results validated the effectiveness of the proposed framework
in terms of efficiency and accuracy.
The present study motivates several future research direc-

tions: (i) the privacy protection and secure transmission
mechanism in wireless networks when using distributed
learning frameworks; (ii) the online learning of ML model
to adapt to dynamic dataset scenarios; (iii) the integration
of communication, sensing and computing capability for the
efficient and intelligent service provision, such as anomaly
detection, demand prediction and function orchestration for
network devices; (iv) the synergy of space-air-ground inte-
grated networks and AI techniques to extend the intelligence
to everywhere and everything.
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