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ABSTRACT Networked robots have become crucial for unmanned applications since they can collaborate
to complete complex tasks in remote/hazardous/depopulated areas. Due to the cost inefficiency of deploying
cellular network infrastructure in these areas, hybrid satellite-UAV networks emerge as a promising
solution. These networks provide seamless and on-demand connectivity for multiple robots with various
task requirements, and support computation-intensive and latency-sensitive services through mobile edge
computing (MEC)-based offloading. However, to complete tasks in limited times, the rapid collective
movement of mobile robots may cause frequent service migration, and a large number of gathered robots
may compete for limited bandwidth resources in satellite and UAV communications. As a result, offloading
latency may increase significantly. To address this issue, the average completion time of multi-robot
offloading in task-oriented satellite-UAV networks with MEC is formulated as an optimization problem.
Unlike conventional mobility-aware MEC-based offloading schemes, joint optimization of mobility control,
data offloading, and resource allocation is proposed using velocity control of multiple robots. According
to Lyapunov optimization, the original optimization problem is simplified into minimizing the average
completion time of offloading for all robots within UAV and satellite coverage. A multi-agent Q-learning
algorithm, including multi-group dual-agent Q-learning, is proposed based on local state observation and
global reward calculation. In each dual-agent Q-learning, one agent is responsible for velocity control and
communication resource allocation, while the other is responsible for data offloading and computational
resource allocation. The convergence of the proposed multi-agent Q-learning algorithm is also theoretically
analyzed. Simulation results show that the proposed scheme can effectively reduce the offloading latency
by up to 35% in the multi-robot environment over its conventional counterparts.

INDEX TERMS Offloading, reinforcement learning, resource allocation, satellite-UAV network, velocity
control.

I. INTRODUCTION

NETWORKED robots have received increasing atten-
tion since they use a communication network to

connect and coordinate with each other/humans, sen-
sors, and computers to complete complex tasks [1], [2],

such as nuclear decommissioning to handle radiation and
contamination hazards [1], cave exploration for search and
rescue [3], and maintenance of offshore wind turbines [4].
To enable teams of robots for autonomous task completion
in remote/hazardous/depopulated areas, satellite networks
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provide a cost-effective deployment strategy for wide-area
coverage and information exchange. However, their high
propagation latency and severe path loss challenge the
diverse and stringent requirements of robotic tasks in theses
areas. To address these challenges, satellite-unmanned aerial
vehicle (UAV) integrated networks are a promising solution
to provide on-demand services [5], [6], [7]. Furthermore, for
latency-sensitive and computation-intensive robotic applica-
tions, deploying edge computing servers on UAVs/satellites
enables robots to send data to the network edge for
processing, such as mobile edge computing (MEC) [8].
However, to accomplish tasks in a limited time, the collective
movement of mobile robots may lead to a large number
of gathered robots competing for limited network resources
and frequent service migration due to the rapid movement
of robots. As a result, the service latency for these robots
may increase significantly.
An increasing number of studies have been conducted

to improve the quality of service (QoS) of data offloading
in satellite-UAV networks by deploying edge servers on
UAVs [9], [10], [11], [12] or transferring data to edge
servers through UAVs [13], [14], [15]. In [9], considering
the energy dynamics in wireless-powered Internet of Things
(IoT) devices and time-varying channel conditions, a deep
learning-based offloading strategy was given to maximize
the task success rate in satellite-UAV-served IoT systems.
Furthermore, by offloading data from a UAV to its neigh-
boring UAVs, the authors of [12] proposed a collaborative
computation offloading scheme in the centralized and dis-
tributed UAV-enabled MEC networks. For IoT users in
remote areas, the authors of [10] formulated a model of com-
putational resource allocation and task scheduling for edge
servers in UAVs and proposed an reinforcement learning
(RL)-based offloading algorithm to minimize the total cost
of server usage, energy consumption of the IoT devices, and
offloading delay. In [11], a satellite-UAV-MEC collaborative
architecture for offloading in vehicular applications was
proposed, and a joint optimization of UAV deployment and
resource allocation was employed to maximize the long-
term profit. In [13], to efficiently process the data collected
by a UAV, by offloading the data to the cloud server via
multiple satellites and edge servers in cellular base stations
(BSs), a distributionally robust optimization problem was
formulated to minimize the system latency. Using unmanned
surface vehicles in maritime communication networks, [14]
presented a collaborative offloading scheme to reduce the
task execution time. To guarantee the safety of traffic
offloading in satellite-UAV networks, the authors of [15]
provided a blockchain-based federated learning architecture,
and then proposed a node security evaluation mechanism and
an improved practical Byzantine fault tolerance algorithm.
However, such schemes require frequent service migration
between multiple MEC servers when terminals, UAVs,
or satellites move fast [16], [17]. The above works do
not consider service migration in satellite-UAV networks.
Moreover, compared to static BSs in terrestrial networks, the

mobility of satellites and UAVs may trigger more service
migrations [18], [19]. As a result, frequent service migration
will significantly increase the service latency.
Many studies have been conducted to address the problem

of frequent service migration in satellite- and UAV-related
networks by detecting the mobility of terminals [20],
satellites [21], [22], [23], and UAVs [23], [24]. In [20], a
distributed two-layer decomposition model was proposed
to minimize the migration cost according to the mobility
of users in satellite networks. Considering satellite motion
and the relationship between space-based services, the
authors of [21] developed a migration strategy to reduce
the migration delay and packet loss rate. The difference
between the profit and energy consumption during migration
was optimized to balance between migration delay and
energy consumption. In [22], a backhaul migration policy
based on satellite mobility was presented to enable data
offloading for invisible satellites. Based on this, an RL-
based privacy-preserving offloading scheme was proposed to
jointly optimize the task completion time, energy consump-
tion, communication reliability, and user privacy leakage.
In [23], based on the mobility of UAVs and satellites, the
migration cost and additional delay in live migration and
reinstantiation of virtual network function (VNF) remapping
were modeled. Then, the joint VNF mapping and scheduling
in the UAV-supported satellite-terrestrial networks were
efficiently optimized. In [24], considering the migration
of UAV, a multi-path transmission control protocol was
proposed to dynamically allocate bandwidth resources for
static and mobile users. These existing works focus on the
mobility-aware optimization of data offloading and service
migration for mobile devices/users. Nevertheless, in areas
with no or weak network coverage, these optimization
methods are ineffective since a robot’s mobility cannot be
detected by the network. An alternative solution is to control
robots to move from areas without network coverage to those
with network coverage.
For mobility control, according to the willingness of

users, a closed-loop system model based on spatial-temporal
mobility control was developed in [25], [26]. However, this
model is intended for humans, not robots. For mobile
robots, the authors of [27] analyzed the effect of velocity
on the stability of the wireless control system to make
a tradeoff between vehicle velocity, control stability, and
channel quality. In [28], based on the prediction of the
channel quality between a robot and a cellular BS, a co-
optimization of the motion and communication costs was
proposed to minimize the energy consumption. Furthermore,
a class of communication-aware motion planning meth-
ods has been proposed for robotic applications, including
trajectory planning for channel assessment and target track-
ing [29], distributed control based on robotic mobility to
maintain end-to-end connections [30], [31], energy-efficient
trajectory planning for a UAV [32], and communication-
constrained path planning for robotic surveillance [33].
However, in these existing works, data offloading and
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service migration in satellite-UAV networks have not been
considered. Furthermore, when the radio communication
is unavailable, mobility control for multi-robot offloading
is not considered. The communication unavailability might
be due to heavy network loads, severe channel fading,
damage to network infrastructures, and so on. The joint
velocity control and offloading decision has been proposed
in [34], whose system model focuses on satellite-terrestrial
networks. However, in remote/depopulated areas, terrestrial
network infrastructures may not be deployed. Moreover,
the optimization problem and the corresponding RL-based
algorithm aimed at a single robot rather than multiple
robots. In the multi-robot optimization problem, the RL-
based algorithm in [34] may be inefficient in resource
allocation due to the lack of global resource observation
and reward calculation for each agent. This can lead to
increased service latency, especially when computation and
communication resources are limited.
Against this backdrop, this paper proposes to jointly

optimize velocity control and MEC-based offloading for
multiple robots in task-oriented satellite-UAV networks. We
consider scenarios where multiple mobile robots cooperate
in groups to accomplish multiple tasks. When these robots
move to the locations of targeted tasks, they periodically
offload perceived data to UAV/gateway-based MEC servers
for processing, and subsequently receive computational
results from selected MEC servers. When wireless commu-
nications are unavailable in an access point (AP) coverage,
the low-speed movements of mobile robots will increase
local computations. When the wireless communication is
available in the AP coverage, high-speed movements of
mobile robots will lead to frequent service migration. Thus,
the wireless communication availability and the velocities
of mobile robots are two key factors that affect service
latency. Moreover, a large number of mobile robots may
compete for limited bandwidth resources in satellite and UAV
communications, potentially increasing the communication
delay in data offloading. In this paper, our contributions are
listed below.

• The optimization problem concerning data offloading,
velocity control, and resource allocation for multiple
robots is formulated to minimize the average completion
time of offloading. Then, inspired by the idea that
Lyapunov optimization can transform the optimization
problem with long-term constraints into one with short-
term constraints, the proposed optimization problem for
robots over their entire journey is decomposed into
the optimization problem for robots over individual AP
coverage regions.

• We propose a multi-agent Q-learning algorithm that
utilizes multi-group dual-agent Q-learning to solve
the proposed problem, while considering the observed
wireless communication availability, the reduced com-
putational resource state, and a global reward. In the
dual-agent Q-learning framework, one agent is respon-
sible for offloading decision-making and computational

resource allocation, while the other is responsible for
velocity control and communication resource allocation.

• The convergence of the proposed multi-agent Q-learning
algorithm is analyzed in terms of Q functions, optimal
Q functions, and convergence rate. Simulation results
validate the effectiveness of the proposed scheme in
terms of convergence and offloading time.

The rest of this paper is organized as follows. In Section II,
the system model of data offloading, service migration,
and velocity control for multiple robots in the satellite-
UAV network is introduced. In Section III, the optimization
problem and its simplified version are formulated, and
the novel multi-agent Q-learning algorithm is proposed. In
Section IV, the convergence of the proposed multi-agent
Q-learning algorithm is analyzed. In Section V, simulation
results are provided. Finally, in Section VI, conclusions are
drawn.

II. SYSTEM MODEL
As shown in Fig. 1, in a multi-robot environment, we assume
a task-oriented satellite-UAV network that is responsible
for serving a collection of tasks. Note that tasks in this
paper refer to tasks accomplished by collaborative robots,
such as environmental exploration, rather than tasks within
a network. These tasks are related to specific locations
in the environment. Serving a task means that a group
of robots are actually located in the vicinity of that task,
and they move along their pre-defined trajectories to their
destination locations within a given time to complete the
task. Meanwhile, as they move, robots continuously sense
their surrounding environments, send the sensed data to
edge servers for computation and processing, and finally
take appropriate actions according to the computational
results, such as localization and mapping, and obstacle/risk
avoidance.
We assume that there are V tasks and each of them is

cooperatively completed by U mobile robots. The uth robot
in the vth task passes through a communication coverage
region involving Nuv1 UAVs with the index set Nuv1 =
{APG,uv,1,APG,uv,2, . . . ,APG,uv,Nuv1} and one satellite. The
satellite covers all regions where all robots operate. The
region covered only by the satellite is divided into Nuv2
non-overlapped sub-regions with the index set Nuv2 =
{APS,uv,1,APS,uv,2, . . . ,APS,uv,Nuv2}, Nuv1 ∩ Nuv2 = ∅,
Nuv = Nuv1 + Nuv2, u = 1, 2, . . . ,U, and v = 1, 2, . . . ,V .
UAVs are pre-deployed according to task locations and
satellite navigation, and hover in fixed positions in the air
until all tasks are completed. Each AP is equipped with an
independent MEC server, so the total numbers of APs and
MEC servers are both N. According to [35], the MEC server
provides resources of computation, communication, and stor-
age through virtual machines (VMs). The service provider
leases VMs from the MEC server to offer services. We
assume that an offloading service occupies a VM. Under the
assumption that orthogonal multiple access technology, such
as orthogonal frequency division multiple access (OFDMA),
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FIGURE 1. Illustration of the system model for multi-group robots in the task-oriented satellite-UAV network with MEC.

is utilized, there will be no interference between satellite-
robot and UAV-robot links, between UAV-UAV links, and
between UAV-robot links. Other communication technologies
are not specified, because our results are general enough.
The UAV-UAV links and satellite-UAV links are used for
service migration purposes only. The terrestrial gateway with
MEC servers are selected over satellite with MEC servers
because they have lower complexity in terms of coverage and
maintenance [36]. The satellite is responsible for transferring
data from robots to the gateway and sending computational
results from the gateway to robots.
In multi-robot offloading, a robot can offload its data

either directly to the MEC server on a UAV or via satellite
to the MEC server based on the gateway. The following
section describes the models for local computation, MEC
computation, communication, service migration, and velocity
control.

A. LOCAL COMPUTATION MODEL
According to [10], the local computation delay T1,u,v,n(t) of
the uth mobile robot in the vth task in the time slot t is
expressed as

T1,u,v,n(t) = (1 − αu,v,n(t))
Du,v(t)�

flocal,u,v(t)
, (1)

where the binary variable αu,v,n(t) takes values from the
discrete set {0, 1}, αu,v,n(t) = 0 denotes local computation,
αu,v,n(t) = 1 denotes that data is offloaded to the nth MEC
server, Du,v(t) is the size of the data generated by the uth

mobile robot in the vth task in time slot t, flocal,u,v(t) is the
computation frequency of the mobile robot in each CPU
cycle, and the constant � represents the number of CPU
cycles per bit.

B. MEC COMPUTATION MODEL
When the offloaded data is processed by the nth MEC server
in the tth slot, according to [10], the computation delay
T2,u,v,n(t) is expressed as

T2,u,v,n(t) = αu,v,n(t)
Du,v(t)�

fu,v,n(t)
, (2)

where fu,v,n(t) denotes the computation frequency allocated
by the nth MEC server to the offloaded data of the uth robot
in the vth task.

C. COMMUNICATION MODEL
We assume that the wireless communication uplink and
downlink are allocated the same bandwidth, between a
mobile robot and a UAV, between a mobile robot and a
satellite, and between the satellite and the gateway. Moreover,
to avoid an excessive number of states and actions in the
proposed reinforcement learning algorithm in Section III,
we assume that the uplink and downlink have the same
communication rate for the channels between mobile robot
and UAV, between mobile robot and satellite, and between
satellite and gateway. In reality, uplink and downlink may
have different rates. When the offloaded data is transmitted
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through a UAV, according to [10], the communication
delay T3,u,v,m,n(t) in the mth AP coverage region (m =
1, 2, . . . ,Nu,v) is expressed as

T3,u,v,m,n(t) = αu,v,n(t)
(
Du,v(t) + D̄u,v(t)

)

Wu,v,mlog2

(
1 + pCh2

C
σ 2
C

) , (3)

where D̄u,v(t) is the size of the computational result corre-
sponding to Du,v(t), Wu,v,m is the communication bandwidth
allocated by the UAV in the mth AP coverage region to
the uth robot in the vth task, pC, hC, and σ 2

C denote the
transmit power, channel gain, and channel noise power in
UAV communications, respectively.
When offloaded data is transferred through the satellite,

according to [10], the communication delay T4,u,v,m,n(t) in
the mth AP coverage region is expressed as

T4,u,v,m,n(t) = αu,v,n(t)

(
2(dGS + dSE)

c
+ (

Du,v(t) + D̄u,v(t)
)

×
(

1

rGS,u,v,m
+ 1

rSE,u,v,m

))
, (4)

where dGS and dSE represent the distances from a mobile
robot to the satellite and from the satellite to the gateway,
respectively. rGS,u,v,m and rSE,u,v,m denote the communication
rates between a mobile robot and the satellite and between
the satellite and the gateway station, respectively. Compared
to the large total bandwidth between the satellite and the
gateway station, the total bandwidth in the uplink from
the mobile robot to the satellite is limited. Thus, (4) is
rewritten as

T4,u,v,m,n(t) = αu,v,n(t)

(
2(dGS + dSE)

c

+ Du,v(t) + D̄u,v(t)

Wu,v,mlog2

(
1+ pSh2

S
σ 2
S

)+Du,v(t) + D̄u,v(t)

rSE,u,v,m

)
,

(5)

where Wu,v,m is the communication bandwidth allocated by
the satellite to the uth robot of the vth task, and pS, hS, and
σ 2
S denote the transmit power, channel gain, and channel

noise power in satellite communication, respectively. It is
noted that, when the bandwidth in the satellite-robot link is
significantly larger than that in the satellite-gateway link, the
delay for data transmission and result delivery in (4) and (5)
can be ignored.
Upon assuming that each robot can choose only one

communication mode in the mth AP coverage region, the
communication delay is expressed as

T5,u,v,m,n(t) = βu,v,mT3,u,v,m,n(t) + (
1−βu,v,m

)
T4,u,v,m,n(t),

(6)

where the binary variable βu,v,m takes values from the
discrete set {0, 1}, and βu,v,m = 1 and βu,v,m = 0 denote
the UAV communications and satellite communications,
respectively.

D. SERVICE MIGRATION MODEL
We assume that a VM-based service migration occurs
when the MEC server Mu,v,t−1 in the (t − 1)th slot is
different from the MEC server Mu,v,t in the tth slot. Thus,
according to [37], the service migration delay in the tth slot
is expressed as
T6,u,v(t)

= I
{
Mu,v,t−1 �= Mu,v,t ∩

(
Mu,v,t−1 �= 0 ∩ Mu,v,t �= 0

)

∩ (
Mu,v,t−1 ∈ Nuv1 ∪ Mu,v,t ∈ Nuv1

)}
Gu,v

+ I
{(
Mu,v,t−1 ∈ Nuv1 ∩ Mu,v,t ∈ Nuv2

)

∪ (
Mu,v,t−1 ∈ Nuv2 ∩ Mu,v,t ∈ Nuv1

)}
�G, (7)

where Mu,v,t = 0 stands for the local computation and
Mu,v,t ∈ Nuv = Nuv1 ∪ Nuv2 represents the MEC com-
putation. If the condition in I{·} that the MEC servers
in the previous and current slots are different is satisfied,
we have I{·} = 1; otherwise I{·} = 0. Gu,v is the
migration delay in the UAV network. According to the linear
relationship between throughput and velocity in the “always
migration” [35], we assume Gu,v = ρu,v(t)T2,u,v,n(t). The
scaling factor ρu,v(t) = vu,v(t)

vmax
indicates that the higher the

velocity is, the higher the migration delay will be. Since
a satellite can only cover a region for a limited time, the
handover between the satellite network and the UAV network
should be considered. Based on the second term in (7), a
handover occurs when the MEC servers at the (t− 1)th slot
and the tth slot are in the UAV network and the satellite
network (or the satellite network and the UAV network),
respectively. Compared to the migration delay Gu,v in the
UAV network, this handover results in an extra migration
delay, which is expressed as a long-term migration cost �G.
In practice, this cost is predefined as a constant determined
monthly or annually by the network operator [17].

E. VELOCITY CONTROL MODEL
Due to the predefined moving trajectories of all robots,
velocity control is reduced to adjust the velocity value. We
suppose that the target velocity of the mobile robot in the
mth AP coverage region is v∗u,v,m ∈ [vmin, vmax] with the
minimal velocity vmin and the maximal velocity vmax, and
vu,v,m(l0) and vu,v,m(lE) stands for the initial velocity and
final velocity of a mobile robot in the mth AP coverage
region, respectively. Thus, the instantaneous velocity vu,v,m(l)
in the lth slot of the mth AP coverage region is expressed as
vu,v,m(l)

=
⎧
⎨

⎩

min
{
vu,v,m(l0) + μl, v∗u,v,m

}
, vu,v,m(l0) < v∗u,v,m,

vu,v,m(l0), vu,v,m(l0) = v∗u,v,m,

max
{
vu,v,m(l0) − μl, v∗u,v,m

}
, vu,v,m(l0) > v∗u,v,m,

(8)

where vu,v,m(l0) < v∗u,v,m, vu,v,m(l0) = v∗u,v,m, and
vu,v,m(l0) > v∗u,v,m correspond to acceleration, constant
speed, and deceleration, respectively. μ > 0 is the
absolute value of acceleration/deceleration, l ∈ Lu,v,m =
{1, 2, . . . ,Lu,v,m} is the time slot index in the mth AP
coverage region, and Lu,v,m denotes the total number of
offloading slots in the mth AP coverage region with
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Lu,v,m =
⌊
T∗
u,v,m

�T

⌋
, (9)

where �T is the offloading slot, T∗
u,v,m denotes the moving

time of the mobile robot passing through the mth AP
coverage region, i.e.,

T∗
u,v,m =

⎧
⎪⎪⎨

⎪⎪⎩

cm+ (vu,v,m(lE)−vu,v,m(l0))2

2μ

vu,v,m(lE)
, v∗u,v,m ≥ vu,v,m(l0),

cm− (vu,v,m(l0)−vu,v,m(lE))2

2μ

vu,v,m(lE)
, v∗u,v,m < vu,v,m(l0),

(10)

where cm represents the moving distance of the mobile robot
in the mth AP coverage region. To simplify our model,
we assume that the moving distances of different robots in
the same AP coverage region are the same. If the mobile
robot can accelerate or decelerate to the target velocity when
leaving the mth AP coverage region, we have vu,v,m(lE) =
v∗u,v,m.
Thus, the completion time of the offloading in the tth slot

is expressed as

Tu,v,m,n(t) = T1,u,v,n(t) + T2,u,v,n(t) + T5,u,v,m,n(t) + T6,u,v(t).

(11)

Averaging the completion time of all robots in their entire
journey yields

Tmean =

U∑

u=1

V∑

v=1

Nu,v∑

m=1

N∑

n=1

Lu,v,m∑

l=1
Tu,v,m,n(l)

U∑

u=1

V∑

v=1

Nu,v∑

m=1
Lu,v,m

. (12)

III. REINFORCEMENT LEARNING-BASED OPTIMIZATION
A. OPTIMIZATION PROBLEM
Based on (12), the optimization problem is formulated as

min
Pu,v,m,n

Tmean (13a)

s.t. Tu,v,m,n(t) ≤ Tmax,u,v(t) (13b)
Nu,v∑

m=1

T∗
u,v,m ≤ Tmove,u,v (13c)

N∑

n=1

αu,v,n(t) = 1 (13d)

Nu,v∑

m=1

βu,v,m = 1 (13e)

U∑

u=1

V∑

v=1

αu,v,n(t)fu,v,n(t) ≤ Fn(t) (13f)

U∑

u=1

V∑

v=1

αu,v,n(t)Wu,v,m ≤ BS,m, m ∈ MS (13g)

U∑

u=1

V∑

v=1

αu,v,n(t)Wu,v,m ≤ BC,m, m ∈ MC (13h)

where variable Pu,v,m,n involves αu,v,n(t), βu,v,m, v∗u,v,m,
fu,v,n(t), and Wu,v,m. Constraint (13b) indicates that the
completion time of data offloading should be less than
or equal to delay Tmax,u,v(t) when all data are locally
computed; In constraint (13c), Tmove,u,v is the maximal
allowable moving time of the uth robot in the vth task
over the entire journey; Constraint (13d) means that the
mobile robot can only choose one MEC server for offload-
ing in each time slot; Constraint (13e) means that the
mobile robot can only select one communication mode
in each AP coverage region; In constraint (13f), Fn(t)
indicates the available computational resources of the nth
MEC server in the tth slot; Constraint (13g) indicates the
available bandwidth of the robot-satellite communication link
with the index set of satellites MS = ⋃U

u=1
⋃V

v=1 Nuv2;
Constraint (13h) indicates the available bandwidth of
the UAV communication with the index set of UAVs
MC = ⋃U

u=1
⋃V

v=1 Nuv1.
Solving the optimization problem (13) is challenging

due to the long-term moving time constraint (13c), as the
offloading decisions of a robot at different time slots are
correlated with the moving time. If long moving time is
currently caused by a slow-moving robot in the area without
network coverage, it will lead to excessive local computation.
Based on the Lyapunov optimization in [37], an optimization
problem with long-term constraints can be transformed into
one with short-term constraints. By transforming the long-
term constraint (13c) into the short-term constraint for each
AP, the optimization problem (13) for the whole moving
process can be decomposed into multiple sub-optimization
problems for the moving process in the AP coverage region.
Thus, the optimization model is simplified into minimizing
the total average delay of all robots in their AP coverage
regions, i.e.,

min
Pu,v,m,n

1
U∑

u=1

V∑

v=1
Lu,v,m

U∑

u=1

V∑

v=1

N∑

n=1

Lu,v,m∑

l=1

Tu,v,m,n(l) (14a)

s.t. Tu,v,m,n(t) ≤ Tmax,u,v(t) (14b)

Tg,u,v,m ≤ ku,v,mTmove,u,v (14c)
N∑

n=1

αu,v,n(t) = 1 (14d)

Nu,v∑

m=1

βu,v,m = 1 (14e)

U∑

u=1

V∑

v=1

αu,v,n(t)fu,v,n(t) ≤ Fn(t) (14f)

U∑

u=1

V∑

v=1

αu,v,n(t)Wu,v,m ≤ BS,m, m ∈ MS (14g)

U∑

u=1

V∑

v=1

αu,v,n(t)Wu,v,m ≤ BC,m, m ∈ MC (14h)
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FIGURE 2. Framework of multi-group dual-agent Q-learning.

where ku,v,m = cm/
∑Nu,v

m=1 cm denotes the ratio of the robot’s
moving distance in the mth AP coverage region to its moving
distance in the whole trip. Since the single-robot optimization
problem has been proved NP-hard in [34], it can be inferred
that the multi-robot optimization problems in (13) and (14)
are also NP-hard.

B. REINFORCEMENT LEARNING-BASED OPTIMIZATION
ALGORITHM
As shown in Fig. 2, we propose a multi-agent Q-learning
algorithm composed of multi-group dual-agent Q-learning,
where each group of dual agents corresponds to a
robot. In the optimization problems (13) and (14),
resource allocation and policy decision-making involve
two timescales: 1) time slot-based offloading decision
and computational resource allocation; 2) AP coverage
region-based velocity control and communication resource
allocation. Therefore, in our improved Q-learning algorithm,
we design two different subagents, namely offload-
ing subagents Agentu,v,1 and velocity-control subagents
Agentu,v,2.
Based on the Markov decision process (MDP), the state,

reward, and action for these two subagents are formulated
as follows.

1) OFFLOADING-ORIENTED Q-LEARNING

The state includes: the current AP coverage region, the avail-
ability of wireless communication, the generated data size,
the size of computational results, the available computational
resources of the mobile robot, the velocity of the mobile
robot, the selected MEC server in the previous slot, the
available computational resources of all MEC servers. We
have

su,v,m,n(t) = {
APu,v,t, β̄u,v,Du,v(t), D̄u,v(t), flocal,u,v(t),

vu,v,m(t),Mu,v,t−1,F(t)
}
, (15)

where APu,v,t ∈ Nuv1 ∪ Nuv2 and β̄u,v = βu,v + 1 for
UAV/satellite communications and β̄u,v = 0 for local
computation. According to (15), the state space size of each
subagent is 3NDD̄F1V1NFN2 , where D, D̄, F1, V1, and F2 are
the space sizes of offloading data, computational result, local
computational resource, velocity, computational resource
of all MEC servers, respectively. Compared to the state
space size (3NDD̄F1V1NF2)

N in a single-agent Q-learning
for the optimization problem (13), such as the dual-agent
Q-learning in [34], the design in (15) has significantly
reduced the space size. However, observing the available
computational resources of all MEC servers still requires an
exponential state space. By reducing this state to the available
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computational resources of the selected MEC server in the
previous slot, the state space size of each subagent is reduced
to 3NDD̄F1V1NF2. Thus, (15) is reduced to

su,v,m,n(t) = {
APu,v,t, β̄u,v,Du,v(t), D̄u,v(t), flocal,u,v(t),

vu,v,m(t),Mu,v,t−1,Fn(t − 1)
}
. (16)

The action includes: the offloading decision and the
allocated computational resource of the MEC server, which
is expressed as

au,v,m,n(t) = {
αu,v,n(t), fu,v,n(t)

}
. (17)

The instantaneous reward consists of the offloading reward
and the penalty of the moving time larger than ku,v,mTmove,u,v.
When a robot moves at some target velocity, its moving time
is less than or equal to the maximal moving time. All possible
target velocities have the same penalty. The difference
between the moving time T∗

u,v,m and the maximal moving
time Tmove,u,v is considered the moving penalty unit, that
is T∗

u,v,m − ku,v,mTmove,u,v. Thus, the moving penalty in each

offloading slot is expressed as max{T∗
u,v,m−ku,v,mTmove,u,v

Lu,v,m
, 0}.

Based on (9), this instantaneous penalty can be simplified
into max{�T − ku,v,m

Lu,v,m
Tmove,u,v, 0}. When the elements of

all Q tables are initialized to zero, the rewards of legal
actions should be greater than zero to avoid the zero-
valued reward caused by the local computation when wireless
communications are available. Therefore, the instantaneous
reward is designed as

ru,v,m,n(t) = (1 − θ) exp

(
1 − Tu,v,m,n(t)

Tmax,u,v(t)

)

+ θ exp

⎛

⎝1 −
max

{
�T − ku,v,m

Lu,v,m
Tmove,u,v, 0

}

ku,v,m
Lu,v,m

(
Tslow,u,v − Tmove,u,v

)

⎞

⎠,

(18)

where θ (0 < θ < 1) is a preference factor and Tslow,u,v =∑Nu,v
m=1

cm
vmin

is the total moving time when the robot moves
at the lowest velocity vmin.

Finally, when a legal action is executed, the reward is
calculate by (17). Otherwise, when an illegal action is
executed, the reward is set to −1. The reward update rule
is expressed as

r̄u,v,m,n(t) =
{
ru,v,m,n(t), legal action,
−1, illegal action.

(19)

2) VELOCITY CONTROL-ORIENTED Q-LEARNING

When a mobile robot switches between adjacent AP coverage
regions, the subagent Agentu,v,2 employs Q-learning to
obtain the policies of velocity control, communication mode,
and bandwidth resource allocation. The state, action, and
reward are designed as follows.
The State Includes: the AP coverage region in the previous

slot, the current AP coverage region, the initial velocity in
the current AP coverage region, the available bandwidth in

the satellite communication, and the available bandwidth in
the UAV communication. We have

su,v,m = {APu,v,t−1,APu,v,t, vu,v,m(t0),BS,m,BC,m}. (20)

The Action Includes: the target velocity, communication
mode, the bandwidth allocation for satellite and UAV
communications, which is expressed as

au,v,m = {v∗u,v,m, βu,v,m,Wu,v,m}. (21)

The reward rm is the average of the accumulated rewards
ru,v,m of all robots, where the accumulated reward is defined
as the sum of all instantaneous rewards for the mobile robot
in its current AP coverage region. Thus, rm is expressed as

rm = 1

UV

U∑

u=1

V∑

v=1

N∑

n=1

Lu,v,m∑

t=1

ru,v,m,n(t)

= 1

UV

U∑

u=1

V∑

v=1

ru,v,m. (22)

When an illegal action is executed, we set rm = −1.
The detailed algorithm is shown in Algorithm 1, where

t′ = t + 1 and m′ = m + 1. TEpi represents the max-
imum number of episodes. In reinforcement learning, an
episode is characterized by the system taking steps until
it achieves the goal state or reaches a maximum number
of steps. Here, a step is considered as a single state-
action-reward pair. In each episode of Algorithm 1, all
robots continue to take state-action-reward steps from their
initial locations until they arrive at their target locations.
The discrete-time sets are configured for Q-learning. Thus,
the available satellite communication bandwidth, the avail-
able UAV communication bandwidth, the available MEC
computation resource, and the local computation resource
are expressed as BS,m ∈ {�WS, 2�WS, . . . ,FS�WS},
BC,m ∈ {�WC, 2�WC, . . . ,FC�WC}, Fn(t) ∈ {�f , 2�f ,
. . . ,FMEC�f }, and flocal,u,v(t) ∈ {�f̄ , 2�f̄ , . . . ,Flocal�f̄ },
respectively. �WS, �WC, �f , and �f̄ denote the satellite
communication bandwidth unit, the UAV communication
bandwidth unit, the MEC computation resource unit, and
the local computation resource unit, respectively. The con-
stants of FS, FC, FMEC, and Flocal are defined as the
maximum numbers of units for satellite bandwidth, UAV
bandwidth, MEC computation resources, and local computa-
tion resources, respectively. In addition, to address the issue
of slow convergence caused by numerous illegal actions
in multi-agent Q-learning with multiple states and actions,
two algorithms are presented in Algorithms 2 and 3, which
facilitate the selection of legal actions for communication
resource allocation and computational resource allocation,
respectively. Furthermore, upon incorporating the reward
design for illegal actions in (19), the improved convergence
of the proposed algorithm implies effective stability. This is
the reason that the Lyapunov functions are not considered
for the optimization problem in this paper.
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Algorithm 1 Joint Offloading and Velocity Control Based
on the Multi-Group Dual-Agent Q-Learning Algorithm
Input: Initialize the table entry Qu,v,1(s, a) = 0 and

Qu,v,2(s, a) = 0, velocity vu,v,m(t), moving distance cm, avail-
able satellite communication bandwidth BS,m, available UAV
communication bandwidth BC,m, available MEC computation
resource Fn(t), local computation resource flocal,u,v(t), learning
rate λu,v, greedy factor εu,v, discount factor γu,v.

Output: Offloading decision αu,v,n(t), computational resource
allocation fu,v,n(t), target velocity v∗u,v,m, communication mode
βu,v,m, bandwidth allocation Wu,v,m.

1: for j = 0, 1, 2, . . . ,TEpi do
2: Reset mu,v = 0, su,v,m,n(t), su,v,m, and Nrob = UV;
3: while

⋃
u,v I

{
mu,v ≤ Nu,v

}
do

4: if APu,v,t−1 �= APu,v,t then
5: Observe state su,v,m;
6: Chose the legal action au,v,m based on Algorithm 2;
7: Calculate reward rm and next state su,v,m+1;
8: Update the Q-table for velocity control and communi-

cation resource allocation:

Qu,v,2
(
su,v,m, au,v,m

)

= (
1 − λu,v

)
Qu,v,2

(
su,v,m, au,v,m

) + λu,v

× (
rm + γu,v max

{
Qu,v,2

(
su,v,m′ , au,v,m′

)})

(23)

9: Update state su,v,m = su,v,m′ ;
10: mu,v = mu,v + 1;
11: end if
12: Observe state su,v,m,n(t);
13: Chose the legal computational resource allocation fu,v,n(t)

based on Algorithm 3;
14: if mu,v ≥ Nu,v + 1 then
15: Nrob = Nrob − 1 and ru,v,m,n(t) = 0;
16: else
17: Calculate reward ru,v,m,n(t) and next state su,v,m,n(t′);

18: Update the Q-table for data offloading and computa-
tional resource allocation:

Qu,v,1
(
su,v,m,n(t), au,v,m,n(t)

)

= (
1 − λu,v

)
Qu,v,1

(
su,v,m,n(t), au,v,m,n(t)

)

+ λu,v
(
ru,v,m,n(t) + γu,v

× max
{
Qu,v,1

(
su,v,m,n(t

′), au,v,m,n(t
′)
)})

(24)

19: Update state su,v,m,n(t) = su,v,m,n(t′);
20: end if
21: end while
22: end for

In addition, we present a potential practical applica-
tion of the proposed algorithm. According to the MEC
system reference architecture in [38], [39], the proposed
algorithm will operate at the MEC orchestrator. This
orchestrator can monitor the deployed MEC hosts and the
available network resources, ultimately selecting the most
appropriate MEC host for data offloading and service migra-
tion. It can also allocate appropriate radio communication
resources to the satellite-robot and UAV-robot links for data
transmission.

Algorithm 2 Legal Actions of Bandwidth Resource
Allocation
Output: Communication mode βu,v,m, legal bandwidth allo-

cation Wu,v,m.
1: Release the bandwidth resources of the previous AP;
2: Observe states su,v,m of all robots;
3: Chose action au,v,m with ε-greedy algorithm;

4: if
(

U∑

u=1

V∑

v=1
αu,v,n(t)Wu,v,m ≤ BS,m,m ∈ MS

)
∩

(
U∑

u=1

V∑

v=1
αu,v,n(t)Wu,v,m ≤ BC,m,m ∈ MC

)
then

5: Output the legal action;
6: else
7: Set Qu,v,2(su,v,m, au,v,m) = −1 due to the illegal

action;
8: Go back to Step 3.
9: end if

Algorithm 3 Legal Actions of Offloading Decision and
Computational Resource Allocation
Output: Offloading decision αu,v,n(t), computational

resource allocation fu,v,n(t).
1: Chose action au,v,m,n(t) with ε-greedy algorithm;

2: if
U∑

u=1

V∑

v=1
αu,v,n(t)fu,v,n(t) ≤ Fn(t) then

3: Output the legal action;
4: else
5: Set ru,v,m,n(t) = −1 due to the illegal action;
6: Qu,v,1(su,v,m,n(t), au,v,m,n(t)) = ru,v,m,n(t);
7: Go back to Step 1.
8: end if

IV. CONVERGENCE ANALYSIS
To analyze the convergence of the multi-group dual-agent
Q-learning, according to [40], we first present the following
lemma.
Lemma 1: Given a non-negative learning rate sequence

{λj} with 0 ≤ λj ≤ 1, when lim
TEpi→∞

∑TEpi
j=0 λj → ∞, for

0 ≤ φ < ∞, we have
∞∏

j=0

(
1 − λj

φ + 1

)
= 0. (25)

Proof: See Appendix A.
Then, based on [40], a unified form of updating Q tables

for (23) and (24) is expressed as

Qj(st, at) = (
1 − λj

)
Qj(st, at)

+ λj

(
r(st, at) + γ max

at′ ∈A
{
Qj(st′ , at′)

})
, (26)

where j = 0, 1, . . . ,TEpi and A is the action space. Based
on Lemma 1, we derive the following theorem.
Theorem 1: Let the optimal Q value of Qj(st, at)

in a given state space be Q∗(st, at) = r(st, at) +
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γ max{Q∗(st′, at′)}. The initialized Q function Q0(st, at) is
a semi-positive definite function. When the learning rate
satisfies 0 ≤ λj ≤ 1 and lim

TEpi→∞
∑TEpi

j=0 λj = ∞, for j → ∞,

Qj(st, at) can converge to the optimal value Q∗(st, at), which
is given as

lim
j→∞Qj(st, at) = Q∗(st, at). (27)

Proof: See Appendix B.
It is implied in Theorem 1 that based on the local state

observation, the Q-learning algorithms in (23) and (24) can
converge to a local optimal solution.
Next, we analyze the factors that affect the convergence

of Q values to the optimal Q values. According to [41], the
following convergence of (23) and (24) is achieved.
Theorem 2: We assume that Q∗

u,v,1 and Q∗
u,v,2 are

the optimal Q values of Qu,v,1,j(su,v,m,n(t), au,v,m,n(t))
and Qu,v,2,j(su,v,m, au,v,m), respectively. We also assume
that ‖Qu,v,1,0(su,v,m,n(t), au,v,m,n(t))‖ ≤ ru,v,max

1−γ
and

‖Qu,v,2,0(su,v,m, au,v,m)‖ ≤ Lu,v,maxru,v,max
1−γ

. Then, we obtain

∥∥Qu,v,1,j
(
su,v,m,n(t), au,v,m,n(t)

)∥∥ ≤ ru,v,max

1 − γ
, (28)

∥∥Qu,v,1,j
(
su,v,m,n(t), au,v,m,n(t)

) − Q∗
u,v,1

∥∥ ≤ 2ru,v,max

1 − γ
, (29)

∥∥Qu,v,2,j
(
su,v,m, au,v,m

)∥∥ ≤ Lu,v,maxru,v,max

1 − γ
, (30)

∥
∥Qu,v,2,j

(
su,v,m, au,v,m

) − Q∗
u,v,2

∥
∥ ≤ 2Lu,v,maxru,v,max

1 − γ
, (31)

where ru,v,max = maxm,n{‖r̄u,v,m,n(t)‖}, Lu,v,max =
maxm{Lu,v,m}, j = 0, 1, . . . ,TEpi, u = 1, 2, . . . ,U, v =
1, 2, . . . ,V , m = 1, 2, . . . ,Nu,v, and n = 1, 2, . . . ,N.
Proof: See Appendix C.
Theorem 2 indicates that the reduced discount factor γ can

improve the convergence performance of Q-learning in (23)
and (24).
According to [42], we assume that the action-value

function of the single Q-learning for the optimization
problem (14) can be approximately linearly decomposed into
the value functions of multiple agents as follows

Q((s(t), sm), (a(t), am))

≈
U∑

u=1

V∑

v=1

Qu,v,2
(
su,v,m, au,v,m

)

+
U∑

u=1

V∑

v=1

(
Qu,v,1

(
su,v,m,n(t), au,v,m,n(t)

))
, (32)

where s(t) = {su,v,m,n(t)}, sm = {su,v,m}, a(t) = {au,v,m,n(t)},
and am = {au,v,m} for u = 1, 2, . . . ,U, v = 1, 2, . . . ,V ,
m = 1, 2, . . . ,Nu,v, n = 1, 2, . . . ,N. In Algorithm 1,
Qu,v,2(su,v,m, au,v,m) is updated by the accumulated rewards
of Agentu,v,1, while Qu,v,1(su,v,m,n(t), au,v,m,n(t)) is updated
by the actions of Agentu,v,2. Based on this, each subagent
can be deployed in a distributed manner, and centralized

learning can be carried out by the accumulation of reward
values.
According to Theorem 2, it can be derived that

‖Q((s(t), sm), (a(t), am))‖

≤
U∑

u=1

V∑

v=1

(∥∥Qu,v,1
(
su,v,m,n(t), au,v,m,n(t)

)∥∥

+ ∥∥Qu,v,2
(
su,v,m, au,v,m

)∥∥)

≤
U∑

u=1

V∑

v=1

(
1 + Lu,v,max

) ru,v,max

1 − γ
. (33)

Therefore, the reduced discount factor γ can improve the
convergence performance of Algorithm 1.

To further analyze other factors affecting the convergence
of Algorithm 1, the following theorem is obtained.
Theorem 3: The convergence of the proposed multi-group

dual-agent Q-learning is expressed as

E
{∥
∥Qu,v,1,TEpi

(
su,v,m,n(t), au,v,m,n(t)

) − Q∗
u,v,1

∥
∥∞

}

≤
TEpi∑

j=0

γ TEpi−j
√

θu,v,1,j + γ TEpi

×E
{∥∥Qu,v,1,0

(
su,v,m,n(t), au,v,m,n(t)

) − Q∗
u,v,1

∥∥∞
}
,

(34)

E
{∥
∥Qu,v,2,TEpi−1

(
su,v,m, au,v,m

) − Q∗
u,v,2

∥
∥∞

}

≤
TEpi∑

j=0

γ TEpi−j
√
Lu,v,maxθu,v,1,j

+ γ TEpiE
{∥∥Qu,v,2,0

(
su,v,m, au,v,m

) − Q∗
u,v,2

∥∥∞
}
. (35)

When θu,v,1,j = θu,v, for TEpi → ∞, Eqs. (34) and (35) are
reduced to

E
{∥∥Qu,v,1,TEpi

(
su,v,m,n(t), au,v,m,n(t)

) − Q∗
u,v,1

∥∥∞
}

≤
√

θu,v

1 − γ
+ γ TEpi

×E
{∥∥Qu,v,1,0

(
su,v,m,n(t), au,v,m,n(t)

) − Q∗
u,v,1

∥∥∞
}
,

(36)

E
{∥
∥Qu,v,2,TEpi

(
su,v,m, au,v,m

) − Q∗
u,v,2

∥
∥∞

}

≤
√
Lu,v,maxθu,v

1 − γ

+ γ TEpiE
{∥∥Qu,v,2,0

(
su,v,m, au,v,m

) − Q∗
u,v,2

∥∥∞
}
. (37)

Proof: See Appendix D.
Theorem 3 reveals that the convergence of Algorithm 1 is

affected by four aspects: 1) the approximation error θu,v,1,j of
Agentu,v,1; 2) the approximation error θu,v,2,j of Agentu,v,2;
3) the Bellman operation for Qu,v,1,j; and 4) the Bellman
operation for Qu,v,2,j. It is also concluded in Theorem 3 that
with reduced approximation errors (or discount factor γ ), the
convergence performance of Algorithm 1 can be enhanced.

VOLUME 5, 2024 211



WEI et al.: TASK-ORIENTED SATELLITE-UAV NETWORKS WITH MEC

In addition, according to [43], [44], [45], the effect of the
learning rate λ and greedy factor ε on the convergence of
the multi-group dual-agent Q-learning algorithm is analyzed
below.
In Agentu,v,1, we assume that all robots have the same state

space S1 and action space A1. By removing the subscripts
u and v, (24) is simplified to

Q1
(
sm,n(t

′), au,v,m,n(t
′)
)

= Q1
(
sm,n(t), am,n(t)

) + λ
(
rm,n(t) − Q1

(
sm,n(t), am,n(t)

)

+ γ max
am,n(t′)∈A1

{
Q1

(
sm,n(t

′), am,n(t
′)
)})

, (38)

where t′ = t + 1. Let �Q1(sm,n(t), am,n(t)) =
Q1(sm,n(t′), am,n(t′)) − Q1(sm,n(t), am,n(t)). According
to [44], [46], the dynamics of Q functions with multiple
states can be expressed as

E
{
�Q1

(
sm,n(t), am,n(t)

)}

= p
(
sm,n(t)

)
p
(
am,n(t)

)

× λ
(
E
{
rm,n(t)

} − Q1
(
sm,n(t), am,n(t)

)

+ γ
∑

sm,n(t′)∈S1

p
(
sm,n

(
t′
)∣∣sm,n(t), am,n(t)

)

× max
am,n(t′)∈A1

{
Q1

(
sm,n(t

′), am,n(t
′)
)})

, (39)

where p(sm,n(t)) is the probability of state sm,n(t) in the
tth slot, p(sm,n(t′)|sm,n(t), am,n(t)) represents the transition
probability from state sm,n(t) to state sm,n(t′) with action
am,n(t), and p(am,n(t)) is the probability of executing action
am,n(t), i.e.,

p
(
am,n(t)

) =
{

1 − ε + ε
|A1| , formax

{
Q1

(
sm,n(t), am,n(t)

)}
,

ε
|A1| , otherwise,

(40)

where |A1| denotes the size of the set A1. Taking the limit
of (39) yields

dQ1
(
sm,n(t), am,n(t)

)

dt
= p

(
sm,n(t)

)
p
(
am,n(t)

)

× λ
(
E
{
rm,n(t)

} − Q1
(
sm,n(t), am,n(t)

)

+ γ
∑

sm,n(t′)∈S1

p
(
sm,n

(
t′
)∣∣sm,n(t), am,n(t)

)

× max
am,n(t′)∈A1

{
Q1

(
sm,n(t

′), am,n(t
′)
)})

. (41)

Under the assumption of p(sm,n(t)) = 1
|S1| , for γ → 0, (41)

can be simplified to

dQ1
(
sm,n(t), am,n(t)

)

dt
= λp

(
am,n(t)

)

|S1|
(
E
{
rm,n(t)

}

−Q1
(
sm,n(t), am,n(t)

))
. (42)

When E{rm,n(t)} is a constant, solving the first-order differ-
ential equation of (42) yields

Q1
(
sm,n(t), am,n(t)

)

= 1

y(t)

(
E
{
rm,n(t)

}
t∫

0

λ

|S1|y(l)p
(
am,n(l)

)
dl

+ y(0)Q1
(
sm,n(0), am,n(0)

)
)

, (43)

where y(t) = exp(
∫ t

0
λ

|S1|p(am,n(l))dl). If the random
action selection occurs in interval [0, t0] (corresponding
to t0/�T times in discrete time), we have y(t) =
e

λ
|S1| ((

ε
|A1| )t0+(1−ε+ ε

|A1| )(t−t0)). Thus, (43) can be expressed as

Q1
(
sm,n(t), am,n(t)

) = Ye
− λ|S1|

(
1−|A1|−1

|A1| ε
)
t + E

{
rm,n(t)

}
,

(44)

where Y = y(0)Q1(sm,n(0), am,n(0)) − E{rm,n(t)}
1−ε+ ε

|A1|
( ε
|A1| +

(1 − ε)e
λ

|S1| (1−ε+ ε
|A1| )t0). Taking the limit of (44) yields

lim
t→∞Q1

(
sm,n(t), am,n(t)

)

= lim
t→∞Ye

− λ|S1|
(

1−|A1|−1
|A1| ε

)
t + lim

t→∞E
{
rm,n(t)

}

= E
{
rm,n(t)

}
. (45)

It is concluded from (44) and (45) that, when |S1| and |A1|
are given, as ε decreases or λ increases, the convergence
rate of Q1(sm,n(t), am,n(t)) to E{rm,n(t)} increases.

Similarly, for Agentu,v,2, based on [44], [46], we
can derive
dQ2(sm, am)

dm
= p(sm)p(am)λ

(
E{rm} − Q2(sm, am)

+ γ
∑

sm′ ∈S2

p( sm′ |sm, am) max
am′ ∈A2

{Q2(sm′ , am′)}
)
,

(46)

where p(sm) is the probability of state sm, p(sm′ |sm, am) is the
transition probability from state sm to state sm′ with action
am, p(am) is the probability of selecting the action am, i.e.,

p(am) =
{

1 − ε + ε
|A2| , formax{Q2(sm, am)},

ε
|A2| , otherwise.

(47)

Thus, under the consumption of p(sm) = 1
|S2| and the

constant E{rm}, when γ → 0, solving (46) yields

Q2(sm, am)

= 1

xm

⎛

⎝E{rm}
m∫

0

λ

|S2|xlp(al)dl+ y(0)Q2(s0, a0)

⎞

⎠, (48)

where xm = exp(
∫ m

0
λ

|S2|p(al)dl). We assume that the
random actions are selected from interval [0,m0]. Then, it
follows that

Q2(sm, am) = Xe
− λ|S2|

(
1−|A2|−1

|A2| ε
)
m + E{rm}, (49)
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where X = x0Q2(s0, a0) − E{rm}
1−ε+ ε

|A2|
( ε
|A2| + (1 − ε)

e
λ

|S2| (1−ε+ ε
|A2| )m0). Eqs. (48) and (49) reveal that for the given

|S2| and |A2|, with the reduced ε or the increased λ, the
convergence rate of Q2(sm, am) to E{rm} is improved.
Finally, based on the effects of ε and λ on the convergence

of Agentu,v,1 and Agentu,v,2, it can be concluded that the
reduced ε and the increased λ are beneficial to enhance the
convergence rate of Algorithm 1.

V. NUMERICAL RESULTS AND PERFORMANCE
COMPARISON
This section demonstrates the performance of the proposed
algorithm and compares it with local execution and conven-
tional offloading at constant moving velocity. Additionally,
we compare our proposed algorithm with the single-robot
algorithm in [34]. It noted that the algorithm from [34]
targets the single-robot optimization without consideration
of resource allocation among multiple robots. When it is
employed to the multi-robot optimization, we assume that
the communication resources in each AP and computation
resources in each MEC server are uniformly distributed
among all robots.
In our simulation, three tasks are cooperatively accom-

plished by 24 mobile robots. 21 APs and 21 MEC servers
are deployed, including 20 UAV-based MEC servers and
one satellite-based MEC server. The region only covered
by the satellite is divided into five sub-regions. The
computation frequencies of UAV- and satellite-based MEC
servers are draw from sets {1, 2, 3} (GHz) and {10, 20, 30}
(GHz), respectively. The moving distance cm is randomly
chosen from set {100, 200, 300} (m) for the UAVs and
from set {1000, 2000, 3000} (m) for the satellite. In UAV
communications, the available bandwidth is selected from
the set {9, 10.8, 12.6} (MHz). In satellite communications,
we set the distances as dGS = dSE = 1000 km, and
the transmission rates as rSE = 100 Mbps. The available
bandwidth is selected from the set {90, 180, 270} (KHz). In
the UAV and satellite communications, the transmit power,
the channel noise power, and the channel gain are p = 0.2 W,
σ 2 = 2 × 10−12 W, and h2 = 10−6, respectively. The
extra migration cost �G is set to be the average delay of
500 ms. In each offloading interval �T = 1 s, the generated
data size is randomly selected from the set {100, 350, 600}
(KB) with � = 800 CPU cycles/bit, and the size of output
data is randomly selected from the set {50, 70, 90} (KB).
In local computation, the computing capacity of the robot
is randomly chosen from a finite set {0.5, 0.7, 0.9} (GHz).
During the movements of all robots with a = 2 m/s2,
their velocities are from a finite set {5, 6, . . . , 15} (m/s).
In Q-learning, the hyperparameters are set as λ = 0.1,
γ = 0.9, and ε decreases from 0.99 to 0.01 with an
exponential discount of 6.125 × 10−4e−6.125×10−4t.
In Fig. 3, the convergence of the proposed scheme is

compared with those of the conventional offloading scheme
with various velocities and the algorithm in [34]. The

FIGURE 3. Average rewards of the conventional offloading and the proposed
scheme, where NCH = 6 and θ = 0.1.

number of APs with unavailable wireless communication
is NCH = 6. The preference factor is set as θ = 0.1.
To clearly demonstrate the convergence performance, this
figure plots the difference between the average reward
of legal actions and the accumulated penalty of illegal
actions. As can be observed from Fig. 3, at the beginning
of training, the proposed scheme has a higher reward than
conventional offloading at low velocity and a reward close
to conventional offloading at high velocity. The algorithm
in [34] has the lowest reward and the slowest convergence
rate, because it does not mask out illegal actions. As
the number of training episodes increases, the proposed
scheme can converge effectively, which is consistent with
the convergence analysis in Section IV. Furthermore, the
convergence behavior of the proposed scheme is investigated
in Fig. 4. In Fig. 4(a), the increased value of NCH results
in a reduced reward of the proposed scheme. In Fig. 4(b),
the increased value of θ leads to a slightly increased reward
of the proposed scheme. It is inferred that the impact on
convergence is attributed more to the wireless connectivity
than to the preference factor.
In Fig. 5, the average completion time of offloading and

the average moving time of robots in conventional offloading,
local execution, and the proposed schemes are plotted for
different values of NCH.

• First, the average completion times of the conventional
and proposed schemes are compared for NCH =
2, 4, 6, 8 and θ = 0.1. As can be seen from Fig. 5(a),
with the increase of NCH, the algorithm in [34]
has the reduced completion time, and conventional
offloading and the proposed scheme have increased
completion times. Compared to conventional offloading,
local execution, and the algorithm in [34], the proposed
scheme can reduce the average completion time by
3% to 18%. Moreover, the algorithm in [34] utilizes
equal resource allocation for all robots. As a result, the
computation resources of an MEC server allocated for
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FIGURE 4. Average rewards of the proposed scheme in training. (a) NCH = 2, 4, 6, 8
and θ = 0.1; and (b) θ = 0.1, 0.3, 0.5, 0.7, 0.9 and NCH = 6.

each robot may be lower than those of individual robots.
The algorithm in [34] has the longest completion time.

• Second, to show the effect of velocity control of
multiple robots on service latency, the completion time
versus the moving time is investigated in Fig. 5(b). Two
important observations can be obtained from Fig. 5(b).
1) In the absence of velocity control, conventional
schemes use the minimum velocity (v = 5 m/s) and
the maximum velocity (v = 15 m/s), resulting in
excessively high and low moving times, respectively.
Velocity control provides a more flexible approach
to adjusting the moving time; 2) Velocity control is
beneficial to reduce the completion time. Since a
constant velocity is adopted, there is no effect of
the velocity control on the completion time in local
execution and a limited reduction in completion time
in conventional offloading. The velocity control in [34]

FIGURE 5. Performance comparison among local execution, conventional
offloading, and the proposed scheme for NCH = 2, 4, 6, 8 and θ = 0.1. (a) Average
completion time of offloading versus NCH; and (b) Average completion time of
offloading versus average moving time of robots. When the marker size increases, the
value of NCH increases from 2 to 8.

is related to the offloading decision, and is independent
of resource allocation among multiple robots. Thus,
velocity control cannot efficiently reduce the average
completion time. With the aid of velocity control for
data offloading and resource allocation, the proposed
scheme can achieve the smallest completion time with
a moderate moving time.

• It is also implied in Fig. 5 that the proposed scheme is
sensitive to NCH due to the communication state-based
velocity control.

In Fig. 6, the average completion time and the average
moving time of conventional offloading, local execution,
the algorithm in [34], and the proposed scheme are plotted
for NCH = 6 and θ = 0.1, 0.3, 0.5, 0.7, 0.9. It is shown
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FIGURE 6. Performance comparison among local execution, conventional
offloading, and the proposed scheme for θ = 0.1, 0.3, 0.5, 0.7, 0.9 and NCH = 6.
(a) Average completion time of offloading versus θ; and (b) Average completion time
of offloading versus average moving time of robots. When the marker size increases,
the value of θ increases from 0.3 to 0.9.

in Fig. 6(a) that as the value of θ increases, conventional
offloading, the algorithm in [34], and the proposed scheme
have increased completion time. The proposed scheme can
reduce the average completion time of data offloading by 3%
to 35% over the conventional schemes. Similar to Fig. 5(b),
Fig. 6(b) also shows that the velocity control-enabled data
offloading in the proposed scheme can achieve the lowest
completion time with a moderate moving time.
Furthermore, Fig. 7 plots the average completion time

versus the size of the offloaded data. The data size in
each offloading interval is randomly selected from the set
{100, 350, 600}(KB)+�D, where the incremental parameter
�D belongs to {0, 1, 3, 5, 7, 9} (MB). It can be seen in
Fig. 7(a) that the proposed scheme has the best completion

FIGURE 7. Performance comparison among local execution, conventional
offloading, and the proposed scheme for �D = 0, 1, 3, 5, 7, 9, NCH = 6 and θ = 0.1.
(a) Average completion time of offloading versus �D; and (b) Average completion
time of offloading versus average moving time of robots. When the marker size
increases, the value of �D increases from 0 to 9.

time performance for varying data sizes. Compared to
conventional schemes, the proposed scheme achieves an
average completion time reduction of 3% to 19%. Moreover,
as opposed to conventional schemes, with an increase in
data size, a much higher reduction in completion time can
be obtained in the proposed scheme. In addition, similar
to Figs. 5(b) and 6(b), Fig. 7(b) shows that the proposed
scheme can also obtain the lowest completion time with a
moderate moving time.

VI. CONCLUSION
In this paper, we proposed a joint optimization scheme
concerning multi-robot offloading, resource allocation, and
velocity control for MEC in a task-oriented satellite-UAV
network. To solve the optimization problem with long-term
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constraints, based on Lyapunov optimization, the original
optimization was reduced to multiple AP coverage-based
subproblems for velocity control and data offloading. Then, a
multi-agent Q-learning algorithm, composed of multi-group
dual-agent Q-learning, was presented. The wireless com-
munication availability and reduced computational resource
status were observed, and a global reward was calculated.
The convergence of the multi-agent Q-learning algorithm
was analyzed in terms of Q function, optimal Q function,
and convergence rate. Simulation results were presented
to show that, compared with conventional schemes, based
on velocity control, the proposed scheme can achieve an
effective reduction in offloading time for multiple robots.
It was concluded that mobility control is beneficial for
providing a high-quality offloading performance in the multi-
robot environment with time-varying bandwidth and dynamic
computational resources.
In practical multi-robot environments, satellite commu-

nications and UAV communications may utilize the same
frequency band. To avoid interference between the satellite-
robot and UAV-robot links, a spectrum sharing strategy
for multiple robots within the satellite-UAV network will
be developed in our future work. Based on the robots’
demand for UAV communications or satellite communica-
tions, we plan to modify the calculation of signal-to-noise
ratio (SNR) in (3) or (5) by replacing the channel noise
in the denominator with the sum of channel noise and
interference, thus forming the signal-to-interference-plus-
noise ratio (SINR). Moreover, when the positions of tasks
change constantly, it may be necessary to dynamically adjust
the UAV deployment. A high UAV velocity will significantly
increase the dynamics of network coverage and service
migration. Therefore, the velocity control for UAVs will be
an extension of the velocity control model presented in this
paper.

A. PROOF OF LEMMA 1
According to [40], Lemma 1 is proved by three cases of
lim
j→∞ λj. First, when lim

j→∞ λj = h > 0, according to the

definition of limit, for any w > 0, there is a positive
integer T , such that when t > T , we have |λj − h| < w, that
is h − w < λj < h + w. If h − w > 0 and 0 ≤ φ < ∞,
we have

∞∏

j=0

(
1 − λj

φ + 1

)
=

T−1∏

j=0

(
1 − λj

φ + 1

) ∞∏

j=0

(
1 − λj

φ + 1

)

≤
T−1∏

j=0

(
1 − λj

φ + 1

) ∞∏

j=T

(
1 − h− w

φ + 1

)

=
T−1∏

j=0

(
1 − λj

φ + 1

)
lim
j→∞

(
1 − h− w

φ + 1

)j

= 0. (A.1)

Moreover, due to 0 ≤ λj ≤ 1 and 0 ≤ φ, we have
∏∞

j=0 (1 − λj
φ+1 ) ≥ 0. Therefore,

∏∞
j=0 (1 − λj

φ+1 ) = 0 is
achieved.
Second, when lim

j→∞ λj = 0, for 0 < φ < ∞ and

0 ≤ λj ≤ 1, we obtain

ln

⎛

⎝
∞∏

j=0

(
1 − λj

φ + 1

)
⎞

⎠ =
∞∑

j=0

ln

(
1 − λj

φ + 1

)
≤ 0. (A.2)

Furthermore, according to the property of limit for the
quotient of functions [40], we have

lim
j→∞

− ln
(

1 − λj
φ+1

)

λj
= 1

φ + 1
. (A.3)

Since 1
φ+1 is a constant, it is inferred that

∏∞
j=0 (1 − λj

φ+1 )

and
∑∞

j=0 λj have the same convergence. If
∑∞

j=0 λj → ∞,

we obtain −∑∞
j=0 ln(1 − λj

φ+1 ) → ∞. Thus, it is proved that
∏∞

j=0 (1 − λj
φ+1 ) = e−∞ = 0.

Finally, when lim
j→∞ λj does not exist, we assume that there

exists a lower bound y (0 < y < 1), such that infinite
λj belong to the set Y = {λj|y < λj ≤ 1}. Then, it can be
concluded that

∞∏

j=0,λj∈Y

(
1 − λj

φ + 1

)
≤ lim

j→∞

(
1 − y

φ + 1

)j
= 0. (A.4)

For 0 ≤ φ < ∞, we have
∏∞

j=0,λj∈Y (1 − λj
φ+1 ) ≥ 0. It

is inferred that
∏∞

j=0,λj∈Y (1 − λj
φ+1 ) = 0. Therefore, for

∏∞
j=0,λj /∈Y (1 − λj

φ+1 ) < ∞, we obtain

∞∏

j=0

(
1 − λj

φ + 1

)

=
∞∏

j=0,λj∈Y

(
1 − λj

φ + 1

) ∞∏

j=0,λj /∈Y

(
1 − λj

φ + 1

)

= 0. (A.5)

Finally, upon combining the value ranges of λj and φ in
the above three cases, Lemma 1 is proved.

B. PROOF OF THEOREM 1
Given an arbitrarily small non-negative value
ζ ≥ 0, we define a set as Xζ =
{.(st, at)|st ∈ Xs, at ∈ Xa, ‖st‖ + ‖at‖ ≤ ζ }. According
to [47], it can be concluded that for ζ → 0, we have
Qj(st, at) → 0. Moreover, since Q∗(st, at) = r(st, at) +
γ max{∑∞

i=0 r(st+i, at+i)} and Q0(st, at) is semi-positive
definite, we can derive that Q∗(st, at) is positive definite.
Thus, for ζ = 0, we obtain Qj(st, at) = Q∗(st, at).

Next, we use mathematical induction to prove the prop-
erties of Qj(st, at) for ζ > 0. Based on [48], for any ζ > 0
and (st, at) /∈ Xζ , there are three constants y (0 ≤ y ≤ 1),
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ȳ (1 ≤ ȳ ≤ ∞), and (y0 0 < y0 < ∞) satisfying the
following condition

⎛

⎝1 +
(
y− 1

) j−1∏

l=0

(
1 − λl

y0 + 1

)⎞

⎠Q∗(st, at) ≤ Qj(st, at)

≤
⎛

⎝1 + (ȳ− 1)

j−1∏

l=0

(
1 − λl

y0 + 1

)
⎞

⎠Q∗(st, at). (B.1)

First, when j = 0, we have yQ∗(st, at) ≤ Q0(st, at) ≤
ȳQ∗(st, at), which satisfies the condition (B.1).
Then, when j = 1, we can derive

Q1(st, at)

= (1 − λ0)Q0(st, at) + λ0(r(st, at) + γ max{Q0(st′ , at′)})
≤ ȳ(1 − λ0)Q

∗(st, at) + λ0

(
1 + y0(ȳ− 1)

y0 + 1

)

× (
r(st, at) + γ max

{
Q∗(st′ , at′)

})

=
(

1 + (ȳ− 1)

(
1 − λ0

y0 + 1

))
Q∗(st, at), (B.2)

Q1(st, at)

≥ (1 − λ0)Q0(st, at) + λ0

(⎛

⎝1 +
y0

(
y− 1

)

y0 + 1

⎞

⎠r(st, at)

+
(
y− y− 1

y0 + 1

)
γ max

{
Q∗(st′ , at′)

})

=
(

1 +
(
y− 1

)(
1 − λ0

y0 + 1

))
Q∗(st, at), (B.3)

which also satisfies condition (B.1).
When j = l + 1, under the assumption of y0r(st, at) ≥

γ max{Q∗(st′, at′)}, we derive

Ql+1(st, at)

= (1 − λl)Ql(st, at) + λl(r(st, at) + γ max{Ql(st′ , at′)})
≤ (1 − λl)Ql(st, at) + λl

(
r(st, at) +

(
1 + (ȳ− 1)

×
l−1∏

j=0

(
1 − λj

y0 + 1

))
γ max

{
Q∗(st′ , at′)

} + ȳ− 1

y0 + 1

×
l−1∏

j=0

(
1 − λj

y0 + 1

)(
y0r(st, at) − γ max

{
Q∗(st′, at′)

}))

≤ (1 − λl)

⎛

⎝1 + (ȳ− 1)

l−1∏

j=0

(
1 − λj

y0 + 1

)⎞

⎠Q∗(st, at)

+ λl

⎛

⎝1 + y0(ȳ− 1)

y0 + 1

l−1∏

j=0

(
1 − λj

y0 + 1

)⎞

⎠Q∗(st, at)

≤
⎛

⎝1 + (ȳ− 1)

l−1∏

j=0

(
1 − λj

y0 + 1

)⎞

⎠Q∗(st, at). (B.4)

Furthermore, Ql+1(st, at) satisfies

Ql+1(st, at)

≥ (1 − λl)Ql(st, at) + λl

(
r(st, at)

+
⎛

⎝1 +
(
y− 1

) l−1∏

j=0

(
1 − λj

y0 + 1

)⎞

⎠γ max
{
Q∗(st′ , at′)

}
)

≥ (1 − λl)Ql(st, at) + λl

⎛

⎝1 +
(
y− 1

) l−1∏

j=0

(
1 − λj

y0 + 1

)
⎞

⎠

× (
r(st, at) + γ max

{
Q∗(st′ , at′)

})

≥ (1 − λl)

⎛

⎝1 +
(
y− 1

) l−1∏

j=0

(
1 − λj

y0 + 1

)
⎞

⎠Q∗(st, at)

+ λl

⎛

⎝1 +
(
y− 1

) l−1∏

j=0

(
1 − λj

y0 + 1

)⎞

⎠Q∗(st, at)

=
⎛

⎝1 +
(
y− 1

) l−1∏

j=0

(
1 − λj

y0 + 1

)
⎞

⎠Q∗(st, at), (B.5)

which satisfies the condition (B.1).
Consequently, for j → ∞, we have

lim
j→∞

⎛

⎝1 +
(
y− 1

) j−1∏

l=0

(
1 − λl

y0 + 1

)
⎞

⎠Q∗(st, at) = Q∗(st, at),

(B.6)

lim
j→∞

⎛

⎝1 + ( ȳ− 1)

j−1∏

l=0

(
1 − λl

y0 + 1

)⎞

⎠Q∗(st, at) = Q∗(st, at).

(B.7)

Based on (B.6) and (B.7), we obtain (27). Thus, Theorem 1
is proved.

C. PROOF OF THEOREM 2
Based on the mathematical induction, when j = 0,
Qu,v,1,0(su,v,m,n(t), au,v,m,n(t)) and Qu,v,2,0(su,v,m, au,v,m) can
be initialized based on (28)-(31). For example, the values
of Qu,v,1,0(su,v,m,n(t), au,v,m,n(t)) and Qu,v,2,0(su,v,m, au,v,m)

can be selected from the intervals [− ru,v,max
1−γ

,
ru,v,max

1−γ
] and

[−Lu,v,maxru,v,max
1−γ

,
Lu,v,maxru,v,max

1−γ
], respectively.

When j = l+ 1, we derive
∥
∥Qu,v,1,l+1

(
su,v,m,n(t), au,v,m,n(t)

)∥∥

≤ (1 − λl)
∥∥Qu,v,1,l

(
su,v,m,n(t), au,v,m,n(t)

)∥∥

+ λl
∥∥ru,v,m,n(t)

∥∥ + λlγ

×
∥∥∥∥ max
au,v,m,n(t′)∈Au,v,1

{
Qu,v,1,l

(
su,v,m,n

(
t′
)
, au,v,m,n

(
t′
))}

∥∥∥∥

≤ (1 − λl)
ru,v,max

1 − γ
+ λlru,v,max + λlγ

ru,v,max

1 − γ

= ru,v,max

1 − γ
, (C.1)
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where t′ = t + 1 and l = 0, 1, . . . ,TEpi − 2. Similarly,
Qu,v,2,j(su,v,m, au,v,m) can be expressed as

∥∥Qu,v,2,l+1
(
su,v,m, au,v,m

)∥∥

≤ (1 − λl)
∥
∥Qu,v,2,l

(
su,v,m, au,v,m

)∥∥ + λl
∥
∥ru,v,m

∥
∥

+ λjγ

∥∥∥∥∥
max

au,v,m′ ∈Au,v,2

{
Qu,v,2,l

(
su,v,m′ , au,v,m′

)}
∥∥∥∥∥

≤ (1 − λl)
Lu,v,maxru,v,max

1 − γ
+ λlLu,v,maxru,v,max

+ λlγ
Lu,v,maxru,v,max

1 − γ

= Lu,v,maxru,v,max

1 − γ
, (C.2)

where m′ = m + 1. Therefore, the following relationships
are achieved as

∥∥Qu,v,1,j
(
su,v,m,n(t), au,v,m,n(t)

) − Q∗
u,v,1

∥∥

≤ ∥
∥Qu,v,1,j

(
su,v,m,n(t), au,v,m,n(t)

)∥∥ + ∥
∥Q∗

u,v,1

∥
∥

≤ 2ru,v,max

1 − γ
, (C.3)

∥∥Qu,v,2,j
(
su,v,m, au,v,m

) − Q∗
u,v,2

∥∥

≤ ∥∥Qu,v,2,j
(
su,v,m, au,v,m

)∥∥ + ∥∥Q∗
u,v,2

∥∥

≤ 2Lu,v,maxru,v,max

1 − γ
. (C.4)

Therefore, Theorem 2 is proved.

D. PROOF OF THEOREM 3
According to [49], we first define the Bellman operation as

T{Q(s, a)} =
∑

s′∈S
pa

(
s, s′

)(
r(s, a) + γ max

a′∈A
{
Q
(
s′, a′)}

)
,

(D.1)

where pa(s, s′) represents the transition probability from state
s to state s′, S is the state space. Thus, for i = 1, 2 and j =
0, 1, . . . ,TEpi, the approximation error θu,v,i,j is defined as

E
{∥∥Qu,v,i,j+1 − T

{
Qu,v,i,j

}∥∥2
2

}
≤ θu,v,i,j. (D.2)

According to Q∗
u,v,1 = T{Q∗

u,v,1} and the γ -contraction
property of the Bellman operator in [41], we obtain

E
{∥∥Qu,v,i,j+1 − Q∗

u,v,i

∥∥∞
}

≤ E
{∥∥Qu,v,i,j+1 − T

{
Qu,v,i,j

}∥∥∞
}

+E
{∥
∥T

{
Qu,v,i,j

} − Q∗
u,v,i

∥
∥∞

}

≤
√

E
{∥∥Qu,v,i,j+1 − T

{
Qu,v,i,j

}∥∥2
2

}

+E
{∥∥T

{
Qu,v,i,j

} − T
{
Q∗
u,v,i

}∥∥∞
}

≤ √
θu,v,i,j+1 + γE

{∥
∥Qu,v,i,j − Q∗

u,v,i

∥
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}
. (D.3)

Based on (D.3), it follows recursively that

E
{∥∥Qu,v,i,TEpi − Q∗

u,v,i

∥∥∞
}

≤
√

θu,v,i,TEpi + γE
{∥∥Qu,v,i,TEpi−1 − Q∗

u,v,i

∥∥∞
}

≤
√

θu,v,i,TEpi

+ γ
(√

θu,v,i,TEpi−1 + γE
{∥∥Qu,v,i,TEpi−2 − Q∗

u,v,i

∥∥∞
})

. . .

≤
TEpi∑

j=0

γ TEpi−j
√

θu,v,i,j + γ TEpiE
{∥∥Qu,v,i,0 − Q∗

u,v,i

∥∥∞
}
.

(D.4)

According to Theorem 2, we have θu,v,2,j = Lu,v,maxθu,v,1,j.
Then, based on (D.4), (34) and (35) are proved.
For θu,v,1,j = θu,v, (D.4) is simplified as

E
{∥∥Qu,v,i,TEpi − Q∗

u,v,i

∥∥∞
}

≤ 1 − γ TEpi+1

1 − γ

√
θu,v,i,j + γ TEpiE

{∥∥Qu,v,i,0 − Q∗
u,v,i

∥∥∞
}
.

(D.5)

When TEpi → ∞, due to 0 ≤ γ < 1, we have γ TEpi+1 → 0.
Then, (D.5) is expressed as

E
{∥∥Qu,v,i,TEpi − Q∗

u,v,i

∥∥∞
}

≤
√

θu,v,i,j

1 − γ
+ γ TEpiE

{∥∥Qu,v,i,0 − Q∗
u,v,i

∥∥∞
}
. (D.6)

Consequently, Theorem 3 is proved.
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