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ABSTRACT Low-complexity fusion rules relying on hybrid combining are proposed for decision fusion
in frequency selective millimeter wave (mmWave) massive multiple-input multiple-output (MIMO)
sensor networks (SNs). Both centralized (C-MIMO) and distributed (D-MIMO) antenna architectures are
considered, where the error-prone local sensor decisions are transmitted over orthogonal subcarriers to a
fusion center (FC) employing a large antenna array. Fusion rules are designed for the FC, followed by
closed-form expressions of the false alarm and detection probabilities to comprehensively characterize the
performance of distributed detection. Furthermore, efficient transmit signaling vectors are designed for
optimizing the detection performance. Both the asymptotic performance analysis and the pertinent power
reduction laws are presented for the large antenna regime considering both the C-MIMO and D-MIMO
topologies, which potentially lead to a significant transmit power reduction. Low-complexity fusion rules
and their analyses are also given for the realistic scenario of incorporating channel state information (CSI)
uncertainty, where the sparse Bayesian learning (SBL) framework is utilized for the estimation of the
sparse frequency selective mmWave massive MIMO channel. Finally, the performance of the proposed
low-complexity detectors is characterized through extensive simulation results for different scenarios.

INDEX TERMS Decision fusion, millimeter wave, sparse Bayesian learning, OFDM, massive MIMO,
hybrid combining, distributed detection.

I. INTRODUCTION

NEXT-GENERATION (NG) sensor networks (SNs) are
envisaged to support ultra-dense sensor connectivity

to enable real-time monitoring of a large area for mission-
critical tasks in applications such as surveillance, disaster
management, and agriculture, among others [1], [2], [3].
In these networks, battery-operated sensors are geograph-
ically distributed to monitor a specific event of interest.

The sensor measurements are generally compressed into
single-bit decisions, due to power and bandwidth constraints,
and are subsequently transmitted to the fusion center (FC),
where the final decision related to the presence/absence of
a signal of interest is arrived at using a suitable fusion rule.
This paradigm is referred to as distributed detection [4].
The rising interest in these applications both in current and
NG networks, along with the drastic surge in the number
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of miniature sensors has led to a spectrum-crunch in the
sub-6 GHz bands. This motivates one to look for alternative
frequency bands that can provide an abundance for spectrum
necessary for NG SNs.
In this respect, millimeter wave (mmWave) communica-

tion serves as a potential technology for supporting high
data rates and bandwidth-intensive applications by leveraging
the underutilized band ranging from 30 to 300 GHz [5].
However, mmWave signals suffer from severe absorption
and propagation losses, which renders the implementation of
mmWave communication challenging [6]. To overcome this
challenge, one can employ massive multiple-input multiple-
output (MIMO) technology, wherein massive antenna arrays
(AAs) are deployed at the base stations (BSs) within limited
physical dimensions, thanks to the shorter wavelength of
mmWave signals. This can play a pivotal role in compen-
sating for the huge path losses at such higher frequencies,
thus paving the way for the practical implementation of
mmWave MIMO communication [7]. Furthermore, orthogo-
nal frequency division multiplexing (OFDM), which provides
robustness to inter-symbol interference (ISI) and multipath
distortion, is well suited for mmWave massive MIMO SNs.
Thus, mmWave massive MIMO-OFDM SNs constitute an
effective solution for the reliable detection of events of
critical importance in high-speed networks.
The conventional fully digital precoding/combining archi-

tectures employed in such systems, where the signal
processing (SP) is exclusively executed in the baseband,
necessitates a substantially larger number of radio frequency
(RF) chains since an independent RF chain is required for
each antenna. This fact, coupled with the high sampling rate
of the ADCs due to the larger bandwidth of the signals,
makes the system power-hungry and costly, precluding the
deployment of fully digital signal processing (DSP) schemes
in NG SNs. This issue can be circumvented by implementing
the popular hybrid SP architecture [8], wherein SP tasks
like analog/digital transmit precoding (TPC) and receiver
combining are executed in the RF and baseband domains,
respectively. Such architectures require only a modest number
of RF chains in contrast to conventional fully DSP.
In a conventional mmWave massive MIMO SN, also

known as centralized (C-MIMO) architecture, hundreds of
antennas are co-located at the FC situated at the cell center.
Despite having low deployment costs, this architecture
experiences high spatial channel correlation and eventually
leads to loss of orthogonality for the mmWave channels.
To overcome this concern, distributed (D-MIMO) antenna
configuration, wherein a very large AA is distributed
over multiple geographically dispersed FCs that are linked
together by a high-speed optical fiber backhaul, has gained
considerable research interest [9]. Furthermore, the D-MIMO
architecture potentially reduces the radio access distance
between the sensors and the FCs, which facilitates significant
power savings and improves the system performance over
that of the C-MIMO architecture. The dense sensor deploy-
ment in NG networks naturally generates a tremendous

amount of data that has to be processed to obtain reliable
decisions regarding events of critical importance. Therefore,
there is a crucial need to design efficient rules for decision
fusion, which are investigated in this paper. A literature
review is provided next.

A. LITERATURE REVIEW
Distributed detection for wireless sensor networks (WSNs)
was first investigated by Li and Dai in their pioneering work
in [10], wherein correlated observations were transmitted
over a multiple access channel (MAC). The authors of [11]
proposed modified amplify-and-forward (AF) and decode-
and-forward (DF) based detection schemes for a MAC. A
distributed detection algorithm was proposed and analyzed
by Tepedelenlioglu and Dasarathan in [12] for a Gaussian
MAC, wherein the sensor transmissions were constant mod-
ulus signals. Berger et al. [13] investigated the decentralized
detection performance of MAC and parallel access channels
(PAC) using noncoherent modulation. The optimality of the
energy detector in the decision fusion was studied in [14] for
a non-coherent Rayleigh fading MAC. In [15], Banavar et al.
presented a novel AF-based distributed detection scheme for
Ricean fading channels considering multiple antennas at the
FC and characterized the performance of the system using
an error exponent. This work was further extended in [16]
to evaluate the optimal sensor transmit gains for different
levels of channel state information (CSI) at the sensors.
In [17], Ciuonzo et al. designed sub-optimal detection rules
based on both the decode-and-fuse and decode-then-fuse
principles for distributed MIMO SNs considering local deci-
sion transmission. The authors in [18] developed algorithms
for distributed detection in WSNs considering both perfect
and imperfect CSI both between the source and the sensors
as well as between the sensors and the FC, followed by
analyzing their performance in terms of the associated false
alarm and detection probabilities. Novel DF relaying-based
optimal and sub-optimal fusion rules were derived in [19]
for cooperative WSNs. The authors of [20] successfully
developed tests for multi-user (MU) cooperative MIMO
spectrum sensing, incorporating realistic CSI uncertainty in
the secondary user channels. The detection and estimation
of a Gaussian signal in an AF WSN are investigated in [21]
using both the energy and Neyman-Pearson (NP) detectors
as well as the linear minimum mean-squared error estimator.
In [22], Astaneh and Gazor studied the distributed detection
performance of both the NP detector and of the generalized
likelihood ratio test in an OFDM system. State-of-the-art
detection rules were designed using the NP criterion in [23]
for a massive MIMO-aided WSN, which also considers
realistic imperfect CSI at the FC. In [24], a state of
detection rules were developed for massive MIMO WSNs
while considering both imperfect and perfect CSI availability,
for both known/unknown parameter scenarios. A family
of detection schemes were presented in [25] for mmWave
massive C-MIMO WSNs for decision fusion, which were
subsequently extended to the distributed antenna topology
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TABLE 1. Contrasting our contributions to existing works.

in [26]. The sparse Bayesian learning (SBL) paradigm was
proposed for sparse channel estimation in mmWave massive
MIMO WSNs in [27], followed by the design of distributed
detection schemes incorporating the associated CSI uncer-
tainty in C- and D-MIMO architectures. Furthermore, the
decision fusion in a mmWave massive MIMO WSN is
investigated in [28], harnessing the SBL framework for
realistic imperfect channel estimation. However, the analysis
is restricted only to the centralized antenna architecture,
where the sensors transmit their decisions to the FC over
a flat fading channel. In [29], Gimenez et al. characterized
the performance of a distributed hybrid precoding algorithm
designed for a mmWave D-MIMO system in an indoor
setting. Hybrid transmit/receive beamforming schemes were
presented in [30] for heterogeneous systems to mitigate the
inter- and intra-tier interferences in mmWave massive MIMO
scenarios. In [9], the authors investigated the asymptotic
spectral efficiencies of the MU mmWave massive MIMO
downlink (DL) employing a hybrid precoding algorithm for
C- and D-MIMO topologies. The authors of [31] proposed a
cooperative MIMO-OFDM algorithm for enhancing energy
efficiency and for interference mitigation in multi-hop 3D
wireless camera SNs. Al-Jarrah et al. [32] studied parallel
distributed detection in a WSN conceived for the local sensor
decisions’ transmission to the FC using a cooperative trans-
mission strategy, where the FC receives each local decision
as an OFDM block. The authors of [33] designed fusion rules
for distributed detection by exploiting the probability density
function (PDF) of the received signal, for an OFDM system.
However, to the best of our knowledge, none of the existing
treatises have proposed hybrid combining-based fusion rules
for a WSN, where the sensors transmit their local decisions
over frequency selective channels while leveraging the
benefits of mmWave massive MIMO technologies. Hence,
this paper explores the problem of distributed detection in an
OFDM-based mmWave massive MIMO WSN, wherein the
sensors transmit their decisions over orthogonal subcarriers.
Table 1 contrasts the key features of the paper vis-à-vis those
of the closely related works reviewed above. The detailed
contributions of this work are further detailed below.

B. KEY CONTRIBUTIONS
• This study investigates an OFDM system wherein
the sensors transmit their local decisions over sin-
gle/multiple orthogonal subcarriers to the FC over a
frequency selective mmWave massive MIMO channel.
This scenario is in contrast to [15], [16], [24], [27]
and [34], where analog observations are transmitted.
Fusion rules are conceived for processing the wideband
signal received at the FC, to determine a global
decision.

• Low-complexity detection rules based on hybrid
receiver combining (RC) are designed for C- and
D-MIMO antenna topologies for antipodal signaling
and low signal-to-noise ratios (SNR). Closed-form
expressions of the false alarm (PFA) and detection
(PD) probabilities are for characterizing the system
performance.

• Furthermore, a beneficial signaling vector design is
conceived for the D- and C-MIMO topologies in order
to improve the detection performance.

• The asymptotic performance analysis and the asso-
ciated power reduction laws are determined for
a large number of antennas. The analysis clearly
demonstrates the substantial sensor transmit power
reduction attained without affecting the detection
performance, thereby resulting in improved battery
life.

• The extension of the above framework to a realistic
scenario incorporating CSI uncertainty is also inves-
tigated. The SBL approach [35], [36] is utilized for
exploiting the sparsity of the mmWave channel to
obtain improved estimates of the frequency selective
mmWave massive MIMO-OFDM CSI. It is a promising
sparse signal recovery method, which has also shown
superior performance compared to various state-of-the-
art schemes in our recent work related to delay-Doppler
domain sparse CSI estimation [37]. Furthermore, suit-
able hybrid combining-based fusion rules are designed
for both antenna topologies under realistic imperfect
CSI.
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FIGURE 1. Flow of the paper.

• Simulation results are provided for validating the
theoretical findings for characterizing the performance
of the proposed novel detectors.

C. ORGANIZATION
The organization of the paper is as follows. Section II
discusses the system model of mmWave C- and D- massive
MIMO-OFDM SNs. The fusion rules are determined in
Section III and our signaling vector design procedure
is described in Section IV. The asymptotic performance
and the associated power reduction laws are analyzed
in Section V. Furthermore, our novel SBL-based channel
estimation scheme and the corresponding fusion rules are
given in Section VI. Finally, our simulation results and con-
clusions are provided in Sections VII and VIII, respectively.
Furthermore, we have provided a diagram, depicted in Fig. 1,
to concisely outline the contributions in each section.

D. NOTATIONS
Boldface uppercase (resp. lowercase) letters denote matrices
and vectors, where [X]i,j is the (i, j)th entry of X and xi
is the ith entry of x, 0K and IK are the K × 1 zero vector
and K × K identity matrix, respectively, �(.), E{.}, exp(.),
o(.), O(.), (.)H , (.)T , ��, ⊗, (.)∗, ‖.‖, represent the real
part, expectation operator, exponential function, little o, big
O, conjugate transpose, transpose, floor, Kronecker product,

conjugate, and Euclidean norm, respectively, p(.), p(.|.), Pr(.)
and Pr(.|.) denote the PDF, conditional PDF, probability and
conditional probability, respectively.

II. SYSTEM MODEL
Consider K single-antenna sensors which are randomly
distributed in a mmWave massive MIMO SN to sense the
presence (H1) (resp. absence (H0)) of a signal of interest.
The sensors subsequently send their local decisions to either
a single FC or multiple FCs, depending on the antenna
configuration, over a frequency selective fading channel. Let
Ns successive subcarriers be allocated to each sensor and the
same signal be transmitted over all the Ns subcarriers, so that
beneficial frequency diversity is attained. Hence, the signal
corresponding to the kth sensor, 0 ≤ k ≤ K − 1, becomes:

x̃k(n) =
Ns−1∑

i=0

xke
j 2π
N (kNs+i)n,∀0 ≤ n ≤ N − 1, (1)

where N = NsK is the total number of subcarriers. For
antipodal signaling, the local decision xk corresponding
to the kth sensor belongs to the set xk ∈ {uk,−uk}, so
that its local false alarm and detection probabilities can
be expressed as PF,k = Pr(xk = uk|H0) and PD,k =
Pr(xk = uk|H1). Subsequently, the signals of the K sensors
are processed at the FC to obtain a final decision. The
frequency selective mmWave MIMO channel models for
different antenna topologies are discussed next.

A. FREQUENCY SELECTIVE MMWAVE MIMO CHANNEL
MODEL
In the C-MIMO configuration, the sensors transmit their
local decisions to a single FC, located at the center of the
cell. The FC is equipped with a massive antenna array (AA)
containing M antennnas. The centralized antenna topology is
depicted in Fig. 2a. Considering the D-delay channel model
of [39] for the C-MIMO topology, the d-th delay tap gk,d ∈
C
M×1 associated with the kth sensor and the FC is gk,d =√
βkhk,d, ∀ k, where βk characterizes the pathloss and log-

normal shadowing [40], while hk,d is the small-scale fading
vector [41] modeled as

hk,d =
√
M

Lk

Lk−1∑

i=0

α̃ikar(θ
i
k)pk(dTs − τk,i), (2)

where τk,i and α̃ik are the delay and complex channel
gains of the kth sensor and the ith spatial multipath
component, respectively. The parameters Ts,Lk, and pk(τ )
denote the sampling period, the number of multipath
components, and the band-limited pulse shaping filter
response at delay τ , respectively. The receive array response
vector ar(θ ik) ∈ C

M×1 is defined as ar(θ ik) = 1√
M

[1, ej
2π
λ
d sin(θ ik), . . . , ej

2π
λ
d(M−1) sin(θ ik)]T , where θ ik is the angle

of arrival (AoA) of the ith multipath and the kth sensor, while
λ, and d denote the wavelength and receive antenna spacing,
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FIGURE 2. Antenna topologies of mmWave massive MIMO-OFDM SN (a) Centralized
(b) Distributed.

respectively. In the frequency domain, the lth subcarrier
channel vector gl ∈ C

M×1 is derived as

gl =
D−1∑

d=0

gk,de−j
2π
N kd, ∀ 0 ≤ l ≤ N − 1, (3)

where the variable k satisfies k = � lNs �, with a total of Ns
consecutive subcarriers allocated to the kth sensor and the
channel assumed to be constant across the Ns subcarriers.
Using (3), the channel vector gl can be remodeled as gl =√

Mβk
Lk

Ar,kαl, where αl ∈ C
Lk×1 and Ar,k ∈ C

M×Lk denote
the equivalent complex channel gain vector associated with
the kth sensor and the lth subcarrier and the receive array
response matrix of the kth sensor, respectively.
In the D-MIMO architecture, J FCs are uniformly dis-

tributed on a circle of radius ρ with R being the cell radius.
All the J FCs are interconnected via the high-capacity and
low-latency backhaul infrastructure constituted by optical
fiber cables. Each FC is equipped with an independent Nd-
element AA, hence the total number of antennas Ntot across
all FCs is Ntot = NdJ. Additionally, each FC utilizes a
single RF chain connected to its Nd-element AA. The RF
combiner outputs from all the FCs are then directed to the
baseband processing unit (BPU) for further signal processing,
as illustrated in Fig. 2b. The circular layout is preferred
because of its compatibility with the existing infrastructure
and low optical backhaul installation requirements [9]. To
ensure a fair comparison with C-MIMO, it is assumed that
Ntot = M and J = K, similar to the model in [9]. For D-
MIMO, the channel vector related to the lkth subcarrier and
the jth FC is formulated as

glk,j =
√
Ndβk,j
Lk,j

Ar,k,jαlk,j, (4)

where lk ∈ Ak = {kNs, kNs + 1, . . . , (k + 1)Ns − 1}. The
quantities Ar,k,j ∈ C

Nd×Lk,j , βk,j and Lk,j represent the receive
array response matrix, large-scale fading coefficient and the
number of multipath components, respectively, for the kth
sensor and the jth FC. Furthermore, αlk,j ∈ C

Lk,j×1,∀lk ∈ Ak,

is the equivalent complex channel gain vector of the jth FC,
lkth subcarrier and the kth sensor. The decision rules for the
C- and D-MIMO topologies, considering perfect CSI, are
described in the subsequent section.

III. FUSION RULES FOR DIFFERENT ANTENNA
ARCHITECTURES
In this section, fusion rules are developed for both antenna
configurations, considering hybrid combining and perfect
CSI at the FC. Next, the decision rule for the centralized
architecture is discussed.

A. DECISION RULE FOR A C-MIMO BASED WSN
After the N-point fast Fourier transform (FFT) of OFDM,
the signal y(l) ∈ C

M×1 received at the FC corresponding to
the lth subcarrier becomes

y(l) = √puglxk + w(l), (5)

where the additive white Gaussian noise (AWGN) w(l) ∈
C
M×1 is distributed as w(l) ∼ CN (0, σ 2

wIM). After stacking
Ns outputs of the kth sensor, one obtains the equivalent
received signal vector yk = [yT(kNs), . . . , yT((k + 1)Ns −
1)]T ∈ C

MNs×1 as

yk = √pugkxk + wk, (6)

where gk = [gT(kNs), . . . , gT((k + 1)Ns − 1)]T ∈ C
MNs×1

is the equivalent channel vector and the equivalent noise
vector wk = [wT(kNs), . . . ,wT((k + 1)Ns − 1)]T ∈ C

MNs×1

is distributed as wk ∼ CN (0,Cw), where Cw = σ 2
wIMNs .

Furthermore, the above signal yk is distributed as yk ∼
CN (μyk ,Cw), where the mean μyk is defined as μyk =√
pugkxk. Upon concatenating the output vectors of all K

sensors, one obtains

Y = √puGX+W, (7)

where Y = [y0, . . . , yK−1] ∈ C
MNs×K , G =

[g0, . . . , gK−1] ∈ C
MNs×K , X = diag(x0, . . . , xK−1) ∈

C
K×K and W = [w0, . . . ,wK−1] ∈ C

MNs×K denote the
equivalent received signal, channel, transmitted signal and
noise matrices, respectively.
Upon using the NP criterion, the log-likelihood ratio

(LLR) test [42] for the scenario considering the C-MIMO
configuration and perfect CSI can be formulated as

TCP(Y) = ln

[
p(Y|H1)

p(Y|H0)

]

=
K−1∑

k=0

ln

[∑
xk p(yk|xk)Pr(xk|H1)∑
xk p(yk|xk)Pr(xk|H0)

]
H1
≷
H0

γ. (8)

Note that the expression in (8) is obtained by exploiting the
independence of yk across different sensors. For antipodal
signaling, the LLR test reduces to

TCP(Y) =
K−1∑

k=0

ln

⎡

⎢⎢⎢⎣

∑
xk

exp

(
−‖yk−μyk

‖2
σ 2
w

)
Pr(xk|H1)

∑
xk

exp

(
−‖yk−μyk

‖2
σ 2
w

)
Pr(xk|H0)

⎤

⎥⎥⎥⎦. (9)
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FIGURE 3. Hybrid combining based system model for decision fusion in the
C-MIMO configuration.

Notice that the simplification of the above expression
requires the addition of a large number of exponential terms.
Hence, the above test statistic is computationally complex
and unsuitable for light-weight practical implementation. To
mitigate this concern, a hybrid combining-based two-step
procedure is utilized for approximating the test in (8) [25],
as illustrated in Fig. 3. In the first step, the received signal
is processed by an analog RC fRF,l ∈ C

M×1, followed by
the digital RC fBB,k ∈ C

Ns×1 in the next step. After that, the
hybrid RC outputs are processed to form a global decision.
The RF combiner for the kth sensor is chosen as fRF,l =

ar(θ
ik
k ), which is the receive array response vector of the

path having the maximum gain and ik is the corresponding
index. After RF combining, the processed signal ỹ(l) is
given by ỹ(l) = √pufHRF,lglxk + w̃(l), where the equivalent
noise is w̃(l) = fHRF,lw(l) ∼ CN (0, σ 2

w). Upon exploiting the
asymptotic orthogonality of the mmWave massive MIMO
channels [43] formulated as:

aHr
(
θ ism

)
ar

(
θ itn

)
=

{
1, s = t and m = n
0, s �= t or m �= n

, (10)

the quantity fHRF,lgl reduces to fHRF,lgl =
√

Mβk
Lk
α
ik
l . Hence, the

RF combiner output ỹk = [ỹ(kNs), . . . , ỹ((k+ 1)Ns− 1)]T ∈
C
Ns×1, of the kth sensor corresponding to Ns subcarriers, is

ỹk = √pu
√
Mβk
Lk

αkxk + w̃k, (11)

where αk = [αikkNs, . . . , α
ik
(k+1)Ns−1]T ∈ C

Ns×1 and w̃k =
[w̃(kNs), . . . , w̃((k+ 1)Ns− 1)]T ∈ C

Ns×1 are the equivalent
channel gain and noise vectors, respectively. Furthermore,

the baseband RC is selected as fBB,k =
√

Mβk
Lk

αk, which aims
for maximizing the signal’s SNR. Hence, the baseband RC
output zk is obtained as

zk = √puMdkxk + wk, (12)

where dk = βk
Lk
‖αk‖2 and wk =

√
Mβk
Lk

αHk w̃k is distributed

as wk ∼ CN (0, σ 2
k ) with σ 2

k = Mdkσ 2
w. Moreover,

the hybrid combiner output zk is distributed as zk ∼
CN (√puMdkxk, σ 2

k ). For the centralized mmWave massive

MIMO-OFDM WSN, the LLR test based on the hybrid
combiner output z can be simplified to

TCP(z)=
K−1∑

k=0

ln

⎡

⎣
PD,k+(1−PD,k) exp

(
− 4
√
pu�(z∗kuk)
σ 2
w

)

PF,k+(1−PF,k) exp
(
− 4
√
pu�(z∗kuk)
σ 2
w

)

⎤

⎦. (13)

Under the low SNR assumption, the test in (13) reduces to

TCP(z) =
K−1∑

k=0

ak�(z∗kuk)
H1
≷
H0

γ ′, (14)

where ak � PD,k−PF,k. The above expression follows from
the approximations e−s ≈ 1− s and ln(1+ s) ≈ s. Observe
that the detector in (14) has low complexity in contrast
to the fusion rule in (9), which requires the addition of a
large number of exponential terms. Moreover, the proposed
detector is suitable for practical scenarios, since WSNs are
typically resource-constrained. Furthermore, TCP(z) in (14)
is a complex Gaussian random variable since it is a weighted
sum of K complex Gaussian random variables. For a scenario
wherein the sensors have the same local false alarm and
detection probabilities, i.e., PF,k = Pf and PD,k = Pd,∀ k,
the test in (14) simplifies to TCP,I(z) =∑K−1

k=0 �(z∗kuk)
H1
≷
H0

γ ′.

The performance of the test in (14) is presented next.
Theorem 1: Considering the C-MIMO architecture of our

mmWave massive MIMO-OFDM WSN, the detection (PD)
and false alarm (PFA) probabilities of the test TCP(z) in (14)
are

PD = Q

(
γ ′ − μTCP|H1

σTCP|H1

)
,PFA = Q

(
γ ′ − μTCP|H0

σTCP|H0

)
,

where the means μTCP|H0 , μTCP|H1 and the variances σ
2
TCP|H0

,
σ 2
TCP|H1

under the H0 and H1 hypotheses, respectively, are

μTCP|H0 =
K−1∑

k=0

√
puMakdkck|uk|2, (15)

μTCP|H1 =
K−1∑

k=0

√
puMakdkbk|uk|2, (16)

σ 2
TCP|H0

=
K−1∑

k=0

Ma2
kdk|uk|2

(
puMdk|uk|2(1−c2

k)+
σ 2
w

2

)
, (17)

σ 2
TCP|H1

=
K−1∑

k=0

Ma2
kdk|uk|2

(
puMdk|uk|2(1−b2

k)+
σ 2
w

2

)
, (18)

where ck = 2PF,k − 1 and bk = 2PD,k − 1.
Proof: See Appendix A.
The fusion rule for the distributed antenna architecture is

discussed next.

B. DECISION RULE FOR A D-MIMO BASED WSN
In the D-MIMO architecture, the task of assigning sensors
to the operating FCs is crucial, hence diverse FC selection
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FIGURE 4. Hybrid combining based system model for decision fusion in the
D-MIMO topology.

algorithms have been developed in [9]. The distance (D)-
based algorithm, where an sensor is allocated to its nearest
FC according to the minimum distance criterion, is widely
used in the literature [9]. Hence, we also employ the D-based
algorithm to design detectors for the distributed antenna
architecture. To implement the D-based algorithm, a distance
matrix D ∈ R

K×J is determined so that its (k, j)th entry
dk,j = [D]k,j denotes the distance of the kth sensor from the
jth FC. Let S ∈ R

K×J be the binary correction matrix, where
[S]k,j = 1, when the jth FC is assigned to the kth sensor and
[S]k,j = 0, otherwise. Furthermore, SHS = IK since only a
single sensor is allocated to each FC and J = K.

For the D-MIMO topology, the signal received at the
jth FC yj(lj) ∈ C

Nd×1 corresponding to the ljth subcarrier
is yj(lj) = √puglj,jxkj + wj(lj), where lj ∈ Akj , Akj =
{kjNs, kjNs+1, . . . , (kj+1)Ns−1}, the AWGN wj(lj) ∈ C

Nd×1

is distributed as wj(lj) ∼ CN (0, σ 2
wINd ) and the channel

vector glj,j is defined as glj,j =
√

Ndβkj,j
Lkj,j

Ar,kj,jαlj,j,∀lj ∈ Akj .

Similarly, a two-step architecture is utilized for the D-MIMO
based WSN to reduce the computational complexity of the
LRT, as demonstrated in Fig. 4. For the jth FC and the
kjth sensor, the RF combiner fRF,D,j ∈ C

Nd×1 is chosen as

fRF,D,j = ar(θ
ikj
kj,j
),∀lj, which represents the receive array

response vector with maximum path gain. Hence, the output
of the RF combiner can be expressed as

ỹj(lj) = √pufHRF,D,jglj,jxkj + w̃j(lj), (19)

where the noise w̃j(lj) = fHRF,D,jwj(lj) is distributed as
w̃j(lj) ∼ CN (0, σ 2

w). Furthermore, observe that the quantity

fHRF,D,jglj,j reduces to

√
Ndβkj,j
Lkj,j

α
ikj
lj,j
. After stacking the RF

combiner outputs corresponding to the kjth sensor, one
obtains

ỹj = √pu
√
Ndβkj,j
Lkj,j

αjxkj + w̃j, (20)

where ỹj ∈ C
Ns×1 and αj ∈ C

Ns×1 denote the equivalent
RF combiner output vector and the channel gain vector
associated with the jth FC, respectively. The equivalent noise
vector w̃j ∈ C

Ns×1 follows the Gaussian normal distribution,
which is given as w̃j ∼ CN (0, σ 2

wINs). Furthermore, to
maximize the SNR at the jth FC, the baseband combiner

is chosen as fBB,D,j =
√

Ndβkj,j
Lkj,j

αj. Therefore, the hybrid

combiner output zkj at the jth FC is

zkj =
√
puNddkj,jxkj + wkj , (21)

where the quantity dkj,j is defined as dkj,j =
βkj,j

Lkj,j
‖αj‖2 and

the equivalent noise wkj is distributed as wkj ∼ CN (0, σ 2
kj
)

with σ 2
kj
= Nddkj,jσ

2
w. The hybrid combiner outputs gleaned

from K FCs are processed using the correction matrix S
at the baseband processing unit (BPU) to derive the soft
decisions of all sensors. The kth sensor soft decision is

zk = √puNddk,jk xk + wk, (22)

which is distributed as zk ∼ CN (√puNddk,jk xk, σ 2
k ), where

σ 2
k = Nddk,jkσ

2
w. Considering the D-MIMO topology, the

LLR test of mmWave massive MIMO-OFDM based WSNs
can be expressed as

TDP(z)=
K−1∑

k=0

ln

⎡

⎣
PD,k+(1−PD,k) exp

(
− 4
√
pu�(z∗kuk)
σ 2
w

)

PF,k+(1−PF,k) exp
(
− 4
√
pu�(z∗kuk)
σ 2
w

)

⎤

⎦.

(23)

Furthermore, for the low SNR regime, the above test
reduces to

TDP(z) =
K−1∑

k=0

ak�(z∗kuk)
H1
≷
H0

γ̃ , (24)

where γ̃ is the threshold. Since, the test in (24) is a
weighted linear combination of Gaussian random variables,
the test statistic TDP(z) is complex Gaussian distributed. The
performance of the test in (24) is presented next.
Theorem 2: For the test TDP(z) in (24), the detection (PD)

and false alarm (PFA) probabilities used for decision fusion
at the mmWave distributed massive MIMO-OFDM based
WSNs, are

PD = Q

(
γ̃ − μTDP|H1

σTDP|H1

)
,PFA = Q

(
γ̃ − μTDP|H0

σTDP|H0

)
,

where the means μTDP|H0 , μTDP|H1 and the variances
σ 2
TDP|H0

, σ 2
TDP|H1

of TDP(z) under hypotheses H0 and H1,
respectively, are given as

μTDP|H0 =
K−1∑

k=0

√
puNdakdk,jk ck|uk|2, (25)

μTDP|H1 =
K−1∑

k=0

√
puNdakdk,jkbk|uk|2, (26)
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σ 2
TDP|H0

=
K−1∑

k=0

Nda
2
kdk,jk |uk|2

(
puNddk,jk |uk|2(1−c2

k)+
σ 2
w

2

)
,

(27)

σ 2
TDP|H1

=
K−1∑

k=0

Nda
2
kdk,jk |uk|2

(
puNddk,jk |uk|2(1−b2

k)+
σ 2
w

2

)
.

(28)

Proof: Similar to the proof of Theorem 1.
In the subsequent section, the signaling vector design for

the perfect CSI scenario aimed at improving the detection
performance is presented.

IV. SIGNALING VECTOR DESIGN
In this section, the signaling vector x = [x0, x1, . . . , xK−1]T

is designed for maximizing the performance of the proposed
C- and D-MIMO detectors. Next, the signaling vector design
for the centralized architecture is presented.

A. SIGNALING VECTOR DESIGN FOR A C-MIMO
BASED FC
For the signaling vector u = [u0, u1, . . . , uK−1]T , the
performance can be enhanced by the deflection coefficient
maximization procedure of [42], given by

d2
CP(u) =

(μTCP|H1 − μTCP|H0)
2

σ 2
TCP|H0

. (29)

Substituting the expressions of σ 2
TCP|H0

, μTCP|H1 and μTCP|H0

from Theorem 1, (29) can be simplified as

d2
CP(u) =

(
K−1∑
k=0

√
puMakdk(bk − ck)|uk|2

)2

K−1∑
k=0

Ma2
kdk|uk|2

(
puMdk|uk|2(1− c2

k)+ σ 2
w
2

) . (30)

Consider the diagonal matrices � ∈ C
K×K , � ∈ C

K×K and
 ∈ C

K×K , where their diagonal entries are

[]k,k = √puMakdk(bk − ck)2, [�]k,k = 1

2
Ma2

kdkσ
2
w,

[�]k,k = √puMakdk
√

1− c2
k . (31)

Upon utilizing the above matrices, the expression in (30)
can be simplified as

d2
CP(u) =

(uHu)2

(uH�u)2 + uH�u
. (32)

Observe that the above expression is non-convex, therefore,
it is challenging to directly maximize (32). For finding a
tractable solution, the expression in (32) can be rewritten as

d2
CP(u) =

uH�u
uH�u

, (33)

where � = uuHH and � = �uuH�H + �. Based on
the Rayleigh quotient standard form, the modified objective
function is

max.
uH�u

uH�
1
2�

1
2 u
= max.

vH�− 1
2��− 1

2 v
vHv

= max.
vH�v
vHv

,

(34)

where � = �− 1
2��− 1

2 and v = �
1
2 u. The optimization

problem in (34) can now be solved in an iterative fashion
and the solution during the ith iteration is described next.
Theorem 3: To improve the detection performance of the

proposed test in (14) for the centralized antenna topology,
the signaling vector u(i) of the ith iteration can be defined
as u(i) = (�(i−1))− 1

2 v(i), where the ith iteration vector v(i)

can be determined from

max .
v(i)

v(i)H�(i−1)v(i)

v(i)Hv(i)
, (35)

where �(i−1) = (�(i−1))− 1
2�(i−1)(�(i−1))− 1

2 and v(i) =
(�(i−1))

1
2 u(i). During the (i−1)st iteration, �(i−1) and �(i−1)

are derived by substituting u(i) in place of u in (33), where
u is initialized to u(0) = 1K during the 0th iteration.

Upon solving the optimization problem in (35), one
obtains v(i) = κν(i−1), where the power scaling factor is
κ and the eigenvector ν(i−1) of �(i−1) is associated with
the maximum eigenvalue. Therefore, the signaling vector of
the ith iteration is u(i) = κ(�(i−1))− 1

2 ν(i−1). The overall
computational complexity of obtaining the signaling vector
after convergence is O(nK3), with K denoting the dimension
of the matrix � and n representing the total number of
iterations. The signaling vector design for the distributed
antenna topology is discussed next.

B. TRANSMIT SIGNALING VECTOR DESIGN FOR A
D-MIMO BASED FC
Similarly, the ith iteration’s signaling vector u(i)D of the D-
MIMO topology is obtained as

u(i)D = α(�(i−1)
D )−

1
2 ν
(i−1)
D , (36)

with ν
(i−1)
D as the eigenvector for the maximum eigenvalue

of �(i−1)
D and α denoting the power scaling factor. The

matrices �D and �D are obtained upon replacing dk and
M by dk,jk and Nd, respectively, in (30). The asymptotic
performance analysis and power scaling laws for C- and D-
MIMO architectures are presented in the subsequent section.

V. ASYMPTOTIC ANALYSIS AND POWER SCALING LAWS
This section demonstrates the advantage of using a massive
MIMO in distributed and centralized antenna architectures.
The asymptotic performance analysis provides insights
regarding the rate at which the reduction in the sensor
transmit power is achieved. The asymptotic performance
analysis for the centralized topology is discussed next.
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A. ASYMPTOTIC PERFORMANCE OF THE C-MIMO
SYSTEM
Consider the power scaling pu = p̃u

M , with the average sensor
transmit power as p̃u. For this scenario, the asymptotic
detection performance of the C-MIMO test is discussed
below.
Theorem 4: The asymptotic false alarm (PaFA) and detec-

tion (PaD) probabilities of the test in (14) for a frequency
selective mmWave C-MIMO based SN are

PaD = Q
(
γ̌ − μaTCP|H1

)
,PaFA = Q

(
γ̌ − μaTCP|H0

)
,

where γ̌ is the normalized detection threshold. The nor-
malized asymptotic means for the alternative and null
hypotheses, denoted by μaTCP|H1

and μaTCP|H0
, respectively,

are expressed as

μaTCP|H0
=

∑K−1
k=0

√
p̃uakdkck|uk|2√

K−1∑
k=0

a2
kdk|uk|2

(
p̃udk|uk|2(1−c2

k)+σ
2
w
2

) , (37)

μaTCP|H1
=

∑K−1
k=0

√
p̃uakdkbk|uk|2√

K−1∑
k=0

a2
kdk|uk|2

(
p̃udk|uk|2(1−b2

k)+σ
2
w
2

) , (38)

Proof: See Appendix B.
The asymptotic performance analysis for the distributed

architecture is presented in the subsequent subsection.

B. ASYMPTOTIC PERFORMANCE OF THE D-MIMO
SYSTEM
Considering the D-MIMO topology, the asymptotic detection
(PaD) and false alarm (PaFA) probabilities for the test in (24),
when Nd → ∞ and power scaling pu = p̃u

Nd
, are expressed

as

PaD = Q
(
γ̆ − μaTDP|H1

)
,PaFA = Q

(
γ̆ − μaTDP|H0

)
,

where γ̆ is the normalized detection threshold. The nor-
malized asymptotic means μaTDP|H1

and μaTDP|H0
for the

alternative and null hypotheses, respectively, are

μaTDP|H0
=

∑K−1
k=0

√
p̃uakdk,jk ck|uk|2√

K−1∑
k=0

a2
kdk,jk |uk|2

(
p̃udk,jk |uk|2(1−c2

k)+σ
2
w
2

) ,

μaTDP|H1
=

∑K−1
k=0

√
p̃uakdk,jkbk|uk|2√

K−1∑
k=0

a2
kdk,jk |uk|2

(
p̃udk,jk |uk|2(1−b2

k)+σ
2
w
2

) .

The above expressions can be derived using similar steps
to those of Theorem 4. Through the analytical expressions
derived above, it is evident that one can scale the sensor
transmit power as 1

M and 1
Nd
, for C- and D-MIMO based

architectures, respectively while considering a large AA at
the FC. Therefore, one can improve the sensor battery life,
which is crucial for the reliable operation of next-generation

SNs. The Bayesian learning (BL) based channel estimation
framework for the imperfect CSI scenario is discussed in the
next section.

VI. FRAMEWORK FOR SBL-BASED CSI ESTIMATION
This section discusses the frequency selective mmWave
MIMO channel estimation framework using the SBL-based
approach [35], [36]. Subsequently, the fusion rules are
determined for both antenna topologies in the face of
realistic CSI uncertainty. The sparse beamspace channel
representation for the centralized architecture is discussed
next.

A. SPARSE BEAMSPACE CHANNEL REPRESENTATION
To model the frequency selective mmWave MIMO channel
for the C-MIMO based FC, a M size angular grid is chosen,
where the AoAs are defined as �R = {ψn : ψn ∈ [0, π ],∀1 ≤
n ≤ M}. Furthermore, the angles satisfy the following
condition [44]

sin(ψn) = 2

M
(n− 1)− 1, ∀ 1 ≤ n ≤ M. (39)

The corresponding receive array response dictionary matrix
AR,C ∈ C

M×M can be expressed as

AR,C =
[
aR,C(ψ1), aR,C(ψ2), . . . , aR,C(ψM)

]
. (40)

Owing to the selection of AoAs, the above matrix follows the
property AR,CAH

R,C = AH
R,CAR,C = IM [44]. Upon using the

quantities defined above, the lth subcarrier’s channel vector
gl ∈ C

M×1 can be characterized as

gl = AR,Chb,l, (41)

where hb,l ∈ C
M×1 denotes its equivalent sparse beamspace

channel vector. Similarly, the channel vector glj,j ∈
C
Nd×1,∀lj ∈ Akj , associated with the jth FC for D-MIMO

is modeled as

glj,j = AR,Dhb,lj,j, (42)

where the equivalent sparse beamspace channel associated
with the jth FC is hb,lj,j ∈ C

Nd×1,∀lj ∈ Akj and the
receive array response dictionary matrix AR,D ∈ C

Nd×Nd is
determined by using the AoAs from the set �R = {ψv : ψv ∈
[0, π ],∀1 ≤ v ≤ Nd}. The BL algorithm harnessed for
estimating the sparse frequency selective mmWave massive
MIMO channel is presented next.

B. SBL-BASED CSI ESTIMATION
This subsection discusses the channel estimation procedure
of the C-MIMO configuration, given in (41). The channel
vector of the D-MIMO topology defined in (42) can be
estimated using a similar approach. Let xp ∈ C

K×1 be the
transmitted pilot vector obeying |xp,k|2 = 1,∀k, and WC ∈
C
M×M be the training RF combining matrix, which is chosen

as the normalized DFT matrix of size M. For a block of Nf
training frames, the channel is assumed to be constant. After
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combining, the output corresponding to the lth subcarrier
y(n)(l) ∈ C

M×1 at the nth frame, becomes [41]

y(n)(l) = √ppWH
Cglx

(n)
p,k +WH

Cn
(n)(l), (43)

where the AWGN during the nth frame, denoted by n(n)(l) ∈
C
M×1, follows the distribution n(n)(l) ∼ CN (0, σ 2

n IM). Upon
using (41), the above expression can be simplified to

y(n)(l) = √pp�hb,lx(n)p,k + ñ(n)(l), (44)

where � = WH
CAR,C and ñ(n)(l) = WH

Cn
(n)(l) ∼

CN (0, σ 2
n IM). Stacking all RF combiner outputs associated

with the lth subcarrier y(n)(l), 1 ≤ n ≤ Nf , yields

y(l) = √ppQhb,l + n(l), (45)

where y(l) = [(y(1)(l))T , . . . , (y(Nf )(l))T ]T ∈ C
MNf×1 is

the stacked RF combiner output, Q = (xp,k ⊗ �) ∈
C
MNf×M is the sensing matrix, and the noise n(l) =

[(ñ(1)(l))T , . . . , (ñ(Nf )(l))T ]T ∈ C
MNf×1 is distributed as

n(l) ∼ CN (0,Cn) with Cn = σ 2
n IMNf . Furthermore,

the columns of the sensing matrix are orthogonal, i.e.,
QHQ = Nf IM . Thus, using the received signal in (45) and
the SBL framework, the lth subcarrier beamspace channel
estimate ĥb,l can be obtained as follows. The proposed
SBL-based framework utilizes a parameterized Gaussian
prior formulated as p(hb,l;) = CN (0, ) [45], where
 = diag(γ1, γ2, . . . , γM) and the associated hyperparameter
vector is defined as γ = [γ1, γ2, . . . , γM]T . Note that here
the hyperparameter γi ∈ R+ signifies the prior variance of
the ith element. These hyperparameters are iteratively esti-
mated employing the well-known expectation-maximization
(EM) algorithm. The main steps in the EM procedure are
summarized below.
Let �̂

(q)
(l) be the qth iteration estimate of the

hyperparameter matrix �(l). In the qth iteration, the expec-
tation step (E-step) determines the average log-likelihood

L(�(l)|�̂(q)(l)) of the data set {y(l),hb,l}, given as

L(
�(l)|�̂(q)(l)) = E

hb,l|y(l);�̂(q)(l)
{
log p

(
y(l),hb,l;�(l)

)}

= E
hb,l|y(l);�̂(q)(l)

{
log p

(
y(l)|hb,l

)+ log p
(
hb,l;�(l)

)}
.

The first quantity in the above expression can be
simplified as −MNf log(π) − log det(Cn) − (y(l) −√
ppQhb,l)HC−1

n (y(l) −√ppQhb,l). It can be observed that
the simplified term is independent of the hyperparam-
eter vector γ , thus, it is ignored in the maximization
step (M-step). The second term is evaluated using the
a posteriori probability density of hb,l [45], which is

p(hb,l|y(l); �̂(q)(l)) ∼ CN (μ(q)(l),�(q)(l)) with a mean of
μ(q)(l) = √pp�(q)(l)QHC−1

n y(l) ∈ C
M×1 and covariance

matrix of �(q)(l) = (ppQHC−1
n Q+ (̂(q)(l))−1)−1 ∈ C

M×M .
Consequently, the second term reduces to

Algorithm 1: SBL-Based Frequency Selective mmWave
Massive MIMO Channel Estimation
Input : Pilot output y(l), stopping parameter ε,

sensing matrix Q and pilot power pp.
1 Initialization: ̂(0)(l) = IM
2 Set q = 0 and ̂(−1)(l) = 0M×M
3 while ‖�̂(q)(l)− �̂

(q−1)
(l)‖F > ε do

4 E-step: Determine a posteriori covariance and mean

5 �(q)(l) =
(
ppQHC−1

n Q+ (
̂(q)(l)

)−1
)−1

6 μ(q)(l) = √pp�(q)(l)QHC−1
n y(l)

7 M-step: Evaluate hyperparameter estimates
8 for i = 1, 2, . . . ,M do

9
[
�̂
(q+1)

(l)
]
i,i =

[
�(q)(l)

]
i,i +

∣∣[μ(q)(l)
]
i

∣∣2

10 end for
11 q← q+ 1
12 end while

Output: ĥb,l = μ(q)(l)

E
hb,l|y(l);�̂(q)(l)

{
log p

(
hb,l;�(l)

)}

=
M∑

i=1

−log(πγi)− 1

γi
E
hb,l|y(l);�̂(q)(l)

{
|hb,l(i)|2

}
. (46)

In the M-step, the hyperparameter vector estimate γ̂
(q+1)is

evaluated by maximizing the above cost-function with
respect to γ , as

γ̂
(q+1) = argmax

γ
E
hb,l|y(l);�̂(q)(l)

{
log p

(
hb,l;�(l)

)}
. (47)

Observe from (46) that the estimation of the hyperparameter
vector γ is decoupled with respect to each γi. Hence, it can
be solved to obtain the estimates γ̂i

(q+1) during the (q+1)st
iteration of the EM algorithm as

γ̂i
(q+1) = E

hb,l|y(l);�̂(q)(l)
{
|hb,l(i)|2

}

= [
�(q)(l)

]
i,i +

∣∣∣
[
μ(q)(l)

]

i

∣∣∣
2
, (48)

where [�(q)(l)]i,i and [μ(q)(l)]i denote the (i, i)th and ith ele-
ments of the a posteriori covariance matrix �(q)(l) and mean
vector μ(q)(l), respectively. On convergence, the SBL-based
estimate is determined by substituting the hyperparameter
matrix estimate ̂ into the a posteriori mean. The sparse
CSI estimation technique is conveniently summarized in
Algorithm 1. The fusion rule and its detection performance
for the centralized topology considering imperfect CSI
scenario are discussed below.

C. DECISION RULES FOR C-MIMO BASED FC WITH CSI
UNCERTAINTY
Employing the technique formulated in Algorithm 1, the
beamspace channel estimate of the lth subcarrier, is obtained
upon convergence, as

ĥb,l = μ(q)(l), (49)
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where μ(q)(l) represents the a posteriori mean. Observe that
the a posteriori covariance matrix �l = �(q)(l) is diagonal,
since the matrix ̂(q)(l) is diagonal. The mmWave massive
MIMO channel estimate of the lth subcarrier is expressed as

ĝl = AR,Cĥb,l, (50)

and the beamspace estimation error is eb,l = (ĥb,l −
hb,l), which is distributed as eb,l ∼ CN (0, �l). Hence, the
corresponding estimation error el can be expressed as el =
ĝl − gl = AR,Ceb,l, which is distributed as el ∼ CN (0,Cl),
with Cl = AR,C�lAH

R,C. Therefore, using (5), the equivalent
system model for the lth subcarrier, considering the imperfect
CSI, can be remodeled as

y(l) = √pu(ĝl − el)xk + w(l) = √puĝlxk + w̄(l), (51)

where the noise w̄(l) � w(l) − √puelxk is distributed as
w̄(l) ∼ CN (0, σ 2

wIM + puCl|uk|2) and the variables l and
k are related as k = � lNs �. Now, a two-step procedure
is conceived for reducing the computational complexity of
the conventional detectors, wherein the received signal is
processed using a hybrid combiner in the first step. A global
decision is arrived at in the second step by fusing the hybrid
combiner outputs.
The RF combiner is selected for the lth subcarrier as

wRF,l = aR,C(ψil), where il denotes the maximum estimated
path gain index. The RF combiner output obtained by
exploiting the asymptotic orthogonality property of the
mmWave MIMO channel in (10) is

ỹ(l) = √puĥil,lxk + w̃(l), (52)

where ĥil,l = [ĥb,l]il and w̃(l) = wH
RF,lw̄(l) is distributed

as w̃(l) ∼ CN (0, σ̃ 2
l ) with σ̃

2
l = σ 2

w + puwH
RF,lClwRF,l|uk|2.

Using (52), the stacked RF combiner output ỹk of the kth
sensor, similar to (11), is

ỹk = √puĥkxk + w̃k, (53)

where w̃k ∼ CN (0, C̃k) and the ith diagonal entry of C̃k is
[C̃k]i,i = σ 2

w + puwH
RF,ki

CkiwRF,ki |uk|2 with the index ki =
(kNs + i− 1). The baseband combiner for the kth sensor is
chosen as wBB,k = ĥk ∈ C

Ns×1 for maximizing the output
SNR of the signal in (53). Thus, the digital combiner output
zk is formulated as:

zk = √pu‖ĥk‖2xk + wk, (54)

where the equivalent noise wk = ĥHk w̃k is distributed as wk ∼
CN (0, σ 2

k ), with σ 2
k = ĥHk C̃kĥk. Furthermore, zk in (54)

follows the distribution

zk ∼ CN (√pu‖ĥk‖2xk, σ 2
k ). (55)

Using the received signal in (54), the LLR test can be
expressed as

TCIP(z)=
K−1∑

k=0

ln

⎡

⎢⎢⎣

PD,k+(1−PD,k) exp

(
−4z̃k
σ 2
k

)

PF,k+(1−PF,k) exp

(
−4z̃k
σ 2
k

)

⎤

⎥⎥⎦, (56)

where we have z̃k = √pu‖ĥk‖2�(z∗kuk). Upon employing the
low SNR approximations of e−s ≈ 1− s and ln(1+ s) ≈ s,
the expression in (56) can be simplified to:

TCIP(z) =
K−1∑

k=0

‖ĥk‖2
σ 2
k

ak�(z∗kuk)
H1
≷
H0

γ, (57)

where γ is the detection threshold. The above test TCIP(z)
represents a weighted linear combination of Gaussian ran-
dom variables �(z∗kuk) and it is distributed as

TCIP(z) ∼ CN (μTCIP|H, σ 2
TCIP|H), (58)

where we have H ∈ {H0,H1}. The expressions of the means
and variances under both hypotheses can be formulated as

μTCIP|H0 =
K−1∑

k=0

√
pu‖ĥk‖4
σ 2
k

akck|uk|2, (59)

μTCIP|H1 =
K−1∑

k=0

√
pu‖ĥk‖4
σ 2
k

akbk|uk|2, (60)

σ 2
TCIP|H0

=
K−1∑

k=0

‖ĥk‖4
σ 4
k

a2
k |uk|2

(
pu‖ĥk‖4|uk|2(1−c2

k)+
σ 2
k

2

)
,

(61)

σ 2
TCIP|H1

=
K−1∑

k=0

‖ĥk‖4
σ 4
k

a2
k |uk|2

(
pu‖ĥk‖4|uk|2(1−b2

k)+
σ 2
k

2

)
.

(62)

Based on the above quantities, the detection (PD) and false
alarm (PFA) probabilities are

PD = Q

(
γ − μTCIP|H1

σTCIP|H1

)
,PFA = Q

(
γ − μTCIP|H0

σTCIP|H0

)
. (63)

All the above expressions can be obtained along similar
lines to those of Theorem 1. The fusion rule for the
D-MIMO topology considering CSI uncertainty and its
detection performance are considered next.

D. DECISION RULES FOR A D-MIMO BASED FC WITH
CSI UNCERTAINTY
For the D-MIMO topology, the beamspace channel vector
hb,lj,j,∀lj ∈ Akj , is estimated at each FC using the SBL-based
approach. Thus, the estimated channel vector corresponding
to the ljth subcarrier at the jth FC can be expressed as

ĝlj,j = AR,Dĥb,lj,j. (64)

The estimated beamspace channel vector can be determined
as ĥb,lj,j = μ

(q)
j (lj), where μ

(q)
j (lj) denotes the a posteriori

mean. For the ljth subcarrier and the jth FC, the estimation
error vector can be expressed as elj,j = ĝlj,j − glj,j =
AR,Deb,lj,j, which is distributed as elj,j ∼ CN (0,Clj), where
Clj = AR,D�ljA

H
R,D and �lj is the a posteriori covariance

matrix. Using the above expressions, the received signal
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yj(lj) ∈ C
Nd×1,∀lj ∈ Akj , at the jth FC for the ljth subcarrier,

can be remodeled as

yj(lj) = √pu(ĝlj,j − elj,j)xkj + wj(lj)

= √puĝlj,jxkj + w̃j(lj), (65)

where the noise vector w̃j(lj) = wj(lj) − √puelj,jxkj is dis-
tributed as w̃j(lj) ∼ CN (0, σ 2

wINd + puClj |ukj |2). Employing
the two-step architecture, the RF combiner wRF,j is selected
as wRF,j = aR,D(ψij),∀lj, which represents the receive array
response vector corresponding to the maximum estimated
path gain of ĥb,lj,j. The RF combiner output of the ljth
subcarrier and the jth FC obtained by leveraging the
asymptotic orthogonality property of the mmWave MIMO
channel, can be simplified as

y̌j(lj) = √puĥij,lj,jxkj + w̌j(lj), (66)

where the quantities w̌j(lj) = wH
RF,jw̃j(lj) ∼ CN (0, σ 2

w +
puwH

RF,jCljwRF,j|ukj |2) and ĥij,lj,j = [ĥb,lj,j]ij . After stacking
all the RF combiner outputs corresponding to the kjth sensor,
one obtains

y̌kj =
√
puĥjxkj + w̌kj , (67)

where w̌kj ∼ CN (0, Čkj) and the covariance matrix Čkj

is diagonal with nth diagonal entry as [Čkj]n,n = σ 2
w +

puwH
RF,jCnjwRF,j|ukj |2 and nj = kjNs + n − 1. Selecting the

baseband combiner vector as wBB,j = ĥj ∈ C
Ns×1, the hybrid

combiner output of the kjth sensor can be determined as

zkj =
√
pu‖ĥj‖2xkj + wkj , (68)

where the quantities wkj = ĥHj w̌kj ∼ CN (0, σ 2
kj
) and σ 2

kj
=

ĥHj Čkj ĥj. The hybrid combiner outputs are then transmitted
to the BPU for final processing. At the BPU, the correction
matrix S is used to combine the received signals to obtain
ordered soft sensor decisions. Thus, the hybrid combined
output signal of the kth sensor can be given as

zk = √pu‖ĥjk‖2xk + wk, (69)

where the quantities wk ∼ CN (0, σ 2
k ) and σ 2

k = ĥHjk Čkĥjk .
Further, zk in (69) is distributed as

zk ∼ CN (√pu‖ĥjk‖2xk, σ 2
k ). (70)

Using (69), the LLR test statistic for z, considering the D-
MIMO topology, can be modeled as

TDIP(z) =
K−1∑

k=0

‖ĥjk‖2
σ 2
k

ak�(z∗kuk)
H1
≷
H0

γ̆ , (71)

where γ̆ is the detection threshold. Furthermore, the expres-
sions of PD and PFA for TDIP(z) in (71) can be derived as

PD = Q

(
γ − μTDIP|H1

σTDIP|H1

)
,PFA = Q

(
γ − μTDIP|H0

σTDIP|H0

)
,

where the means μTDIP|H0 , μTDIP|H1 and the variances
σ 2
TDIP|H0

, σ 2
TDIP|H1

under null and alternative hypotheses,
respectively, are determined as

μTDIP|H0 =
K−1∑

k=0

√
pu‖ĥjk‖4
σ 2
k

akck|uk|2,

μTDIP|H1 =
K−1∑

k=0

√
pu‖ĥjk‖4
σ 2
k

akbk|uk|2,

σ 2
TDIP|H0

=
K−1∑

k=0

‖ĥjk‖4
σ 4
k

a2
k |uk|2

(
pu‖ĥjk‖4|uk|2(1−c2

k)+
σ 2
k

2

)
,

σ 2
TDIP|H0

=
K−1∑

k=0

‖ĥjk‖4
σ 4
k

a2
k |uk|2

(
pu‖ĥjk‖4|uk|2(1−c2

k)+
σ 2
k

2

)
,

σ 2
TDIP|H1

=
K−1∑

k=0

‖ĥjk‖4
σ 4
k

a2
k |uk|2

(
pu‖ĥjk‖4|uk|2(1−b2

k)+
σ 2
k

2

)
.

The proof of the above expressions follows along similar
lines to Theorem 1. The simulation results to validate
the proposed analyses are discussed in the subsequent
section.

VII. SIMULATION RESULTS
This section demonstrates the simulation results to corrob-
orate the analytical performance of the C- and D-MIMO
detectors and to contrast their performance to those of other
detectors. For the C-MIMO configuration, K = 16 sensors
are uniformly distributed in the range spanning from rmin
to R, where rmin = 1 m and R = 200 m. In the D-
MIMO architecture, J = 16 FCs are located on a circle
of radius ρ = 0.6R and K = 16 sensors are uniformly
distributed in the region [0, ρ − rmin] ∪ [ρ + rmin,R]. The
system under consideration is operating at fc = 28 GHz
and the antenna spacing is chosen as d = λ/2. The local
false alarm and detection probabilities are taken as PF,k ∼
U [0.01, 0.16] and PD,k ∼ U [0.2, 0.95], respectively. The
frequency selective mmWave massive MIMO channel is
considered to be spatially sparse with Lk = Lk,j = 4 paths
and D = 4 delay taps. The classic raised cosine pulse
shaping filter is utilized with a roll-off factor of 0.6 and
the delays τk,i are chosen uniformly in the range [0,D− 1].
The large-scale fading coefficients of the C- and D-MIMO
topologies are modeled similar to [40], as βk = vk

(ρk/rmin)ν

and βk,j = vk,j
(dk,j/rmin)ν

, respectively. The quantities vk and
vk,j are generated as log-normal random variables with a
mean of μv = 4 dB and standard deviation of σv = 2 dB.
Furthermore, ρk and dk,j denote the distance from the kth
sensor to the centralized FC and the jth FC for the C-and
D-MIMO configurations, respectively, and ν = 2. The noise
variances are set to σ 2

w = σ 2
n = 1.

Fig. 5(a) demonstrates the effect of varying the number
of subcarriers assigned to each sensor, i.e., Ns ∈ {1, 2, 4},
on the receiver operating characteristic (ROC) plot of the
C-MIMO detector in (14) for M = 256 and pu = −10 dB.
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FIGURE 5. ROC plots of the C-MIMO based test TCP(z) in (14), a) Theoretical and simulated ROC with M= 256, Ns ∈ {1, 2, 4} and pu= –10 dB, b) Performance with and without
signaling vector design with M= 256, Ns ∈ {1, 2} and pu= –15 dB, c) Asymptotic performance analysis for with M ∈ {256, 512, 1024}, Ns ∈ {1,2} and p̃u ∈ {10,15} dB.

FIGURE 6. ROC plots of the D-MIMO based test TDP(z) in (24), a) Theoretical and simulated ROC with Ntot= 1024, Ns ∈ {1, 2, 4} and pu= –5 dB, b) Performance with and without
signaling vector design with Ntot= 1024, Ns ∈ {1, 2} and pu= –5 dB, c) Asymptotic performance analysis for with Ntot ∈ {640, 1280, 1600}, Ns ∈ {1,2} and p̃u= 10 dB.

Observe that the simulated plots coincide with the analytical
findings derived, thus validating the accuracy of our analysis.
Moreover, the performance improves upon increasing the
values of Ns. Thus, one can fine-tune the number of
subcarriers according to the detection performance desired.
Fig. 5(b) compares the detection performance obtained using
the signaling vector designed in Section IV to that of a
uniform transmit signaling vector design, wherein all the sen-
sors transmit at equal power, i.e., u = [u0, u1, . . . , uK−1]T ,
where uk ∈ {−1, 1}, for pu = −15 dB. Observe from
the figure that one can significantly enhance the detection
performance by employing the transmit signaling vector,
which demonstrates the value of our optimal signaling
paradigm conceived for practical mmWave massive MIMO-
OFDM systems. Fig. 5(c) verifies the power scaling laws
determined in Section V for a centralized mmWave massive
MIMO-OFDM system. As shown therein, the figure supports
our conclusion that the sensor transmit power can be
reduced according to 1/M, without affecting the detection
performance. This key result pertaining to the asymptotic
performance analysis helps us in improving the battery life
of the sensors, which is one of the critical resources in a
WSN. Moreover, the detection performance improves with
an increase in the value of p̃u.

The ROC plot of the proposed D-MIMO test in (24) is
depicted in Fig. 6(a) for Ns ∈ {1, 2, 4}, considering Ntot =
1024 and pu = −5 dB. The analytical results derived in
Theorem 2 are also verified using the simulation results.
The performance improves as Ns increases and the capability
of the scheme can be further enhanced by employing the
deflection coefficient maximization-based signaling vector,
as demonstrated in Fig. 6(b). When contrasting Fig. 5(a) and
Fig. 6(a), the performance degradation in D-MIMO against
C-MIMO is attributed to the sensor distribution range. The
asymptotic performance of the test in (24) with power scaling
is explored in Fig. 6(c). Observe that one can scale the sensor
transmit power as 1/Nd, for the D-MIMO topology.
Fig. 7(a) portrays the performance of the C- and D-MIMO

based tests of (14) and (24), respectively, considering Ns ∈
{1, 2}, M = Ntot = 1024, PFA = 0.1, pu = −10 dB and
sensor position range [0.5R,R]. Notice that the performance
is enhanced as the density of sensors increases. Moreover,
the D-MIMO detector outperforms the C-MIMO detector
owing to an increase in the number of FCs deployed upon
increasing the sensor density. Considering M = Ntot = 1024,
PFA = 0.1 and pu = −10 dB, it becomes clear from Fig. 7(b)
that the D-MIMO detector’s performance is maximized at
ρ/R = 0.6. This happens because for ρ/R = 0.6, the sensors
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FIGURE 7. Performance comparison of the C-MIMO and D-MIMO based detectors, derived in (14) and (24), respectively, with Ns ∈ {1, 2} a) PD vs. K, with Ntot = 1024 and pu =
–10 dB, b) PD vs. normalized radius of all sensors (ρ/R), with Ntot= 1024 and pu= –5 dB c) PD vs. Ntot at the FC, with pu= –5 dB.

FIGURE 8. a) Theoretical and simulation ROC plots of the C-MIMO detector for the imperfect CSI scenario in (57), with M= 256, Ns ∈ {1, 2, 4}, pu= –15 dB, pp= 8 dB and Nf= 12,
b) Performance comparison of uniform and deflection coefficient maximization based signaling vector for C-MIMO detectors for the perfect and imperfect CSI scenarios, derived
in (14) and (57), respectively, with M= 256, Ns ∈ {1, 2}, pu= –10 dB and pp= –5 dB, c) PD vs. normalized radius of the sensors (ρ/R) for C-MIMO and D-MIMO detectors, proposed
in (14) and (24), (57) and (71), corresponding to the perfect and imperfect CSI scenarios, with Ntot= 1024, Ns= 1, pu= –10 dB, pp= –5 dB and Nf= 12 at PFA= 0.1.

are nearest to their associated FCs. Furthermore, observe
from Fig. 7(c) that the detection probability PD improves as
the total number of antennas grows, for PFA = 0.1 and pu =
−10 dB. Clearly, the D-MIMO outperforms the C-MIMO
in terms of its detection performance for sensor positions in
the range [0.5R,R].

Upon considering the centralized topology, the
performance of the SBL-based detector of (57) is analyzed
in Fig. 8(a) for the scenario of imperfect CSI, for Ns ∈
{1, 2, 4}, M = 256, pu = −15 dB, pilot power pp = 8
dB and number of frames Nf = 12. The simulation results
validate accuracy of the theoretical results derived in (63).
The performance of the C-MIMO based detectors, derived
in (14) and (57), is contrasted in Fig. 7b, for the perfect
and imperfect CSI scenarios, respectively, for Ns ∈ {1, 2},
pu = −10 dB and pp = −5 dB. It is evident from the
figure that the performance of both detectors improves
by increasing the number of subcarriers of each sensor,
which can be further improved by employing the proposed
signaling vectors. But naturally, there is a clear diversity vs.
throughput trade-off. Fig. 8(c) analyzes the performance of
the C- and D-MIMO detectors, proposed in (14), (24), (57)
and (71), for the perfect and imperfect CSI scenarios,
respectively. The parameters are chosen as Ns = 1, Ntot =

1024, pu = −10 dB, pp = −5 dB, PFA = 0.1 and Nf = 12,
for the sensor allocation range [0.5R,R]. Observe that the
D-MIMO detector outperforms its C-MIMO equivalent.
Thus, one can overcome the shortcomings of the C-MIMO
based topology by exploiting the benefits of the distributed
antenna configuration.
The performance of the D-MIMO based detectors, derived

in (24) and (71) for the perfect and imperfect CSI scenarios
is shown in Fig. 9(a) and Fig. 9(b). It can be observed
that the PD performance of distributed detection can be
improved by assigning an increased number of subcarriers
to the sensors coupled with transmit signaling vector design.
However, at a given total bandwidth, limiting the number
of subcarriers limits the total system throughput. Fig. 9(c)
shows the variation of PD versus the pathloss exponent
(ν), for the D-MIMO based architecture, considering Ns =
1, Ntot ∈ {512, 1024, 2048}, pu = −10 dB, pp = 0 dB,
PFA = 0.1 and Nf = 12. An increase in ν degrades the
PD performance, which can be alleviated by using a large
antenna array at the FC.

VIII. CONCLUSION
Hybrid combining based detection rules were developed
for distributed detection in frequency selective mmWave
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FIGURE 9. a) Theoretical and simulated ROC plots for D-MIMO detector in (71), for imperfect CSI, considering Ntot= 1024, pu= –10 dB and pp= 10 dB, b) Performance
comparison of uniform and deflection coefficient maximization based signaling vector for D-MIMO based detectors in (24) and (71), for perfect and imperfect CSI, respectively,
with Ntot= 1024, pu= –7 dB and pp= 0 dB, c) PD vs. pathloss exponent (ν) comparison of the D-MIMO system for the perfect and imperfect CSI scenarios, with
Ntot ∈ {512, 1024, 2048}, Ns= 1, pu= –10 dB, pp= 0 dB, PFA= 0.1 and Nf= 12.

massive MIMO SNs, employing D- and C-MIMO antenna
topologies, where the local sensor decisions are transmitted
to the FC over orthogonal subcarriers. For this framework,
the decision rules were designed for the perfect CSI
scenario and their performance was characterized via explicit
analytical expressions for the resultant false alarm and
detection probabilities. Furthermore, signaling vectors were
obtained based on the deflection coefficient maximization
criterion for both antenna topologies to improve the detection
performance. The asymptotic performance and the power
reduction laws were also characterized for demonstrating
the rate at which the sensors can reduce their transmit
power when the number of antennas at the FC becomes
very large. Additionally, an SBL-based sparse mmWave
massive MIMO CSI estimation procedure was developed
followed by the associated fusion rules conceived for
distributed detection under CSI uncertainty, for both antenna
configurations. A comprehensive set of simulation results
was presented to validate the performance of the proposed
algorithms. Future research will prioritize the exploration of
distributed detection in scenarios that take into account the
allocation of multiple sensors per FC within the distributed
antenna topology. Additionally, there is potential for further
investigations into multi-cell scenarios.

APPENDIX A
PROOF OF THEOREM 1
Substituting the expression of zk from (12) in (14), one
obtains

TCP(z) =
K−1∑

k=0

ak�(√puMdkx∗kuk + w∗kuk). (72)

The mean of TCP(z) for hypothesis H0 is

μTCP|H0 = E{TCP(z)|H0}

=
K−1∑

k=0

ak�
(√

puMdkE{x∗k |H0}uk+E{w∗k |H0}uk
)
.

Further, the quantities E{x∗k |H0} = PF,ku∗k − (1− PF,k)u∗k =
cku∗k , where ck = 2PF,k−1 and E{w∗k |H0} = 0. On substi-
tuting the above expressions, μTCP|H0 can be simplified as

μTCP|H0 =
K−1∑

k=0

√
puMakdkck|uk|2. (73)

The variance in (17) can be derived as σ 2
TCP|H0

=
E{T2

CP(z)|H0} − μ2
TCP|H0

, where E{T2
CP(z)|H0} is

E{T2
CP(z)|H0} = E

{( K−1∑

k=0

ak�(√puMdkx∗kuk+w∗kuk)
)2∣∣∣∣H0

}

=
K−1∑

k=0

a2
k |uk|2

(
puM

2d2
kE{|xk|2|H0} + σ

2
k

2

)

=
K−1∑

k=0

a2
k |uk|2

(
puM

2d2
k |uk|2 +

Mdkσ 2
w

2

)
,

where E{|wk|2|H0} = σ 2
k = Mdkσ 2

w. Therefore, the variance
σ 2
TCP|H0

can be expressed as

σ 2
TCP|H0

=
K−1∑

k=0

Ma2
kdk|uk|2

(
puMdk|uk|2(1−c2

k)+
σ 2
w

2

)
. (74)

Similarly, the mean and variance can be obtained for TCP(z)
in (72) under hypothesis H1.

APPENDIX B
PROOF OF THEOREM 4
Consider the modified test statistic T̃CP(z) = TCP(z)

σTCP|H0
∼

CN (μ̃TCP|H0, 1), where μ̃TCP|H0 =
μTCP|H0
σTCP|H0

denotes the
normalized mean under the null hypothesis. For the power
scaling pu = p̃u

M , with the average sensor transmit power as
p̃u, the normalized asymptotic mean for hypothesis H0 can
be determined as

μaTCP|H0
= lim

M→∞μ̃TCP|H0

∣∣∣∣
pu= p̃u

M

. (75)
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On substituting the expressions of μTCP|H0 and σTCP|H0

from (15) and (17) in (75), the above expression reduces to

μaTCP|H0
=

∑K−1
k=0

√
p̃uakdkck|uk|2√

K−1∑
k=0

a2
kdk|uk|2

(
p̃udk|uk|2(1−c2

k)+σ
2
w
2

) . (76)

On similar lines, one can obtain the normalized asymptotic
mean under hypothesis H1.
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