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ABSTRACT This paper investigates the application of artificial intelligence (AI) to wireless technology,
specifically in the context of beam management (BM) in the advanced 5th-generation (5G) communication
system. Our focus lies in aligning our study with the ongoing discussions within the Third Generation
Partnership Project (3GPP) as of December 2022. Instead of evaluating the performance of specific
AI models, we take user equipment (UE) receiver (Rx) beam prediction as an illustrative example
of AI-based BM. We explore various aspects of AI model management, including model selection,
monitoring, and activation/deactivation operations, from a 3GPP perspective. For model selection, we
propose deploying distinct AI models for different propagation environments, categorized based on base
station (BS) transmitter (Tx) beam measurement results. Reference Signal Received Power (RSRP) serves
as a pivotal key performance index (KPI) for model performance monitoring. Our simulation results indicate
that, instead of training one all-encompassing AI model with numerous layers for universal application,
transitioning between domain-specific AI models with fewer layers yields superior performance. Model
activation/deactivation procedures determine whether AI-based BM or traditional BM should be employed
in a given scenario. We also introduce the use of AI for predicting the performance of both AI-based
BM and traditional BM. By comparing the performance of these strategies, we can ascertain whether
link performance degradation results from AI output errors or UE movement into challenging propagation
environments. This approach enables the effective management of model switching between AI-based
BM and traditional BM. The simulation shows that we can reduce the number of unnecessary switches
by 10%.

INDEX TERMS Beam management (BM), machine learning, long short-term memory (LSTM), model
management, 3GPP standards.

I. INTRODUCTION

THE INTEGRATION of artificial intelligence (AI)
technologies with wireless communication has become

a prominent research area in recent years. This field explores
two primary approaches to the development of AI-native
or AI-intrinsic 6th-generation (6G) wireless networks, as
discussed in [1]. The first approach, known as “wireless
for AI”, aims to leverage existing wireless network features
or enhance current functionalities to support broad and
efficient applications of AI technologies. Examples include
applications in autonomous driving, as highlighted by the
authors in [2]. The second approach is “AI for wireless

communication”, involving the application of AI algorithms
to address various challenges within wireless communication
systems. These challenges span from early applications like
cognitive radio to more recent advancements in areas such
as beamforming, interference estimation, channel estimation,
modulation at the physical layer, routing at the network layer,
and resource allocation for mobile operators, as discussed
by in [3].
“Wireless for AI” involves enhancing wireless systems

to enable the widespread deployment of AI functionalities
across mobile devices, at the network edge, and in the
cloud. In 2019, the Service and System Aspects (SA)
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technical specification group (TSG) of the Third Generation
Partnership Project (3GPP) initiated an investigation into the
impact of AI and machine learning (ML) model transfer
(AMMT) within wireless systems [4]. This investigation
led to the definition of network functions that support user
selection in federated learning [5], model splitting [6], model
distribution [7], and more, catering to a variety of AI model
applications.
Conversely, “AI for wireless” pertains to the utilization

of AI technologies to improve wireless network functions.
Multiple studies have explored the application of AI tech-
nologies across various layers of communication protocols,
as evidenced by [8]. As millimeter-wave (mmWave) tech-
nology plays a pivotal role in the 5th-generation (5G)
system, effective beam management becomes crucial. Several
studies have delved into the utilization of AI technology for
beam management, as documented in [9], [10], [11], [12].
These works primarily concentrate on the deployment of AI
models in various scenarios and assess their performance.
In [13], reinforcement learning is explored for serving
multiple beams to different vehicles, with a particular focus
on mitigating blocking effects by applying reinforcement
learning to joint beam allocation and relay selection [14].
Additionally, in [15], a Long Short-Term Memory (LSTM)
model is employed to track the angle of arrival (AoA)
based on channel information, facilitating beam management
while the user equipment (UE) is in motion along a straight
trajectory. Reference [16] adopts a convolutional neural
network (CNN) to extract angle information from in-phase-
quadrature (I/Q) signal samples. These studies harness AI
technology to unveil insights into wireless channel char-
acteristics. Furthermore, to enhance accuracy, it’s possible
to incorporate data beyond the radio link, as demonstrated
in [17], where user location information is integrated into
beam prediction. By applying deep learning models based
on user movement patterns, these methods can achieve
prediction accuracy exceeding 90%.
Nevertheless, a limited number of investigations have

undertaken an examination of model life cycle management,
a fundamental aspect in the deployment of artificial intelli-
gence (AI) for network management. This is of paramount
significance due to the inherent variability of wireless com-
munication channels. Models designed for specific scenarios
may prove inadequate in ensuring optimal performance
when confronted with fluctuations in channel conditions.
Consequently, there arises a necessity to delve into the
systematic monitoring of AI model performance, with a
focus on determining the appropriate circumstances and
selection criteria for model activation.
In this paper, we present an overview of the ongoing

discussions related to the standardization of AI-based Beam
Management (BM) schemes [18]. Given the early stage
of standardization activities and the divergence of opinions
among various companies regarding the three key stages of
AI deployment, we offer general perspectives on essential
topics, including use cases, deployment strategies, AI model

inputs and outputs, signaling, model training, performance
evaluation, and model management. Following this, we delve
into the time domain prediction of UE’s beam prediction as
an illustrative example of an AI-based BM scheme, outlining
the data collection process and model training. For model
management, we propose a radio propagation environment-
driven model selection approach, where the environment
is identified based on the measurement of BS beams.
Additionally, we observe that the performance degradation
in an AI-based BM scheme may result from AI prediction
errors or challenging propagation environments. To prevent
unnecessary deactivation of the AI model and fallback to the
traditional BM scheme, we suggest utilizing AI to predict
the performance of both the traditional and AI-based BM
schemes. By comparing the predicted performance of these
two schemes, we can make informed decisions regarding the
activation and deactivation of AI-based BM.

II. PRELIMINARIES
In this section, we provide a description of the traditional
Beam Management (BM), followed by an overview of the
AI-based BM. We specifically delve into various aspects of
AI-based BM that are currently being discussed in 3GPP.
The subsequent section will focus on studying UE beam
prediction from these aspects, presenting our proposal on
AI model selection, and outlining AI model performance
monitoring.

A. TRADITIONAL BEAM MANAGEMENT SCHEME
In 2015, the 3rd Generation Partnership Project (3GPP) ini-
tiated the development of the 5G standard [19]. A significant
feature of the 5G system is its emphasis on BM, enabling the
BS and UE to direct energy towards specific directions using
directional beams [9], [20]. This capability holds particular
significance for high-frequency communication with high
pathloss. Therefore, the management of beam directions at
both the BS and UE sides has become a central focus within
the 5G system.
Aligning the beam directions at both transmitter (Tx)

and receiver (Rx) in wireless environment for a better link
quality has been topic for a long time [21], [22]. The
3GPP has developed a standard that define reference signals
and measurement procedures to realize this the alignment
purpose [23]. This is realized by the following procedures.
Before accessing a network, a UE needs to acquire a
synchronization signal and obtain system information such
as the cell ID. In a Long-Term Evolution (LTE) system, the
BS transmits a synchronization signal every 5 ms. In a New
Radio (NR) system, commonly referred to as the 5G system,
synchronization signals are transmitted together with system
information and control information as a synchronization
signal block (SSB). Multiple SSBs constructs a SSB burst.
A core feature of NR systems is beam-space operation, in
which signals are transmitted in different beam directions.
Equipped with multibeam antennas, the BS can send an
SSB in each beam direction consecutively over a period
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FIGURE 1. Mapping of SSB periods, beam sweeping and UE movement distance.

of an SSB burst. The number of SSBs in each SSB burst
defines the number of beams that a BS and deploy for
measurement. The maximum number of SSBs in each burst
depends on the subcarrier spacing and frequency band,
which determines how many Orthogonal frequency-division
multiplexing (OFDM) symbols can be packed into each half
of a 10 ms time frame [19], [24]. For a system that operates
in frequency band below 3GHz band, each burst has 4 SSBs.
For 3GHz to 6GHz band, a maximum of 8 SSBs can be
supported. For frequency band above 6GHz a maximum of
64 SSBs can be supported. The period of this SSB burst
transmission can be 5 ms, 10 ms, or up to 160 ms. A UE
can assume a default periodicity of 20 ms during the cell
search process to reduce its power consumption relative to
that in an LTE system. This UE with a multibeam antenna
can measure the SSB burst in each direction by repeating
measurement over a few consecutive periods of SSB bursts.
In this way, the best pair of BS and UE beams can be
determined.
An example is shown in Fig. 1, where the BS employs

32 beams, and the UE has 8 beams. We set the SSB burst
period to 20 ms. The carrier frequency is set to 28 GHz,
with a 120 kHz subcarrier spacing. In each subframe of
a 5 ms period, 16 SSBs are transmitted, corresponding
to 16 beam directions at the BS. In total, 8 periods are
measured, corresponding to 8 UE beam directions. Based on
the reference signal received power (RSRP) measurements of
the SSBs, the best BS beam direction and the corresponding
UE beam direction are determined. In total, 160 ms is
consumed for one BM procedure. In general, a pedestrian
takes 3 steps in 1 s, covering 0.75 m in one step. It takes
almost half a step duration of signaling measurement to
complete one BM procedure. The delay and complexity will
become a severe issue for applications with higher mobility.
To avoid the long duration of the measurement complexity
with this traditional BM scheme. The 3GPP has recently
started the development of AI-based BM as one of the
features of Release 18 standard [18].

B. AI-BASED BEAM MANAGEMENT SCHEME
Various approaches of realizing AI-based BM have been
studied in academia, however, the lack of standardization

FIGURE 2. Traditional BM scheme.

FIGURE 3. Spatial domain AI-based BM.

FIGURE 4. Time domain AI-based BM.

is one of the open issues for the mass applications of
AI technologies for BM. Fortunately, the 3GPP has started
working of the development of standards for AI-based BM
at the end of 2020 from the following aspects.
Use Cases: Compared with the traditional BM scheme in

Fig. 2. The TSG currently agrees on two major use cases as
shown in Fig. 3 and Fig. 4, respectively. (1) Spatial-domain
prediction case: to avoid the need to measure a large number
of Tx beams, an AI model can predict one or a few of the best
beams based on measurements of a subset of beams pointing
in certain directions instead of measurements of all beams.
(2) Time-domain prediction case: an AI model predicts one
or a few of the best beams to be used in the next time
instance based on a sequence of beams selected from past
time instances. In addition to these two use cases, other minor
use cases have also been proposed by various companies.
For example, one may wish to predict the best beam based
on a UE’s location [25]. Discussions on this use case are
ongoing, as the location information of a UE is considered
private. Some companies have also proposed the prediction
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of mmWave beams based on the channel information in the
sub-6 GHz band [26].
Deployment: An AI model can be deployed on the BS

side, on the UE side, or both. Training and inference can be
performed at the same location or at different locations. For
example, training may be performed on the BS side, while
inference is executed on the UE side. However, this requires
the trained model to be transferred from the BS side to the
UE side.
Input and Output: The output of an AI model can directly

give the best beam to be used, in a form such as the
beam index. This reduces the complexity of BM. Another
approach is to provide a set of candidate beams that have
a high possibility of being the best beam. In this case,
an ordinary BM procedure is still needed, but a lower
complexity can be achieved, as only a subset of beams
need to be measured [27]. This approach provides better
performance than the approach of directly using a single
beam predicted by the AI model because the AI model
output might be wrong. Such an incorrect result will result
in the beam pointing in an unwanted direction, leading
to degradation in one or more indicators of wireless link
performance, for example, the RSRP.
Signaling between the BS and UE: The application of AI

technologies requires a large volume of data for training,
suitable arrangement of the data as the model input for
inference and timely measurement for performance moni-
toring. Depending on whether the AI model is deployed
on the BS side, on the UE side, or both, the current
signaling conditions between the BS and UE must be re-
examined to see if the link quality is sufficient to support the
application of AI technologies. Taking the downlink direction
as an example, in the traditional BM procedure, a UE will
determine the four best Tx beams based on measurements
and report the results to the BS. If AI is deployed at
the BS to predict these four best beams, the UE might
need to send measurement results corresponding to different
downlink beams to the BS. This measurement report might
require more data than reporting four Tx beams with their
RSRPs and more frequent reporting than the traditional BM
procedure. Since different AI models with different inputs
and outputs will be deployed by different companies in their
products, defining these signaling requirements is critically
important to the interoperability of different products.
Model Training: In practical applications, an AI model

is trained on data collected for a given scenario, and
the performance of the AI model might change if the
environment changes. For example, consider a model trained
on data collected at night. When this model is applied
during the day, the output will exhibit errors in beam
direction prediction since the UE behavior changes and
the propagation environment might also change due to
reflections from cars on the street.
Model Evaluation: An important aspect of AI technology

is AI model performance evaluation. The first issue of
concern is the performance evaluation of an AI model.

The TSG has started to define some key performance
indexes (KPIs) for characterizing the inference accuracy of
a model, such as the beam ID/RSRP prediction accuracy,
the link-quality-related RSRP, throughput, and the signal-to-
interference-plus-noise ratio (SINR). The RSRP prediction
accuracy is evaluated as the RMSE between the RSRP
achieved using the predicted beam and that of the RSRP
achieved with the traditional BM approach. The beam ID
prediction accuracy is the percentage of correctly predicted
IDs among the total number of predictions.
Model Management: The objective of model manage-

ment is to select AI models appropriate for a given
application scenario, monitor the model performance, and
activate/deactivate a model or trigger fallback from AI-based
BM to traditional BM if necessary. In 2022, the TSG also
started considering the overhead of signaling and measure-
ment reports associated with such model management as
well as sources of complexity such as computation and
memory costs for model monitoring. For example, to check
the validity of the input to an AI model, extra processing is
needed to calculate the distribution of the input data. Note
that although specific AI/ML algorithms and models may
be studied for evaluation purposes, such AI/ML algorithms
and models are specific to given implementations and are
not expected to be specified in standards.

III. UE BEAM TIME DOMAIN PREDICTION
In this section, UE Rx beam time-domain prediction is
used as an example to study the issues related to model
management. We propose a model switching method based
on the propagation environment. Using the beam accuracy
and RSRP as KPIs, we examine the performance of
model switching. Furthermore, we use AI to predict the
performance of both AI-based BM and traditional BM for
model monitoring and discuss the fallback mechanism.

A. SYSTEM MODEL
In this paper, we simulate a city scenario in which a user
holds a cell phone (typically called a UE in the 3GPP
context), walks along a direction within a certain range, and
establishes a communication link with a BS. As shown in
Fig. 5. The user starts from a location below the BS and
initially moves along the road toward north and then makes
a turn toward west. There are scatters placed along the road.
During the movement process, the movement direction of the
user might also change to the left and right, but the user will
continue walking forward along the road. The elevation angle
of the user’s mobile phone can also change. The trace of the
movement consists of four segments. The channel between
the user and the BS is a line-of-sight (LoS) channel at the
beginning, during the 250 m walk represented by segments
1 and 2, and it is a NLOS channel in the latter part of the
trajectory, during the 200 m walk represented by segments
3 and 4.
We generate the trajectory of the UE movements following

a Markov process. The change in the movement direction
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FIGURE 5. Simulation scenario.

TABLE 1. Simulation parameters.

of the UE is selected from a uniform distribution spanning
from –60 to 60 degrees. Note that the UE’s movement is
always bounded inside the road. The elevation angle of the
UE is set to 0 degrees for 50% of the time, emulating that
most of the time, the user is walking with the mobile phone
upright. For the remaining 50% of the time, the elevation
angle change of the UE at the next step is uniformly selected
from [–10, –20, –30, 10, 20, 30] degrees.
In this paper, we develop a location-based channel model

and SSB burst transmission. The parameter settings are
shown in Table 1. The antenna of the BS is a 5-meter-high
uniform rectangular array (URA) with 32 beams facing north,
with an azimuthal angle range of [–60 60] degrees and an
elevation angle range of [-90 0] degrees. The coordinates
of the BS are [0, 0, 5] meters. The UE is equipped with
a URA with 8 beams covering [–180 180] degrees in the
azimuthal plane and [0 90] degrees in elevation. The height
of the UE is 1.8 meters. The simulated beams are shown
in Fig. 6.
Referring to the mapping between the duration of the

BM procedure and the human movement distance is shown
in Fig. 1. Each time index represents a BM result. The

FIGURE 6. Simulated beams of BS and the beams of UE when UE is moving along
the Y axis with random rotation.

FIGURE 7. Illustration of beam direction and beam ID assignment.

3D position of the UE antenna changes over each step of
the user, which spans two consecutive time indexes. This
mapping is general in that we can modify the amount
of change in location for different time index to simulate
different scenarios of different mobility.
For the model input and output, we consider both beam

direction and beam ID values in the AI-based Beam
Management (BM) scheme. As illustrated in Fig. 7, the beam
direction represents the absolute angular direction in the
coordinate system. In contrast, beam ID values are assigned
relative to the UE. Using the AI model with beam direction
requires the UE to calculate the absolute directions of each
beam to generate input for the AI model. Additionally, given
the predicted direction of the best beam, the UE needs to
identify the corresponding beam for that direction. If the
AI model with beam ID is employed, the UE’s orientation
and beam ID assignment must align with the UE used
to train this model. In comparison to the beam direction-
based model, the beam ID-based approach eliminates the
need for beam direction calculation, as long as the beam
ID assignment aligns with the UE used for training this
model.
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FIGURE 8. Trajectories of the UE in the simulation for training data collection.

B. TRAINING DATA COLLECTION
In the data construction process, we set up a simplified
simulation environment. The UE starts moving directly
below the BS and follows the trajectory depicted in Fig. 5.
The actual movement of the UE is shown in Fig. 8. The UE’s
movement is modeled as a Markov process, where at each
step, the direction of movement is randomly chosen. The
UE’s position in the next time slot is updated after moving
a fixed step size in the randomly chosen direction. Based
on the UE position we run the SSB (Synchronization Signal
Block) beam sweeping simulation to obtain the RSRP values
for different Tx/Rx beam pairs. Additionally, we determine
the best beam IDs and beam directions for the UE at each
position, constructing a dataset that reflects the changing
beam sweeping behavior as the UE moves.
Along the trajectories of the UE, we collected beam

selection results from the traditional BM scheme. Data from
nine trajectories were utilized for training, while data from
one trajectory was reserved for testing. We use 90% of the
data for training and 10% of the data for testing. We train
the LSTM model with Adam algorithm. During training,
a random dropout of 25% is applied—a regularization
method where input and recurrent connections to LSTM units
are probabilistically excluded from activation and weight
updates. This technique helps reduce overfitting and improve
overall performance. Before the training process, the data
normalization is performed as follows. Assuming the optimal
beams from traditional BM, described by either the beam
direction or beam ID, are sampled as the training data, xt,
t = 1, 2, . . . ,T , where t is the time index as shown in Fig. 1
and T is the total number of samples. The normalized data
is [28]

x′t = xt − x̄t
σ

, (1)

where x̄t and σ are the mean and standard deviation of xt.
We use x′t as the input of the LSTM model in the training
process.

FIGURE 9. Process of model training for UE beam prediction.

C. MODEL TRAINING
In Fig. 9 we show the example of implementation of
the training process. The UE performs the traditional BM
scheme and reports the measurement of the BS downlink
beams. Based on the reports the BS can determine the model
to be trained for this UE. The UE reports the results of the
selection of the receiving beam. Using the sequence of the
beam selection results the BS can train the AI model to
predict the UE’s beam in time domain. After training, this
model can be distributed to the UE the downlink as payload.
Note that this training can also be done at the UE side if
the computation power is sufficient.
Recurrent neural networks (RNN) are adept at processing

sequential data, and LSTM is a commonly employed variant
within this family. LSTM networks consist of multiple LSTM
units, each featuring an input gate, a forget gate, and an
output gate, which regulate the flow of information. These
gates dynamically adjust the propagation and forgetting
of information through learning, enabling the model to
better capture long-term dependencies within sequential data.
The input data comprises the results of beam sweeping,
encompassing various features related to the sweeping
process. These features pass through the input layer and
undergo processing by the hidden layers of the LSTM
network. The LSTM units are sequentially connected within
these hidden layers. Throughout the training process, the
model continually adjusts the weights and biases using
the backward propagation algorithm, aiming to minimize
the disparity between predicted values and ground truth.
This iterative approach allows the model to learn patterns
and regularities within the input data, enabling it to make
predictions on unseen data.
This study employs an LSTM-based recurrent neural

network with hidden layers to process and predict beam
sweeping result data. The model effectively captures long-
term dependencies within sequential data and undergoes
training using the backward propagation algorithm to min-
imize prediction errors. The training process utilizes the
Adam optimization over 500 epochs, with a training gradient
threshold set at 1.5 and an initial learning rate of 0.1.
Additionally, we apply a learning rate dropping factor of
0.25 with a dropping period set to 125.

D. MODEL SELECTION
In 3GPP discussion, various models have been studied
including LSTM, transformer, convolutional neural network
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(CNN), etc. Storage and computational complexity of these
AI models are reported. The former decides the memory
needed and the latter decides the inference time. For
BS deployment, an LSTM model boasting a modest 80K
parameters in memory and 36K floating-point operations
per second (FLOPs) achieves a 70% accuracy in top
beam pair prediction [29]. On the other hand, a BS-
side LSTM, with a more substantial 2.755M parameters
and 7.25M FLOPs computational complexity, attains an
impressive 90% accuracy in beam pair prediction [30].
The work in [31] reports a UE-side LSTM model with
three layers and a hidden/cell size of 128, comprising 340k
parameters, yielding a 77% accuracy for the top-1 Rx beam
prediction. Furthermore, a 570k encoder-only transformer
model deployed at the UE achieves an 80% top-1 RX beam
accuracy. Given storage constraints of a UE, it’s feasible to
deploy a range of AI models at the UE, allowing for the
selection of models with varying parameter configurations
tailored to specific environmental conditions. These diverse
models can be trained at the BS and distributed to UEs before
activation. The standardization body is currently designing
signaling for model selection/activation and exploring the
distribution of models from the BS to the UE.
Based on the conclusion given in [32], it is anticipated

that deploying a single AI model for various propagation
environments would yield inferior performance compared
to deploying distinct models for each unique propagation
environment. This study proposes AI model selection based
on the measurement report of the downlink BS Tx beam.
This choice is motivated by the observation that BS beam
direction changes less frequently, serving as an indicator
of UE environmental changes. Conversely, the UE’s beam
direction changes more frequently and is more closely
associated with the UE’s rotation.
The 5G system is designed to transmit SSBs using

directional beams, facilitating the establishment of Tx and
Rx beam pairs during initial access. As the UE moves, the
established directional beams require periodic reevaluation.
The BS has the capability to configure radio resources
for beam measurement, with UEs responsible for reporting
measurement results. These regular measurements assist in
assessing the spatial uniqueness of a UE. For example,
the sequence of the top four downlink Tx beam directions
signifies the primary propagation routes, as illustrated in
Fig. 1. By leveraging routine measurements, the BS can
ascertain the spatial distinctiveness of a UE and select an
appropriate model as shown in Fig. 10.

E. PERFORMANCE MONITORING AND MODEL
ACTIVATION/DEACTIVATION
AI-driven beam prediction is prone to inaccuracies, influ-
enced by factors such as dynamic channel conditions
and interference. Industry studies have demonstrated that
LSTM models of varying sizes can achieve top-1 beam
prediction accuracy ranging from 70% to 90% [29], [30],
[31], [33]. Despite these inherent imperfections, AI-based

FIGURE 10. Process of model selection for UE beam prediction.

FIGURE 11. Process of model activation/deactivation.

beam management effectively streamlines system operations,
optimizing resource allocation and consequently enhancing
system capacity and data transmission. When evaluating
beam management schemes, it is essential to consider not
only prediction accuracy but also the RSRP to assess link
quality.
We propose the deployment of two additional AI models

to predict the RSRP performance for both the traditional
BM scheme and the AI-based beam measurement scheme.
The activation/deactivation of the AI-based BM scheme
is determined through a performance comparison with the
traditional BM scheme, as illustrated in Fig. 10. The UE
reports performance metrics, such as RSRP, to the BS.
It’s important to note that even for the AI-based beam
measurement, regular RSRP measurements are still necessary
to predict the best beams, as depicted in the figure. If
the predicted beam is selected, the UE can also report
the associated RSRP. At the BS, the two AI models for
performance evaluation predict the performance of both
schemes and determine the optimal selection.
While envisioning that errors of AI-based BM can result

in a drop in RSRP, we also recognize that the degradation
in RSRP performance might be attributed to the UE
moving into a challenging radio environment. Utilizing
activation/deactivation based on the comparison of the two
schemes helps prevent situations where the AI performance
is underestimated in harsh environments, as switching back
to the traditional scheme may not significantly improve
performance. If we anticipate a decline in the performance
of the AI-based beam management scheme, we assess the
predicted performance of the traditional beam management
scheme. The system reverts only if the predicted RSRP for
the traditional scheme does not indicate performance degra-
dation. This approach significantly minimizes unnecessary
fallback instances in comparison to the current approach.
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Algorithm 1: AI Based BM Switching Framework Efficiency
input : Predicted RSRP of AI BM and traditional BM
output: The percentage of invalid fallbacks decreased

1 Define the 3dB drop number indicator, drop location indicator vector and the number of times to avoid invalid
fallbacks;

2 Initialize the indicators as 0;
3 for all time_step do
4 Extract the RSRP value of predicted RSRP of AI BM in time_step and time_step −1;
5 if the predicted RSRP of AI BM drops by 3dB then
6 3dB drop number indicator + 1;
7 value of the drop location indicator vector in time_step = 1;

8 Extract the RSRP value of predicted RSRP of traditional BM in time_step and time_step −1;
9 if predicted RSRP of traditional BM drops by 3dB then
10 3dB drop number indicator + 1;
11 value of the drop location indicator vector in time_step = 1;

12 Save the 3dB drop number indicator and drop location indicator vector;

13 for all time_step do
14 if drop location indicator vector of both AI/traditional BM predicted RSRP = 1 then
15 The RSRP drops occur at this time step, and the gain of the switch to the traditional BM is limited.;
16 The number of times to avoid invalid fallbacks + 1;

17 Obtain the number of times to avoid invalid fallbacks;
18 Calculate the percentage with number of times to avoid invalid fallbacks and the 3dB drop number indicator of

predicted AI BM RSRP.

This mechanism is illustrated through the following pseudo-
code of Algorithm 1.

IV. PERFORMANCE
In the simulation, we focus on the downlink direction.
Initially, we implement the traditional BM procedure as the
UE moves along the route depicted in Fig. 5. Following the
traditional BM scheme, the optimal BS Tx beam and UE Rx
beam are selected based on RSRP measurements of SSBs
obtained through the beam sweeping process for various UE
positions. The sequence of optimal Tx and Rx beam IDs as
functions of the time index is illustrated in Fig. 12. Notably,
the optimal BS Tx beam IDs exhibit minimal changes, while
the optimal Rx beam on the UE side undergoes substantial
variations. This observation suggests that the optimal Tx
beam strongly depends on the UE’s location, whereas the
Rx beam on the UE side is predominantly influenced by UE
rotation and nearby scatters.
Utilizing the outcomes illustrated in Fig. 12, we can

delineate distinct zones along the route characterized by
varying values and trends in Tx beams. To address the
uniqueness of the propagation environment for AI-based
BM, we advocate deploying different AI models for each
zone, departing from the approach of utilizing a single AI
model for all scenarios. Model selection can be based on the
UE’s report of the best four Tx beams or the UE’s position.
For instance, we classify the environment into four zones
corresponding to route segments 1 to 4, as depicted in Fig. 5.

FIGURE 12. Optimal beam directions of the BS Tx antenna and the UE Rx antenna
as functions of the BM time index.

Rather than focusing on the accuracy of this model selection,
we emphasize the performance of this zone-specific AI-based
BM, comparing it with employing only one AI model for
all zones in the latter part of the simulation. Ultimately, we
aim to investigate whether we can predict the performance
for both traditional and AI-based BM schemes, enabling the
activation/deactivation of the AI model.
We explore the implementation of AI for time-domain UE

beam prediction. Employing an LSTM model for each zone,
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TABLE 2. Performance AI-based BM with beam ID and beam direction.

FIGURE 13. RSRPs achieved with the traditional BM scheme and the RSRPs of the
AI-based BM scheme.

the architecture comprises one input layer, one output layer,
and six hidden layers. To predict the optimal beam for the
next time index, we utilize four consecutive optimal beams
from the past 4 time indexes. Leveraging this time-domain
prediction, a 20% reduction in complexity is achievable
by utilizing the predicted beam instead of repeating the
beam measurement procedure if the prediction proves accu-
rate. The duration of measurements in the traditional BM
procedure can also be conserved, contributing to enhanced
data transmission efficiency and ultimately improving system
throughput.
We compare the performance of this output from the

AI model with the performance of using the optimal beam
achieved through traditional BM scheme at this time index.
When using the beam ID as input and output of the AI model,
we compare the beam ID predicted by the AI model and
the beam ID obtained through the traditional BM scheme.
Whereas, when using the beam direction as the input and
output of the AI model, we select the beam matching
the direction predicted by the AI model and compare it
with that obtained through the traditional scheme. Following
the 3GPP discussion, we select two criteria to measure
the performance. The link quality of each time instance
of both schemes are compared the RSRPs obtained by
traditional BM scheme and simulated by employing the
beam predicted by the AI, respectively. In Fig. 13 we plot
the RSRP achieved by the traditional scheme. The RSRPs

achieved by AI with different input and output achieves
very close value to those of the traditional scheme. For
clarity of presentation, we plot the RSRPs of the AI-based
BM scheme only on those time index where the RSRP
values are different from those by the traditional BM scheme.
Applying the AI-based BM scheme we can achieve similar
performance with that of the traditional scheme, nevertheless
there are situations where the RSRP of the predicted beam
is lower than the RSRP achieved by traditional scheme. This
is due to the beam prediction error. Following the 3GPP
discussion, this accuracy of the prediction can be calculated
as the number of correct estimations over the total number of
estimations.
Table 2 lists the beam accuracy and the RMSE of the

RSRP for traditional BM and AI-based BM. The results show
that the errors in the LOS environment (zones 1 and 2) are
larger error than those in the NLOS environment. This is
because in the LOS environment, the beam selection changes
more dramatically than it does in the NLOS environment
(zones 3 and 4), as shown in Fig. 12. Furthermore, we can
see that the beam-direction-based approach and the beam-
ID-based approach yield very similar performance in terms
of prediction accuracy.
Now, we compare the performance achieved using dif-

ferent models for different zones. To balance the training
in different zones, 142 results were collected from each
trajectory. Consequently, each zone has an equal training
length of 1278. As shown in Table 3, we first deploy the
models trained for each individual zone in other zones. We
can see that the models are quite zone-specific in that each
model achieves the best performance only in the zone for
which it was trained. For example, when the model trained
for zone 1 is used for beam ID inference in zone 1, the error
is the smallest.
Subsequently, we explore the option of training a single

universal model to cover all zones. Initially, the model
structure mirrors that of individual AI models for each zone,
featuring six layers. The comparison of beam IDs determined
through traditional BM and AI-based BM is illustrated in
Fig. 14. Table 3 highlights the Beam ID RMSEs of this
universal model in comparison to RMSEs achieved with
zone-specific AI models across different zones. It is evident
that the unified model fails to outperform the zone-specific
models. Moreover, an increase in the number of hidden
layers to fifty does not lead to performance improvement,
as depicted in Fig. 15. Notably, the performance is notably
worse in zone 1 (time index from 1 to 180), attributed to the
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TABLE 3. Performance comparison of different selected models in different
propagation environments.

FIGURE 14. Performance achieved with AI-based BM over all zones using one LSTM
model with six hidden layers.

increased likelihood of overfitting problems with a model
featuring more layers [34].
In recent discussions, the TSG has delved into the issue of

model performance monitoring. Monitoring the performance
of an AI-based BM scheme facilitates the decision-making
process to “fall back” to the traditional BM scheme
when the UE encounters poor performance. Analyzing the
performance depicted in Fig. 13, simulations reveal that
inadequate performance may arise from either a challenging
radio propagation environment where both traditional and

FIGURE 15. Performance achieved with AI-based BM over all zones using one LSTM
model with fifty hidden layers.

TABLE 4. Accuracy of the predicted RSRPs from using LSTM with varying numbers
of hidden layers.

AI-based BM schemes yield poor link quality in terms
of RSRP. Additionally, situations arise where the RSRP
achieved by the predicted beam is significantly inferior to
that achieved by the traditional BM scheme, attributable to
the prediction error of the AI-based BM scheme.
Motivated by this consideration, we propose using two

AI models to predict the performance of both the AI-based
BM scheme and the traditional BM scheme, respectively, as
shown in the second step of Fig. 11. We deploy two one-
layer LSTM models and use 1788 RSRP results collected
along a UE trajectory as training data. In 3GPP discussion
various companies have utilized a 3dB drop in RSRP
to evaluate beam performance. In our simulations, we
incorporate this 3dB RSRP drop as the criterion for fallback.
As shown in Table 4, the LSTM with fifty hidden layers
has the best performance in terms of the RMSE of the
predicted RSRPs the accuracy of the predicted drops. Thus,
we use the LSTM with fifty hidden layers in the model
activation/deactivation mechanism to determine the fallback
event. We can see that the predicted time instances where
the AI-based BM performs significantly worse than the
traditional BM in Fig. 16 matches the performance of both
schemes in Fig. 13. This means that we can predict the
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FIGURE 16. Predicted RSRPs by traditional BM and AI-based BM compared with the
RSRP by the AI-based BM.

performance of both traditional and AI-based BM schemes
quite accurately. By comparing the two predicted values,
we can trigger fallback in advance only if the AI-based
BM scheme has performance much worse than that of the
traditional scheme, i.e., the prediction error of the AI-based
BM. This allows us to avoid unnecessary fallback in harsh
radio environments if we only monitor the performance
of AI-based BM only whereas traditional BM cannot
achieve better performance. For example, as illustrated in
Fig. 16, during time indexes 1162 to 1166, the RSRP by
AI BM experiences a drop, leading the existing scheme
to switch over to traditional BM. In contrast, with the
proposed mechanism, when predicting the upcoming drop
of AI-based BM, we observe a corresponding drop in the
predicted RSRP of the traditional scheme. Consequently,
the system refrains from switching from AI-based BM to
traditional BM. Along the entire trajectory’s time indexes,
we counted 294 fallbacks for the existing approach. With the
proposed scheme, we experienced 264 fallbacks, avoiding
10% unnecessary system function switches. It’s important to
note that a system function switch will also entail changes
in reference signal resource assignments, thereby increasing
system complexity. Additionally, it should be noted that the
intention of this paper is not to develop an advanced AI
model for performance prediction but rather to propose a
mechanism. It is believed that with more accurate predictions
of RSRP, more precise switches can be realized.

V. CONCLUSION
This paper explores AI-based BM. We began by providing
an overview of the 3GPP discussion on AI for BM.
Subsequently, using UE beam prediction as an exemplar of
AI-based BM, we introduced an environmental-driven model
selection for beam prediction. Environmental changes are
identified through BS Tx beam measurements. Additionally,
we proposed performance monitoring using AI for both
traditional and AI-based BM schemes.

Through simulations, we conducted a comparative analysis
of beam-ID-based training and beam-angle-based training.
Both methods demonstrated satisfactory performance in
terms of prediction accuracy. We further illustrated that
environments can be categorized based on propagation
properties, utilizing indicators such as reported best BS Tx
beams. Additionally, our findings indicate that switching
among AI models in accordance with the environment
outperforms deploying a single universal AI model for all
scenarios. Finally, we demonstrated that utilizing AI to
predict the performance of both traditional BM and AI-
based BM schemes enables the identification of potential
performance degradation, distinguishing between AI model
prediction errors and harsh propagation environments. This
proactive approach allows for informed fallback decisions.
The 3GPP discussion of AI-based BM is ongoing, and

we have studied several aspects raised in this discussion to
date, such as the inputs and outputs of AI models, AI model
switching, and the model management. We hope that this
study can shed light on the future academic research and the
standardization process of AI for wireless communication.
In our exploration of the ongoing 3GPP discussion on AI-

based BM, we have delved into various aspects discussed
thus far, including the intricacies of AI model inputs and
outputs, the dynamics of AI model switching, and the
nuances of model management. By addressing these key
facets, our study aims to contribute valuable insights to
both the academic research landscape and the evolving
standardization process of AI for wireless communication.
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