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ABSTRACT Communications and information theory use the Gaussian Q-function, a positive and
decreasing function, across the literature. Its approximations were created to simplify mathematical study
of the Gaussian Q-function expressions. This is important since the Q-function cannot be represented in
closed-form terms of elementary functions. In a noise model with the Gaussian distribution function and
various digital modulation schemes, closed-form approximations of the Gaussian Q-function are used to
predict a digital communications system’s symbol error probability (SEP) or bit error probability (BEP).
Another significant scenario pertains to fading channels, whereby it is important to accurately determine,
through a closed-form expression, the precise evaluations of complex integrals involved in the computations
of SEP or BEP. In addition to the aforementioned scenarios, it is imperative for a communications system
designer to ascertain the requisite operational signal-to-noise ratio for the specific application, based on
the target SEP (or BEP). In this scenario, the crucial role of the explicit invertibility of the Gaussian
Q-function approximation is of significant importance in achieving this objective. In this paper we propose
a survey of the approximations of the Gaussian Q-function found in the literature, reviewing also the
approximations originally given for the 4 classical special functions related to it, restricting the analysis
to the explicitly invertible ones, and classifying them on the basis of their accuracy (on the significant
range), simplicity, and easiness of inversion, also distinguishing the bounds from approximations. We also
list the inverses of some of them, already published or newly found in this research.

INDEX TERMS Approximations, bit error probability (BEP), Explicit invertibility, Gaussian noise,
Gaussian Q-function, normal cumulative distribution function, normal quantiles, symbol error probability
(SEP), telecommunications channels.

I. INTRODUCTION

THE Q-FUNCTION and the other 4 related spe-
cial functions – �(x), erf(x), erfc(x), and Mills’

ratio m(x) – widely discussed in this survey, and
all equivalent by formulas of Table 1, are mathemati-
cal functions of significant importance broadly used in
various disciplines, such as probability theory, statis-
tics, signal processing, and communications engineering.
There are several reasons why these functions hold
significance:
1) Probability calculations: Probability calculations often

use Gaussian distributions and make use of various

special functions, including the Q-function and the 4
additional related functions. The Q-function, in par-
ticular, provides the likelihood that a random variable
with a normal distribution will exceed a specific
value.

2) Signal processing: The Q-function and erfc(x) func-
tion are commonly employed in signal processing
to evaluate the likelihood of bit error in digital
communication systems. The significance of this lies
in the development of communication systems capable
of effectively transmitting data across channels with
high levels of noise.
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3) Statistical analysis: The Q-function is employed in
statistical analysis for the purpose of data modeling
and parameter estimation. In the context of hypoth-
esis testing, the Q-function is a useful tool for the
computation of p-values.

4) Mathematical modeling: The Q-function and the error
function, erf(x), frequently appear in mathematical
models that describe a wide range of events. An
illustration of the utilization of the error function,
erf(x), can be observed in the heat equation within the
context of physics, as well as in the Black-Scholes
equation in the field of finance.

5) Computational efficiency: In certain situations, the
utilization of the Q-function and the complementary
error function, erfc(x), offers a more efficient and
precise approach for computing specific probabilities
and integrals compared to alternative methodologies.

A. BACKGROUND
The Gaussian Q-function, denoted as Q(x) or equivalently
as the complementary error function, erfc(x), is extensively
utilized in the field of communications and information the-
ory. Its widespread usage can be attributed to its significant
contribution in the performance analysis of several systems.
Given the various equivalent definitions of the function
Q(x), or, equivalently, of the complementary error function
erfc(x), as presented in Section II-A, it is evident that
these definitions pose mathematical challenges. Furthermore,
it is widely acknowledged that the Q-function cannot be
expressed using elementary functions in a closed-form
manner. Consequently, the existing literature has proposed
various approximations and bounds for the Gaussian
Q-function, which have been extensively examined in this
survey. Closed-form expressions are of great significance
in the evaluation of communication systems’ performance,
since they facilitate mathematical analysis. These expressions
are typically used to quantify the symbol error probability
(SEP) or bit error probability (BEP) in such systems. In
addition, it is important to have closed-form formulations
of the system performance in order to facilitate system
optimization.
There exist three fundamental scenarios in which the

necessity for highly efficient closed-form approximations
of the Gaussian Q-function emerges, including cases –
described in Scenario 1) – where approximations to integer
powers of the Gaussian Q-function are also required:
1) In the additive white Gaussian noise (AWGN) chan-

nel scenario, it is of great interest to have highly
efficient closed-form approximations of the Gaussian
Q-function in order to determine the error probability
for many different digital modulation schemes [1]. In
fact, starting from the simple binary ones, as the binary
amplitude modulation (2-AM) and the binary phase
shift keying (BPSK), the BEP involves the Gaussian
Q-function (see, e.g., [1, Formula 8.18]). Considering
more complicated higher order constellations, it is

of great interest to have highly efficient closed-form
approximations to integer powers of the Gaussian
Q-function, too, since the SEP involves the Gaussian
Q-function and its square for the quadrature phase shift
keying (QPSK, see, e.g., [1, Formula 8.19]), or the
integer powers of the Gaussian Q-function up to Q4(x)
for the differentially encoded QPSK modulation (see,
e.g., [1, Formula 8.38]), or even up to Q6(x) for the
triangular quadrature amplitude modulation (TQAM)
with maximum ratio combining (MRC) [2]. Bounds
or approximations to integer powers of the Gaussian
Q-function, needed for evaluating the SEP for the
more complicated higher order constellations, have
been addressed in [3], [4], [5], [6].

2) A second important scenario is represented by
communications environments in which the channel
signal-to-noise ratio probability density function (pdf)
follows a fading distribution: over these channels it is
extremely important to work with approximations of
the Gaussian Q-function allowing exact evaluations of
complex integrals involved in the error probabilities
computations. The approximations of the Q-function
found in [4] and [7], [8], [9], [10], [11], [12], [13]
were all meant to easily compute the average SEP
(ASEP) over fading channels, finding in some cases
closed form expressions, too.

3) Besides these two scenarios, another important need of
a communications system designer is to derive, given
the target symbol error or bit error probability of a
communications system, the operating signal-to-noise
ratio needed by the considered application. To this
purpose, the simple and explicit invertibility of the
considered approximation of the Q-function assumes
a very important role. See Section IV-F for this issue,
and already here we quote from classical Cooper and
McGillem book [14, p. 70]

“Often of equal importance are the inverses
of these functions that are needed to find the
parameters that lead to observed or specified
probabilities of events.”

and from the paper [15] of Polyanskiy, Poor, and Verdú

“For general classes of channels new achievability
and converse bounds are given, which are tighter
than existing bounds for wide ranges of parame-
ters of interest, and lead to tight approximations
of the maximal achievable rate for blocklengths n
as short as 100. (· · ·) the maximal rate achievable
with error probability ε is closely approximated

by C−
√

V
n Q

−1(ε) where C is the capacity, [and]
V is a characteristic of the channel referred to as
channel dispersion.”

Already many papers and books as [6], [9], [11], [16],
[17], [18], [19], [20], [21], [22], [23], [24], [24], [26],
[27], [28], [29], [30], [31], [32], [33], [34], [35], [36],
[37], [38], [39] explicitly addressed the inversions of
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TABLE 1. The 20 mutual relations among the 5 functions Q(x), �(x), erf(x), erfc(x), and m(x).

TABLE 2. The 12 mutual relations among the 4 inverse functions Q−1(y), �−1(y), erf−1(y), and erfc−1(y).

the approximations of Q(x) or �(x) or erf(x) or erfc(x)
– which are all equivalent by formulas of Table 2
– and, in particular, [6], [9], [11], [22], and [29]
considered the importance of the explicit inversion in
the environment of communications theory.

B. ORIGINAL CONTRIBUTION
This paper proposes a survey of the approximations of
the Gaussian Q-function found in the literature, reviewing
also the approximations originally given for the 4 classical
special functions related to it (see Section II-C), focusing
in particular on the explicitly invertible (see Definition
in Section V) ones. More precisely, we review published
approximations of Q(x) with these characteristics:

1) published for Q(x) or the other 4 related functions
�(x), erf(x), erfc(x), and Mills’ ratio m(x) (and
erfc

√
x · · · ), from which Q(x) may be immediately

obtained (see Table 1);
2) holding at least for any x > 0;
3) defined by a single expression, that is to say not

piecewise defined;
4) defined in closed form by means of elementary

functions with standard names used in mathematics
(for the issue of standard names used in mathematics
see Remarks 1 and 2 in Section V);

5) being explicitly invertible.

In Table 2 we list the 12 mutual relations among the 4
inverse functions Q−1, �−1, erf−1, and erfc−1.
In Tables 3–13 we list many explicitly invertible (see

Section V) approximations, classifying them according to
their Types (see Section VI) indicating also:

1) their accuracy (see Section VII);
2) their complexity, measured in several ways (see

Section VIII);
3) their easiness of invertibility (see Section IX);
4) the fact that they are or not a bound (see Section X).

The mathematical analysis of the approximations
presented in Tables 3–13 has been thoroughly conducted
in Section VI. This analysis includes a comprehensive
examination of the classification of these approximations
into different Types, which can contribute to a better
comprehension of their mathematical characteristics.
Furthermore, a thorough analysis of the categorization

of approximations according to their levels of invertibility
(InvLev) has been published in Section IX. This classification
aids in understanding the degree of ease with which certain
approximations can be inverted. In order to enhance the clar-
ity of this classification, we have included in Tables 14–18
both newly computed and previously published explicit
inverses of the aforementioned approximations of Q(x) at
the most advanced levels of invertibility: InvLev 4, InvLev
5, InvLev 6, InvLev 6.5, and InvLev 7, respectively.

Table 19 compiles the most accurate approximations
of Q(x) for any given Type and InvLev on the interval
Isignificant = [0.45, 4.5]. This table provides a concise
overview of the findings and highlights the most promising
avenues for future research, as discussed in Section XIII.

C. ORGANIZATION OF THE PAPER
The paper is organized as follows.
After the Introduction, in Section II we recall the basic

definition of the Q-function and
• its several equivalent definitions (Section II-A) by

– real integrals (Section II-A1),
– a complex integral (Section II-A2),
– limits (Section II-A3),
– a differential equation (Section II-A4),
– the function �(x) (Section II-A5),
– a continuous fraction (Section II-A6),
– power series (Section II-A7),
– a class of function series (Section II-A8),
– and random variables (Section II-A9),

• its different names (Section II-B),
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• the 4 classical special functions related to the special
function Q(x) (Section II-C),

• the probabilistic meaning of the function Q(x) and of
the 4 classical related special functions (Section II-D),

• the general behavior of these mutually related 5 special
functions (Section II-E),

• the symmetry formulas for these functions
(Section II-F),

• and a historical note (Section II-G).
In Section III we recall
• the domain of practical interest of the function Q(x) in
information and communications theory (Section III-A)

• and some notable values, in the domain of interest, of
Q(x) and of the 4 classical special functions related to
it (Section III-B).

In Section IV we treat the approximation of the function
Q(x), addressing

• the necessity of approximating Q(x) (Section IV-A),
• some application examples of the function Q(x)
(Section IV-B),

• the most desirable attributes that an approximation
should possess (Section IV-C),

• the issue of the names of the approximations adopted
in the paper (Section IV-D),

• the valuable merits of an approximation of Q(x),
some of which will be deepened in Sections VII–X
(Section IV-E),

• the utility for an approximation to be explicitly invert-
ible, related to the issue of deriving the operating
signal-to-noise ratio given the target SEP or BEP
(Section IV-F),

• and the topic of approximating Q(x) inverting an
approximation of Q−1(y) (Section IV-G).

Section V is devoted to the explanation of the concept of
explicit invertibility of an approximation.
In Section VI we produce a classification defining 7

classes (from Type 0 to Type 6) of functions in which almost
all the published approximations of Q(x) fall, leaving in
miscellanea (Type 7) the few remaining.
In Section VII we address the accuracy of the approxi-

mations, dealing with
• the issue of absolute and relative errors (Section VII-A),
• the tightness of the approximations of Q(x) in telecom-
munications systems (Section VII-B),

• the properties of asymptoticity and asymptotic equiva-
lence of an approximation of Q(x), which are strictly
related to its tightness (Section VII-C),

• the tightness of the inverse of an approximation of Q(x)
(Section VII-D).

Then, Section VIII treats the levels of complexity of the
approximations from several points of view:

• the typographic complexity (Section VIII-A),
• the computational complexity (Section VIII-B),
• the decimal complexity (Section VIII-C),

all summarized by

• the total complexity (Section VIII-D).

Section IX gives a classification of the levels of easiness
of explicit invertibility, adding

• some comments concerning types and invertibility levels
(Section IX-A).

Finally, in Section X we treat the topic of bounds to Q(x),
treating separately

• upper bounds, related to the issue of the so-called worst
case in performance analysis (Section X-A),

• and lower bounds (Section X-B).

Moreover we add some comments on

• bounds and inverses (Section X-C).

In Section XI we address the contents of Tables 3–13
listing 60 known approximations – found in this research –
of Q(x) which are explicitly invertible by means of

• elementary functions (even without standard names used
in mathematics)

• and/or the Lambert W-function,

and in Section XII we address the contents of Tables 14–18
listing some published and new (computed in this research)
inverses of these approximations of Q(x) which have to be
intended as approximations of the inverse of Q(x).
In Section XIII we summarize the main results of the

present research, making some final considerations about

• the precision (Section XIII-A),
• the types (Section XIII-B),
• and the complexity (Section XIII-C)

of the approximations, also in terms of prospective research
directions.
Finally, Section XIV summarizes the conclusions.
The paper is completed by 2 appendices, addressing

• the concept of the hidden polynomials in the approx-
imations of Q(x), to obtain their explicit inversion
(Appendix A),

• and a brief survey on the roots of polynomials up to
the 4-th degree (Appendix B).

Three interesting photographs of the XIX century works
of Gauss and Laplace, about this topic, and a noticeable list
of 110 bibliographic references enrich the paper further.

II. THE FUNCTION Q(X )
Several functions considered in this paper are based on

1√
2π

e− x2
2 , named Z(x) in the classical Abramowitz &

Stegun’s book [31] (see Formula 26.2.1) and, more modernly,
φ(x) in many other texts (see, e.g., [40]):

Z(x) := φ(x) := 1√
2π

e− x2
2 , (1)

whose graph is the classical Gaussian bell curve, and is the
standard normal pdf.
Basically, through

Q(x) :=
∫ +∞

x
φ(t) dt, (2)
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the Q function expresses the integral of the right tail of the
standard normal pdf (1) and then its meaning is essentially
the probability that a standard normal random variable X
assumes a value greater than x.

A. THE SEVERAL EQUIVALENT DEFINITIONS OF Q(X)
As a special function of mathematical analysis, the function
Q(x) is defined on the whole real axis, but for the purposes
of telecommunications theory – and then in this paper
– it is considered only for x ≥ 0, or sometimes even
x > 0, for example when saying (see Section VII-C) that

QWozencraft(x) := e−x2/2√
2π x

is a bound for Q(x).
Here we recall that by special function it is meant

a function of large recurrence (in mathematical analysis,
physics· · · ), usually excluding those which are classified as
elementary functions.
Here below in Sections II-A1–II-A9 we give several

equivalent definitions of Q(x), by real integrals, by a complex
integral, by limits, by a differential equation, by the function
�(x), by a continuous fraction, by means of power series,
by a class of function series, and by random variables,
respectively.

1) 5 REAL INTEGRAL DEFINITIONS

Q(x) := 1√
2π

∫ +∞

x
e− t2

2 dt (3)

exactly so defined in Formula 26.2.3 of classical Abramowitz
& Stegun [31], but so defined by words (apart from a small
oversight)

“the area of the tail, from x onwards, of the normal
curve y = 1√

2π
e− 1

2 t
2
”

already in the 1926 Mills’ paper [41] in Biometrika.

Q(x) := 1 − 1√
2π

∫ x

−∞
e− t2

2 dt (4)

immediately derives from (3) and the unit integral of the
Gaussian density (1), and

Q(x) := 1

2
− 1√

2π

∫ x

0
e− t2

2 dt (5)

is due to (3), the unit integral of the Gaussian density (1),
and its parity.
The following 2 definitions of Q(x), holding only for x ≥ 0

(which is not a limitation in communications and information
theory):

Q(x) := 1

π

∫ π/2

0
exp

(
− x2

2 sin2 θ

)
dθ (6)

and

Q(x) := 1

π

∫ π/2

0
exp

(
− x2

2 cos2 θ

)
dθ (7)

are in [1, Formula 4.2] (which is due to Craig [42]) and [1,
Formula 4A.10], respectively.

FIGURE 1. Fixed in this example x = 0.45, the number Q(0.45)≈ 0.326 is given by

the 2 grey areas: as integral of 1√
2 π

e− t2
2 from 0.45 to +∞, and as integral of

1
π

exp(− 0.452

2 sin2 θ
) from 0 to π

2 . (For the first case it has to be imagined the graph as
extended up to +∞, with a negligible contribution to the total area.).

Remark that (only) the last 3 definitions of Q(x) are
based on integrals defined on bounded intervals, which
attenuates the practical problem, observed for example in [1],
of approximate evaluation by numerical integration.
For any fixed x ≥ 0, the basic mathematical nature of the

number Q(x) is the area under a curve, given by an integral:

• of the fixed function 1√
2π

e− t2
2 of t, on the unbounded

interval [x,+∞) depending from x, as in (3);
• of the function 1

π
exp(− x2

2 sin2 θ
) of θ but depending from

x, on the fixed interval [0, π/2], as in (6).

In Fig. 1, chosen x = 0.45, the number Q(0.45) ≈ 0.326 is
given by the grey areas in both modes. Of course, by changes
of variable in the integrals, one may obtain infinite other
figures whose area is the number Q(x), and such substitutions
sometimes are in fact done, for example in [29].
Notice that, limiting the integral of (6) up to π/4, one

obtains Q2(x) (see [1, Formula 4.9]), useful in view of, for
instance, the quadrature phase shift keying (QPSK) modu-
lation, for which the SEP is given by ([1, Formula 8.19]):

Ps(E) = 2Q

(√
Es
N0

)
− Q2

(√
Es
N0

)
, (8)

where Es/N0 is the signal-to-noise ratio.
Each of the 5 equations (3)-(7) may be kept as basic

definition and the other definitions, reported in the following,
may be proved from that adding, when needed, the symmetry
formula Q(−x) = 1 − Q(x).

Finally, an integral expression of Q(x) on [0,+∞) could
be obtained (see Table 1) by the integral expression of erfc(x)
in [43, Formula 7.7.1].

2) A COMPLEX INTEGRAL DEFINITION

Q(z) := 1

2

1

2π i
e− z2

2

∫ (0+)

−∞
e
z2 p

2√
p (1 − p)

dp
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with the Hankel-type integration contour. This new [44]
definition (Formula (4)) allows to express one of the
classical integrals of telecommunications theory, involving
the Nakagami-m distribution, by means of the regularized
incomplete beta function (see Formula (7) therein).

3) DEFINITIONS BY LIMITS

At least from the 3 equivalent definitions (5)-(7) by
integrals on bounded intervals, the integration by rectangles
immediately gives equivalent definitions by limits and
without integrals. In particular, from (6):

Q(x) = lim
N→∞

1

N

N∑
i=1

1

2
e−ãi x2

ãi := 1

2 sin2
(
π j
2N

) (9)

with j = i−1 or j = i (which correspond, respectively, to left
and right Riemann sums of the basic definition of the definite
integral) reported in [8, Formula 13a] with the oversight
π (i− 1)/(2N− 2) instead of π (i− 1)/(2N), corresponding
to the left Riemann sum.
Notice that substituting the limit with sufficiently large N

one obtains immediately approximations of Q(x) as finite
sums of exponential functions of the type sum S(x) of terms
bi eai x

2
– called Type 1 in Section VI, with ai and bi negative

and positive constants, respectively, and said “Exponential
Function Based Approximations” in [45] – which are very
appreciated in telecommunications theory, because it is often
interesting the averaging of Q(α

√
x) on [0,+∞) weighted

by a fading probability density function (pdf) pγ (x)
∫ +∞

0
Q
(
α
√
γ
)
pγ (γ )dγ

and pγ (x) is in turn often chosen in a set of classical
functions (as, for example, the Raileigh pdf), which allows
the expression of the above integral (among other analo-
gous but more complex integrals, see, e.g., [45, Formulas
55a–55c]) in closed form in terms of standard – though not
elementary – functions computed by software tools, as the
hypergeometric function.
Since the integrand function in (6) is increasing, the

substitution of the limit (9) with a finite sum up to N gives
an approximation of Q(x) which is a lower bound when
taking j = i− 1 (left Riemann sum) and is an upper bound
with the choice j = i (right Riemann sum).
The simplest of those approximations of Q(x), obtained

with N = 1 and j = i in (9), is the classical improved
Chernoff (upper) bound [46]

QChernoff–impr.(x) := 1

2
e− x2

2 , (10)

whereas the more simple and even more classic [47] Chernoff
(upper) bound

QChernoff(x) := e− x2
2 , (11)

given in [48, Formula 2-1-172], is a majorization of that.

(For the issue of the approximation names see
Section IV-D.)
Then with N = 2 and j = i one obtains the upper bound

QChiani–1(x) := 1

4
e−x2 + 1

4
e− x2

2 (12)

reported in Table 4, whereas with j = i− 1 the lower bound

QChang–new(x) := 1

4
e−x2

(13)

is obtained, which belongs to the class [46] (For the issue
of the name of approximation classes and of the name of
new approximations (not already published) derived from
the classes, see Section IV-D.)

QChang–class(x;α, β) := α

2
e− β

2 x
2
, (14)

(where β > 1 and 0 < α ≤
√

2 e
π

√
β−1
β

) of lower bounds

with α = 1
2 and β = 2 – the denominators 2 (see Table 1

for the mutual relation between erfc(x) and Q(x)) are due
because (14) has been originally published for erfc(x) – and
is overcome by

QWu–1(x) := 1

4
e− 2

π
x2

(15)

reported in Table 7.

4) DEFINITION BY A DIFFERENTIAL EQUATION

By (1), (2), and (3) it is

Q′(x) = −φ(x) (16)

which is a differential equation that, together with an initial
value as for example Q(0) = 1

2 , is another definition of Q(x).

5) THE RELATION WITH THE FUNCTION �(X )

Q(x) := 1 −�(x), (17)

which is the same of:

�(x) :=
∫ x

−∞
1√
2π

e− t2
2 dt, (18)

where�(x) is the well known normal cumulative distribution
function, called P(x) in [31, Formula 26.2.2]. For that
function one may find online lots of tables of numerical
values, with different levels of accuracy, by searching images
for “normal table”.
By (17), any approximate or exact expression for �(x) of

the form 1
2 +· · · gives for Q(x) the correspondent form 1

2 −
· · · , which is quite frequent in the published approximations
of Q(x).

3056 VOLUME 4, 2023



FIGURE 2. Continuous fraction expansion of the Gaussian integral in Laplace’s
Théorie Analytique des Probabilités (1812), [49, p. 104].

6) DEFINITION BY A CONTINUOUS FRACTION

Q(x) := 1√
2π

e− x2
2

{
1

x+
1

x+
2

x+
3

x+
4

x+ . . .

}

(see [31, Formula 26.2.14], originally given (1812) by
Laplace ([49, p. 104]) for

∫
e−t2dt, and in Fig. 2 is reported

the photograph of this latter formula) whose first convergent
(truncation to the first term) is exactly the upper bound [50]

QWozencraft(x) := e−x2/2

√
2π x

, (19)

treated in Sections VII-C, IX, and X-A, while the second
convergent

1√
2π

e− x2
2

1

x+ 1
x

is the lower bound

Q

Gordon(x) := x

1 + x2
· e

−x2/2

√
2π

, (20)

proven by Gordon in 1941 [51] (the small rhombus in the
name of the function is explained in Section IV-D) treated
in Section X-B, which may be developed, for x > 1, as

1√
2π

e− x2
2

1

x

(
1 − 1

x2
+ · · ·

)

to be compared with the lower bound ([50, Formula 2.121])
for Q(x):

Q

Wozencraft-lower(x) := e−x2/2

√
2π x

(
1 − 1

x2

)
, (21)

treated in Sections VII-C, IX, and X-B, which is exactly the
truncation of (24) to the second term.

7) 3 EQUIVALENT DEFINITIONS BY MEANS OF POWER
SERIES

Q(x) := 1

2
− 1√

2π

+∞∑
n=0

(−1)n x2 n+1

n! 2n (2 n+ 1)
(22)

FIGURE 3. Series expansions of the Gaussian integral in Laplace’s Théorie
Analytique des Probabilités (1812), [49, p. 103].

which is a power series (see [31, Formula 26.2.10] for �(x)).

Q(x) := 1

2
− 1√

2π
e− x2

2

+∞∑
n=0

x2 n+1

(2 n+ 1)!!
=

= 1

2
− 1√

2π
e− x2

2

(
x+ x3

3
+ x5

3 · 5
+ · · ·

+ x2n+1

(2n+ 1)!!
+ · · ·

)
(23)

which is 1
2− a power series multiplied by φ(x) (see [31,

Formula 26.2.11] for �(x)), originally given by Laplace ([49,
1812, p. 103]) for

∫
e−t2dt, and in Fig. 3 is reported the

photograph of this latter formula.

Q(x) := 1√
2π

e− x2
2

(
1

x
− 1

x3
+ 1 · 3

x5
− 1 · 3 · 5

x7 + · · ·

+ (−1)n (2n− 1)!!

x2n+1
+ · · ·

)
(24)

which is an asymptotic series multiplied by φ(x) (see [31,
Formula 26.2.12] and [52, Formula 3]), originally given as
well by Laplace ([49, p. 103]) for

∫
e−t2dt (see Fig. 3).

Also other series expansions have been found for Gaussian
integrals, see for example [31, Formula 26.2.13] and, with
Hermite polynomials, but said “unpromising looking”, a
formula on [52, p. 402]. Finally, a series of functions for Q(x)
could be obtained (see Table 1) by the expansion of erf(x) in
series of spherical Bessel functions, see [43, Formula 7.6.8].

8) DEFINITION BY A CLASS OF FUNCTION SERIES

Fixing [53] any T > 0, being ω = 2π
T ,

Q(x) := 1

2
− 2

π

+∞∑
n=1, n odd

sin(nω x)

n
e− n2 ω2

2 .
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9) DEFINITION IN TERMS OF RANDOM VARIABLES

Q(x) := 1√
2π

∫ +∞

0
e−(x+X)2 dX

where X is a standard normal random variable (see [8,
p. 1274]).

B. DIFFERENT NAMES OF THE FUNCTION Q(X)
The function Q(x) is also known under several different
equivalent names:
1) Gaussian Q-function;

one-dimensional
2) Gaussian Q-function;
3) Gaussian probability integral Q(x);
4) tail probability of a normal distribution;
5) right normal tail integral;
6) complementary Gaussian cumulative distribution func-

tion;
7) survival function of a normal distribution;
8) reliability function �̄(x) [54].
Notice that many Authors speak – essentially – of Q(x)

speaking of �(x) = 1 −Q(x) or of the Mills’ ratio, defined
in Section II-C.
Notice also that the function Q(x) should be distinguished

from these related functions with similar name:
1) first-order Marcum Q-function [55];
2) generalized Marcum Q-function [56];
3) Nuttall Q-function [57].

C. THE FUNCTION Q(X) AND THE 4 CLASSICAL
SPECIAL FUNCTIONS RELATED TO IT
There are 4 real functions classically related to Q(x):
1) Error function ([31, Formula 7.1.1]):

erf(x) :=
∫ x

0

2√
π
e−t2dt (25)

2) Complementary error function ([31, Formula 7.1.2]):

erfc(x) :=
∫ +∞

x

2√
π
e−t2dt (26)

3) (Standard) normal cumulative distribution function
�(x) (18), already present in this form with the same
name in [58, Formula (3) of the 1938 paper], translated
in English in [59].
Analogously to (2) and (16), since �(x) = ∫ x−∞ φ(t) dt
it is �′(x) = φ(x).

4) Standard normal Mills’ ratio, considered already in a
1926 paper [41] on Biometrika with the name Rx:

m(x) := e
x2
2

∫ +∞

x
e− t2

2 dt = Q(x)

φ(x)
. (27)

More generally, the Mills’ ratio m(x) :=
∫ +∞
x f (t) dt
f (x) is

defined for any pdf f (x) (see [3, Formula 36]), but in
this paper it will be considered only with regard to the
standard normal pdf.

Still notice the usual classical preference of statisticians
for the function �(x), of physicists for the function erf(x),
and of communications theorists for the functions Q(x) and
erfc(x), while a minority research line keeps on investigating
the problem from the point of view of the Mills’ ratio.
These refer to essentially the same probabilistic problem
seen from different perspectives. Furthermore, notice that in
telecommunications theory the compound function Q(

√
x) is

often considered.
Remark 1: The function Q(x) and the 4 classical special

functions related to it could be referred by the generic term
“Gaussian integral”, and even others, related, as

p(x) := 1√
2π

∫ x

−x
e− t2

2 dt =
∫ x

−x
φ(t) dt, (28)

defined (1946) by Williams [60] (which the classical
book [31] defines as A(x) in Formula 26.2.4), and this other

G(x) :=
∫ x

0
(2π)−

1
2 e− t2

2 dt =
∫ x

0
φ(t) dt, (29)

defined (1945-46) by Pólya [61], which is 1
2 p(x),

1
2 −Q(x),

and �(x)− 1
2 (which is unfortunately named �(x) in [62]).

D. THE PROBABILISTIC MEANING OF THE FUNCTIONS
Q(X), �(X ), ERF(X), ERFC(X), AND M(X)
The wide recurrence in Sciences of the equivalent functions
Q(x), �(x), erf(x), erfc(x), and m(x), is – at a deep level
– due to the Central Limit Theorem. The probabilistic
nature of the function Q(x) which causes its relevance in
communications theory is herein explained, together with the
other related special functions.

Let us consider a random variable X with standard normal
distribution, and then probability density function (pdf)

φ(t) = 1√
2π

e− t2
2 , then:

Pr{X ≥ x} = Q(x) = 1

2
− 1

2
erf

(
x√
2

)
= 1

2
erfc

(
x√
2

)

Pr{X ≤ x} = �(x) = 1 − Q(x) =
= 1

2
+ 1

2
erf

(
x√
2

)
= 1 − 1

2
erfc

(
x√
2

)

m(x) = 1

h(x)

being the reciprocal of the Mills’ ratio, h(x), the so-
called failure or hazard rate for a standard normal random
variable [54].

Things may be considered in more general terms for a
normal random variable with mean m and variance σ 2 by
the Formula 26.2.8 of classical 1964 book [31]:

Pr{X ≤ x} = 1

σ
√

2π

∫ x

−∞
e− (t−m)2

2 σ2 dt = · · ·

= P

(
x− m

σ

)
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where P(·) is exactly �(·), in nowadays standard. Taking
the complement to unity, one has exactly the probabilistic
meaning of the function Q(x)

Pr{X ≥ x} = Q

(
x− m

σ

)

with respect to a generic normal random variable with mean
m and variance σ 2.

E. THE GENERAL BEHAVIOUR OF THE FUNCTIONS
Q(X), �(X ), ERF(X), ERFC(X), AND M(X)
All these functions are continuous – and even smooth – and
strictly monotonic with these values or limits in −∞, 0, and
+∞, respectively [16]:

erf(x) : −1 0 1

�(x) : 0 1
2 1

Q(x) : 1 1
2 0

erfc(x) : 2 1 0

m(x) : +∞
√
π
2 0

The Reader is kindly addressed to [16] for:
1) The remark that unluckily there are ambiguities in the

definitions in the literature (see also the Remark in
Section II-C). Here we notice in particular that the
classical book [63] (p. 341) defines erfc(x) without the
factor 2/

√
π , and the classical Hastings’ work [64]

(p. 185, Sheet 61) defines �(x) the (restriction to
x ≥ 0 of) erf(x). Nevertheless, the definition of erfc(x)
reported in [16] has to be considered an oversight.

2) The remark that the inverse of an approximation of
an invertible function f (x) is an approximation (how
good, it has to be seen) of the inverse of f (x).

3) The mutual relations among erf(x), erfc(x), �(x), and
Q(x), in particular:

�(x) = 1

2
+ 1

2
erf

(
x√
2

)
(30)

Q(x) = 1 −�(x) (31)

erf(x) = 2�
(
x
√

2
)

− 1 (32)

erfc(x) = 1 − erf(x) (33)

Here we add also this mutual relation between the
Mills’ ratio m(x) and Q(x):

m(x) = Q(x)
√

2π e
x2
2 (34)

and these 2 (since of common use in communications
theory):

Q(x) = 1

2
erfc

(
x√
2

)
(35)

erfc(x) = 2Q
(
x
√

2
)

(36)

In Table 1 we report all the 20 mutual relations among
the 5 functions Q(x) (3), erf(x) (25), erfc(x) (26), �(x) (18),
and m(x) (27), and in Table 2 the 12 mutual relations
among the inverse functions of the first 4, being the Mills’
ratio m(x) (27) not explicitly invertible neither by means of
elementary functions, nor by the inverses of �(x), erf(x),
erfc(x), and Q(x) (and even by the Lambert W-function (see
Section V)).
By means of the 4 simple relations listed in the first

column of Table 1, the above listed 4 classical special
functions erf(x), erfc(x), �(x), and m(x) in (25), (26), (18),
and (27), respectively, can all be approximated as a byproduct
of the approximation of Q(x). But the accuracy of such
approximations may be severely limited by the considera-
tions exposed in Section VII-A, and of course the complexity
of the analytical expressions of the derived approximations
may be reduced or increased by the considerations exposed
in Section VIII, and the domain may change because of the
multiplicative factor

√
2.

F. THE SYMMETRY FORMULAS
1) When considering exact values, it is sufficient to

consider erf(x) for x ≥ 0 because this function is odd:

erf(−x) = −erf(x).

Likewise, it is sufficient to consider the other 4
functions Q(x) (3), erfc(x) (26), �(x) (18), and
m(x) (27) for x ≥ 0 because of the other (following)
symmetry formulas.

2) The symmetry formula for the function �(x) is

�(−x) = 1 −�(x),

from which obviously follows
3) the symmetry formula for the function Q(x):

Q(−x) = 1 − Q(x),

4) the symmetry formula for the function erfc(x):

erfc(−x) = 2 − erfc(x),

5) and, finally, the symmetry formula for the function
m(x):

m(−x) = √
2π e

x2
2 − m(x).

Thus, as a consequence of the above listed symmetry
formulas, for the functions erf(x), �(x), Q(x), erfc(x), and
m(x) it is sufficient – at least from the point of view of
absolute errors (see Section VII-A) – to give approximations
and bounds for x ≥ 0.

G. A HISTORICAL NOTE
Already in ancient times it was well known the fact that for
several physical (natural) quantities the extreme values, low
or high, tend to be rare, whereas mean values to be common,
which is the general meaning of “bell shaped” densities.
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FIGURE 4. “Furthermore the constant h can be considered as the measure of
precision of the observation. Then, if the probability of an error � in any system of
observations [· · · ] is supposed to be expressed by h√

π
e−h h � � [· · · ] the expectation

[· · · ] that the error is contained between the limits −δ and +δ is expressed by the
integral

∫
h√
π

e−h h � � d� taken from � = −δ to � = +δ [· · · ].” [66].

We read in the classical book Phaidon (in [65]) of Plato,
V century BC:

“Of all such things, the extremes of the extremes
are rare and few, but those in between are abundant
and many.”

The meaning of the Gaussian density and the Gaussian
integrals, as a measure of the probability of errors, was
already clear to Gauss at the beginning of the XIX century.
He considered ([66], 1809) the probability density function
(see Fig. 4)

h√
π
e−h2 x2

,

which is exactly the normal density (with mean 0) expressed

in modern terms as 1√
2π σ

e− x2

2 σ2 with the correspondence

h = 1√
2 σ

and, in particular, is the standard normal density
φ(x) (1) if σ = 1.

Some years later (1812) the continuous fraction expan-
sion (see Section II-A6) and the series expansion (see
Section II-A7) of the Gaussian integral were published by
Laplace [49] (see Figs. 2 and 3, respectively).

Historically, the first significant bound [50] for Q(x)
is Wozencraft (upper) bound QWozencraft (19) (treated in
Section X-A), already present as a bound, limited to x > 1,
for Q(x) (expressed as 1 − �(x)) in the 1938 paper [58]
translated in English in [59] and stated ∀x > 0 for Q(x)
(expressed by its integral definition) in 1941 paper [51].

Afterwards (1941) the Gordon lower bound
Q

Gordon (20) [51] was published, and then (1942) also the

Birnbaum lower bound [67]

Q

Birnbaum(x) :=

√
4 + x2 − x

2
· e

−x2/2

√
2π

, (37)

both treated in Section X-B.
The successive significant result in chronological order is

due to Pólya [61] (1945-46), who proved that for (29) holds

G(x) <
1

2

(
1 − e−2x2/π

)1/2 ∀x > 0

which, with Q(x) = 1/2 − G(x), is equivalent to

Q(x) >
1

2
− 1

2

√
1 − e−2x2/π ∀x > 0. (38)

Williams [60] (1946) – independently from Pólya accord-
ing to Chu [68] – proved similarly that for (28) holds

p(x) ≤
[
1 − e−(2/π) x2

]1/2

which, with Q(x) = 1
2 − 1

2 p(x) for x ≥ 0, is equivalent
to (38), with x = 0 included.
The successive significant progress is in the 1950’s with

the so-called Chernoff (upper) bound [47] (see also [48,
Formula 2-1-172]) QChernoff (11), more correctly called
Chernoff-Rubin bound in [11] when equivalently expressed
for erfc(x), since Chernoff himself wrote:

“the so-called Chernoff bound which was really
Rubin’s result”

in his short biography A career in statistics published in [69].

III. DOMAIN AND VALUES OF THE FUNCTION Q(X ) FOR
INFORMATION AND COMMUNICATIONS THEORY
The function Q(x) is defined everywhere on the set of real
numbers R.
In this paper the function Q(x) is considered only for x ≥ 0

or x > 0 and notice that, giving up to this latter assumption
(often implicit in information and communications theory),
several formulas cease to hold, and in particular the so-called
Wozencraft bound QWozencraft (19).

A. DOMAIN OF PRACTICAL INTEREST OF THE
FUNCTION Q(X) IN INFORMATION AND
COMMUNICATIONS THEORY
In information and communications theory, only the domain
of the positive numbers x > 0 is significant, and, as far as
the practical use of the function Q(x) is concerned, we could
take as reference the BEP holding for the simple binary
digital modulation schemes (see [1, Formula 8.18]):

Pb(E) = Q

(√
2Eb
N0

)
, (39)

already present in 1965 Wozencraft and Jacobs book [50]

in the form (see Formula 2.120c) P[ε] = Q(
√

Eb
σ 2 ), where

Eb/N0 is the signal-to-noise ratio, Eb is the signal energy
associated to a bit, and σ 2 = N0/2 is the variance of the
channel noise.
Calling γ the signal-to-noise ratio Eb/N0, (39) may be

rewritten as

Pb(E) = Q
(√

2 γ
)
. (40)

Assuming for γ , as already done in [22], the following
significant range

Iγsignificant := [ − 10, 10]dB =
[

1

10
, 10

]
,

the minimum value of the argument
√

2 γ of the
Q-function is

√
2 · 1

10
≈ 0.45 ≈ 0.5
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and its maximum value is
√

2 · 10 ≈ 4.47 ≈ 4.5.

In this paper, we mainly focus on the approximation of
Q(x) in the above mentioned x range, i.e., on the domain of
interest

Isignificant := [0.45, 4.5].

In the literature, other significant intervals have been
considered, e.g., [0, 10] dB in [29] and in [45, Table I], and
[0, 4] dB in [46], which are strictly contained in Isignificant.

B. NOTABLE VALUES IN THE DOMAIN OF INTEREST
We observe that, with 3 significant digits,

Q(0.45) ≈ 0.326

and that

Q(4.5) ≈ 3.40 · 10−6.

Thus, the range of the restriction of the decreasing function
Q(x) to the domain of interest Isignificant is

Q([0.45, 4.5]) ≈ [0.00000340, 0.326].

Another numerical value of some interest is

Pr(X ≥ 1) = 1 −�(1) = Q(1) ≈ 0.16,

being X a standard normal random variable (see
Section II-D), immediately related to the classical proba-
bilistic and statistical relation holding for X:

Pr(−1 ≤ X ≤ 1) = 1 − Pr(|X| > 1)

= 1 − 2 · Pr(X > 1)

≈ 1 − 2 · 0.16 = 0.68 (41)

(well known from the classical 68-95-99.7 rule1) which is,
also by means of the symmetry formula, equal to:

Pr(−1 ≤ X ≤ 1) = �(1)−�(−1)
= �(1)− (1 −�(1))
= 2�(1)− 1.

(42)

From (41) and (42) it follows that

�(1) ≈ 1 + 0.68

2
≈ 0.84.

From (32), (41), and (42) it follows that:

erf

(
1√
2

)
= 2�(1)− 1 ≈ 0.68

and from the last and (33) that:

erfc

(
1√
2

)
≈ 0.32.

1. “This empirical rule is the facts that 68.27%, 95.45% and 99.73% of
the values in a normal distribution fall within one, two and three standard
deviations of the mean, respectively” [70].

0.71 1

0.16

0.32

0.5

0.68

0.84

1

FIGURE 5. Some values on graphs of Q(x), �(x), erf(x), and erfc(x). In the order:
continuous thick, continuous thin, dashed thin, dashed thick.

0.45 1 4.5

0.16

0.326

FIGURE 6. Graph of Q(x) in the domain of interest [0.45, 4.5].

Remembering, besides these, the obvious and already
given (see Section II-E) notable values erf(0) = 0, Q(0) =
�(0) = 0.5 and erfc(0) = 1, to draw approximately the
graphs of the 4 considered functions, notice that 0, 0.16,
0.32, 0.5, 0.68, 0.84 and 1 are quite near to 0

6 ,
1
6 ,

2
6 ,

3
6 ,

4
6 ,

5
6 ,

6
6 , and that 1√

2
≈ 0.71 is exactly half of the diagonal of the

square of vertices (0, 0) and (1, 1). In Fig. 5 are reported
parts of the graphs of the functions Q(x), �(x), erf(x), and
erfc(x). More accurate values for 0.16, 0.32, 0.5, 0.68, 0.84
are, respectively: 0.159, 0.315, 0.500, 0.685, 0.841.
Finally, from (34) it follows that, for the Mill’s ratio, it is:

m(1) = Q(1)
√

2π e
1
2 ≈ 0.66,

still not far from 4
6 ≈ 0.67.

The Reader may find some useful graphs in Figs. 6, 7,
and 8. In particular, in Fig. 8 is also reported the graph
of lnQ(x), which is the function that has been tentatively
approximated in Type 2 approximations (see Section VI).
Richer lists of selected values of Q(x) are in [71,

Tables II.3-1 and II.3-2] and an even richer table may be
found in [14, Appendix E].

If one needs a single or few values of Q(x), a good
choice is to compute it online for free using WolframAlpha
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0.45 1 4.5

0.16
0.326

3.4 10 6

FIGURE 7. Log-plot of the graph of Q(x) in the domain of interest [0.45, 4.5].

1 1 2 3 4

1.5

1.0

0.5

0.5

1.0

FIGURE 8. Graphs of: Q(x) in [0.45, 4.5], positive, continuous; the 10-th part of
ln Q(x) in [0.45, 4.5], negative, continuous; Q(x) before 0.45, dashed; Q−1(y), dotted.

with the instruction 0.5Erfc[x/Sqrt[2]], and to com-
pute a value of Q−1(y) one may use the instruction
Sqrt[2]InverseErf[1-2y].

IV. APPROXIMATION OF THE FUNCTION Q(X )
A. MOTIVATION
Due to the mathematical complexity associated with the var-
ious equivalent definitions of the function Q(x), as presented
in Section II-A, and the well-established fact that the
Q-function cannot be expressed using elementary functions,
the academic literature has proposed several approximations
and bounds for the Gaussian Q-function. These approx-
imations and bounds are introduced in Section II and
discussed throughout this survey. Closed-form expressions
are crucial in the evaluation of communication systems
as they simplify mathematical analysis, hence facilitating
performance assessment. In addition, it is important to have
closed-form formulations of the system performance in order
to facilitate system optimization.

B. APPLICATION EXAMPLES
It is decisive to have extremely effective closed-form
approximations of the Gaussian Q-function in the additive
white Gaussian noise (AWGN) channel scenario in order
to calculate the error probability for a variety of digital

modulation methods [1]. Various researchers have suggested
different approximations or bounds for the Gaussian Q-
function to facilitate a basic mathematical analysis of error
probabilities. These approximations or bounds are also
applicable to evaluating the Symbol Error Probability (SEP)
for more complex higher order constellations, as discussed
in Section I-A.
Indeed, commencing with elementary binary modulation

schemes such as binary amplitude modulation (2-AM) and
binary phase shift keying (BPSK), the bit error probability
(BEP) is associated with the Gaussian Q-function (see
to (39)):

Pb(E) = Q

(√
2Eb
N0

)
.

In the context of complex higher order constellations, there
is a significant interest in developing accurate closed-form
approximations also for integer powers of the Gaussian Q-
function. This is particularly important because the symbol
error probability (SEP) in quadrature phase shift keying
(QPSK) modulation relies on the Gaussian Q-function and
its square, as shown in equation (8):

Ps(E) = 2Q

(√
Es
N0

)
− Q2

(√
Es
N0

)
,

or on the integer powers of the Gaussian Q-function up to
Q4(x) as far as the differentially encoded QPSK modulation
is concerned (see, e.g., [1, Formula 8.38]):

Ps(E) = 4Q

(√
Es
N0

)
− 8Q2

(√
Es
N0

)

+ 8Q3

(√
Es
N0

)
− 4Q4

(√
Es
N0

)
. (43)

C. FUNDAMENTAL ATTRIBUTES OF AN
APPROXIMATION OF Q(X)
In this survey, we will focus on various approximations or
bounds for the Gaussian Q-function that have been proposed
in the literature. We will exclude bounds or approximations
specifically targeting integer powers of the Gaussian Q-
function. This decision is also influenced by the Remark on
the sum of powers of Q(x) discussed in Section VII-C.
In this section, we present a set of four essential attributes

that, in our perspective, an approximation or bound –
published for Q(x) or the other 4 related functions �(x),
erf(x), erfc(x) and Mills’ ratio m(x), from which Q(x) may be
immediately obtained (see Table 1) – should possess. Indeed,
these attributes aim to facilitate the mathematical analysis
and enhance the ease of computing the aforementioned
exemplifying formulas. Precisely, an approximation of Q(x)
should:
1) hold at least for any x > 0;
2) be defined by a single expression, that is to say not

piecewise defined;
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3) be defined in closed form by means of elementary
functions with standard names used in mathematics
(for the issues of elementary functions and standard
names used in mathematics see Remarks 1 and 2 in
Section V, respectively);

4) be explicitly invertible (see Definition in Section V).

For comparison, in this paper we also review several other
approximations of Q(x) not having all the above stated
properties.
Remark 1: The above Properties 3 and 4 together imply

that the approximations are continuous functions.
Remark 2: The above Property 2 excludes for example

[62]2

QCadwell(x) := 1

2
− 1

2

√
1 − e

− 2
π
x2+ 2 (π−3)

3π2 x4

not defined for x > 8.158 · · · (and similarly its refinement in
the same [62], involving an 8-th degree polynomial). Another
published [21] approximation not fulfilling Property 2 is

QLin-3(x) := 1

1 + e
4.2π x

9−x

which is defined for 0 ≤ x < 9 (and, in theory, also
for x > 9, becoming an extremely bad approximation).
(By the same Author, QLin-1(x) and QLin–2(x) are listed in
Tables 6 and 8, respectively; for the issue of the names of
the approximations, see Section IV-D.)
Remark 3: An example of approximation [72] not fulfill-

ing the above Property 3 is this classical scholastic

Q

Shah(x) :=

⎧
⎨
⎩

1
2 − x (4.4−x)

10 0 ≤ x ≤ 2.2
0.01 2.2 < x < 2.6
0 x ≥ 2.6

(44)

originally published for �(x) − 1
2 , and for that function

even not so bad in the sense of the relative error. (The
small rhombus in the name of the function is explained in
Section IV-D.)
Another example [73] of piecewise – therein said “com-

posite” – approximation, much more recent and precise,
and published directly for Q(x) in the environment of
telecommunications theory, is

Q

Peric(x) :=

⎧
⎨
⎩
e−0.35054 x2−0.78995 x−0.69354 0 ≤ x ≤ 0.7

1
2π

e−
x2
2

0.6797 x+0.3202
√
x2+5.9735

x > 0.7
(45)

D. ON THE NAMES OF THE APPROXIMATIONS
The many published approximations of Q(x) found in
this research have been (re)named in the form Q<·> and
precisely:

• Q<Author>: as a general rule for the names of the
approximations, they have been named with the letter
Q with a subscript reporting the name of the first

2. Originally published for 1
2 − Q(x), unfortunately named �(x) as

explained in the Remark of Section II-C.

Author of the paper in which the approximation was
introduced – eventually for any equivalent function
�(x), erfc(x) · · · – as for instance QPowari reported in
Table 4, eventually adding a cardinal number if there
are more approximations with the same first Author’s
name: e.g., QBenitez–1 and QBenitez–2, reported in Table 6.

For clarity, we have made 2 exceptions:

• the very classical so-called Chernoff bound
QChernoff (11) follows the above said rule, but for
the so-called improved Chernoff bound (10) the name
QChernoff–impr. has been used (both shown in Table 7,
see also Section X-A);

• analogously, the very classical upper bound
QWozencraft (19) follows the above said rule, but for
the lower bound (21) due to Wozencraft the name
Q

Wozencraft–lower has been used (see also Sections X-A

and X-B, respectively).

Moreover:

• Q<Author–class>: such a name has been used for classes
(or, families) of approximations, as for instance
QChang–class (14), eventually adding a cardinal number
if there are more classes with the same first Author’s
name: e.g., QWu–class–1 (70) and QWu–class–2 (71);

• Q<Author–new>: such a name has been used for a
new approximation (not already published), chosen
by us in a class of approximations, as for instance
QChang–new (13), eventually adding a cardinal number
if the here chosen new approximations are more than
one: e.g., QChiani–new–1 (65) and QChiani–new–2 (66);

• Q<Author–[number–]equivalent>: such a name has been used
for an alternative analytic expression of an approx-
imation Q<Author–[number]>: e.g., QChiani–1 (12) and
QChiani–1–equivalent (68);

• Q<Author–inverted>: such a name has been used for the
only case in which the new approximation has been
obtained (in this research) inverting an approximation
of Q−1(y): QHamaker–inverted (47) (see Section IV-G);

• Q

<Author>: such a name has been used for any not explic-

itly invertible (see Section V) published approximation,
for instance Q


Gordon (20).

E. VALUABLE MERITS OF AN APPROXIMATION OF Q(X)
Already [9] has considered some desirable characteris-
tics that the approximations of Q(x) and erfc(x) should
have: namely, being highly accurate, exponential-type (see
Remark 1 in Section VI), closed-form approximations for
the function erfc(x) (strictly speaking erfc

√
x is consid-

ered in [9]) that are easily (explicitly, see Remark 3 in
Section V) invertible, differentiable, and facilitating the
statistical averaging over fading distributions. Moreover,
considering also [74] and [75], where we have reported
some other merits an approximation should have, referred
to another function (used in information theory), here we
present, extending the 4 characteristics listed in Section IV-C,
a tentatively all-encompassing list of valuable merits – from
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the point of view of telecommunications theory – which
should be possessed by an approximation of Q(x), or of the
other 4 related functions �(x), erf(x), erfc(x), and Mills’
ratio m(x), from which an approximation of Q(x) may be
immediately (see Table 1) obtained:

1) to be appreciable - with low error(s) - on a wide
domain: the best would be R, subordinately x ≥ 0,
then x > 0, then (0, b] with (large) b > 0, and, finally,
[a, b] with (small) a > 0 as Isignificant;

2) to be defined by a single expression, i.e., not piecewise;3

3) to be expressed in closed form, without integrals,
series, continuous fractions, and limits, by means
of elementary functions with standard names used
in mathematics (for the issues of elementary func-
tions and standard names used in mathematics see
Remarks 1 and 2 in Section V, respectively);

4) to allow the expression in closed form4 of integrals
involved in the error probabilities [45] computations as

∫ +∞

0
Q̃
(
α

√
γ
)
pγ (γ ) dγ (46)

where Q̃(x) is the chosen approximation of Q(x) and
pγ (γ ) is a fading probability density distribution (see
Section II-A3);

5) to be as accurate as possible, i.e., present a low relative
error in absolute value and/or a low absolute error,
on some domain, particularly Isignificant: this topic is
treated in Section VII;

6) to be as simple as possible: this topic is treated in
Section VIII;

7) to be explicitly invertible (see Definition in Section V)
and, possibly, with an inversion as simple as possible,
in particular, even to have only one entry of x: this
topic is treated in Section IX;

8) to be an upper bound of Q(x) (more widely used in
telecommunications theory) and, alternatively, a lower
bound: this topic is treated in Section X.

Notice that almost all the listed valuable merits may also
be considered – mutatis mutandis – for the approximations
of the integer powers of Q(x), which play a role in
telecommunications theory, too, but will not be treated in
this paper.

F. UTILITY OF EXPLICITLY INVERTIBLE
APPROXIMATIONS OF Q(X)
An important need of a communications system designer is
to derive, given the target symbol error or bit error probability

3. If the approximation a(x) is defined on its domain by a single
expression, in any point x it has always an analytical expression
allowing its simple algebraic manipulation, in contrast to piecewise defined
functions [76], having different analytical expressions depending on the
value taken by the argument x. Unfortunately, the distinction between
piecewise and not piecewise defined functions, which is intrinsic using
elementary functions, is not intrinsic for non elementary functions because
of the existence of the Heaviside step function.

4. Obviously it is meant in closed form by means of functions having
standard names in mathematics, even if not elementary, in particular the
hypergeometric function.

of a communications system, the operating signal-to-noise
ratio needed by the considered application. For this purpose,
the simple and explicit invertibility of the approximation
of the Gaussian Q-function considered assumes a very
important role. Already many papers and books as [6],
[9], [11], [16], [17], [18], [19], [20], [21], [22], [23], [24],
[25], [26], [27], [28], [29], [30], [31], [32], [33], [34], [35],
[36], [37], [38], [39] explicitly address the inversions of the
approximations of Q(x) or �(x) or erf(x) or erfc(x) (and
erfc

√
x · · · ) – which are all equivalent by formulas of Table 2

– and in particular [6], [9], [11], [22], and [29] considered
the importance of the explicit inversion in the environment
of communications theory.
The first two (namely, [6] and [9]) of them address

the problem of developing highly accurate, exponential-type
(see Type 1 in Section VI with the Remark 1) sums of
ak e−k b x2

, with positive integer k and b > 0 (corresponding
to our bi eai x

2
), closed-form approximations for the function

erfc(x) (strictly speaking erfc
√
x is considered) that are

easily (explicitly, see Remark 3 in Section V) invertible,
differentiable and facilitating the statistical averaging over
fading distributions (in the sense of the explicit integration
in (46)). (In [9], in the Formula (2) for erfc

√
x the term√

2 x is written as
√

2 x for an oversight.) As well explained
in [9], the explicit invertibility of the Q-function can also

“facilitate discrete-rate adaptive modulation
designs and establish a closed-form relation
between the outage probability measure and
symbol error rate (SER) of common digital
modulation schemes such as M-ary phase shift
keying (MPSK) and M-ary quadrature amplitude
modulation (MQAM)”.

The third paper (i.e., [11]) addresses the problem of
finding bounds of the type called Type 1 in this paper (see
Section VI), for erfc(x) and its inverse over additive white
Gaussian noise channels: in this sense these bounds, or better
the bounds for Q(x) immediately obtained by

u(x) < erfc(x) < v(x)

⇒ 1

2
u

(
x√
2

)
< Q(x) <

1

2
v

(
x√
2

)

have the desirable attributes, stated in [9], that a Q-function
approximation should have: more precisely, the bounds are in
the form of the sum of exponential functions that are highly
accurate, exponential-type, closed-form and easily invertible
(of course, implicitly in the sense of explicitly invertible).
Paper [22] in the environment of communications theory

determines Isignificant (see Section III-A) and optimizes the
coefficients of the nested exponential (Type 6 of Section VI)
QSoranzo–3 of [16] to minimize the relative error for Q(x)
in that interval, preserving the same invertibility level (see
Section IX).
Finally, paper [29] deals with a lower bound on the Q-

function, and presents a method to optimize its accuracy and
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an iterative procedure to produce its inverse. Furthermore,
therein it is noticed that

“There are also applications in which one has
to invert the [error probability] P(e) expressions
in order to determine the change in signal-to-
noise ratio (SNR) required to maintain a certain
P(e) value due to changes in channel parameters.
Although some commercial software has a built-in
inverse Gaussian Q-function, online applications in
receivers usually lack the software, high processing
power or storage space. Hence, a tight invertible
bound on the Gaussian Q-function or a simple
inversion algorithm is desirable.”

G. APPROXIMATING Q(X) INVERTING AN
APPROXIMATION OF Q−1(Y )
In theory it would be possible to search for approximations
of the inverse Q−1(y) or equivalently (see Table 2) of
�−1(y), erf−1(y), and erfc−1(y). If these approximations
were explicitly invertible, we could obtain, with the inversion
of the inverse, approximations of Q(x) or equivalently (see
Table 1) of �(x), erf(x), and erfc(x). As far as we know,
not very much has been done in this sense.
We start citing these 2 simple approximations of x =

Q−1(y), reported in [35] for �−1(y), which are both not
explicitly invertible:

x(y) := (1 − y)0.135 − y0.135

0.1975

x(y) := 0.2 + (1 − y)0.14 − y0.09

0.1596

and we proceed with one of other 4 approximations, reported
in [36] for �−1(y), which is instead explicitly invertible:

x(y) := −5.531

((
y

1 − y

)0.1193

− 1

)

even if the inverse was not given in [36].
Moreover, we quote these 2 rational approximations of

x = Q−1(y), both explicitly invertible with InvLev 3
and InvLev 1, respectively (see Section IX) given by
Zelen and Severo in the classical book [31] (credited to
C. Hastings, Jr. [64]), valid for 0 < y ≤ 1

2 ,

t :=
√

ln
1

y2

x(y) := t − a0 + a1 t

1 + b1 t + b2 t2
Formula 26.2.22

x(y) := t − c0 + c1 t + c2 t2

1 + d1 t + d2 t2 + d3 t3
Formula 26.2.23

a0 = 2.30753 a1 = 0.27061

b1 = 0.99229 b2 = 0.04481

c0 = 2.515517 c1 = 0.802853 c2 = 0.010328

d1 = 1.432788 d2 = 0.189269 d3 = 0.001308,

and another quite old (1973) approximation is given – for
0 < y < 1

2 but in fact holding for 0 < y ≤ 1
2 – in [37],

analogous to the above mentioned Formula 26.2.23, giving
several possibilities for the coefficients. A further refinement
has been obtained in [38] substituting the 2-nd degree
numerator polynomial of the same Formula 26.2.23 with a
4-th degree polynomial, and the 3-rd degree denominator
polynomial with another 4-th degree polynomial, with
appropriate coefficients, so reducing – with respect to the
original 4.5·10−4 – the absolute error of 4 magnitude orders:
1.5 · 10−8, but loosing the explicit invertibility, since the
inversion would require the solution of a 5-th degree equation
(see Section IX and Remark in Appendix B).
Moreover, in [17] is reported (Formula (2)) an approxi-

mation for �−1(y), explicitly invertible with InvLev 6 (see
Section IX) – obtained simplifying the above mentioned [31,
Formula 26.2.22] (reported, for �−1(y), in [17, Formula 1])
with a small loss in accuracy – that here we report for
x = Q−1(y), valid again for 0 < y ≤ 1

2 ,

x(y) := t − 1

0.5 + 0.3 t
t =

√
ln

1

y2
.

Its inverse

QHamaker–inverted := e
− 1

72

(√
9 x2+30 x+145+3 x−5

)2

(47)

computed in the present research, has on Isignificant, as
approximation of Q(x) (see Remark (on Type 2) in
Section VI), errors ε < 3.2 · 10−3 and εr < 9.7 · 10−2 (for
the issue of the errors, see Section VII-A).

The second approximation for �−1(y) reported in [17]
(Formula (3)) to overcome the above limitation on y, and
reported here for x = Q−1(y), is

x(y) := sign

(
1

2
− y

)
1.238 t (1 + 0.0262 t)

t := √− ln 4 y (1 − y) (48)

whose inversion, obtained solving the second equation for
y and the first equation for t, gives the explicitly invertible
approximation of Q(x) called in this paper QHamaker and
reported in Table 8, and of course, since in this paper we
consider x ≥ 0, the above mentioned sign( 1

2 −y) is always +1
and then may be omitted. Both QHamaker and its inverse (48)
(when restricted to x ≥ 0), reported in Table 16, have InvLev
6 (see Section IX).
In [20] an alternative to the approximation (48) is proposed

x(y) := 1.237 t

1 − 0.0249 t
t := √− ln 4 y (1 − y) (49)

whose inversion, obtained solving the second equation for
y and the first equation for t, gives the explicitly invertible
approximation of Q(x) called in this paper QLin–2 reported
in Table 8. As shown in [20], the approximation QLin–2 and
its inverse (49), reported in Table 16, are almost as accurate
as QHamaker and its inverse (48), respectively.
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Finally, the classical book [39] in 3.8 lists approximations
directly given for the inverse of �(x) (from which one
could immediately obtain approximations for Q−1(y)) some
of which are explicitly invertible.

V. EXPLICIT INVERTIBILITY OF AN APPROXIMATION
The Lambert W-function: Here we recall the Lambert
W-function. In C [77]

“[t]he Lambert W function is defined to be the
multivalued inverse of the function w 
→ w ew

[· · · ] If x is real, then for −1/e ≤ x < 0 there
are two possible real values of W(x) (see figure 1
[therein]). We denote the branch satisfying −1 ≤
W(x) by W0(x) or just W(x) [as we will do in this
paper] when there is no possibility for confusion,
and the branch satisfying W(x) ≤ −1 by W−1(x).
W0(x) is referred to as the principal branch of the
W function.”

In this research, in the environment of telecommunications
theory, we will be concerned with W(x) only for x ≥
0. This function is very classic, with a standard name
used in mathematics, has well established algorithms for
computation (incorporated in the common software tools), is
explicitly invertible by means of elementary functions with
standard names used in mathematics (its inverse is x ex), but
is not [78] an elementary function. It is

W
(
x ex
) ≡ x ∀ x ≥ 0

(
in fact ∀ x ≥ −1

)
(50)

W−1(x) ≡ x ex ∀ x ≥ 0
(
in fact ∀ x ≥ −1

e

)
. (51)

It has already been shown the relation between the
Lambert W-function and the explicit inversion of a function
related with the approximations of Q(x): precisely that
function in [76] is named ψ(x) and in [79] is named φ̂(x),
and in fact it is π QWozencraft(

√
x
2 ), see (19).

Definition (of Explicitly Invertible): Throughout this paper
we call explicitly invertibile a function which is, in fact,
explicitly invertibile by elementary functions having standard
names in mathematics, and/or the Lambert W-function. For
example x3, log x, log3 x, x3 + log x, but not x + log3 x and
x3 + log3 x.
Remark 4: To be an elementary function or the Lambert

W-function excludes, in the above Definition, for example
the logarithmic integral (function with standard name in
mathematics but not elementary and different from Lambert
W-function).
Remark 5: To have a standard name in mathematics

excludes, in the above Definition, for example the inverse of
y(z) = 0.208 z971 + 0.147 z525 for z ≥ 0 (obtained operating
on Q


Loskot, see Remark 1 in Section VI), which is elementary
(it is even algebraic), but does not have a standard name in
mathematics.
Remark 6: Sometimes, in engineering literature, the word

“invertible” is used meaning a similar thing, namely explicitly
invertible by means of elementary functions having standard

names in mathematics. So, for example, ex + arcsin x is
excluded, although being invertible, since increasing.
Remark 7: The explicit invertibility of an approximation

f̃ (x) grants that there is no need [74] to resort to any
interpolated function approximating it by points (xk, f̃ (xk))
and its inverse by points (f̃ (xk), xk).

VI. MAIN TYPES OF APPROXIMATIONS OF THE
FUNCTION Q(X )
Here we produce a classification defining 7 fundamental
types (from Type 0 to Type 6) of functions in which almost
all the already published approximations of Q(x) fall, leaving
in miscellanea (Type 7) the few remaining. A kind of 9-
th class is the Chernoff type of approximations (strictly
belonging to both Type 1 and Type 2, see Remark 2 in this
section). As far as possible, in treating (in this section) the
fundamental types of approximations of Q(x) we have given
approximations which are explicitly invertible (see Definition
in Section V) and approximations which are not explicitly
invertible (denoted by Q


<Author>). Only in Type 3 and Type
6 not explicitly invertible examples are lacking.
Definition (of Irrational Function): Though there is not a

completely standard definition of irrational function, in this
paper it is meant a function defined by the 4 operations and
roots, which is not rational (then roots must be present).
So not ex, neither rational nor irrational, which has to be
considered a transcendent function. Notice that with this
definition x3.14 is the irrational function

100
√
x314, while xπ

is the transcendent function eπ ln x.
Hereafter, the above announced description of the funda-

mental types of published approximations of Q(x).

• Type 0: rational and irrational functions reported in
Table 3. In this type we find, e.g., the ancient (1955)
Chu’s (upper, for x ≥ 0) bound QChu [68], QHastings-1
(see also InvLev 1 in Section IX), and 2 fifth degree
polynomials reported in [82] (here we report only the
first, Q


Zogheib–3). As prototypes of this type, here we
report:

QChu(x) := 1

2
− x√

2
(
π + 2x2

)

Q

Zogheib–3(x) := 0.5 + 0.398942 x

+ 0.066490 x3 − 0.09974 x5

(see �1(x) in [82])

where QChu was originally published for 1
2 − Q(x),

and obviously is explicitly invertible (see InvLev 6 in
Section IX), whereas Q


Zogheib–3, not explicitly invertible,
was originally published for �(x) (and looses quickly
precision for large x, since it tends to −∞).

• Type 1: sum S(x) of terms bi eai x
2
, with ai and bi

negative and positive constants, respectively, reported
in Tables 4 and 5. The approximations of this type
are said “Exponential Function Based Approximations”
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TABLE 3. Already published Type 0 explicitly invertible approximations of Q(x).

in [45] (there, our ai is − 1
2 βi and our bi is 1

2 αi). As
prototypes of this type, here we report:

QChiani–1(x) := 1

4
e−x2 + 1

4
e− x2

2

(see (12) and Table 4)

Q

Loskot(x) := 0.208 e−0.971 x2 + 0.147 e−0.525 x2

(see [8, Formula 13c]).

Remark 8: Particularly interesting is the case – called
“exponential-type” in [6], [9], and [11] – when all ai
are integer multiple of some real c, that is to say ai =
ni · c with positive integer ni, possibly small (namely
≤ 4), because the substitution z := ec x

2
converts the

sum S(x) into a polynomial in z. For example by the
substitution z := e− 1

2 x
2
, the above written QChiani–1

becomes 1
4 z

2 + 1
4 z, allowing easy explicit invertibility

(see InvLev 6 in Section IX). Operating in the same
way for Q


Loskot, with c = −0.001 the polynomial
0.208 z971+ 0.147 z525 can be obtained, but with degree
971 (and better cannot be done, since 971 and 525 are
relatively prime numbers). Another case in which the
conversion to a polynomial is possible but the resulting

degree is very high is Q

Sadhwani(x) := 1

16e
− x2

2 + 1
8e

−x2 +
1
8e

− 10
3 x2 + 1

8e
− 10

17 x
2
[12] (originally given for erfc(x))

for which c = − 1
102 (of course 102 is the least common

multiple of the denominators 2, 3, and 17) gives a
polynomial of degree 102 (and better cannot be done).
And in other cases the conversion of such a sum S(x)
to a polynomial is even impossible, as for example
in Q


Wu-3(x) := 1
12 e

−6 (
√

3−1) x2/π + 1
12 e

−2 (3−√
3) x2/π +

1
6 e

−√
3 x2/π [83].

• Type 2: exponentials of polynomials A · eP(x) (equiva-
lently written eP(x)+lnA, and then, eT(x), with P(x) and
T(x) polynomials), or even (in a single case [88])5

exponentials of rational functions A · eR(x) (similarly as
above, the exponential A·eR(x) of a rational function R(x)
may also be equivalently expressed by eS(x) if S(x) =
R(x)+ lnA), reported in Table 6. The approximations
of this type are said “Exponent Polynomial Based
Approximations” in [45].
As prototypes of this type, here we report:

QBenitez–2(x) := e−0.4774 x2−0.4484 x−0.9049

Q

Phong(x) := e0.0000018643 x6+···−0.698740

(
see [89], Formula 8 and Table IV

)

5. The unique example is QDerenzo in Table 6 (in which the rational
function is not expressed in the canonical form of quotient of polynomials).
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TABLE 4. Already published Type 1 explicitly invertible approximations of Q(x) - Part I.

and, of course, the exponential of a polynomial may be
expressed in bases different from e, in particular 2:

ean x
n+···+a0 = 2

an
ln 2 x

n+···+ a0
ln 2 (52)

and this may increase simplicity.
Remark (on Type 2). Allowing also square roots
in the exponent, overcoming the strict definitions
of polynomials and rational functions, the originally
derived QHamaker–inverted (47) could be included in
Type 2.
Remark 2. Since functions b ea x

2
, said “Chernoff

type” in [46], belong to both the 2 classes Type 1
and Type 2, they are listed separately in Table 7.
Among them there are the classical Chernoff bound
QChernoff(x) := e−x2/2 (see (11) and Section X-A)
and the improved Chernoff bound QChernoff–impr.(x) :=
1
2 e

−x2/2 (see (10) and Section X-A). Obviously all

Chernoff type approximations are (very simply) explic-
itly invertible (InvLev 7, see Section IX).

• Type 3: Pólya type approximations of the form 1
2 −

1
2

√
1 − eR(x), being R(x) a rational function, or even

(in a single case [91]6) a − b
√

1 − eR(x), reported
in Tables 8 and 9. As prototype of this type, here
we report this very classical explicitly invertible
approximation:

QPolya(x) := 1

2
− 1

2

√
1 − e− 2

π
x2
(see Table 8)

originally published (1945, [61]), mutatis mutandis,
for 1

2 − Q(x), being the oldest generally recognized
approximation of the “Gaussian integral” class of
functions (see Remark in Section II-C).

6. The unique example is QAbderrahmane–1 in Table 8.
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TABLE 5. Already published Type 1 explicitly invertible approximations of Q(x) - Part II.

• Type 4: functions e− x2
2 A(x) being A(x) a (non constant)

rational or irrational function (see the Definition above)
reported in Table 10.
Among them we find asymptotic approximations of
Q(x) (considered in Section VII-C), starting from
QWozencraft (19). Many of them are modifications of
this approximation, obtained substituting one or both

the recurrences of x in QWozencraft(x) := e−x2/2√
2π x

with
functions with similar behaviour.
As prototypes of this type, here we report:

QBorjesson–1(x) := e−x2/2

√
2π

√
x2 + 1

Q

Borjesson–2(x) := e−x2/2

√
2π
(
(1 − 0.339) x+ 0.339

√
x2 + 5.51

)

(see [94], Formula 13 and Table I).

• Type 5: the (complementary) logistic-type approxima-
tions of Q(x)

1 − 1

1 + eP(x)
= eP(x)

1 + eP(x)

= 1

1 + eT(x)
= 1

2
− 1

2
tanh S(x)

reported in Table 11 (where we have listed all the
approximations of this type in the third form), or even
(in a single case [91]7)

1 − a

b+ eP(x)

(reported in Table 11 in this form), being P(x) a
polynomial tending to −∞ for x → +∞, T(x) =
−P(x), and S(x) = 1

2 T(x).
As prototypes of this type, here we report:

QTocher(x) := 1

1 + e
√

8/π x

Q

Zogheib-4(x) := 1

1 + e−0.000345 x+0.039547 x3+1.604326 x5

(called�3(x) in [82]).

Notice that the above considered expression 1
1+eT(x)

approximating Q(x) gives immediately the correspond-
ing approximation for �(x) substituting T(x) with
−T(x).
Remark 3. This type 1

1+e−T(x) of approximation is well
appreciated for �(x) because it may be quite tight also

7. The unique example is QAbderrahmane–3 in Table 11.
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TABLE 6. Already published Type 2 explicitly invertible approximations of Q(x).

for negative x, which is of no interest for Q(x) in
telecommunications theory but is of practical utility in
statistics for �(x).

• Type 6: nested exponentials approximations of Q(x)

a · b∧
1

(
b∧

2

(
· · ·∧ (bF(x)n

)
· · ·
))
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TABLE 7. Already published Chernoff type explicitly invertible approximations of Q(x).

with a, b1, . . . , bn ∈ R
+, n = 2, 3, . . . ,, being F(x)

a rational or irrational function and being obvi-
ously ∧ power elevation, reported in Table 12. Of
course the level of easiness of explicit invertibility
(called InvLev in Section IX) is the same of that
of F(x).

So far, approximations of this type have been published
with 2 and 3 nested exponentials, all explicitly invertible,
as this [82] with 2 exponentials (originally published
for �(x)) which we report here as prototype:

QZogheib–2(x) := 1

2
e−1.2 x1.3 = 1

2

(
e−1.2

)x1.3
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TABLE 8. Already published Type 3 explicitly invertible approximations of Q(x) - Part I.

(where x1.3, or
10
√
x13, is an irrational function, see

Definition above in this section) and this [16] with 3
exponentials

�(x) ≈ 2−221−41x/10 = 1 ·
(

2−22
)(22−1

)(411/10)
x

(53)

reported for Q(x) as QSoranzo–3 in Table 12, which has
been modified and optimized for Q(x) on Isignificant
in [22] obtaining QSoranzo–4 reported in the same
Table 12.
Remark (on InvLev): Because of the conversion
formulas of Table 1, any 4 mutually corresponding

approximations of Q(x), �(x), erf(x), erfc(x) (but not
the corresponding approximation of m(x)) have all the
same level of easiness of explicit invertibility (called
InvLev in Section IX). For example the above mentioned
QSoranzo–3 and (53).

• Type 7: miscellanea of other types of various nature
reported in Table 13. As prototypes of this type, here
we report

QKundu(x) := 1 −
(

1 − e−e0.3820198 x+1.0792510
)12.8

,

and some interesting not explicitly invertible approxi-
mations (thus not appearing in Table 13):
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TABLE 9. Already published Type 3 explicitly invertible approximations of Q(x) - Part II.

TABLE 10. Already published Type 4 explicitly invertible approximations of Q(x).

Q

Bagby(x) := 1

2
− 1

2

·
√

1 − 1

30

(
7 e− x2

2 + 16 e
−x2

(
2−√

2
)

+
(

7 + π x2

4

)
e−x2

)
,

appearing on [100, p. 46], resembling Type 3 (Pólya
type approximations), and

Q

Moran(x) := 0.5

− 1

π

12∑
n=0

⎧
⎨
⎩
e− (n+0.5)2

9

n+ 0.5
sin

(√
2

3
(n+ 0.5) x

)⎫⎬
⎭

originally published in [101] for �(x) and only for
x ∈ [−7, 7] (which in any case includes Isignificant)
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TABLE 11. Already published Type 5 explicitly invertible approximations of Q(x).

but clearly may be intended as holding for all x ≥
0. Another interesting example, with the quality of
being a good approximation on the whole real axis,
is [102]

Q

Leal(x) := 1

2

− 1

2
tanh

(
39 x

2
√

2π
− 111

2
arctan

(
35 x

111
√

2π

))
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TABLE 12. Already published Type 6 explicitly invertible approximations of Q(x).

TABLE 13. Already published Type 7 explicitly invertible approximations of Q(x).

resembling Type 5 approximations in the fourth form
(but not included because S(x) is not a polynomial nor
even a rational function).

VII. THE ACCURACY OF AN APPROXIMATION OF A
FUNCTION
The struggle of the scientific researches considered in
this survey is exactly to achieve high precision with low

complexity, both defined in any reasonable way. In this
sense, as a measure of precision of an approximation of the
Q-function we have chosen (a majorization of) the relative
error in absolute value εr and, secondarily, (a majorization
of) the absolute error ε, both defined in the following
Section VII-A, where we also explain why the (majorization
of) εr has been chosen as relevant measure of precision of
an approximation of the Q-function.
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Other Authors have chosen measures of precision different
from maximal relative and absolute error. A rich list of
measures of precision, used just for the Q-function, is in
[45, Table II].

A. NOTES ON ABSOLUTE AND RELATIVE ERRORS
Renewing the observations in [22], let us denote, for a
function f (x) and an approximation f̃ (x), by

ε

(
f ,f̃
)
(x) := | f̃ (x)− f (x)|, or simply ε

(
f̃
)
(x), or even ε(x)

the absolute error, intended as a function with the same
domain D of f and f̃ , and by

ε

(
f ,f̃ ,D

)
:= sup

D
ε

(
f ,f̃
)
(x), or simply ε

(
f ,f̃
)
,

or simply ε

(
f̃
)
, or even ε (54)

the absolute error, intended as a number, summarizing the
distance of the approximation from the function.
Analogously, for relative errors, if f (x) �= 0 on the domain

D, let us denote with

ε

(
f ,f̃
)

r (x) :=
∣∣∣∣∣
f̃ (x)− f (x)

f (x)

∣∣∣∣∣ =
ε

(
f ,f̃
)
(x)

|f (x)| ,

or simply ε

(
f̃
)

r (x), or even εr(x) (55)

the relative error in absolute value, intended as a function
with the same domain D of f and f̃ , and by

ε

(
f ,f̃ ,D

)

r := sup
D
ε

(
f ,f̃
)

r (x), or simply ε

(
f ,f̃
)

r ,

or simply ε

(
f̃
)

r , or even εr (56)

the relative error in absolute value, intended as a number,
summarizing the distance of the approximation from the
function, normalized with respect to the function f itself, if
�= 0 in D.

From the point of view of the absolute errors, due to the
mutual relations listed in Table 1, it is essentially the same
thing to approximate any of the functions erf(x), erfc(x),
�(x), Q(x), eventually – if D = [0,+∞), which is the most
impacting case – doubling or halving the absolute error.
Instead, observe that this is not valid for m(x) because of
the exponential factors, see Table 1.

Quite different is the matter for relative errors. Although
the functions �(x) and Q(x) are mutually related by the
linear relation Q(x) = 1 − �(x), their approximations for
x ≥ 0 are quite different matters, because 1

2 ≤ �(x) < 1
whereas 1

2 ≥ Q(x) > 0 and, when x → +∞, �(x) → 1

whereas Q(x) → 0, and then a small absolute error ε(�̃)(x̄)
affecting an approximation �̃(x) of �(x) in x̄ sufficiently

large results in a relative error (in absolute value) ε(�̃)r (x̄) =
ε(�̃)(x̄)
�(x̄) ≈ ε(�̃)(x̄) for �(x̄), being �(x̄) ≈ 1, but the same

absolute error ε(Q̃)(x̄) = ε(�̃)(x̄) gives for Q(x̄) a relative

error ε(Q̃)(x̄)
Q(x̄) which is very large, being Q(x̄) = 1 −�(x̄) ≈

0 and positive. And in communications and information
theory the consideration of the Q-function for large values
of x is quite common. Similar things may be said about
approximating erfc(x), having limit 0 in +∞.

In general, it may be said that, when comparing the
accuracy of 2 approximations of a function, the consideration
of the relative error is more appropriate if that function has
a zero limit. In fact, for instance, often it is of little interest
to say that an approximated value of about 10−5 has an
absolute error less than 10−4.
All the 5 considered special functions Q(x), �(x), erf(x),

erfc(x), and m(x) have a zero limit in their domain (included
erf(x) which has value and limit 0 in 0), but 1

2 ≤
�(x) < 1 for x ≥ 0, and then for this restricted function
the consideration of the absolute error is appropriate and
generally used in literature.8 Instead, for the above mentioned
reasons, for erfc(x) and Q(x) the consideration of relative
errors is more appropriate and generally used in literature, at
least from a mathematical point of view. On the other hand,
as far as erf(x) is concerned, classical books such as [31]
(more precisely in Chapter 7 authored by W. Gautschi)
consider absolute errors for evaluating its approximations,
since, although the consideration of the relative error appears
to be somehow more appropriate than the absolute error,
because erf(x) = 0 for x = 0, also the absolute error appears
to be meaningful, for these 2 reasons:

• erf(x) takes (in absolute value) very small values –
where a low absolute error of an approximation may
correspond to a high relative error – only on a very small
interval, near 0, very differently from what happens to
erfc(x) and to Q(x);

• these small values, for x near 0, may be of scarce interest
in many applications.

Notice that for 3 of the 5 considered special functions,
i.e., for erf(x), �(x), and Q(x), it is, considering (56),

ε(x) < εr(x) (57)

because these 3 functions take values < 1, in absolute
value, wherever εr(x) exists, which is the entire domain of
the real numbers R, except 0 for erf(x). For erfc(x), the
inequality (57) holds for x > 0 (where this function is < 1,
see Section II-E), and for m(x) it holds for x > 0.3026 · · ·
(where this function is < 1).

Furtherly, for �(x) and its approximation �̃(x), it is

ε

(
�̃
)

r (x) =
∣∣∣∣∣
�̃(x)−�(x)

�(x)

∣∣∣∣∣ =
ε

(
�̃
)
(x)

�(x)
∀ x ≥ 0

and then by this, (57), and being �(x) ≥ 1
2 for x ≥ 0,

ε

(
�̃
)
(x) < ε

(
�̃
)

r (x) ≤ 2 ε

(
�̃
)
(x) ∀ x ≥ 0,

8. The approximation of �(x) for x ≤ 0 is essentially the problem of
approximating Q(x) for x ≥ 0 because �(−x) = Q(x).
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and, taking sup, for the approximations of �(x) it is

ε

(
�̃
)
< ε

(
�̃
)

r ≤ 2 ε

(
�̃
)

in [0,+∞)

or, which is equivalent,

ε

(
�̃
)

r

2
≤ ε

(
�̃
)
< ε

(
�̃
)

r in [0,+∞),

so the optimization of an approximation of �(x) in [0,+∞)

with respect to the relative error (in absolute value) is
essentially equivalent to the optimization with respect to the
absolute error.
Instead, the 2 errors in [0,+∞) are completely different

for Q(x), erf(x) and erfc(x) since these 3 functions have zero
limits: a small absolute error ε(x) for any of these functions
may correspond to a huge relative error (in absolute value)
εr(x) if located in a point x where the function takes a very
small value, or, viceversa, to a small relative error εr(x) if
located in a point x where the function takes a value very
far from 0.
This paper is essentially devoted to the explicitly invertible

approximations of Q(x), and the stress is pointed on the
single values of this function and, correspondingly, its
approximations, for which, as explained above, the relative
error is more significant. The absolute error plays again an
important role when considering the approximations globally
on the whole Isignificant, which is made when considering
the weighted integrals as (46) even limiting the integration
domain to Isignificant.

For the approximations of Q(x) the case of the domain
Isignificant is very different from the case of the domain
[0,+∞), as we are going to show in 2 different perspectives.
In fact, when limiting the domain to Isignificant = [0.45, 4.5],
the absolute error ε is less than the third part of the relative
error in absolute value εr:

ε

(
Q̃
)

r = sup
Isignificant

∣∣∣∣∣
Q̃(x)− Q(x)

Q(x)

∣∣∣∣∣

= sup
Isignificant

∣∣∣Q̃(x)− Q(x)
∣∣∣

Q(x)

≥ sup
Isignificant

∣∣∣Q̃(x)− Q(x)
∣∣∣

maxIsignificant Q(x)

= sup
Isignificant

∣∣∣Q̃(x)− Q(x)
∣∣∣

Q(0.45)

= 1

Q(0.45)
sup

Isignificant

∣∣∣Q̃(x)− Q(x)
∣∣∣

= 1

Q(0.45)
ε

(
Q̃
)

= ε

(
Q̃
)

0.326 · · · > 3 ε

(
Q̃
)

and then

ε

(
Q̃
)
<
ε

(
Q̃
)

r

3
in Isignificant.

So, for Q(x) in Isignificant, optimizing an approximation of
Q(x) to minimize the relative error (in absolute value), which
is the perspective mainly taken in this paper, leads to a good
approximation in the sense of the absolute error. Instead, an
analogous computation, replacing, in the above expression,
≥, max, and 0.45 with ≤, min, and 4.5, respectively, gives,
for Q(x) in Isignificant, the very poor

ε

(
Q̃
)

r ≤ 1

Q(4.5)
ε

(
Q̃
)
< 3 · 105 ε

(
Q̃
)

in Isignificant (58)

which means that optimizing an approximation of Q(x) to
minimize the absolute error in Isignificant does not necessarily
lead to a good approximation in the sense of the relative error
(in absolute value). A striking example is QAbderrahmane–1,
reported in Table 8, presenting ε < 1.1 · 10−3 but εr <
3.1 · 102, where the ratio εr

ε
attains almost the huge value

3 · 105, before said in (58).
For each approximation, the absolute error ε, defined

in (54), and the relative error in absolute value εr, defined
in (56), have been reported in Tables 3–13, evaluated with
reference to the domain Isignificant = [0.45, 4.5]. Notice that
they have been expressed as majorizations, so for example
2.42, though more similar to 2.4, gives 2.5. This is what
we mean by “reasonable majorization”, using 2 significant
digits.

B. TIGHTNESS OF THE APPROXIMATIONS OF Q(X) IN
TELECOMMUNICATIONS SYSTEMS
As far as telecommunications systems are concerned, we
are interested in good approximations of the Q(x) function
especially for quite large values of the signal-to-noise ratio,
since this region is characterized by very low SEP and BEP
values, which are difficult to be obtained by simulating the
system behaviour (with appropriate software or hardware
tools). The difficulty is due to the length of the simulation
needed to find these very low SEP and BEP values: namely,
if a BEP value of the order of 10−6 has to be obtained, it is
necessary to simulate a transmission with bit length of the
order of 106. In this sense, the analytic performance of the
system, usually expressed in terms of the Q-function, is very
useful to get an insight in its behaviour especially at quite
high signal-to-noise ratios, giving the so-called asymptotic
performance.
Although this is not generally remarked, in this particular

field the difference between absolute and relative errors
is remarkable: a small absolute error of 10−3 where the
function Q(x) is about 10−5 gives a relative error of the
order of 102 on the approximation or majorization of SEP
or BEP. Notice that this small absolute error is negligible
at the beginning of the significant interval Isignificant (see
Section III-A) where Q(x) is about 0.326 (see Section III-B).

VOLUME 4, 2023 3077



SORANZO et al.: EXPLICITLY INVERTIBLE APPROXIMATIONS OF THE GAUSSIAN Q-FUNCTION: A SURVEY

C. ASYMPTOTICITY AND ASYMPTOTIC EQUIVALENCE
OF AN APPROXIMATIONS OF THE FUNCTION Q(X)
In [50] one finds this Formula 2.121 (here rewritten with
the variable x)

e−x2/2

√
2π x

(
1 − 1

x2

)
< Q(x) <

e−x2/2

√
2π x

∀x > 0. (59)

In this paper we name the lower bound in (59)
Q

Wozencraft–lower, reported in (21), and the upper bound in (59)

QWozencraft(x) := e−x2/2

√
2π x

∼ Q(x) (60)

where by ∼ we mean the asymptotic equivalence, i.e., the
fact that QWozencraft is characterized by this limit

lim
x→+∞

Q(x)

e−x2/2√
2π x

= 1 (61)

which may be easily obtained dividing the above inequality
chain (59) by QWozencraft.
Already we have seen the lower bound Q


Wozencraft–lower,
reported in (21), and here we show that it is asymptotically
equivalent to Q(x) for x → +∞:

Q

Wozencraft–lower(x)

Q(x)

= Q

Wozencraft–lower(x)

QWozencraft(x)
· QWozencraft(x)

Q(x)

=
(

1 − 1

x2

)
· QWozencraft(x)

Q(x)
→ 1

because of (59), (60), and (61).

Also the lower bound Q

Gordon(x) := x

1+x2 · e−x2/2√
2π

(20) is
asymptotically equivalent to Q(x) for x → +∞, and here
this fact may be proved in this way, taking in account (61),

Q(x)

Q

Gordon(x)

= Q(x)

QWozencraft(x)
· QWozencraft(x)

Q

Gordon(x)

= Q(x)

e−x2/2√
2π x

· 1 + x2

x2
→ 1.

In [71, Fig. 2.3-2] there are, superimposed, graphs of Q(x),
QChernoff–impr., QWozencraft and Q


Gordon.
In 1942 paper [67] the improvement Q


Birnbaum (37) is
presented larger than Q


Gordon but, nevertheless, lower than
Q(x). Also this approximation is asymptotically equivalent
to Q(x).
Furthermore, the lower bound Q


Wozencraft–lower (21)
enlightens the tightness of the upper bound QWozencraft (19)
for large x, up to +∞. For example it is:

Q

Wozencraft–lower(x) = 0.99QWozencraft(x) for x = 10,

and in the thin strip between (the graphs of)
Q

Wozencraft–lower(x) and QWozencraft(x) lies (the graph of)

Q(x). In other words, for x > 10 both these functions have
(at least) the 1

99 ≈ 1% precision. All that has been already
highlighted in [50, Fig. 2.36] which also shows that the very
classical and widely used QChernoff–impr. Eq. (10) is really
very much less precise, for large x.
Remember that the asymptotic equivalence means limit 1

of the quotient of the function Q(x) and its approximation,
not limit 0 of the difference between them, which is
the asymptoticity. For Q(x) and any positive infinitesimal
function for x → +∞, asymptotical equivalence implies
asymptoticity, but the viceversa is not true. For instance, the

upper bound QChernoff–impr.(x) = 1
2 e

− x2
2 (10) and its double

QChernoff (11) both have difference 0 from Q(x) in +∞
and then they are asymptotic (limit of the difference 0) to
Q(x) but they are not asymptotically equivalent (limit of the
quotient 1) to Q(x) and precisely, taking in account (61),

QChernoff–impr.(x)

Q(x)

= QChernoff–impr.(x)

QWozencraft(x)
· QWozencraft(x)

Q(x)

= 1

2

√
2π x · 1

Q(x)
e−x2/2√

2π x

→ +∞.

Furthermore notice that, for Q(x) (and similarly for
any positive infinitesimal function for x → +∞) and its
approximation Q̃(x), it is:

asymptoticity ⇔ ε

(
Q̃
)
(+∞) = 0

asymptoticity ⇐ ε

(
Q̃
)

r (+∞) = 0(not ⇒)

asymptoticequivalence ⇒ ε

(
Q̃
)
(+∞) = 0(not ⇐)

asymptoticequivalence ⇔ ε

(
Q̃
)

r (+∞) = 0.

Any function F(x) asymptotically equivalent to QWozencraft
is asymptotically equivalent to Q(x) because

lim
x→+∞

F(x)

Q(x)

= lim
x→+∞

(
F(x)

Q(x)
· Q(x)

QWozencraft(x)

)

= lim
x→+∞

F(x)

QWozencraft(x)
= 1, (62)

where the first equivalence is due to (61) and the last to the
hypothesis.
Several approximations of Q(x) considered in this paper

are refinements of the simple asymptotic approximation
QWozencraft (60). This latter will be also considered in
Section X-A as a bound: it is actually an upper bound for
Q(x).

The above considerations imply that all the (widely used,
see Type 1 in Section VI) approximations of Q(x) as sum S(x)
of terms bi eai x

2
, where ai and bi are negative and positive

constants, respectively, have, as proved below:
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1) unbounded relative errors (in absolute value) on
[0,+∞), and precisely +∞ in +∞, if at least one
of the ai’s is ≥ − 1

2 (as QChernoff and QChernoff–impr. in
Table 7, QChiani–1 in Table 4, QChiani–2 and QChiani–3
in Table 5);

2) relative error 1 or 100% in the other case, i.e., if all
the ai’s are < − 1

2 (as QOlabiyi–1, QWu–1, and QChang
in Table 7, QOlabiyi–2 in Table 4, and QOlabiyi–3 in
Table 5).

In fact

lim
x→+∞ ε

(
Q̃
)

r (x)

= lim
x→+∞

∣∣∣∣∣
∑m

i=1 bi e
ai x2 − Q(x)

Q(x)

∣∣∣∣∣

= lim
x→+∞

∣∣∣∣∣
∑m

i=1 bi e
ai x2

Q(x)
− 1

∣∣∣∣∣

= lim
x→+∞

∣∣∣∣∣∣∣

∑m
i=1 bi e

ai x2

e−x2/2√
2π x

·
e−x2/2√

2π x

Q(x)
− 1

∣∣∣∣∣∣∣

= lim
x→+∞

∣∣∣∣∣∣∣

e−x2/2√
2π x

Q(x)

m∑
i=1

bi
√

2π x e(ai+1/2) x2 − 1

∣∣∣∣∣∣∣
and, using (61), one finds the limits +∞ and 1 in the two
cases (namely, if at least one of the ai’s is ≥ − 1

2 and if all
the ai’s are < − 1

2 ), respectively. Then, those approximations
may be precise, in the sense of the relative error, only on
bounded domains.
Since QWozencraft (60) is asymptotically equivalent to Q(x),

its relative error in +∞, when considered as approximation
of Q(x), is 0, but, essentially due to its divergence in 0, its
relative error at the beginning of Isignificant is large, about
145% (and for x → 0+ even diverges).
Slight modifications of QWozencraft (60) as

QBorjesson–1(x) := e−x2/2√
2π

√
x2+1

in Table 10, greatly reduce the

relative error (in absolute value). In fact, QBorjesson–1, besides
being analytically simple and asymptotically equivalent to
Q(x), since, through (60) and (61),

lim
x→+∞

QBorjesson–1(x)

Q(x)

= lim
x→+∞

QBorjesson–1(x)

QWozencraft(x)
· QWozencraft(x)

Q(x)

= lim
x→+∞

x√
x2 + 1

· 1 = 1,

presents εr < 0.15 or 15% (defined in (56)) on the interval
[0,+∞), and so QBorjesson–1 really reveals – at a glance,
it could be said – the global behavior of Q(x), and this
is absolutely not achieved by any truncation of the Taylor
series (see Section II-A7) or even of a class of function
series (see Section II-A8), nor by the (quite complicated)
integral definitions (see Sections II-A1 and II-A2).

The path of successive refinements of the basic asymp-
totically equivalent approximation QWozencraft (60) passes
through Q


Wozencraft–lower (21)
9 and ([14, Formulas 2–25])

Q

Cooper(x) := e−x2/2

√
2π x

(
1 − 1

2 x2

)
, (63)

which is the arithmetic mean of the lower bound
Q

Wozencraft–lower (21) (function already mentioned in

Section II-A6) and the upper bound QWozencraft (19) (there
is no one who can fail to see that the first ratio in (63) is
QWozencraft), till this [103] approximation

Q

Byrc(x) := e−x2/2

· x2 + 5.575192695 x+ 12.77436324

x3
√

2π + 14.38718147 x2 + 31.53531977 x+ 25.548726

which is, as Q

Cooper (63), clearly asymptotically equivalent

to QWozencraft and then, through (62), to Q(x).
As an example of a widely used approximation (of Type

4, see Section VI), which is not asymptotically equivalent
to Q(x), we show (see [31, Formula 26.2.17])

Q

Hastings-2(x) := e−x2/2

√
2π

·

·
(
b1 t + b2 t

2 + b3 t
3 + b4 t

4 + b5 t
5
)

t := 1

1 + p x
p = 0.231 641 9

b1 = 0.319 381 53 b2 = −0.356 563 782

b3 = 1.781 477 937 b4 = −1.821 255 978

b5 = 1.330 274 429

reported for �(x) (with absolute error less than 7.5 · 10−8,
which is the same for Q(x)) in the classical book of
Abramowitz and Stegun [31] in a chapter authored byM. Zelen
and N.C. Severo, and credited to Hastings, Jr. [64].

It is not asymptotically equivalent to Q(x) because,
through (60) and (61),

lim
x→+∞

Q

Hastings-2(x)

Q(x)

= lim
x→+∞

(
Q

Hastings-2(x)

QWozencraft(x)
· QWozencraft(x)

Q(x)

)

= b1

p
· 1 �= 1

This approximation is so widely used in practice, that
the advanced search tool of Google declares (May 2023)
about 7400 results searching (contemporarily) the 3 strings
0.2316419 0.31938153 1.781477937 (and at a glance the
results refers just to that formula).
A kind of optimization of the parameters of Q


Hastings-2 for
the relative error in absolute value on Isignificant is in [104].

9. Replacing in (63) the term 2 x2 with x2 one obtains the lower
bound Q


Wozencraft–lower (21) for Q(x), function already mentioned in
Section II-A6.
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Remark on the sum of powers of Q(x): Notice that
2QWozencraft is asymptotically equivalent to 2Q(x)−Q2(x),
considered in (8) for the QPSK modulation:

Ps(E) = 2Q

(√
Es
N0

)
− Q2

(√
Es
N0

)
.

In fact, through (61),

lim
x→+∞

∣∣∣∣
2Q(x)− Q2(x)

2QWozencraft

∣∣∣∣

= lim
x→+∞

∣∣∣∣
Q(x)

QWozencraft
− 1

2
· Q(x)

QWozencraft
· Q(x)

∣∣∣∣

=
∣∣∣∣ 1 − 1

2
· 1 · 0

∣∣∣∣.

Analogously a1 QWozencraft ∼ a1 Q(x)+ a2 Qm2(x)+ · · · +
an Qmn(x), useful for evaluating the SEP of the differentially
encoded QPSK modulation, considered in (43):

Ps(E) = 4Q

(√
Es
N0

)
− 8Q2

(√
Es
N0

)

+8Q3

(√
Es
N0

)
− 4Q4

(√
Es
N0

)
.

where Es/N0 is the signal-to-noise ratio. So the approxima-
tion on Isignificant of the function 2Q(x)−Q2(x) considered
in (8) is a problem really not far from the approximation of
Q(x) (and this is obviously still true on intervals extending
on the right Isignificant, even up to +∞). For example, in

the family of functions f (x; a, b) := a e−x2/2√
2π

√
x2+b (a family

including QWozencraft for a = 1 and b = 0 and QBorjesson–1 for
a = 1 and b = 1) an approximation for Q(x) with relative
error 6% is obtained with a = 1 and b = 1.15 and an
approximation analogously tight (with relative error 5%) for
2Q(x)−Q2(x) is simply obtained with a = 2 and b = 1.63.
Remark on the twofold nature of Q(x): Notice that Q(x),

for x ≥ 0, has a somehow twofold nature. For large x, say
x > 3 to fix ideas, Q(x) is essentially ≈ QWozencraft(x) :=
e−x2/2√

2π x
with both low absolute and relative errors (see

Section VII-A). For 0 ≤ x ≤ 3, it is simply a decreasing
positive function far from zero, and so it may be well
approximated, quite easily, even by a polynomial, with both
low absolute and relative errors.
Remark on the bad behaviour in +∞ of almost all

approximations: Simple developments of the above treated
arguments show that all approximations not belonging to
Type 4 (Wozencraft-like) and Type 7 (miscellanea) have
relative error (in absolute value) +∞ in +∞.

D. TIGHTNESS OF THE INVERSE OF AN
APPROXIMATION OF Q(X) IN ISIGNIFICANT
Generally speaking, the inverse of an invertible approxima-
tion of Q(x) is an approximation of the inverse of Q(x)
with the concerns treated – specifically for bounds – in
Section X-C.

More precisely, the inverse of a sufficiently tight invertible
approximation of Q(x) on Isignificant is an approximation,
generally quite tight, of the inverse of Q(x) at least on
an interval approximately equal to Q(Isignificant). If, as it
is reasonable, the lower extreme of Q(Isignificant), which is
to say Q(4.5) (about 3 · 10−6), is considered practically
indistinguishable from 0, and if we consider a sufficiently
tight approximation Q̃(x) of Q(x), so that also Q̃(4.5)
is practically indistinguishable from 0, the situation is
as follows. Among approximations, we may distinguish
between 2 extreme cases, i.e., the approximation could be
an upper or a lower bound for Q(x).

1) The most favorable case is when the approximation is
an invertible tight upper bound for Q(x) on Isignificant:
in this case, its inverse (existing, and findable in the
case of explicit invertibility) is a tight upper bound
for Q−1(y) on an interval which contains Q(Isignificant)
and, when restricted to Q(Isignificant), remains a tight
upper bound for Q−1(y).

2) The other extreme case, less favorable, is when the
approximation is an invertible tight lower bound for
Q(x) on Isignificant: its inverse (existing, and findable in
the case of explicit invertibility) is a tight lower bound
for Q−1(y) on an interval which is – unfortunately
– strictly contained in Q(Isignificant), starting from
(approximately) 0 and ending slightly before Q(0.45).

In the first and more favorable case above said, one may
even investigate on the relation between the (majorization of
the) relative error of the upper bound Q+(x) (with respect to
the exact Q(x)) and the (majorization of the) relative error of
its inverse (with respect to the exact Q−1(y)): our experience
shows that in the interval of relative errors [0.1%, 10%], the
relative error of the inverse may be at most very slightly
more than double of that of Q+(x) and, generally speaking,
it is always about double.

VIII. COMPLEXITY OF THE APPROXIMATIONS OF Q(X )
Leaving out, for the moment, explicit invertibility, the
struggle of the scientific researches considered in this survey
is exactly to achieve high precision with low complexity,
since it is always desirable to search, in the words of
Boiroju [81], for

“an adequate balance between the accuracy and
analytical tractability.”

There is no universally recognized standard for evaluating
the complexity of an analytic expression and, in particular,
of an approximation, and several methods have been used
over time by various Authors, for instance by measur-
ing [105] the average time to compute approximations of
the Q-function, or by measuring the computation complexity
of integrals involved in the SEP expression, summarized in
[45, Table IX] for various approximations of the Q-function
over the Nakagami-m fading channel. Here, considering the
experience of the past and also innovating, we will consider 3
completely different indexes of complexity and a 4-th index
that summarizes them.

3080 VOLUME 4, 2023



Remark: Of course one may have an approximation of
Q(x) on a bounded interval (as Isignificant) with relative error
as small as desired, using sufficiently many terms of the
continued fraction (see Section II-A6), or of the Taylor series
(see Section II-A7), or even of a class of function series (see
Section II-A8). Nevertheless nobody gives approximations
of the Q(x) function in closed form which are truncations
of Taylor or other series because reaching any reasonable
precision, on Isignificant or any other interval of practical
interest, would require a huge number of terms. As remarked
also in [45] about complex approximations,

“These approximations are less significant when
evaluating the error probabilities in communication
systems due to mathematical complexity.”

A. TYPOGRAPHIC COMPLEXITY
This is a formalization of what generally Authors implicitly –
basically – mean when distinguishing between “simple” and
“complicated” expressions, and in particular approximations
of Q(x). The typographic complexity is here meant as the
number of typographic characters of an analytic expression,
reasonably written. Nevertheless, finally the form of the
analytic expression of an approximation remains, in part, a
personal choice of the Authors. For example, the approxima-
tion Qa (by us named Q


Borjesson–2 in Section VI) reported10

in [94, Formula 13]:

Qa(x) = 1

(1 − a) x+ a
√
x2 + b

1√
2π

e−x2/2

and reported in [45, Table I] as EBorj:

EBorj(x) = e−x2/2

√
2π

(
1

(1 − 0.339) x+ 0.339
√
x2 + 5.510

)

presents a typographic complexity of 39 characters (or 38,
if not counting the final 0 as explained here below). The
same, reported as Qa-Borjesson-1 in [105]:

Qa-Borjesson-1(x) = e−x2/2

√
2π
(

0.661 x+ 0.339
√
x2 + 5.51

)

presents a typographic complexity of 32 characters (but
with 1 more decimal constant, acquiring a higher decimal
complexity when evaluated from the point of view of
the number of decimal constants used in the formula, as
explained in the following Section VIII-C).

Some tricks have been avoided, such as:

• e− x2
2 or e−x2/2 (which have both 6 characters) have not

been written as
√
e−x2 to spare 1 character;

• a
b (c+d) has not been written as

a
b

c+d to spare 1 character.
Such subtleties cause a character complexity of, say, 60, to
be regarded, in general, as much greater than 30, but more
or less comparable with, say, 58.

10. From [94, Table I], a = 0.339 and b = 5.510 are the values giving
the best approximation for x ≥ 0, i.e., the approximation minimizing εr ,
defined in (56).

Furtherly, notice that the typographic complexity is influ-
enced by the number of digits of decimal constants. For
example, classical [31] uses many digits in constants, but
essentially the same precision may be achieved with fewer
digits. In this paper we counted the digits as Authors put
them, except excluding final zeroes. For instance,

QChang(x) :=
√

e

2π

√
1.080 − 1

1.080
e−1.080x2/2,

reported in Table 7, presents a typographic complexity of
27 characters (and not 30) since the last zero in the decimal
constant (1.080, appearing 3 times) has not been counted.
Still, note that a low typographic complexity is useful

essentially to catch the soul of an approximation and even
of the function Q(x) itself, to understand, so to say, its
deep nature. This concept is well explained by, for example,
this approximation, asymptotically equivalent to Q(x) (see
Section VII-C), defined in [94] as

“a simple analytical approximation of Q(x) for all
x ≥ 0”,

and therein called P(x):

P(x) = 1√
2π

1√
1 + x2

e−x2/2,

having a typographic complexity of 18 characters. The same
approximation is called E2(x) in [45]:

E2(x) = e−x2/2

√
2π

(
1√

x2 + 1

)

with a typographic complexity of 19 characters, and
Qa-Borjesson-2 in [105]:

Qa-Borjesson-2(x) = 1√
2π

1√
x2 + 1

e−x2/2

with a typographic complexity of 18 characters. In Table 10
we have called it QBorjesson–1:

QBorjesson–1(x) := e−x2/2

√
2π

√
x2 + 1

with a typographic complexity of 15 characters. We could
say shortly:
Have a look at QBorjesson–1 and you will understand the

deep nature of the Q-function – apart from a 15% error.
Notice that many Authors have not felt as a necessity to

reduce the number of decimal digits in the presented con-
stants: obviously, in view of a reduction of the typographic
complexity, their constants could be rounded, reducing the
number of decimal digits, without affecting substantially the
precision of the approximations.
The typographic complexity, as considered in this paper,

has been, e.g., previously considered also in [18], where
2 approximations of Q(x) were compared, one requiring
about 20 keystrokes on a pocket calculator, and the other 32
keystrokes. A kind of typographic complexity, measured in
bytes, was also considered in [106], essentially devoted to the
comparison of several previously published approximations
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of Q−1(y), some of which – explicitly invertible – have been
considered in Section IV-G.
Finally, a low typographic complexity of an approximation

allows also to remember it, for the work on the field, and
even for teaching.

B. COMPUTATIONAL COMPLEXITY
The computational complexity is a widely considered con-
cept, but it could be measured in several ways, no one
of which nowadays used as a fixed standard in Numerical
Analysis.
Here, an index of computational complexity is used, that

is integer and well related to the real computing time. This
choice is due to the observation that the exact computational
time of an expression is not so easy to evaluate: it depends
on the machine, and, given the machine, is not perfectly
stable, it depends on the value of the argument x in which
to evaluate the function, it depends on the use of single or
double precision, and on the way the function is written. For

instance, the function e− x2
2 may be written as:

e− x2
2 = e− 1

2 x
2 = e−0.5 x2 = 1

e
x2
2

= · · ·

On the basis of these observations, in this paper the index
of computational complexity of an approximation has been
evaluated by counting the number of non-rational functions
applied to the argument x. So, for example, all rational
expressions, including constants given by transcendental
numbers like π and e, such as x+√

π , 2 x, − x2

2 , 3 x2+2 x+e,
x4+π
x3+x2 , count 0, and any non-rational expression, such as
exp(·), ln(·), √· , of any rational expression, all count 1,
even if repeated.
As example consider QBorjesson–1 reported in Table 10:

QBorjesson–1(x) := e−x2/2

√
2π

√
x2 + 1

which counts 2 because there are 2 non-rational expressions
(the exponential function and the square root) of a rational
expression and the constant 1√

2π
counts 0 because in

general it has to be computed only one time while the
complete expression will be computed many times. (If
the approximation has to be computed only once, the
consideration of the machine time is nowadays completely
useless, irrelevant, due to its extreme shortness.)
Tricks have been avoided as, for example, rewriting

QChiani–2 reported in Table 5:

QChiani–2(x) := 1

12
e− x2

2 + 1

4
e−2 x2

3

which counts 2 because there are 2 non-rational expressions
(the 2 exponential functions) of a rational expression and
the constants count 0, as

QChiani-2-equivalent(x) := 1

12

(
e− x2

6

)3

+ 1

4

(
e− x2

6

)4

,

in order to count a computational complexity 1 (since the

non-rational expression e− x2
6 is repeated and thus counts

only 1) instead of 2. (Of course, such tricks could in fact
be used in practice, if on a particular machine they grant a
computation time sparing.)

C. DECIMAL COMPLEXITY
Classically it is also considered how many decimal constants
are present in an approximation, as a simple and immediate
measure of complexity. For example, in [17] we read:

“(· · · ) which, though containing only two numer-
ical constants, turns out to be almost as accurate
as (· · · ).”

Of course, nor integer numbers, nor π and e are computed
as decimal constants.
Analogously to the other kinds of complexity, the decimal

complexity is not intrinsic and in different equivalent forms
of an expression it may vary. In particular

QChang(x) :=
√

e

2π

√
1.080 − 1

1.080
e−1.080 x2/2,

reported in Table 7 as having a decimal complexity 1 (since
the same decimal constant 1.080 appears 3 times) may be
expressed in this quite different way:

QChang-equivalent(x) := 5 e
1
2 − 27

50 x
2

27
√
π

as having a decimal complexity 0, since no decimal constants
are present.

D. TOTAL COMPLEXITY
Since we have introduced 3 different complexity indexes,
we propose a further index which takes into account
all them together. Said t the typographic complexity
(see Section VIII-A), c the computational complexity
(see Section VIII-B), and d the decimal complexity (see
Section VIII-C), we compute the geometrical mean of t,
c+ 1, and d + 1 as:

Total complexity := 3
√
t · (c+ 1) · (d + 1).

The +1 is intended to avoid the collapsing in 0 of the result
when c or d is 0.
The value of the total complexity has always been approx-

imated with 2 decimals. (It is not always a majorization,
differently from absolute and relative errors.)
An example is reported in Section XIII-C, going from

the minimum total complexity of QChernoff (2.29, reported in
Table 7), through the intermediate one of QOlabiyi–2 (7.56,
reported in Table 4) up to the highest complexity of QLipoth
(13.66, reported in Table 13) approximately sextuple (with
respect to the minimum total complexity of QChernoff).

3082 VOLUME 4, 2023



IX. LEVELS OF EASINESS OF EXPLICIT INVERTIBILITY
OF INCREASING FUNCTIONS
There exist plenty of approximations for �(x), or Q(x), or
erf(x), or erfc(x) (equivalently): many of them are explicitly
invertible (see below in this section) at different levels, and
in this research we have found about 60 of them, listed in
Tables 3–13.

In [16] one already finds this classification of the approx-
imations from the point of view of the explicit invertibility:

1) not explicitly invertible;
2) explicitly invertible solving a quartic equation;
3) explicitly invertible solving a generic cubic equation;
4) explicitly invertible solving a depressed cubic equation

x3 + ax+ b = 0;
5) simply explicitly invertible solving a quadratic (or

biquadratic) equation;
6) very simply explicitly invertible, with only 1 entry of x.

(Concept recently used in [30].)

The explicit invertibility in the above classification has
to be meant in the sense of explicit invertibility by means
of elementary functions having standard names used in
mathematics (see Definition in Section V) and, in the present
paper, this is here plainly stated. Notice also that the above
mentioned classification refers to the formal writings of the
approximations chosen by their Authors (see Section IX-A).

Improving the above reported classification [16] for the
levels of easiness of explicit invertibility of functions by
means of elementary functions, here we give a new classifi-
cation, which in this paper we consider only for increasing
(in the considered domains) functions, so eliminating the ±
ambiguity in the solution of the 2-nd degree equations and
the even more complex ambiguities for 3-rd and 4-th degree
equations, illustrated in Appendix B. With respect to [16], the
case of the quartic equation has been splitted into generic and
depressed quartic equation (see Appendix B), the quadratic
and biquadratic equations have been separated, and InvLev
6.5 has been defined, requiring the Lambert W-function in
the explicit inversion, finally obtaining the following 9 levels,
going from no explicit invertibility (InvLev 0) to the easiest
one (InvLev 7):

• InvLev 0: no explicit invertibility by elementary func-
tions and the Lambert W-function;

• InvLev 1: invertibility by elementary functions solving
a generic quartic equation;

• InvLev 2: invertibility by elementary functions solving
a depressed quartic equation;

• InvLev 3: invertibility by elementary functions solving
a generic cubic equation;

• InvLev 4: invertibility by elementary functions solving
a depressed cubic equation;

• InvLev 5: invertibility by elementary functions solving
a biquadratic equation;

• InvLev 6: invertibility by elementary functions solving
a quadratic equation;

• InvLev 6.5: invertibility by elementary functions and
the Lambert W-function, with only 1 entry of x when
expressed using W−1(x);

• InvLev 7: invertibility by elementary functions, with
only 1 entry of x.

In all the above cases, the invertibility by elementary
functions has to be meant in the sense of elementary
functions having standard names used in mathematics, and
for this issue see Remarks 1 and 2 in Section V. Moreover,
the solution of the polynomial equations could require also
obvious substitutions, as explained in Appendix A.
Definition: We call explicitly invertible, not simply, the

approximations with InvLev from 1 to 4, whereas we call
simply explicitly invertible the approximations with InvLev
from 5 to 7: in the first group, in fact, the inversion requires
the solution of cubic or quartic equations, generally consid-
ered quite complicated. (This definition will be especially
applied in the summarizing Table 19.)
Now we are going to illustrate the above mentioned 9

cases, in general, and with reference to the approximations
of Q(x).

• InvLev 0: not explicitly invertible by means of elemen-
tary functions and the Lambert W-function, for example

y = x3 + ex

which, though lacking of explicit inverse, is indeed
invertible being increasing because sum of increasing
functions.
With reference to the approximations of Q(x), let us
consider, as an example, Q


Cooper (63) which (at best of
our knowledge) is not explicitly invertible by means of
elementary functions and even the Lambert W-function.
Notice that, as already mentioned in Section VII-C,
the approximation (63) is the arithmetic mean of the
lower bound Q


Wozencraft–lower (21) with the same InvLev
0 (function already mentioned in Section II-A6 and in
Section VII-C), and the upper bound QWozencraft (19),
which is instead explicitly invertible by means of
elementary functions and the Lambert W-function (see
InvLev 6.5 below).

• InvLev 1: explicitly invertible by means of elementary
functions solving a generic quartic equation (or 4-th
degree equation). With reference to the approxima-
tion of the Q-function, an InvLev 1 approximation is
QChiani–2, reported in Table 5,

y = 1

12
e− x2

2 + 1

4
e−2 x2

3

which, with the obvious substitution z := e− x2
6 , gives

the quartic equation (in z with parameter y)

y = z3

12
+ z4

4
,

and then

x(y) = √−6 ln z(y).
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A different example is QHastings-1, reported in Table 3
with its values a, b, c, and d,

y = 1

2

(
1 + a x+ b x2 + c x3 + d x4

)−4

which gives, without any substitution, the quartic
equation (in x with parameter y)

(2 y)−
1
4 = 1 + a x+ b x2 + c x3 + d x4.

• InvLev 2: explicitly invertible by means of elementary
functions solving a depressed quartic equation, lacking
of the cubic (or 3-rd degree) term; of course the quartic
equation of InvLev 2 is intended not to be y = x4 + a,
which would lead to InvLev7, nor y = x4+ax2+b, which
would lead to InvLev5 (see above in this section). As far
as the approximation of the Q-function is concerned, an
InvLev 2 approximation is QChiani–3, reported in Table 5,

y = 1

6
e−2 x2 + 1

12
e−x2 + 1

4
e− x2

2

which, with the obvious substitution z := e− x2
2 , gives

the depressed quartic equation (in z with parameter y)

y = z4

6
+ z2

12
+ z

4

and then

x(y) = √−2 ln z(y).

• InvLev 3: explicitly invertible by means of elementary
functions solving a generic cubic equation (or 3-rd
degree equation). Some straightforward examples of
approximation of the Q-function of this invertibility
level are QBoiroju-1, reported in Table 3 and QDerenzo,
reported in Table 6, needing no substitutions.
Another example, needing instead a substitution, is
QOlabiyi–3, reported in Table 5,

y = 0.16785 e−0.53245 x2 + 0.16805 e−1.0649 x2

+ 0.01525 e−1.59735 x2

which, with the obvious substitution z := e−0.53245 x2
,

gives the cubic equation (in z with parameter y)

y = 0.16785 z+ 0.16805 z2 + 0.01525 z3

and then

x(y) =
√

− 1

0.53245
ln z.

Finally, a quite different example is QBrophy, reported
in Table 9 with its values a, b, and c (and a correction
note),

y = 1

2
− 1

2

√
1 − e−x2 (a−x2 (b−c x2))

which gives, with the obvious substitution z := x2, the
cubic equation (in z with parameter y)

ln

(
1 −

(
2

(
1

2
− y

))2
)

= −z (a− z (b− c z))

and then

x(y) = √z(y).
• InvLev 4: explicitly invertible by means of elementary
functions solving a depressed cubic equation, lacking
of the quadratic (or 2-nd degree) term. An example
of approximation of the Q-function of this invertibility
level is QPage, reported in Table 11,

y = 1

1 + e
√

8/π (x+0.044715 x3)

= 1

2
− 1

2
tanh

(√
2

π

(
x+ 0.044715 x3

))

which gives the depressed cubic equation (in x with
parameter y)

ln

(
1

y
− 1

)
=
√

8

π

(
x+ 0.044715 x3

)
.

Other similar examples are QVedder, QBowling-2, and
QZogheib-1, reported in the same table, whose inversion
proceeds in the same way. The explicit inverses of QPage,
QVedder [27], and QBowling-2 are reported in Table 14.
Starting, to consider another example, from the class of
approximations

QChiani-class(x; θ) :=
(

1

4
− θ

2π

)
e−x2/2 + 1

4
e
− x2

2 sin2 θ ,

(64)

originally given in [11] for erfc(x), here another
approximation of this invertibility level is obtained with
θ := arcsin 1√

3
, which we name QChiani–new–1 in (65),

cited at the end of Table 5,

y =
(

1

4
− 1

2π
arcsin

1√
3

)
e− x2

2 + 1

4
e− 3

2 x
2

(65)

which, with the obvious substitution z := e−x2/2, gives
the depressed cubic equation (in z with parameter y)

y =
(

1

4
− 1

2π
arcsin

1√
3

)
z+ 1

4
z3

and then

x(y) = √−2 ln z(y).

• InvLev 5: explicitly invertible by means of elementary
functions solving a biquadratic equation (4-th degree
equation lacking of the 3-rd degree and 1-st degree
terms). An example of approximation of the Q-function
of this invertibility level is QWinitzki, reported in Table 9,

y = 1

2
− 1

2

√
1 − e

−x2 4/π+0.147 x2/2
2+0.147 x2 ,
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TABLE 14. A published inverse of already published InvLev 4 approximations of Q(x).

TABLE 15. A published inverse of already published InvLev 5 approximations of Q(x).

whose inversion proceeds in this way:

2

(
1

2
− y

)
=
√

1 − e
−x2 4/π+0.147 x2/2

2+0.147 x2

1 − 4 y+ 4 y2 = 1 − e
−x2 4/π+0.147 x2/2

2+0.147 x2

e
−x2 4/π+0.147 x2/2

2+0.147 x2 = 4 y− 4 y2

−(4/π) x2 − 0.147 x4/2

2 + 0.147 x2
= ln

(
4 y− 4 y2

)

− 4

π
x2 − 0.147

x4

2

−
(

2 + 0.147 x2
)

ln
(

4 y− 4 y2
)

= 0

which is a biquadratic equation (in x with parameter
y). Other similar examples are QSoranzo-1 and QSoranzo-2,
reported in the same table, whose inversion proceeds
in the same way. The explicit inverses of QWinitzki [23]
and QSoranzo-2 are reported in Table 15.

• InvLev 6: explicitly invertible by means of elemen-
tary functions solving a quadratic equation (or 2-nd
degree equation), having the linear term. An immediate
example of approximation of the Q-function of this
invertibility level is QChu, reported in Table 3,

y = 1

2
− x√

2
(
π + 2 x2

)

which, for x ≥ 0, gives the second degree equation (in
x with parameter y)

2
(
π + 2 x2

)(1

2
− y

)2

= x2

from which, successively,

2π

(
1

2
− y

)2

+ 4 x2
(

1

2
− y

)2

− x2 = 0

2π

(
1

2
− y

)2

− 4 x2

(
−
(

1

2
− y

)2

+ 1

4

)
= 0

2π

(
1

2
− y

)2

= 4 x2
(
y− y2

)

x2 =
π
(

1
2 − y

)2

2
(
y− y2

)

and, without ambiguity of sign, the explicit inverse

x(y) =
1
2 − y√

2
π

(
y− y2

)

reported in Table 16.
A quite different example, requiring logarithms, is
QSofotasios, reported in Table 6,

y = 0.49 e− x2
2 − 8

13 x

which gives the second degree equation (in x with
parameter y)

ln
( y

0.49

)
= − x2

2
− 8

13
x.

Analogous examples are QMastin–1, QMastin-2, QMastin-3,
QLin-1, QBenitez–1, and QBenitez–2 of Table 6, which
clearly have InvLev 6 since their inversion obviously
produces second degree equations after taking loga-
rithms. The explicit inverses of QMastin–1, QMastin-2,
QMastin-3, and QLin-1 [18] are reported in Table 16.
As further different examples here we may consider

QChiani–new–2(x) := 3

8
e− x2

2 + 1

4
e−x2 = y (66)

cited at the end of Table 5, which is immediately
obtained from the class (64) with θ = π/4, whose
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TABLE 16. Some new and published inverses of already published InvLev 6 approximations of Q(x).

inversion is made substituting z := e− x2
2 , giving the

second degree equation (in z with parameter y)

y = 3

8
z+ z2

4
and then

x(y) = √−2 ln z(y),

and QChiani–1 (which is better) of Table 4, whose
inversion proceeds similarly with the same substitution
(reported in the table). Other similar examples shown
in the same table are QWu-2, QPowari, and QOlabiyi–2,
whose inversion proceeds similarly but with different
substitutions (reported in the table). The explicit inverses
of QChiani–1 [11], QWu-2, QPowari, and QOlabiyi–2 [9] are
reported in Table 16.
Another approximation of the same invertibility level is
QDivgi reported in Table 11, whose inversion proceeds
at the beginning similarly to the inversion of the InvLev
4 approximation QPage shown before, but in the end
solving a 2-nd degree equation instead of a depressed
cubic one.
Finally, for QHamaker [17] and QLin–2 [20], reported in
Table 8, the explicit inverses are shown in Table 16.

• InvLev 6.5: explicitly invertible by means of elementary
functions and the Lambert W-function, with only 1
entry of x when expressed using W−1(x), inverse of
the Lambert W-function W(y) – more precisely of its
restriction for x ≥ 0, considered in this paper, as
illustrated in Section V – as we are just going to show in
the following example. All the functions of InvLev 6.5
would belong to InvLev 7 if the principal branch of the

real Lambert W-function was considered an elementary
function, which historically has not been done.
The basic example of this invertibility level is QWozencraft
reported in Table 10 (see also Section VII-C):

y = e−x2/2

√
2π x

=
⎛
⎝
(
e−x2/2

√
2π x

)2
⎞
⎠

1
2

=
(

e−x2

2π x2

) 1
2

=
(

1

2π x2ex2

) 1
2

and, by means of the function W−1(x) = x ex (see (51)),
inverse of the Lambert W-function W(y),

y =
(

1

2π W−1
(
x2
)
) 1

2

which shows clearly the single recurrency of x, when
admitting W−1(x) in the set of allowable functions. It
follows that

W−1
(
x2
)

= 1

2π y2

from which, inverting,

x2 = W

(
1

2π y2

)
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TABLE 17. Some new inverses of already published InvLev 6.5 approximations
of Q(x).

and then, with no ambiguity of sign,

x(y) = Q−1
Wozencraft(y) =

√
W

(
1

2π y2

)

is reported in Table 17, determining InvLev 6.5 (instead
of InvLev 7) because of the use of the (not elementary)
Lambert W-function in the explicit inversion.
As a further more complex example here we con-
sider QBorjesson–1, reported in Table 10, essentially an
improvement of QWozencraft obtained substituting x with√
x2 + 1, granting a better behaviour near 0:

y = e−x2/2

√
2π

√
x2 + 1

(67)

whose inversion proceeds similarly, only a bit more
complex:

y =
⎛
⎝
(

e−x2/2

√
2π

√
x2 + 1

)2
⎞
⎠

1
2

=
(

e−x2

2π
(
x2 + 1

)
) 1

2

=
(

e e−x2−1

2π
(
x2 + 1

)
) 1

2

=
(

e

2π ex2+1
(
x2 + 1

)
) 1

2

=
(

e

2π W−1
(
x2 + 1

)
) 1

2

,

determining InvLev 6.5 (instead of InvLev 7) because
of the use of the (not elementary) Lambert W-function
in the explicit inversion:

x(y) = Q−1
Borjesson–1(y) :=

√
W

(
e

2π y2

)
− 1.

This explicit inverse is reported in Table 17, too.
• InvLev 7: explicitly invertible by means of elementary
functions with only 1 entry of x, for example QSoranzo–3,
reported in Table 12,

y = 1 − 2−221−41x/10

whose explicit inverse is

x(y) = 10 log41
(
1 − log22(− log2(1 − y))

)
,

reported in terms of natural logarithms in [22] and here
in Table 18.
In Table 18 are reported the explicit inverses of
all the other InvLev 7 approximations (including
QSoranzo–3 [22]):
– QBurr (reported in Table 3);
– QOrdaz, QHanandeh–2 [33] (reported in Table 6);
– QChernoff, QChernoff–impr., QErmolova–2, QGasull
QOlabiyi–1, QWu–1, QErmolova–1, QChang (reported in
Table 7);

– QAbderrahmane–1, QPolya, QBoiroju–2, QAludaat [19],
QEidous [28], QAbderrahmane-2, QHanandeh-4 [34]
(reported in Table 8);

– QAbderrahmane–3, QTocher, QHanandeh–1 [33],
QBowling–1, QJohnson–1 (reported in Table 11);

– QHanandeh-3 [33], QZogheib–2, QSoranzo–4 [22]
(reported in Table 12);

– QLipoth, and QKundu (reported in Table 13).

A. SOME NOTES ON TYPES AND INVERTIBILITY LEVELS
The types (from Type 0 to Type 7), considered in Section VI,
and the above considered invertibility levels (from InvLev 0
to InvLev 7) are essentially independent. The tables described
and commented in Section XI have been organized according
to types and, secondarily, to decreasing InvLev, reported for
any approximation.
The distinction among the invertibility levels is not always

intrinsic: sometimes it is essentially a personal choice
of the Authors. In particular, of course all the InvLev 6
approximations may be written in an InvLev 7 form with
only 1 entry of x. For example,

QSofotasios(x) := 0.49 e− x2
2 − 8

13 x

reported in Table 6 may be written as

QSofotasios-equivalent(x) := 0.49 e
− 1

2

(
x+ 8

13

)2+ 32
169 .

A different example of the same conversion from InvLev 6
to InvLev 7 may be obtained with

QChiani–1(x) := 1

4
e−x2 + 1

4
e− x2

2

reported in Table 4 which may be written as

QChiani–1–equivalent(x) := 1

4

(
e− x2

2 + 1

2

)2

− 1

16
. (68)

Conversely, some InvLev 7 approximations as

QOrdaz(x) := 0.6931 e
−
(

9 x+8
14

)2

,

reported in Table 6, could be presented with InvLev 6
expanding the square, and in any case the inverse is

2

9

(
−4 + 7

√
ln

0.6931

y

)

reported in Table 18.
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TABLE 18. Some new and published inverses of already published InvLev 7 approximations of Q(x).

X. APPROXIMATIONS AND BOUNDS
For the purposes of telecommunications theory, a good
quality of an approximation of Q(x) is to be a bound for
x > 0 and, in the perspective of this research, to be a bound
for x ∈ Isignificant.
Let us take as reference for instance the BEP (39),

Q(
√

2Eb
N0
), holding for the simple binary digital modulation

schemes, where Eb/N0 is the signal-to-noise ratio, Eb is the
signal energy associated to a bit, and σ 2 = N0/2 is the
variance of the channel noise.
Given a signal-to-noise ratio Eb/N0, lower bounds of Q(x)

are useful for estimating the least possible values of an error
detection probability, such as BEP, and thus can be used

as a performance measure. Instead, given a signal-to-noise
ratio Eb/N0, upper bounds give an estimate of the greatest
possible error detection probability, and are even of greater
interest in performance analysis because, in this sense, they
allow to consider the so-called worst case. Notice also that
in telecommunications practice it could be more desirable
to have a looser upper bound than a tighter approximation,
in the sense that it is usual to renounce some precision in
favour of having an upper bound, so granting that the BEP
calculated using the upper bound is in fact greater than the
real one (pessimistic evaluation).
Conversely, since the inverse – if existing – of a lower

(or upper bound) of Q(x) is a lower (or upper bound,
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respectively) of Q−1(y) (as recalled in Section VII-D), given
an error detection probability, such as BEP, the lower (or
upper) bounds of Q−1(y) are useful for estimating the least
(or greatest, respectively) possible values of signal-to-noise
ratio Eb/N0 needed to attain that BEP. Somehow similarly
as before, it could be more desirable to have a looser upper
bound of Q−1(y) than a tighter approximation of it, to grant
that the signal-to-noise ratio Eb/N0 – needed to attain a fixed
BEP – calculated using the upper bound is in fact greater
than that really needed (pessimistic evaluation).
Here below we list all the published (found in this

research) explicitly invertible upper (Section X-A) and, then,
lower bounds (Section X-B), for x > 0. They are all to
be considered approximations of Q(x), falling into the 8
types considered in Section VI. Moreover, we address some
particularly interesting not explicitly invertible lower bounds.
For many of those bounds, analytic mathematical (not

only graphical) proofs (of the fact that they are bounds) have
been published, holding on the whole interval (0,+∞) or
[0,+∞).

A. UPPER BOUNDS
We begin with the upper bound QWozencraft

(19) holding ∀ x > 0, which stands out also for its
asymptotic equivalence to Q(x) (see Section VII-C) and its
explicit invertibility (by means of the Lambert W-function,
see Sections V and IX).
Then we list the most classical and widely used upper

bound for Q(x) in telecommunications theory, the Chernoff
bound QChernoff (11) and its improvement QChernoff–impr. (10),
which in this paper have been proved to be upper bounds on
the whole [0,+∞) in Section II-A3. When considering the
whole [0,+∞), the coefficient 1

2 multiplying the exponential
obviously cannot be reduced because of the value 1

2 of
Q(x) in 0, and also the coefficient − 1

2 of the monomial x2

cannot [46] be modified to have a tighter upper bound.
For large x, QChernoff (11) and QChernoff–impr. (10) have,

when intended as approximations of Q(x), quite low absolute
errors but high relative errors (see Section VII-C). In
particular, in Isignificant, for QChernoff–impr. it is

ε ≈ 1.6 · 10−1 ε(4.5) ≈ 1.7 · 10−5

εr = εr(4.5) ≈ 4.9

a ≈ 490% error, with a ratio 4.9: 0.16, more than 30, between
εr and ε (see (58)), and an even more marked (≈ 2.9 · 105)

ratio between εr(x) and ε(x) in x = 4.5. (For the symbols
ε, εr, ε(x), and εr(x), see Section VII-A.)
Two other noticeable upper bounds on the whole [0,+∞),

both explicitly invertible, originally given in [11] for erfc(x),
are QChiani–1 (12) and

QChiani–3 := 1

6
e−2x2 + 1

12
e−x2 + 1

4
e− x2

2 ,

reported in Tables 4 and 5, respectively. (Noticeably the
inversion of the latter gives a depressed quartic equation.)

Notice that QBorjesson–1(x) := e−x2/2√
2π

√
x2+1

(see Table 10) is

not classically considered a bound for Q(x) (for x ≥ 0) but it
is an upper bound for Q(x) in Isignificant, and in Section VII-C
it is shown that it is asymptotically equivalent to Q(x).
The other published upper bounds of Q(x) on the whole

[0,+∞), found in this research, are:

1) QChu reported in Table 3
2) and QMastin-2 reported in Table 6.

Finally, we have found 2 further upper bounds for Q(x) in
Isignificant:

1) QTocher reported in Table 11
2) and QVedder reported in the same table.

Notice that QTocher is very likely to be an upper bound
on the whole [0,+∞), but this has never been analytically
proven – nor even that (1 − QTocher(x)) is a lower bound
for �(x) – and a graphical demonstration is not feasible,
and then in our Table 11 is classified as an upper bound
in Isignificant, which may be easily seen graphically. Notice
also that the ancient (1963) approximation (1 −QTocher(x)),
essentially of statistical interest, is widely cited: a Google
search (July 2023) for “Tocher’s approximation” finds about
11300 results.

B. LOWER BOUNDS
Already we have seen the lower bound on the whole
(0, +∞) Q


Wozencraft–lower, reported in (21), and in
Section VII-C we show that it is asymptotically equivalent to
Q(x). Also the lower bound on the whole [0, +∞) Q


Gordon
(20) is asymptotically equivalent to Q(x) for x → +∞, and
this fact is proved in Section VII-C. In [71, Fig. 2.3-2] there
are, superimposed, graphs of Q(x), QChernoff–impr., QWozencraft
and Q


Gordon.
In 1942 paper [67] the improvement – with respect to

Q

Gordon – Q


Birnbaum (37), holding on the whole [0, +∞), is
presented, larger than Q


Gordon but, nevertheless, lower than
Q(x). Also this approximation is asymptotically equivalent
to Q(x).
Correspondingly to the Chernoff upper bounds con-

sidered in Section X-A, Chernoff type (see Remark 2
in Section VI) lower bounds, all holding on the whole
[0, +∞), have also been published. In particular, the lower
bound QGasull [40] reported in Table 7 and the [46] class
of functions QChang–class (14), including the lower bound
QChang–new (13), this other recent (2012) [107] class of
functions

QCote–class(x; κ) :=
(
e(π (κ−1)+2)−1

2 κ
·

·
√

1

π
(κ − 1) (π (κ − 1)+ 2)

)
e−κ x2/2 κ ≥ 1, (69)

and these more recent (2018) classes [29]

QWu–class–1(x; c) :=
√

e

π

√
c

2 c+ 1
e− 2 c+1

4 c x2
c > 0 (70)
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and [29]

QWu–class–2(x; θ) :=
(

1

2
− θ

π

)
e− cot θ

π−2 θ x
2

0 ≤ θ ≤ π

2
(71)

(in which cot 0 = +∞ and e−∞ = 0). In this latter
class (71), with θ = π

4 , one may find the lower bound [83]
QWu–1 (15) (see Table 7). The above reported QWu–class–2 is
a subclass (with n = 1 and θ1 = θ) of this [83] class of sum
S(x) of terms bi eai x

2
(Type 1, see Section VI) lower bounds

QWu-class-3(x; n, θi) :=
n+1∑
i=1

bi e
ai x2

ai := 1

2

cot θi − cot θi−1

θi − θi−1
bi := θi − θi−1

π

0 = θ0 < θ1 < · · · < θn+1 = π

2
(in which cot 0 = +∞ and e−∞ = 0), here rewritten
following our Type 1 definition. This class includes also
QWu-2 (see Table 4) and the not explicitly invertible Q


Wu-3
(see Remark 1 in Section VI).
The other published lower bounds on the whole [0,+∞),

found in this research, are:
1) QMastin–1 reported in Table 6;
2) QChang reported in Table 7;
3) QPolya (the most ancient of these 3, see Section II-G)

reported in Table 8.
Finally, we have found that QErmolova–1, reported in Table 7,
and QBoiroju–2, reported in Table 8, are lower bounds for
Q(x) in Isignificant. Notice that QErmolova–1 is very likely to
be a lower bound on the whole [0,+∞), but this has never
been analytically proven and a graphical demonstration is
not feasible, and then in our Table 7 is classified as a lower
bound in Isignificant, which may be easily seen graphically.

C. ON BOUNDS AND INVERSES
Quite obviously, the inverse, if existing, of a positive lower
bound Q−(x) of Q(x) in [0, +∞) is a lower bound of
the inverse Q−1(y) of Q(x) in (0, Q−(0)], and – in a not
completely symmetrical way – the inverse, if existing, of an
upper bound Q+(x) of Q(x) in [0, +∞) is an upper bound
of the inverse Q−1(y) of Q(x) in the whole (0, Q(0) =
1/2] (being, of course, Q+(0) ≥ Q(0) = 1/2). Similar
things may be said when considering a domain restricted to
(0, +∞) (i.e., [0, +∞) deprived of 0), as it is necessary,
for example, for QWozencraft (60). Analogous things may be
said for erfc(x). On this basis, in [11] two upper bounds
have been produced for erfc−1(y), which here we convert
for Q−1(y):

Q−1(y) <
√−2 ln 2 y 0 < y ≤ 1

2

Q−1(y) <

√
−2 ln

−1 + √
1 + 16 y

2
=

=
√

2 ln
1 + √

1 + 16 y

8y
0 < y ≤ 1

2

corresponding to the inversions of (10) and (12), respectively.
Moreover, in [29] a class of lower bounds has been produced
directly for Q−1(y):

Q−1(y) >

√
− 4 c

2 c+ 1
ln

√
π

e c
(2 c+ 1) y

corresponding to the inversion of (70).
Of course the consideration of Isignificant instead of

[0, +∞) or (0, +∞) as domains of Q(x) and its bounds,
makes things quite more complicated: the inverse of a lower
bound Q−(x) of Q(x), when defined on Isignificant, is not a
lower bound of Q−1(y) on the whole Q(Isignificant), being
even not defined in [Q−(0.45),Q(0.45)). Quite better is the
situation for a sufficiently tight upper bound Q+(x) of Q(x),
because the lack of definition may hold in the essentially
irrelevant interval [Q(4.5),Q+(4.5)].

XI. TABLES OF EXPLICITLY INVERTIBLE
APPROXIMATIONS OF Q(X )
In Tables 3–13 we have produced a list, as exhaustive as
possible, of published explicitly invertible (see Definition
in Section V) approximations of Q(x), considering also the
approximations which have been originally published for
�(x), erfc(x), erfc

√
x . . . and applying algebra and the rules

of conversions reported in Table 1.
Please refer to Section VI for a comprehensive analysis of

the categorization of these approximations into various Types,
which will aid in the understanding of their mathematical
properties. Additionally, please consult Section IX for an
in-depth examination of their classification based on levels
of invertibility (InvLev), which will help in comprehending
the ease with which they can be inverted.
The classification of the analyzed approximations of Q(x)

into Types has led to their organization within tables in the
following manner:

• Type 0 in Table 3;
• Type 1 in Tables 4 and 5;
• Type 2 in Table 6;
• Chernoff type in Table 7 (see Remark 2 in Section VI);
• Type 3 in Tables 8 and 9;
• Type 4 in Table 10;
• Type 5 in Table 11;
• Type 6 in Table 12;
• Type 7 in Table 13.

We have also separated the above considered Tables 3–13
in different sections by double horizontal lines, collecting
together approximations with the same invertibility level
InvLev (defined in Section IX).
In each table the approximations have been sorted in this

way:

1) by decreasing InvLev (defined in Section IX);
2) in the case of equal InvLev, by decreasing relative error

in absolute value εr (defined in Section VII-A);
3) in the case of equal relative error in absolute value, by

decreasing absolute error ε (defined in Section VII-A);
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4) in the case of equal relative error in absolute value and
absolute error, by decreasing total complexity (defined
in Section VIII-D).

The first column of each table reports the bibliographic
reference in which the approximation has been published
together with the number of the formula as it appears in the
cited reference and the approximation name (the choice of
which has been explained in Section IV-D). In case of lacking
of the formula number, we have reported the approximation
name as it appears in the cited reference preceded by the
word “called” (as “called �5(x)” in Table 8). Moreover,
in case of lacking of both the formula number and the
approximation name we have reported the page number at
which the approximation may be found in the cited reference
(as “p. 32” in Table 11) or the number of the table of the
reference in which it may be found (as “Table I” in Table 12).
Finally, if the published approximation was not meant for
Q(x) we have reported in parentheses the function it was
originally published for (as “Origin. for �(x)” for the first
approximation reported in Table 3, where “Origin.” stands
for “Originally”).
In the second column of each table we have reported

a possible reasonable analytical expression of the approxi-
mation which is considered in that line of the table; with
“possible reasonable” we mean that, for example, in all cases
we have chosen to write

√
A instead of A0.5 or A

1
2 and in all

the other recurrences of the constant 0.5 we have written 1
2

(which has the same typographic complexity). Moreover, we
have reported the decimal constants, if more than 1, outside
the analytical expression, calling them a, b, c, d, h, k, and
choosing always the plus sign.
In Columns 3-8 we evaluate the worth of any considered

approximation in these ways:

• 3-rd column: a reasonable majorization of the absolute
error in Isignificant = [0.45, 4.5] (see Section VII-A);

• 4-th column: a reasonable majorization of the relative
error in absolute value in the same Isignificant =
[0.45, 4.5] (see Section VII-A);

• 5-th column: the typographic complexity (see
Section VIII-A), the computational complexity (see
Section VIII-B), and the decimal complexity (see
Section VIII-C) all together;

• 6-th column: the total complexity (see Section VIII-D),
summarizing the 3 above said complexities;

• 7-th column: the invertibility level InvLev (see
Section IX) and eventually the table in which the explicit
inverse is reported;

• 8-th column: the remark if the approximation is a bound
or not for Q(x) in Isignificant = [0.45, 4.5]; in the first
case we have reported if it is an “upper” or a “lower”
bound (see Section X), in the second case the symbol
“N” denotes the fact that the approximation is not a
bound in Isignificant. Moreover, we have also reported if
the bound eventually has been proven to hold on the
whole (0,+∞) or even on the whole [0,+∞).

We recall here that the struggle of the scientific researches
considered in this survey is exactly to achieve high precision
with low complexity, both defined in any reasonable way. In
this sense, to compare the various approximations, we have
made these 2 choices:

• as a measure of precision we have chosen (a majoriza-
tion of) the relative error in absolute value εr, defined
in (56) and, secondarily, (a majorization of) the absolute
error ε, defined in (54);

• as a measure of complexity – or conversely of simplicity
– we have chosen the total complexity, defined in
Section VIII-D, which in turn is based on 3 different
complexity indexes (see Section VIII).

XII. TABLES OF PUBLISHED AND NEW
APPROXIMATIONS OF THE INVERSE OF Q(X )
Though this is not the main aim of this paper, in Tables 14–18
we have listed some examples of approximations of the
inverse of Q(x), some of which have been originally
published for Q−1(y) itself or φy = �−1(y) or InvErf(y) =
erf−1(y) or InvErfc(y) = erfc−1(y), which are all equivalent
by the 12 conversion formulas of Table 2, among which

Q−1(y) = �−1(1 − y).

Please refer to Section IX for a detailed analysis of the
categorization of the approximate inverses according to their
degrees of invertibility (InvLev). This section will aid in
understanding the degree of ease with which the approx-
imations can be inverted. Furthermore, it is recommended
to consult Section VI for a thorough examination of the
classification of the approximations into different Types,
as this will facilitate comprehension of their mathematical
characteristics.
In Tables 14–18 have been reported new (computed in

this research) and published explicit inverses of known
approximations of Q(x) with InvLev 4, InvLev 5, InvLev 6,
InvLev 6.5, and InvLev 7, respectively, starting with the least
easily invertible approximations (InvLev 4). These tables are
organized as follows:

• the first column reports the approximation Type (defined
in Section IX);

• the second column reports the approximation name
(see Section IV-D) together with the reference number
containing the published explicit inverse of that approx-
imation (if no reference number is reported, this means
that the inverse has been originally computed in this
research);

• the third column recalls the analytic expression of the
approximation;

• the last column reports the explicit inverse of the
approximation (please consult Section IX for the step-
by-step instructions required to execute the inversion
process).

Inside each table, the approximations have been sorted by
increasing number of Type. Each table has been eventually
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separated in different sections by double horizontal lines,
collecting together approximations with the same Type. The
approximations sharing the same analytic expression have
been collected together with no horizontal line separation.

XIII. SUMMARY OF THE MAIN RESULTS AND RESEARCH
DIRECTIONS
The following 3 sections summarize the main findings of
this research, including

1) the precision of the approximations, as defined in
Section VII (Section XIII-A),

2) the characteristics of the Types, as defined in
Section VI (Section XIII-B),

3) and the complexity of the approximations, as defined
in Section VIII (Section XIII-C),

also suggesting intriguing research directions.

A. MAIN RESULTS ABOUT PRECISION OF THE
APPROXIMATIONS
Table 19 reports the best published approximations for each
InvLev and each Type, from the viewpoint of minimizing
(the majorization of) the relative error in absolute value
εr on Isignificant, secondarily, of minimizing (a majoriza-
tion of) the absolute error ε on Isignificant, and thirdly
of minimizing the total complexity. Only once it hap-
pened that 2 approximations of the same Type and InvLev
(QAbderrahmane-2 and QHanandeh-4 in Table 8) have presented
the same (majorization of the) relative error in absolute
value and the same (majorization of the) absolute error: in
this case, the approximation with the least total complexity
(QHanandeh-4) was chosen.
For each selected approximation, the (majorization of) the

relative error in absolute value εr on Isignificant has been
reported right under the approximation name. Furthermore,
the (majorization of the) absolute error and the total
complexity have been indicated in the following 2 rows.
For each InvLev (namely, for each column), the best

approximation has been highlighted.
The table has been organized in 2 sections, separated by

a double vertical line, collecting InvLev from 1 to 4, and
from 5 to 7, respectively: in the Definition of Section IX, the
approximations with InvLev from 1 to 4 (whose inversion
requires the solution of cubic or quartic equations) have
been defined explicitly invertible, not simply, whereas the
approximations with InvLev from 5 to 7 have been defined
simply explicitly invertible.
The best approximation of each of the above said 2 sec-

tions (explicitly invertible, not simply and simply explicitly
invertible, vertically separated) has been reported in boldface:

1) the (Type 2) approximation (the most precise explicitly
invertible approximation of Q(x) ever published, as far
as we know)

QDerenzo(x) := 1

2
e− (83 x+351) x+562

703/x+165

(reported in Table 6), with εr < 4.2 · 10−4 over
Isignificant = [0.45, 4.5], is the best InvLev 3 one and
also the best of the section (approximations which are
explicitly invertible, not simply) and of the whole table,
but unluckily requiring the solution of a cubic equation
in the inversion;

2) the (Type 3) approximation (less precise but more
easily invertible than previous)

QSoranzo-2(x) := 1

2
− 1

2

√
1 − e

−x2 17+x2
26.694+2 x2

(reported in Table 9), with εr < 2.2 · 10−2 over
Isignificant = [0.45, 4.5], is the best (and the only)
InvLev 5 one and also the best of the section (sim-
ply explicitly invertible approximations): its inversion
requires the solution of a biquadratic equation, pro-
ceeds like the inversion of QWinitzki [23], and the
inverse is reported in Table 15.

B. MAIN RESULTS ABOUT THE TYPES OF THE
APPROXIMATIONS
In this research, a noticeable work has been done in
classifying the explicitly invertible published approximations
of Q(x) identifying 7 (from Type 0 to Type 6) specific types
or classes of functions, leaving in a supplementary class
(Type 7) some more approximations of miscellaneous types.
These 8 types are treated in Section VI.
Some concluding words about the types as revealed in

this research, following Table 19.
Let us begin with the ancient Type 2 (exponentials

of polynomials A · eP(x), or even exponentials of rational
functions A ·eR(x)) and Type 3 (Pólya type approximations of
the form 1

2 − 1
2

√
1 − eR(x), being R(x) a rational function),

developments of Chernoff bound (11) and QPolya (see
Table 8), respectively, because the approximations of these
2 types turned out to be the best from the viewpoint of the
precision (see the previous section),
In this analysis, Type 2 has emerged to be very promising,

as one Type 2 approximation, QDerenzo, is the best of Table 19
(as explained in details in the previous section) and of the
section including explicitly invertible approximations, even
if not simply.

In Type 3, including essentially developments of the 1945
Pólya approximation, we have found 13 already published
explicitly invertible approximations (see Tables 8 and 9),
the maximum amount for any type. In this type, QSoranzo-2
presents the lowest (majorization of the) relative error
in absolute value on Isignificant of the section including
simply explicitly invertible approximations (as explained in
details in the previous section). However, their worth resides
essentially in being good approximations in the sense of
the absolute error for �(x) (and Q(x), the same), being
the best achieved (majorization of the) absolute error 1.2 ·
10−5 (achieved by QSoranzo-1 (with the good InvLev 5), see
Table 9).

Let us consider the other types, different from 2 and 3.
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TABLE 19. The most precise, for any Type and InvLev, new and published approximations of Q(x) on Isignificant = [0.45, 4.5].

From Type 0, rational and irrational approximations,
if one requires both explicit invertibility and reasonable
simplicity, little may be expected for a good precision on
Isignificant. Thus, no approximation of this type (though we
have identified 4 interesting approximations, from the ancient
QChu to the newest QBoiroju-1, evolving also in terms of (the
majorization of) the relative error in absolute value) wins
the comparison in any InvLev, in the sense that in this type
we do not find any approximation presenting the minimum
relative error εr for any InvLev.

The best worth of Type 1 approximations, sum S(x) of
terms bi eai x

2
, is not the precision if explicit invertibility

is required, but the fact that they allow the expression
in closed form – eventually by means of hypergeometric
functions – of the integrals (46), involved in the error
probabilities computation. As for Type 1, the already
classical approximation QChiani–2 is the best approximation
having InvLev 1, QChiani–3 is the best approximation having
InvLev 2, and QOlabiyi–2 is the best approximation having
InvLev 6.
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As far as Chernoff type is concerned, at the intersection
of Type 1 and Type 2, its worth, not lying in precision,
remains in

• classicism;
• simplicity;
• high level (InvLev 7) and easiness of invertibility;
• to be in several cases an upper or a lower bound (even
for x ≥ 0).

The only approximation (QChang) of this type, worth of
a place in Table 19, does not win the comparison for its
invertibility level, though it is quite interesting because it
reduces to 54% the relative error in absolute value on
Isignificant, overcoming the 490% of the original (upper
bounds) QChernoff–impr. and the 1100% of the ancient QChernoff
(see Table 7), but becoming a lower bound.

The only Type 4 approximation – of the type e− x2
2 A(x)

being A(x) a (non constant) rational or irrational function –
worth of a place in Table 19 is QBorjesson–1, neither winning
the comparison for its invertibility level, although Type 4
has emerged as a promising type to search for accurate
approximations, since on unbounded intervals (differently
from Isignificant) only Type 4 approximations may have
small relative error in absolute value (for their asymptotic
equivalence to Q(x), see Section VII-C and, in particular,
the last Remark on the bad behaviour in +∞ of almost all
approximations).
In Type 5, including essentially (complementary) logistic-

type approximations of Q(x), the best result in terms of
relative error in absolute value on Isignificant is obtained
(55%) by QZogheib-1, winning also the comparison for its
invertibility level. A noticeable worth of this type, however,
is to allow a good approximation, at least in the sense
of the absolute error, holding on the whole real axis,
especially useful for the statistical use of �(x). In this
research we have found quite many, 10, of such approxima-
tions, all originally published for �(x), explicitly invertible
(see Table 11).
Type 6, including nested exponentials approximations of

Q(x), is a particular type, allowing to obtain a moderately
good precision, 7.7% in QSoranzo–4, with the maximum
invertibility level, InvLev7, winning also the comparison
for this level. However, if the purpose is to obtain a high
precision, very likely this is not the right research direction,
at least at reasonable levels of total complexity (and of
oddity).
In Type 7, including a miscellanea of approximations not

falling in the previously defined types, among explicitly
invertible approximations only 2 published approximations
(see Table 13) have been found in this research, not allowing,
at the moment, to identify reasonable other types. QKundu
is the best one, in terms of accuracy, as far as its relative
error in absolute value is concerned. However, this may be
considered an interesting field for future researches (see the
last Remark on the bad behaviour in +∞ of almost all
approximations in Section VII-C).

C. MAIN RESULTS ABOUT THE COMPLEXITY OF THE
APPROXIMATIONS
In this research, a noticeable work has been done to classify
the complexity of the approximations, in particular of Q(x),
defining

• the typographic complexity in Section VIII-A,
• the computational complexity in Section VIII-B,
• the decimal complexity in Section VIII-C,

all summarized by

• the total complexity in Section VIII-D.

Though the chosen criteria are quite arbitrary, the result
is pretty convincing, and here we report 3 examples:

1) QChernoff (see Table 7) with the minimum (so far
found) total complexity 2.29:

e− x2
2

2) QOlabiyi–2 (see Table 4) with an intermediate total
complexity 7.56:

0.15085 e−0.5255 x2 + 0.21945 e−2 0.5255 x2

3) QLipoth (see Table 13) with the highest (so far found)
total complexity 13.66:

1 −
(

1 + a
(

ln
(

1 + e− x
h+c))b

)−d

(for the long decimal constants, determining this high
total complexity, please refer to Table 13).

The highest total complexity (13.66) reached by QLipoth
grants the very modest 74% precision, in the sense of the
relative error, but the exceptional 2.4 · 10−5 absolute error
for Q(x), and �(x) for which it was produced. Its total
complexity could be reduced carefully rounding its 5 very
long decimal constants.
In the summarizing Table 19, the (approximation of the)

total complexity has been indicated, under each approxima-
tion name, in the third line.
In Table 19, QJohnson–1 presents the lowest (best) total

complexity 2.71 (see also Table 11) and QOlabiyi–3 presents
the highest (worst) total complexity 10.51 (see also Table 5).

It should be noticed that, in general, the approximations
having a high complexity – such as, for instance, the above
mentioned QOlabiyi–3 – present a low relative error (of the
order of 10−2), whereas approximations presenting a low
complexity – such as, e.g., the above mentioned QJohnson–1
– present a high relative error (of the order of 101).

A notable advantage of the total complexity defined in this
research is that it is not at all linked to the approximations
of the function Q(x), but can be applied to the evaluation of
the complexity of any function, at least if defined in closed
form (without integrals and so on) by means of elementary
functions.
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XIV. CONCLUSION
This paper is devoted to the reviewing of (all, as far as
possible) published explicitly invertible approximations of
the function Q(x) – of particular interest in information and
telecommunications theory – even if originally published
for the other 4 related functions �(x), erf(x), erfc(x), and
Mills’ ratio m(x) (and erfc

√
x · · · ), from which Q(x) may

be immediately obtained.
The argument has been introduced presenting more than a

dozen equivalent published definitions of the function Q(x),
the different names under which it is known, the other
4 special functions (�(x), erf(x), erfc(x), and Mills’ ratio
m(x)) strictly related to it, their probabilistic meaning and
general behaviour (including that of Q(x)), the symmetry
formulas (which can be useful to simplify the approximation
of these functions), and some historical issues. Moreover,
we have produced and listed in a table all the 20 mutual
relations among the strictly related functions Q(x), �(x),
erf(x), erfc(x), and m(x), and similarly in another table all
the 12 mutual relations among the inverses of Q(x), �(x),
erf(x), and erfc(x).

We have mainly focused on the approximation of Q(x)
in the interval [0.45, 4.5], named Isignificant, which already
in [22] has been recognized as a range of major practical
interest in telecommunications theory, due to the BEP
holding for the simple binary digital modulation schemes,
recalled in (39). Moreover we recalled some notable values
of Q(x), and of the 4 classical special functions related to
it, in the domain of interest.
Considerable attention has been devoted to the critical

importance of approximating the function Q(x). Additionally,
this discourse included instances of practical applications
of the function Q(x), as well as a compilation of the
essential attributes that an approximation of Q(x) should
possess in order to be included in this investigation.
This subject has been progressively explored, taking into
account a broader range of significant merits, focusing
on a specific criterion that an approximation of Q(x)
should possess, which is the property of being easily and
explicitly invertible. Additionally, this study also explored the
issue of approximating Q(x) by inverting a given estimate
of Q−1(y).
The concept of explicitly invertible approximation – by

means of elementary functions having standard names in
mathematics and of the Lambert W-function – has been
defined.
Then, having fixed so a large basis of requirements, a

large survey of approximations of the Gaussian Q-function
(also not explicitly invertible and also not directly published
for Q(x)) found in the literature has been proposed and,
successively, the analysis has been in details – referring the
Reader to several tables – restricted to 60 explicitly invertible
approximations (the most extensive list published so far, as
far as we know), gathering those originally published for
any of the mutually related functions Q(x), �(x), erf(x), and
erfc(x). The approximations have been classified defining 8

fundamental types (7 well defined ones and 1 miscellaneous
one).
An extensive dissertation about the worth of the (majoriza-

tions of the) absolute and relative errors in measuring
the accuracy of an approximation of Q(x) and also of
the other mutually related functions has been presented.
Then, the topic of the tightness of an approximation of
Q(x) and of the inverse of an approximation of Q(x) has
been addressed, together with a wide dissertation about the
concepts of asymptoticity and asymptotic equivalence of an
approximation of Q(x).

We have defined 4 kinds of complexity of an approx-
imation of Q(x) (3 specific and 1, the total complexity,
summarizing the previous 3) which could be applied to
a large range of functions, not necessarily related to the
Q-function.
We have greatly expanded a previously published clas-

sification of the easiness of inversion of an explicitly
invertible approximation of Q(x), now spanning from InvLev
0 (corresponding to not explicit invertibility) to InvLev 7
(corresponding to the easiest inversion), with 1 special
intermediate case, InvLev 6.5, taking into account the
necessity of the (non elementary) Lambert W-function to
perform the inversion. Also this classification could be
applied to a large range of functions, not necessarily related
to the Q-function.
Then, we have addressed the topic of bounds of Q(x),

treating separately upper bounds, related to the issue of
the so-called worst case in performance analysis, and lower
bounds. Moreover we have added some comments on bounds
and inverses.
The approximations have been classified in 11 tables on

the basis of:

1) their Type, determining their organization in tables;
2) their accuracy on Isignificant, measured in 2 ways, the

absolute error and the relative error;
3) their simplicity, defined by the 4 defined kinds of

complexity;
4) their easiness of inversion, defined by the InvLev;
5) a remark about the 3 cases of upper bound, lower

bound, or not a bound on Isignificant, and eventually on
the whole (0,+∞) or on the whole [0,+∞).

Then, the subsequent 5 tables present a compilation of the
inverses for numerous approximations, ranging from InvLev
4 to InvLev 7. These inverses encompass both previously
published inverses as well as newly discovered ones within
the scope of this research.
In conclusion, we have conducted a comparison of the

published approximations for each Type and InvLev (exclud-
ing InvLev 0, which corresponds to non-explicit invertibility).
The comparison was based on the relative errors of the
approximations. The results of this comparison, including
the most accurate approximations, their relative and absolute
errors, and total complexities, are presented in Table 19.
In this table, we have classified the approximations into 2

VOLUME 4, 2023 3095



SORANZO et al.: EXPLICITLY INVERTIBLE APPROXIMATIONS OF THE GAUSSIAN Q-FUNCTION: A SURVEY

distinct categories: those that are explicitly invertible but not
simply (denoted by InvLev 1 to InvLev 4), and those that
are simply and explicitly invertible (denoted by InvLev 5 to
InvLev 7). The first group involves the solution of cubic or
quartic equations, which are generally regarded as complex.
The most precise – presenting the lowest (majorization of)

the relative error (in absolute value) – explicitly invertible
approximation of Q(x) ever published has resulted to be

the Type 2 approximation QDerenzo(x) := 1
2 e

− (83 x+351) x+562
703/x+165

(originally published for 2Q(x)) reported in Tables 6 and 19
with ε < 7.2 · 10−5, εr < 4.2 · 10−4, total complexity 3.86,
and InvLev 3, since requiring the solution of a cubic equation
in the inversion (thus being explicitly invertible, not simply).
The most precise – presenting the lowest (majorization

of) the relative error (in absolute value) – simply explic-
itly invertible approximation of Q(x) ever published has
resulted to be the Type 3 approximation QSoranzo-2(x) :=
1
2 − 1

2

√
1 − e

−x2 17+x2
26.694+2 x2 (originally published for �(x))

reported in Tables 9 and 19 with ε < 4.0 · 10−5, εr <
2.2 · 10−2, total complexity 5.65, and InvLev 5, since its
inversion requires the solution of a biquadratic equation and
proceeds like the inversion (see Section IX) of QWinitzki (the
inverse is reported in Table 15). Clearly QSoranzo-2 is less
precise than QDerenzo but more easily invertible.
In conclusion, we present a concise overview of the

research results pertaining to the mathematical categorization
and the total complexity of the examined approximations.
Additionally, we highlight the most promising avenues for
further exploration in the future.

APPENDIX A
THE HIDDEN POLYNOMIALS IN THE APPROXIMATIONS
OF Q(X )
In this appendix we are going to show the frequent recurrence
of hidden polynomials in the approximations of Q(x). This
short dissertation is useful to obtain the explicit inversion of
many published approximations of Q(x), using the methods
exposed in the following Appendix B.
Considering a polynomial of degree N, with

coefficients ak,

P(x) :=
N∑
k=0

ak x
k,

the function

f (x) := P(x)

is a polynomial function and the roots of the polynomial are
the solutions of the eqnarray

f (x) = 0.

If, for x ≥ 0, f (x) is monotonic (increasing or decreasing),
so it is for the polynomial functions of the same degree

g(x) := f (x)− y y ∈ R

each of which has 0 or 1 roots, considered as a polynomial.
In the case of existence of 1 root ξ ,

g(ξ) = f (ξ)− y = 0

or

f (ξ) = y

or

ξ = f−1(y)

which is to say that to find the root ξ of g(x), depending
on the value of y, is equivalent to the explicit inversion of
the polynomial f (x), obtaining x(y).

Let’s show all that using a very classical scholastic
approximation of Q(x), Shah’s approximation (44) when
restricted to [0, 2.2]:

f (x) = 1

2
− x (4.4 − x)

10
.

We have the 2-nd degree equation in x with parameter y ∈ R

1

2
− x (4.4 − x)

10
− y = 0 0 ≤ x ≤ 2.2

which gives, before considering the limitations on the
domain,

ξ1,2 = 11 ± √
250 y− 4

5
,

and choosing the correct branch and the limitations:

x(y) = 11 − √
250 y− 4

5
0.016 ≤ y ≤ 0.5.

In literature we have found no approximations of Q(x) by
polynomial functions, of any degree, holding (at least) on
Isignificant, and clearly the particular behaviour of Q(x) – see
the last Remark of Section VII-C – makes it impossible to
approximate it with a reasonable precision in the sense of the
relative error using polynomial functions unless with huge
degrees, obtained for example truncating the series (23).
Nevertheless, in partial contradiction with the previous

statement, the inversion of polynomial functions is of great
relevance for the topic of this paper because there are
dozens of approximations of Q(x) whose explicit inversion
requires solving polynomial equations after making obvious
substitutions, as illustrated below.
As a first example, let us consider the approximation

QChiani–2 of Q(x) reported in Table 5,

f (x) = 1

12
e− x2

2 + 1

4
e−2 x2

3

which, with the obvious substitution z := e− x2
6 , gives the

4-th degree equation

y = z4

4
+ z3

12
in the unknown z with parameter y = f (x). (For the resolution
of a 4-th degree equation see Appendix B.)
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A different example is the approximation QBenitez–2 of
Q(x) reported in Table 6,

f (x) = e−0.4774 x2−0.4484 x−0.9049

which, with the obvious substitution y := ln f (x), gives the
second degree equation

y = −0.4774 x2 − 0.4484 x− 0.9049

in the unknown x with parameter y.
An example of another type is the approximation QHamaker

of Q(x) reported in Table 8,

f (x) = 1

2
− 1

2

√
1 − e−(0.806 x (1−0.018 x))2 ,

whose inversion is made first obtaining

2

(
1

2
− f (x)

)
=
√

1 − e−(0.806 x (1−0.018 x))2 ,

then squaring
(

2

(
1

2
− f (x)

))2

= 1 − e−(0.806 x (1−0.018 x))2,

then taking logarithms

ln

(
1 −

(
2

(
1

2
− y

))2
)

= −(0.806 x (1 − 0.018 x))2

which is a 4-th degree equation in x with parameter y = f (x)
and the solution of such equations will be treated in the
following Appendix B.

APPENDIX B
A SHORT BRIEF ON THE ROOTS OF POLYNOMIALS UP
TO THE 4-TH DEGREE
For the degree N ≤ 4, there is a complete theory for finding
the eventual roots of polynomials, which we are going to
treat shortly.
Remark: The solutions of a generic equation with degree

N ≥ 5 cannot be expressed by roots and rational functions
applied to the coefficients a0, . . . , aN of the equation (it is the
ancient and very classical Abel–Ruffini Theorem in [108]).
In this paper, with a more than extremely high probability,
all polynomials of degree N ≥ 5 have been considered not
explicitly invertible: strictly, one may only state that, so far,
no one has explicitly inverted them (which very probably is
impossible by radicals).
Let’s begin with the first degree equation

a1 x+ a0 = 0 (72)

with the obvious solution

ξ = −a0

a1
. (73)

In particular, consider the easiest first degree approxima-
tion of Q(x) around 0, holding with good precision only on
an interval [0, b] with small b:

f (x) = − 1√
2π

x+ 1

2

which gives the equation

− 1√
2π

x+ 1

2
= y,

that is (72) with a1 = −1/
√

2π and a0 = 1/2 − y, from
which the inverse, following (73), is

x(y) = −a0

a1
= −

1
2 − y

− 1√
2π

.

The second degree equation

a2 x
2 + a1 x+ a0 = 0

has – under conditions on coefficients – solutions

ξ1,2 =
−a1 ±

√
a2

1 − 4 a2 a0

2 a2
.

For the 3-rd degree equation

a3 x
3 + a2 x

2 + a1 x+ a0 = 0

there is a method due to Niccolò Tartaglia (XVI century,
illustrated in [109]). First of all the equation can be
transformed into a simplified so called depressed 3-rd degree
equation

g(u) = u3 + p u+ q = 0 (74)

with this change of variable

x = u− a2

3 a3

and with

u = x+ a2

3 a3

p = 3 a3 a1 − a2
2

3 a2
3

q = 2 a3
2 − 9 a3 a2 a1 + 27 a2

3 a0

27 a3
3

.

The roots ξ1, ξ2, and ξ3 of the original equation are related
to the roots u1, u2, and u3 of the depressed equation by

ξk = uk − a2

3 a3
for k = 1, 2, 3,

being

u1 = 3

√
−q

2
+ √

d + 3

√
−q

2
− √

d

u2 = −1 + i
√

3

2
u1

u3 = −1 − i
√

3

2
u1,

where i is the imaginary unit and d is given by

d =
(p

3

)3 +
(q

2

)2
.

Notice that at least 1 of the 3 previous listed solutions
of the depressed cubic equation is a real number, and
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the other 2 roots are both real or (non real) conjugate
complex.
Moreover, the depressed cubic equation – and then the

generic cubic equation – may be also solved [110] by means
of the hyperbolic functions and their inverses. Besides the
solution formulas previously shown for (74), if the latter
has only 1 real solution u1 – which is the case generally
recurring in the approximation of Q(x), usually decreasing
– for this real solution u1 there exists also an expression
simply involving sinh and sinh−1 and no complex numbers
(see [27] and Table 14).
For the 4-th degree equation

a4 x
4 + a3 x

3 + a2 x
2 + a1 x+ a0 = 0

Lodovico Ferrari found a method of solution (XVI century,
illustrated in [109]) based on similar concepts. First of all
the latter equation can be transformed into a simplified so
called “depressed” quartic equation

g(u) = u4 + p u2 + q u+ r = 0

with this change of variable

x = u− a3

4 a4

and with

u = x+ a3

4 a4

p = 8 a2 a4 − 3 a2
3

8 a2
4

q = a3
3 − 4 a2 a3 a4 + 8 a1 a2

4

8 a3
4

r = −3 a4
3 + 256 a0 a3

4 − 64 a1 a3 a2
4 + 16 a2 a2

3 a4

256 a4
4

.

The so called “resolvent cubic” of the “depressed” quartic
equation is

z3 + 5

2
p z2 +

(
2 p2 − r

)
z+

(
p3

2
− p r

2
− q2

8

)
= 0,

one of which roots z1 �= 0 determines the roots of the
“depressed” quartic as

uk =
±d

√
p+ 2 z1 ±

√
−
(

3 p+ 2 z1 ±d
2 q√
p+2 z1

)

2
,

for k = 1, 2, 3, 4, where ±d are both + or both − giving
altogether 4 cases because of the ±’s. The (real or complex)
roots ξ1, ξ2, ξ3, and ξ4 of the original quartic equation are
related to the roots u1, u2, u3, and u4 of the “depressed”
equation by

ξk = uk − a3

4 a4
= − a3

4 a4

+
±d

√
p+ 2 z1 ±

√
−
(

3 p+ 2 z1 ±d
2 q√
p+2 z1

)

2
for k = 1, 2, 3, 4.
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