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ABSTRACT With the growth of terminal devices and data traffic, privacy concerns have inspired an
innovative edge learning framework, called federated learning (FL). Over-the-air computation (OAC) has
been introduced to reduce communication overhead for FL, however, requires stringent time alignment.
Misaligned OAC has been proposed by recent research where the symbol-timing misaligned superimposed
signal can be recovered via whitening matched filtering and sampling (WMFS), followed by maximum
likelihood (ML) estimation. Similarly to aligned OAC, misaligned OAC also suffers from the straggler
issue, leading to FL’s poor performance under low EsN0. To solve this issue, we propose a novel framework
of misaligned OAC FL for accurate model aggregation on wireless networks. First, we analyze the effect
of aggregation error on the convergence of FL. Then, we formulate an optimization problem to minimize
the distortion of the aggregation measured by mean square error (MSE) w.r.t. the transmitter equalization
and receiver combining. Finally, a successive convex approximation (SCA)-based optimization algorithm
is further developed to solve the resulting quadratic constrained quadratic programming. Comprehensive
experiments show that the proposed algorithm achieves substantial learning performance improvement
compared to existing baseline schemes and achieves the near-optimal performance of the ideal benchmark
with aligned and noiseless aggregation.

INDEX TERMS Federated learning, multiple access channels, over-the-air computation, asynchronous,
pre-equalization, receiver combining, successive convex approximation.

I. INTRODUCTION

OVER the past few decades, we have witnessed phe-
nomenal growth in modern science and technology,

especially artificial intelligence (AI), which has stimulated
the dramatic increase in the use of mobile edge devices such
as smartphones, tablets, and Internet of Things (IoT) sensors
leading to a tremendous growth of global data traffic [1]. The
enormous critical data can be utilized for real-time decision-
making, predictive health care [2], etc., which can fuel
the performance of machine learning techniques, especially
deep learning, while being exploited to improve the user
experience of AI model [3].
Traditional machine learning algorithms work in a central-

ized fashion, where all raw data is collected into a parameter

server (PS) or cloud to train AI models [4]. To avoid the
high data accumulation cost and privacy issues of centralized
training, the recent trend is to deploy AI algorithms to the
edge of distributed networks, with the substantial increase
in computing power and storage capacity of modern smart
terminals [5], [6]. This has inspired an innovative edge
learning framework, called federated learning (FL) which
enables edge devices to collaboratively learn a shared AI
model while retaining all training data on individual devices
to avoid compromising privacy [7], [8].
A typical FL algorithm such as the Federated Average

(FedAvg) algorithm alternates among four phases until the
global model converges. To be specific, at each commu-
nication round (outer iteration), the PS first broadcasts
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the current global model to active edge devices; next,
the edge devices implement local mini-batch stochastic
gradient descent several times, using their own data based
on received current global model; and then, the edge
devices updated local models or gradients back to the
PS; finally, the PS aggregates these updates and obtains
a new average global model [2], [7]. However, due to
the repeated transmission of a large number of model
parameters through wireless channels between the PS and
edge devices during the iterative training process, the scarcity
of communication resources (such as bandwidth, energy, and
power) becomes a bottleneck for FL, mainly in the uplink
communications [2].

In addition to general solutions such as speeding
up local updates [9], [10], [11], discarding updates
from slow-response edge device (stragglers) [12], [13],
and parameters compression via quantization [14], [15]
or sparsification [16], [17], recent research focuses
on the implementation of uplink communication.
Compared with traditional orthogonal multiple access
schemes [18], [19], [20], analog over-the-air computation
(OAC) is a promising solution, which allows edge devices
to simultaneously transmit their local updates using
complete radio resources in an uncoded manner. It exploits
the superposition property of multiple access channels
(MAC) to directly compute the desired function (i.e., sum
function) of every single update without decoding each
individual message [21], [22]. This way of combining
the communication and computation reduces latency
and bandwidth requirements, which alleviates the uplink
communication bottleneck of FL to a great extent.
This has sparked a growing body of comprehensive

research on OAC in the context of distributed machine
learning, FL, and IoT networks, among others. In [23], the
authors considered a wireless fading MAC for distributed
machine learning and scheduled each entry of the gradient
vector according to the channel conditions. In [24], the
authors exploited the sparsity of gradients to compress the
dimension of parameter vectors and proposed digital and
analog (via OAC) distributed stochastic gradient descent (D-
DSGD and A-DSGD) algorithms in Gaussian MAC and
extended them to fadingMAC in [6] and [25]. In [26], [27], the
authors proposed a convergent over-the-air federated learning
(COTAF) algorithm in GaussianMAC and fadingMACwith a
time-varying precoding factor. In [28], the authors analyze the
convergence behavior of FedAvg with aggregation errors, and
then jointly optimize the transmission power and the PS scaling
factor to improve performance. In [29], the authors proposed a
Byzantine resilient OAC model aggregation scheme. In [30],
the authors propose an online model updating with analog
aggregation (OMUAA) algorithm in fading MAC.
The implementation of the above scheme often relies on

the perfect channel state information (CSI) of the transmitter,
while [31], [32], [33] shows that enough PS antennas and
a proper receiver combining design can reduce the demand
for perfect CSI. Other studies in CSI-free scenarios focus

on signal processing [34], [35], [36] and receiver combining
strategy for multi-antenna systems [37].

A. RELATED WORKS AND MOTIVATIONS
Another vein of research on OAC implementation focuses
on synchronization over edge devices [22], [38], [39], [40].
Over-the-air FL requires multiple devices to synchronously
transmit gradients to PS. In practice, achieving this strict
synchronization is very expensive. In [39], a solution called
AirShare has been developed for synchronizing sensors by
broadcasting shared clocks. However, there is an additional
cost involved in broadcasting and maintaining a shared clock,
and for non-ideal hardware, there can be residual asynchronies
among the signals at the PS. In [38], the sensing value of
each sensor is modulated as the power of the transmission
signal to relax synchronization requirements. This design
converts the function calculation at the receiver into power
detection, while synchronization error manifests as random
noise which degrades computing performance. Reference [36]
considered both the lack of perfect CSI at the transmitter and
the asynchronous transmission timing of each edge device,
i.e., misaligned OAC, and proposed a whitening matched
filtering and sampling (WMFS) scheme. By oversampling
the superimposed but symbol-timing misaligned signal, a
series of independent samples were obtained, from which a
maximum likelihood (ML) estimator was designed to recover
the arithmetic sum of transmitted symbols from different
edge devices. This allows for transmitted symbol-timing
asynchrony between different edge devices with a maximum
transmission delay of less than a symbol period, which relaxes
the synchronization requirement. However, for the single-
antenna scenario considered in this paper, the accuracy of
ML estimation is highly susceptible to communication noise,
which is caused by the stragglers mentioned later.
It is well known that OAC is vulnerable to noise, due to the

transmission of uncoded analog signals. From the perspective
of the heterogeneity of communication capabilities among
edge devices, the devices with weak channels (stragglers in
communications) [41] affect the overall model aggregation
error. Specifically, aligned OAC is achieved by linear
superposition of signals. As component signals from different
devices, they need to be aligned in magnitude for accurate
aggregation at the receiver [23]. While, for devices with
weaker channels, the transmitter typically requires additional
power to counteract channel fading, which can account for
most of the transmit power. Accordingly, a scaling factor is
needed to scale the transmission power of each device as
a whole, so that those devices experiencing deep channel
fading can satisfy the maximum power constraint. The
existence of stragglers determines the size of the scaling
factor, which affects the aggregation error [42].

In this case, selecting an appropriate set of devices is a
natural solution, the so-called device scheduling/selection.
For instance, in [23], the channels experiencing deep fading
do not transmit, and in [42], the author’s goal is to maximize
the number of participating devices while meeting the
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requirements of mean square error (MSE). Moreover, in [41],
the author jointly optimizes the reconfigurable intelligent
surface configuration and device selection. In [43], the
author proposes a uniform-forcing transceiver design for
OAC. In [44], the author proposes a dynamic learning rate
(DLR) scheme for OAC based FL by defining the local
learning rate and presents its convergence analysis, in order
to mitigate the wireless distortion measured by MSE, taking
into account both MISO and MIMO scenarios. In [45],
the author considers receiver combining design and device
selection in multiple parallel federated learning.
Despite the effectiveness of these works in aligned OAC,

how to analyze and address the straggler problem in
misaligned OAC and how to characterize the impact of
misaligned OAC model aggregation errors on FL learning
performance are still open issues, which motivate the current
work in this paper.
For misaligned OAC, the pre-equalization at the transmitter

is considered to be inaccurate, i.e., there are residual channel
fading coefficients, which can be counteracted by the ML
estimation at the receiver. At this point, stragglers account
for the overall model aggregation error, since deep fading
causes a large channel equalization factor, which will amplify
the effect of noise at the receiver. Meanwhile, due to the
increase in sampling resolution, the ML estimation can
recover a separate transmission symbol sequence for each
edge device, breaking the aligned amplitude requirement,
compared to the aligned OAC. That means the design of
the transmitter equalization factor can be flexible and can be
further optimized appropriately. Due to the decoupling among
device transmits powers, selecting a set of devices that do not
contain stragglers is not so necessary. In general, compared
with the single-antenna scenario considered in [36], multiple
antennas with reasonable transceiver design can overcome
unfavorable channel conditions and non-uniform channel
fading. To take advantage of the decoupling of transmit
power, we consider a transmitter pre-equalization and receiver
combining design in multi-antenna scenarios to address this
issue and propose a novel framework for misaligned OAC
FL. After convergence analysis, a joint pre-equalization and
receiver combining design scheme is proposed.

B. CONTRIBUTIONS
We study a misaligned FL system consisting of multiple
edge devices and one PS. In each training round, among
randomly selected devices, the stragglers account for the
majority of aggregation errors. To relieve this issue, and
improve the learning performance of FL, we propose a
novel framework of misaligned OAC FL for accurate model
aggregation on wireless networks. This is achieved by
jointly pre-equalization and receiver combining design. To
the best of our knowledge, this is the first work to consider
the straggler problem in misaligned OAC and conduct a
comprehensive study of the learning performance of FL
algorithms with misaligned OAC. The contributions of this
paper are summarized as follows:

• We study and propose a novel framework for misaligned
OAC FL that contains multiple edge devices coordinated
by a PS. In the model aggregation stage, the PS recovers
the superimposed but symbol-timing misaligned trans-
mitted symbol sequence from the edge devices via ML
estimation. We derive a closed-form expression of the
model aggregation error for the misaligned OAC, then
derive an upper bound on the training loss between the
training model and the global optimal value, and give
a sufficient condition for the convergence of FL.

• Based on the observation of the problem in misaligned
OAC model aggregation and obtained theoretical results,
we formulate an optimization problem to minimize
the distortion of the aggregation which is measured
by MSE, w.r.t. the transmitter equalization factor and
receiver combining vector. However, this is a non-
convex quadratic constrained quadratic programming
(QCQP) problem.

• To address this problem, we propose an approach
based on the successive convex approximation (SCA)
to deal with the non-convexity of quadratic constraints.
Specifically, we first perform a linear approximation
of the non-convex constraints, and then transform the
prime problem into a series of convex problems, thus
proposing the SCA-based optimization algorithm.

We conducted extensive experimental research. Experiment
results show that the proposed algorithm achieves sub-
stantial learning performance improvement compared to
existing baseline schemes and achieves the near-optimal
performance of the ideal benchmark with aligned and
noiseless aggregation.

C. ORGANIZATION
The remainder of this paper is organized as follows. In
Section II, we introduce the FL model, the misaligned OAC
communication model, WMFS Scheme, and ML estimation.
In Section III, we analyze how aggregation error affects
the FL learning performance with misaligned OAC. In
Section IV we formulate the pre-equalization and receiver
combining design problem that minimizes the MSE and
proposes an SCA-based optimization algorithm to deal with
the non-convexity of quadratic constraints. In Section V
we conduct extensive experiments to evaluate the proposed
algorithm. Conclusions are drawn in Section VI.

D. NOTATIONS
Throughout this paper, vectors, and matrices are denoted by
boldface lowercase letters (e.g., s) and boldface uppercase
letters (e.g., A), respectively. let A−1 denote inverse of a
matrix A. R and C represent the sets of real and complex
values, respectively. The operator R(·), I(·), ‖ · ‖p, (·)T ,
(·)H stand for the real part and imaginary part of a complex
number, the �p norm, the transpose, and complex conjugate
transpose, respectively. CN (μ, σ 2) represents the circularly
symmetric complex Gaussian random distribution with mean
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FIGURE 1. System model of FL.

μ and variance σ 2. diag(x) denotes a diagonal matrix
with the diagonal entries specified by x, E(·) denotes the
expectation operator, and sgn(·) denotes the sign function.

II. SYSTEM MODEL
A. FEDERATED LEARNING MODEL
We consider a general FL system comprising of M′ edge
devices coordinated by a PS, equipped with N antennas,
as shown in Fig. 1. The training process of FL aims to
collaboratively learn a shared model, and the local data of
each device is not exchanged. We denote the Dm as the local
dataset collected at the m-th edge device. For each device,
the learning objective is to solve the following optimization
problem:

min
w∈RD×1

Fm(w) = 1

|Dm|
∑

(xi,yi)∈Dm

f (w; xi, yi), (1)

where w is the D-dimensional model parameter vector; |Dm|
denotes the cardinality of |Dm|, and D = ⋃M′

m=1{Dm} is the
global dataset with |D| = ∑M′

m=1 |Dm|; Fm(w) is the local
loss function of m-th device on Dm; f (w; xi, yi) is the sample-
wise loss function indicating the prediction error on example
(xi, yi) with model parameters w. Then, we calculate the
weighted average of all local loss functions in (1) according
to the data volume of each device. Hence, the global loss
function can be represented as

F(w) = wm

M′∑

m=1

Fm(w), (2)

where wm = |Dm|
|D| is the weight of m-th edge device,

with
∑M′

m=1 wm = 1. FL aims at finding an optimal model
parameter w∗ to minimize F(w), on distributed devices, i.e.,

w∗ = arg minF(w). (3)

FL is usually performed on wireless channels with
repeated training and communication processes. Specifically,
at the t-th round:

• Model broadcast: The PS first randomly selects M
active edge devices from M′ edge devices, i.e., the
subset of all devices, denoted as M, to participate in
the learning process, and broadcasts the current global
model wt to them.

• Local gradient computation: Each active edge device
m ∈ M computes its local gradient based on its local
dataset and received global model wt. Specifically, the
m-th device’s local gradient is given by

gm,t � ∇Fm(wt), (4)

where ∇Fm(wt) is the gradient of Fm(·) at w = wt.
• Model aggregation: Each active edge device m uploads
its local gradient to the PS through wireless channels.
Based on the received signals, the PS intends to compute
the weighted average arithmetic sum of the local
gradients w(t)

+ �
∑M

m=1 wmgm,t. Due to the existence
of estimation error caused by channel fading and
communication noise, the received signal is actually the
estimation of w(t)

+ , denoted by ŵ(t)
+ , and ŵ(t)

+ �= ŵ(t)
+ .

• Global model update: The PS aggregates these trans-
mitted gradients to obtain a new global model wt+1 by

wt+1 = wt − ηŵ(t)
+ . (5)

OAC has emerged as a promising method for computing
a nomographic function (e.g., arithmetic sum) which can
improve communication efficiency, and reduce the required
communication bandwidth [23].

In this paper, we focus on misaligned OAC to realize
accurate analog aggregation of uplink parameters with low
aggregation error.
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FIGURE 2. In the WMFS scheme, the received signal after matched filtered is
oversampled to obtain the symbol sequence rk [j].

B. MISALIGNED OVER-THE-AIR AGGREGATION
We consider implementing the FedAvg algorithm in a
misaligned OAC scenario. The target for aggregating local
updates in FedAvg is to estimate w+. To simplify the
notation, we omit the index t and let w̃m = wmgm,t.

The transmission symbol sequences are zero-centered and
transmitted in packets for a total of Ns. Specifically, for i-th
packet we have s(i)m = [s(i)m [1], s(i)m [2], . . . , s(i)m [L]]T ∈ C

L×1.
In addition, the m-th active edge device set the transmit
sequence {xm[�] : 1 ≤ � ≤ L} as

xm[�] = bmsm[�], E

[
|xm[�]|2

]
≤ P0, ∀m, (6)

where bm ∈ C is the transmit equalization factors; P0 > 0
is the maximum transmit power.
In misaligned OAC scenarios, the transmission of each

edge device has a certain transmission timing delay less than
a symbol duration T denoted by τm,∀m ∈ {1, 2, . . . ,M},
with τ1 = 0 < τ2 < . . . < τM < T , without loss of
generality. The equivalent received signal in the time domain
after combining computed at the PS is given as

r̃(t) =
M∑

m=1

fHhmbm
L∑

�=1

sm[�]p(t − τm − �T) + fH ñ(t), (7)

where hm ∈ C
N×1 is the channel vector between active

edge device m and the PS; p(t) = 1/2[ sgn(t + T) −
sgn(t)] is a rectangular pulse of duration T; ñ(t) is AWGN
whose one-sided power spectral density of each entry is
N0, and the noise gains are assumed to be independent and
identically distributed (i.i.d.) across different PS antennas;
f ∈ C

N×1 is the normalized receiver combining vector with
‖f‖2

2 = 1.
To recover the gradient w+ from the superimposed but

symbol-timing misaligned transmitted signal, we adopt the
whitening matched filtering and sampling (WMFS) scheme
and the maximum likelihood (ML) estimation introduced
in [36].

C. WMFS SCHEME AND ML ESTIMATION
Based on the WMFS which is depicted in Fig. 2, we obtain
a series of independent sample sequences rk[j] of length

(M(L + 1) − 1) via filtering by a series of matched filters
and oversampling, given by

rk[j] �
M∑

m=1

fHhmbmsm
[
j− 1m>k

] + fH ñk[j], (8)

with ∀k ∈ {1, 2, . . . ,M}, where 1 is the indicator function;
the length of the k-th matched filter is dk = τk+1 − τk, and
dM = T − τM; ñk[j] ∈ C

N×1 is the sample noise vector
introduced by multiple antennas, with each entry an i.i.d.
random variable following the distribution of CN (0,N0/dk),
and ñlk[j] is independent for different k and i [36].
Furthermore, we can vectorize the above process as

r = Ks+ n, (9)

where r is (M(L + 1) − 1)-dimensional sample vector, and
s is ML-dimensional signal vector. the coefficient matrix K
is M(L+ 1) − 1 by ML, giving

K =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

K1
K1 K2
· · · K2 . . .

K1 . . . . . . KM
K2 . . . KM K1

. . . . . . K1 K2
KM . . . K2 . . .

K1 . . . . . . KM
K2 . . . KM . . .

. . . . . . . . .

KM . . .

. . .

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where Km = fHhmbm,∀m; The vector n = (fHN)H is M(L+
1) − 1 by 1 dimension and from Appendix B, we can see
that the covariance matrix of n is a diagonal matrix denoted
by �.

In one packet, we focus on estimating sum symbol vector
s+ ∈ C

L×1 which is given by s+ = Vs + s̄, where s̄ �∑M
m=1 s̄m; V is a known matrix used to superpose the

recovered signals s. Accordingly, we can estimate s+ from
r via pre-multiplying both sides of the Eq. (9) by U =
V(KH�−1K)−1KH�−1. Then, we obtain the ML estimation
of s+,1 defined as

ŝ+ � s+ + V
(
KH�−1K

)−1
KH�−1n+ s̄. (10)

After collecting ŝ+ in each packet, for Ns times, during
one communication round, we first restore ŵ+ with is the
estimate of w+, and then update the global model by (5).
Note that, as Eq. (10), the presence of communication noise
leads to inevitable estimation errors in ŝ+. As a result, the
weighted average arithmetic sum of the local gradients in (5)
becomes inaccurate, thereby affecting the convergence of FL.
In the next section, we quantitatively describe the impact of
communication errors on the convergence of FL.

1. Note that we can get the estimated value of the signal vector s by
multiplying the matrix (KH�−1K)−1KH�−1 at both sides of (9) to recover
a separate transmission symbol sequence for each edge device.
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III. LEARNING PERFORMANCE ANALYSIS
In this section, we analyze how aggregation error affects the
FL learning performance with misaligned OAC, and derive
a closed-form expression of the model aggregation error.
Finally, we obtain a sufficient condition for FL convergence.
Due to the estimation error of gradients, the global model

update recursion is given by

wt+1 = wt + ηŵ(t)
+ = wt + η(∇F(wt) − et), (11)

where ∇F(wt) � 1
|D|

∑
(xi,yi)∈D ∇f (wt; xi, yi) is the gradient

of F(w) at w = wt; and et denotes the gradient error vector
caused by device selection and model aggregation at t-th
communication round, given by

et = ∇F(wt) − ŵ(t)
+ . (12)

In addition, et can be further divided into: device selection
error e1,t = ∇F(wt) − w(t)

+ and model aggregation error
e2,t = w(t)

+ − ŵ(t)
+ .

To facilitate the analysis, we first make the following
assumptions on the loss function F(·):
Assumption 1: F is strongly convex with positive param-

eter μ, such that for all w,w′ ∈ R
D×1

F(w) ≥ F
(
w′) + (

w − w′)T∇F(w′) + μ

2

∥∥w − w′∥∥2
2. (13)

Assumption 2: The gradient ∇F(·) of F(·) is Lipschitz
continuous with parameter ω, i.e., we have:

∥∥∇F(w) − ∇F(w′)∥∥
2 ≤ ω

∥∥w − w′∥∥
2. (14)

Assumption 3: F(·) is twice-continuously differentiable.
Assumption 4: For any training sample, ∇f (·) has an

upper bound.

‖∇f (w; xi, yi)‖2
2 ≤ α1 + α2‖∇F(w)‖2

2, ∀i. (15)

where α1 and α2 are non-negative constants.
The above assumptions are common in the random

optimization literature, e.g., [18], [20], [41], [46], and can be
satisfied by several widely used loss functions such as mean
squared error, logistic regression, etc. Although the objective
function of some models (such as neural networks) may not
be strongly convex, our subsequent experimental results will
show that the model is still convergent.
To begin with, we will introduce the following lemma.
Lemma 1: At each communication round t of FL, with

η = 1/ω, we have

E
[
F(wt+1)

] ≤ E[F(wt)]

− 1

2ω
‖∇F(wt)‖2

2 + 1

2ω
E[‖et‖2

2], (16)

where ω is defined in Assumption 2.
Proof: See Appendix A.
From lemma 1, we can further obtain the upper limit of

the expectation of the difference between the training loss
and the optimal loss. For et, one of the tractable expressions
of E[‖e2,t‖2

2] is given in the following lemma.

Lemma 2: For any given {f , bm,∀m}, we have

E[
∥∥e2,t

∥∥2
2] = N0xHAx, (17)

where N0 is one-sided power spectral density of additive
noise; A is a known M×M hermitian matrix defined in (37),
and x ∈ C

M×1 is given by

x =
[
(fHh1b1)

−1, (fHh2b2)
−1, . . . , (fHhmbm)−1

]T
, (18)

Proof: See Appendix C.
Moreover, E[‖e2,t‖2

2] also denotes the MSE between the
weighted average arithmetic sum of the local gradients w(t)

+
and its estimation ŵ(t)

+ multiplied by the model dimension
D, which is defined as

MSE(w(t)
+ , ŵ(t)

+ ) = 1

D
E(‖w(t)

+ − ŵ(t)
+ ‖2

2), (19)

Lemma 2 gives the tractable expression of E[‖e2,t‖2
2], thus

we can derive an upper bound on E[F(wt+1) − F(w�)] in
the following theorem.
Theorem 1: With above assumptions as well as suitable

conditions given by 1
|bm|2 ≤ maxm v2

m and η = 1
ω
, for any

given {f , bm,∀m} and optimal global FL model w�, at t-th
round, we have

E
[
F(wt+1) − F

(
w�

)] ≤ 	 t
E
(
F(w0) − F

(
w�

))

+ α1

ω



1 − 	 t

1 − 	
(20)

where v2
m is the variance of the gradient w̃m,t produced by

the m-th active edge device, defined in (42); w0 is the initial
global model; and the functions 
 and 	 are defined as


 = N0λmM

L
max
m

1

|fHhm|2 + 4

(
1 −

∑M
m=1 |Dm|
|D|

)2

,

	 = 1 − μ

ω
+ 2μα2

ω

, (21)

where λm is the largest eigenvalue of matrix A.
Proof: See Appendix D.
In addition, 1

|bm|2 ≤ maxm v2
m and η = 1

ω
are preconditions

for Theorem 1. The former means that P0 must be large
enough to make the |bm|2,∀m large enough that its reciprocal
is smaller than the maximum value of v2

m, under the
constraints of power constraint v2

m|bm|2 ≤ P0. The latter
shows that a proper learning rate η is important.
On the basis of Theorem 1, the following corollary is

derived to guarantee the convergence of the FL algorithm.
Corollary 1: Satisfying the assumptions and conditions in

Theorem 1 and 
 < 1
2α2

, as t → ∞, we have

lim
t→∞E

[
F(wt) − F

(
w�

)] ≤ α1


μ(1 − 2α2
)
. (22)

Proof: When 
 < 1
2α2

, we have 	 < 1. From Theorem 1,
we see that when 	 < 1, limt→∞ 	 t = 0. Hence, we take
the limit on both ends of (20) and complete the proof.
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From the above corollary, we can see that under certain
conditions, there is an upper bound for the expectation of
the gap between F(w∞) and F(w�) when the training rounds
tend to infinity. In addition, 
 is an enlarged version of
E[‖et‖2

2] from Eq. (39) and (43). Combining condition 
 <
1

2α2
, we can obtain a sufficient condition for FL convergence

which is given by

xHAx <
1

N0

(
α1

α2
+ ‖∇F(wt)‖2

2

)

×
⎡

⎣1

2
− 4α2

(
1 −

∑M
m=1 |Dm|
|D|

)2
⎤

⎦, (23)

and other conditions in Theorem 1. See Appendix E.
Therefore, given an arbitrary N0 and device selection

method, we can make xHAx as small as possible to make FL
more prone to convergence. The MSE that drops in tandem
with it also improves the learning performance of FL.

IV. JOINT OPTIMIZATION OF PRE-EQUALIZATION AND
RECEIVER COMBINER
In this section, we formulate the pre-equalization and
receiver combining design problem as an aggregation distor-
tion minimization task and propose an SCA-based algorithm
to deal with the non-convexity of quadratic constraints.

A. PROBLEM FORMULATION
We previously proved the convergence of FL with misaligned
OAC under sufficient conditions. Based on the above theoret-
ical analysis, we formulate the pre-equalization and receiver
combining design problem as the following minimization
problem:

minimize
bm∈C,f∈CN×1

xHAx

subject to v2
m|bm|2 ≤ P0, ∀m, (24a)

‖f‖2
2 = 1, (24b)

1

|bm|2 ≤ max
m

v2
m, (24c)

xm = (fHhmbm)−1, (24d)

where xm is the m-th entry of x and A is a known M ×M
hermitian matrix defined in (37); v2

m is the variance of m-th
local gradients; constraint (24c) comes from Theorem 1.
From the definition of x in (18), we can see that

|bm|2 = 1/|xm|2|fHhm|. Substituting |bm|2 into the con-
straints (24a), (24c) and treating x as the optimization
variable instead of bm, we have

minimize
x∈CM×1,f∈CN×1

xHAx

subject to
∣∣∣xmfHhm

∣∣∣
2 ≥ 1

P0,m
, ∀m, (25a)

∣∣∣xmfHhm
∣∣∣
2 ≤ max

m
v2
m, ∀m, (25b)

‖f‖2
2 = 1, (25c)

where P0,m = P0
v2
m
; maxm v2

m is a constant. Unfortunately,
the problem written in (25) is a QCQP problem with non-
convex constraints (25a), (25b) and (25c), which is highly
intractable.
Remark 1: Note that A is a given matrix, which is related

to the preset parameters M, N, τm and the initial receiver
combining vector f0. Without loss of generality, we randomly
initialize normalized f0 to ensure that ‖f0‖2

2 = 1 thus
initializing A. However, unlike other parameters, the receiver
combining vector is the variable to optimize, not a fixed
value, and it would be pointless to optimize this variable
if A changes. In fact, we just need to guarantee that the
optimal ‖f �‖2

2 is equal to ‖f0‖2
2, because the effect of f0 on

A is only that A contains the scaling factor ‖f0‖2
2.

Remark 2: Note that the vector x contains 1/f , and its
effect is reflected as a scaling factor 1/‖f‖2

2 in xHAx
if we ignore the weight between the entries inside f .
Moreover, when the optimal value f � is obtained, the actual
scaling factor is ‖f0‖2

2/‖f �‖2
2. Consequently, the role ‖f‖2

2
of Problem (25), is just to scale the magnitude of xHAx, and
a bigger ‖f‖2

2 leads to smaller objective value.2

Based on the above observations, we can easily extend the
non-convex feasible region of f to a convex set ‖f‖2

2 ≤ 1.3

In the following part, we will provide one method to solve
the non-convexity of another constraint (25a), (25b).

B. SCA-BASED OPTIMIZATION METHOD
SCA is a treatment method for solving non-convex
optimization problems. Its basic idea is to transform
problem (25) into a series of convex subproblems by lineariz-
ing the non-convex term in constraints. Motivated by [43],
we introduce two auxiliary variables cm = [R(xm),I(xm)]T

and dm = [R(fHhm),I(fHhm)]T to solve the nonconvex
constraint. The problem (25) can be rewritten as

minimize
cm,dm,∀m

xHAx

subject to ‖cm‖2‖dm‖2 ≥ 1

P0,m
,∀m, (26a)

‖cm‖2‖dm‖2 ≤ max
m

v2
m,∀m, (26b)

cm = [R(xm),I(xm)]T ,∀m, (26c)

dm = [R(fHhm),I(fHhm)]T ,∀m, (26d)

‖f‖2
2 ≤ 1. (26e)

To handle the non-convex constraints (26a) and (26b), we
approximate them with iterative linear constraints, resulting
in a series of convex problems. Afterward, the Problem (26)
is converted into a second-order cone-programming (SOCP)
problem, which has a lower computational complexity and

2. Outside of Problem (25), ‖f‖2
2 is independent of E[‖et‖2

2], because in
this case the scaling factor in A always equals to ‖f‖2

2, which can counteract
the effect of 1/f in x.

3. Actually, the weight between each entry in f is the true optimization
variable, and a larger ‖f‖2

2 is more likely to be obtained. As a result, ‖f‖2
2

can always reach its upper bound 1.
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Algorithm 1: SCA-Based Optimization Algorithm
Input: A, l = 0, ε, Imax;
Randomly initialize x(0), f0;

Set c(0)
m =

[
R(x(0)

m ),I(x(0)
m )

]T
,∀m;

Set d(0)
m = [R(fH0 hm),I(fH0 hm)]T ,∀m;

for l = 1, 2, . . . , Imax
Solve Problem (27) to obtain x and f ;
Update c(l)

m and d(l)
m ;

if
∑M

m

(∥∥∥c(l+1)
m − c(l)

m

∥∥∥ +
∥∥∥d(l+1)

m − d(l)
m

∥∥∥
)

≤ ε,
early stop;

end for
Output: x, f ;

can be efficiently solved. Specifically, at l-th iteration, we
solve the following convex problem:

minimize
cm,dm,∀m

xHAx

subject to
∥∥∥c(l)

m

∥∥∥
2∥∥∥d(l)

m

∥∥∥
2 + 2

∥∥∥d(l)
m

∥∥∥
2(
c(l)
m

)T(
cm − c(l)

m

)

+ 2
∥∥∥c(l)

m

∥∥∥
2(
d(l)
m

)T(
dm − d(l)

m

)
≥ 1

P0,m
,∀m,

(27a)
∥∥∥c(l)

m

∥∥∥
2∥∥∥d(l)

m

∥∥∥
2 + 2

∥∥∥d(l)
m

∥∥∥
2(
c(l)
m

)T(
cm − c(l)

m

)

+ 2
∥∥∥c(l)

m

∥∥∥
2(
d(l)
m

)T(
dm − d(l)

m

)
≤ max

m
v2
m,∀m,

(27b)

cm = [R(xm),I(xm)]T ,∀m, (27c)

dm = [R(fHhm),I(fHhm)]T ,∀m, (27d)

‖f‖2
2 ≤ 1, (27e)

where c(l)
m and d(l)

m are the optimized solutions at l-th
iteration.
We initialize c(0)

m and d(0)
m in a random fashion and

stop the iteration when the sum of distance between two
consecutive iterations of cm and dm is less than a preset
threshold ε, or when the maximum number of iterations Imax
is reached. The corresponding algorithm is summarized in
Algorithm 1.

Note that the proposed joint pre-equalization and receiver
combining design with misaligned over-the-air computation
relies on the perfect CSI and the variance of local gradients
of m-th device. The proposed algorithm runs in a centralized
manner at the PS. The variance of the gradient of each
device is uploaded to the PS by a conventional method, such
as orthogonal frequency-division multiple access after the
channel estimation is completed. After optimization, the PS
transmits the obtained transmitter pre-equalization factor bm
to each device respectively. Channel training for estimating
CSI at the PS can be accomplished by transmitting pilot
sequences from each device [47].

C. COMPUTATIONAL COMPLEXITY
Problem (27) is a SOCP problem. To solve it, the existing
solvers usually apply the interior point method, and the
worst-case computational complexity of each iteration is
O((N+M)3). Consequently, the complexity of Algorithm 1 is
upper bounded by O(Imax(N+M)3). Considering the compu-
tational complexity, in practical systems, it is often necessary
to limit the number of devices selected in each round
of communication and determine a reasonable maximum
number of iterations.

V. EXPERIMENTS AND DISCUSSIONS
In this section, we conduct comprehensive experiments to
compare the proposed SCA-based algorithm with baseline
schemes for federated learning with misaligned OAC to
examine its effectiveness. Simulation codes are available at
https://github.com/Forgethson/JointDesignMisAlignedFL.

A. SIMULATION SETUP
For our simulations, we consider a typical FL network.
We randomly select M active devices in each iteration of
FL training. We consider channel variation transmit timing
variation under different packets and assume that the channel
coefficients and transmission timing delays over a packet are
fixed. The wireless channels from the edge devices to the PS
follow i.i.d. Rayleigh channel model, i.e., hm ∼ CN (0, I).
For the transmission timing delays across M active devices,
we set τ1 = 0, fix a maximum time offset τM and the rest
follow the uniform distribution of U(0, τM). The effect of
noise is measured by a given EsN0, i.e., the expectation
of average energy per symbol for all transmitters to noise
power spectral density ratio, defined as

EsN0 = Em
[
Ei
[|bmsm[i]|2]]
N0

. (28)

To verify the effectiveness of the proposed SCA-based
Algorithm 1, we simulate the image classification task
on MNIST and CIFAR-10 data sets via PyTorch. FL
performance is evaluated by test accuracy, i.e., the number
of correctly classified test images to the size of the test
set ratio. For all active devices, at each model aggregation
stage, the model update sequences are transmitted in multiple
packets with length L. The PS recovers the weighted
average arithmetic sum of the local gradients w+ from
the superimposed but symbol-timing misaligned transmitted
signal via WMFS and ML estimation. Unless otherwise
specified, the values of simulation parameters are given in
Table 1.

For performance comparison, we consider the following
baselines:

• Aligned ML estimator: The ML estimator is one of
the baseline estimators proposed in [36]. Note that in
the aligned ML estimator, the residual channel-fading
coefficient h′

m = bmhm at the receiver is set to 1 (both
phase-aligned and amplitude-aligned case), which is
equivalent to bm = 1/hm.

2888 VOLUME 4, 2023



FIGURE 3. Test accuracy versus communication round of proposed SCA-based scheme and baseline schemes.

FIGURE 4. Train loss versus communication round of proposed SCA-based scheme and baseline schemes.

TABLE 1. Simulation parameters.

• Aligned-sample estimator: As another baseline estima-
tor, the aligned-sample (AS) estimator directly uses the
m-th matched filter to generate the result sequence,
i.e., the sequence {rM[1], rM[2], . . . , rM[L]}. Due to
the lack of ML estimation at the receiver, it cannot
resist the influence of channel fading on the original
signal. In order to achieve the AS estimator’s ideal
performance [36], we fix the channel constant with
hm = 1 + 0j,∀m. It can also be considered that the
transmitter pre-equalization is accurate (for channel
fading), that is Km = 1,∀m.

• Aligned-noiseless aggregation: Suppose that the chan-
nels are noiseless and transmission timing is
synchronous, i.e., ŵ+ = w+, τM = 0. In other words, as
the ideal aggregation benchmark, the PS directly utilizes
an undistorted gradient to implement FL.

• Synchronous OAC aggregation: This traditional OAC
method based on channel-inversion only uses transmitter
pre-equalization to handle channel fading, assuming that
the transmission timing is synchronized.

B. SIMULATIONS ON MNIST DATASET
In this subsection, we examine the performance of the
proposed algorithm on a handwritten digit identification task.
The training and test sets of the MNIST dataset contain
60,000 examples and 10,000 examples respectively with a
total of 10 classes, and each example is a 28×28 single-
channel image. For dataset partition, we consider both
the i.i.d. setting where the data is shuffled and uniformly
distributed across all edge devices, and the non-i.i.d. setting
where samples sorted by digit label are divided into
200 shards with a size of 300, and assign 5 shards to
each of the 40 edge devices [7]. Subsequently, we train a
convolutional neural network, which has 21,840 parameters
and the loss function is cross-entropy loss. For the MNIST
dataset, our simulations consist of the results of the full-batch
gradient descent method and the results of the mini-batch
gradient descent method. In terms of the mini-batch gradient
descent method, the local dataset D is randomly partitioned
into �|D|/B� batches {D(1)

m ,D(2)
m . . . ,D(�|D|/B�)

m } where B is
batch size; �·� is the ceiling function. Each device needs
�|D|/B� iterations for each batch dataset, thus the gradient
of m-th device is gm,t = (w(�|D|/B�)

m,t − wt)/η.
In Fig. 3 and Fig. 4, we plot the test accuracy and training

loss versus the communication round with the full-batch
gradient descent method and mini-batch gradient descent
method with batch size B = 128 under two dataset partition
settings on MNIST to compare the performance of all four
schemes. In addition, the ROC curve is shown in Fig. 5,
and the Area Under Curve (AUC) and F1-score of different
schemes are given in the legend.
For the full-batch gradient descent case, we can see

from Fig. 3(a), the proposed SCA-based scheme achieves
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FIGURE 5. ROC curves of the proposed SCA-based scheme and the baseline scheme.

an average test accuracy of 94.91% over the past 20
communication rounds, 82.59% in the aligned ML estimator
scheme, 95.33% in the aligned noiseless aggregation scheme,
74.72% in the AS estimator scheme, and 93.91% in
synchronous OAC scheme. A similar situation is shown from
the loss curve in Fig. 4(a) and Fig. 5(a). The average training
losses of the last 20 rounds of the above scheme are 0.56
(SCA), 1.52 (aligned ML), 0.36 (aligned noiseless), 1.87
(AS), and 0.66 (synchronous OAC). The AUC and F1 scores
of the different schemes are given in the legend, and the
results are similar to the loss curves. The above F1 scores are
0.931 (SCA), 0.901 (aligned ML), 0.937 (aligned noiseless),
0.891 (AS), and 0.927 (synchronous OAC). In the non-i.i.d.
case, due to the heterogeneity of datasets across different
devices, the model obtained by distributed training and
averaged in a linear fashion differs greatly from the model
obtained by centralized training, which degrades the learning
performance of FL. The results for non-i.i.d. cases are similar
to those for i.i.d. cases.
For the mini-batch gradient descent case, Fig. 3(b) demon-

strates a similar result to the full-batch gradient case.
The proposed SCA-based scheme achieves an average test
accuracy of 96.95% over the past 20 communication rounds,
70.64% in the aligned ML estimator scheme, 98.22% in
the aligned noiseless aggregation scheme, 76.57% in the
AS estimator scheme, and 96.45% in synchronous OAC
scheme. A similar situation is shown from the loss curve in
Fig. 4(b) and Fig. 5(b). The average training losses of the
last 20 rounds of the above scheme are 0.35 (SCA), 1.63
(aligned ML), 0.16 (aligned noiseless), 1.46 (AS), and 0.43
(synchronous OAC). The AUC and F1 scores of the different
schemes are given in the legend, and the results are similar
to the loss curves. The above F1 scores are 0.975 (SCA),
0.613 (aligned ML), 0.982 (aligned noiseless), 0.772 (AS),
and 0.961 (synchronous OAC).
The above results demonstrate that the proposed SCA-

based scheme outperforms two baseline schemes, is
comparable to or even better than the synchronous OAC
scheme, and achieves the near-optimal performance of the
ideal aggregation benchmark. In addition, the original ML
estimator scheme was unable to converge the FL training in
the above experiments.
Fig. 6 shows that compared to the other baseline schemes,

the proposed SCA-based scheme can achieve the same test

FIGURE 6. Test accuracy versus EsN0 of different schemes under i.i.d setting.

accuracy at lower EsN0. ML estimator does not work at low
EsN0 (less than 21dB). Furthermore, we calculate the MSE
in one packet of the three schemes on 500 random channel
realizations respectively with M = 4, N = 10, N0 = 1 and let
τM a random value within the range 0.5 to 0.9. For proposed
scheme and ML scheme, the MSE equals N0

L x
HAx. Note that

since there is no ML estimation in the AS scheme, its MSE
equals N0/dM , where dM = T − τM is the duration of the
M-th matched filter. The proposed scheme has an average
MES of 0.0038, which corresponds to 0.1154 for the ML
estimator scheme and 0.0156 for the AS estimator scheme.
For different PS antenna quantities, Fig. 7 demonstrates

the test accuracy discrepancy of FL under the above three
different values of N with M = 8. It shows that a larger
number of antennas can improve the performance of FL.
Under different N, the results over 500 channel realizations
with M = 8 are illustrated in Fig. 8. We first fixed N0 and
optimized 500 random channel samples under different N ∈
{1, 2, . . . , 20}. Then we show the MES of the optimization
results for N = 6, N = 12, and N = 20 in the form of
a scatterplot and the average MSE curve for 500 samples
under different N.

As can be seen from the above figures, increasing the
number of PS antennas can lead to a better solution, i.e., a
smaller MSE which is the reason for the higher test accuracy
of FL. This is because, as the number of antennas increases,
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FIGURE 7. Test accuracy versus communication round of proposed SCA-based
scheme over the number of PS antennas.

FIGURE 8. Effect of the number of PS antennas on optimization objective value with
M = 8, N0 = 1.

the dimensionality of the receiver combining vector f also
increases, which helps the proposed SCA-based algorithm
find better f . In addition, a higher dimension f is also
conducive to satisfying constraint (25a) and (25b), which in
disguise expands the solution space of x, ultimately helping
the algorithm to find better solutions. Moreover, Fig. 8
also indicates that when the number of antennas exceeds
14, further increasing the number of antennas will not
significantly decrease the MSE, but will further increase the
deployment cost and power consumption. This phenomenon
shows that there is a trade-off between the deployment cost
and power consumption brought by the high antenna count,
and the FL performance improvement brought by the low
MSE.

C. SIMULATIONS ON CIFAR-10 DATASET
In this subsection, we examine the performance of the
proposed algorithm on a more challenging task. For the
CIFAR-10 dataset, we only consider the mini-batch gradient
case with B = 128. The training and test sets of the

FIGURE 9. Test accuracy versus communication round of proposed SCA-based
scheme and baseline schemes under two dataset partition settings on the CIFAR-10
dataset.

CIFAR-10 dataset contain 50,000 examples and 10,000
examples respectively with a total of 10 classes, and
each example is a 32×32 three-channel image. For dataset
partition, we also consider the i.i.d. case (the same as the
setting in Section V-B) and the non-i.i.d. case. For the non-
i.i.d. in this case, the samples are first sorted by label, then
divided into 400 shards of size 125, and 10 shards are
assigned to each of the 40 edge devices. The learning rate
η is set to 0.05 and the EsN0 is set to -8 dB.
Fig. 9 shows that the proposed algorithm still outperforms

other baseline schemes, and achieves the near-optimal
performance of ideal aggregation benchmark. For the i.i.d.
case, in Fig. 9(a), the proposed SCA-based scheme achieves
an average test accuracy of 69.68% over the past 20
communication rounds, 68.06% in the aligned ML estimator
scheme, 72.35% in the aligned noiseless aggregation scheme,
67.82% in the AS estimator scheme, and 68.85% in syn-
chronous OAC scheme. For the non-i.i.d. case, in Fig. 9(b),
the proposed SCA-based scheme achieves an average test
accuracy of 53.75% over the past 20 communication rounds,
51.97% in the aligned ML estimator scheme, 59.20% in
the aligned noiseless aggregation scheme, 48.82% in the AS
estimator scheme, and 54.88% in synchronous OAC scheme.
For more difficult classification tasks, the effectiveness of
the algorithm is confirmed.

D. FURTHER DISCUSSION
From the preceding theoretical analysis, we obtain a suffi-
cient condition (23) for FL convergence, and we know that,
for any transmission power, when EsN0 is large enough that
the MSE cannot meet (23), the convergence of FL cannot
be guaranteed. Fig. 6 shows that with the decrease of EsN0,
the test accuracy of FL remains unchanged at first, and
then decreases until the convergence fails. To analyze the
theoretical results, we can see that when EsN0 is greater
than a certain threshold (different for different schemes), the
performance of FL reaches the equivalent performance under
ideal conditions, i.e., aligned-noiseless aggregation scheme.
In this case, since N0 is small enough, FL can converge
completely, and the influence of noise is negligible. As EsN0
decreases, for the same average transmission power, the N0
increases accordingly. At this point, a relatively small xHAx
is required to ensure convergence condition, otherwise, the
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MSE between the true value of the gradient w+ and the
estimated value ŵ+ is so large that the FL training fails to
converge.
Moreover, different schemes have different sensitivity to

noise. Due to the heterogeneity of communication capa-
bilities among edge devices, the stragglers account for the
overall model aggregation error, since deep fading causes a
significant channel equalization factor, which will amplify
the effect of noise at the receiver. For the ML estimator
scheme, without accurate transmitter pre-equalization, the
entry of coefficient matrix in (9) is related to residual channel
fading, i.e., Km = h′

m. Thus, the deep channel fading will
amplify the effect of noise at the receiver. This explains
why the misaligned FL based on the original ML estimator
cannot converge at low EsN0. The computational complexity
of the ML estimator is O(L2M2 log(LM)) caused by matrix
inversion. As a special case of the ML estimator with the
same computational complexity and h′

m = 1, the aligned
ML estimator performs better than ML estimators at low
EsN0. However, it does not take advantage of the flexible
design potential of the transmitter coefficients to further
improve noise mitigation. For the AS estimator scheme,
the transmitter pre-equalization is assumed to be accurate,
i.e., Km = 1. Although the AS estimator has shown good
performance and low computational complexity which can
be regarded as O(L), it is highly dependent on the accurate
pre-equalization of the transmitter. No further processing at
the receiver makes it unable to cope with inaccurate pre-
equalization and larger noise effects at lower EsN0. For the
proposed SCA-based scheme, there is additional calculation
complexity O(Imax(N+M)3) from Algorithm 1, but the entry
of coefficient matrix Km = fHhmbm can be flexibly designed
to find the appropriate bm and f , to resist non-uniform
fading and noise effects to a large extent, which shows that
completely accurate pre-equalization on the transmitter is
not necessarily optimal.
To sum up, compared with the other baseline schemes

which suffer from significant aggregation errors caused by
stragglers, the proposed SCA-based scheme overcomes the
unfavorable channel conditions and non-uniform fading via
channel pre-equalization and receiver combining design,
while largely reducing the effect of noise on model aggre-
gation. Finally improved the performance of FL.

VI. CONCLUSION
In this paper, we studied the misaligned OAC FL system
design problem and implemented a novel framework of
FL with misaligned OAC for accurate model aggregation
on wireless networks. We first derive an upper bound
on the training loss between the training model and the
global optimal value and give a sufficient condition for
the convergence of FL. Based on the observation of the
problem in misaligned OAC model aggregation and obtained
theoretical results, we formulate an optimization problem
to minimize the distortion of the aggregation which is
measured by MSE w.r.t. the transmitter equalization factor

and receiver combining vector. Then we proposed an SCA-
based optimization algorithm to solve the resulting quadratic
constrained quadratic program. Finally, our extensive exper-
iments show that the proposed algorithm has improved test
accuracy compared to existing baseline schemes and is close
to the ideal benchmark, which proves its effectiveness.

APPENDIX A
PROOF OF LEMMA 1
Assumption 2 is equivalent to

F(w) ≤ F(w′) + (w − w′)T∇F(w′) + ω

2
‖w − w′‖2

2. (29)

Replacing w and w′ with wt+1 and wt, we have:

F(wt+1) ≤ F(wt) + (wt+1 − wt)
T∇F(wt)

+ ω

2
‖wt+1 − wt‖2

2 (30)

Combining (30), (12), (5), and η = 1/ω, we have

F(wt+1) ≤ F(wt) − 1

ω
(∇F(wt) − et)T∇F(wt)

+ 1

2ω
‖∇F(wt) − et‖2

2

= F(wt) − 1

ω
‖∇F(wt)‖2

2 + 1

ω
∇F(wt)

Tet

+ 1

2ω
‖∇F(wt)‖2

2 − 1

ω
∇F(wt)

Tet + 1

2ω
‖et‖2

2

= F(wt) − 1

2ω
‖∇F(wt)‖2

2 + 1

2ω
‖et‖2

2. (31)

By taking the expectation with respect to communication
noise, we complete the proof.

APPENDIX B
The N is a N ×M(L+ 1) − 1 matrix given by

N = [ñ1[1], ñ2[1], . . . , ñM[1], ñ1[2], ñ2[2], . . . , ñM[2], . . . ,

ñ1[L], ñ2[L], . . . , ñM[L], ñ1[L+ 1], ñ2[L+ 1], . . . ,

ñM−1[L+ 1]]T .

The detailed form of NH is given by
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ñ1
1[1] ñ2

1[1] . . . ñN1 [1]
ñ1

2[1] ñ2
2[1] . . . ñN2 [1]

. . . . . . . . .

ñ1
M[1] ñ2

M[1] . . . ñNM[1]
ñ1

1[2] ñ2
1[2] . . . ñN1 [2]

ñ1
2[2] ñ2

2[2] . . . ñN2 [2]
. . . . . . . . .

ñ1
M[2] ñ2

M[2] . . . ñNM[2]
. . . . . . . . .

ñ1
1[L] n2

1[L] . . . nN1 [L]
ñ1

2[L] ñ2
2[L] . . . ñN2 [L]

. . . . . . . . .

ñ1
M[L] ñ2

M[L] . . . ñNM[L]
ñ1

1[L+ 1] ñ2
1[L+ 1] . . . ñN1 [L+ 1]

ñ1
2[L+ 1] ñ2

2[L+ 1] . . . ñN2 [L+ 1]
. . . . . . . . .

ñ1
M−1[L+ 1] ñ2

M−1[L+ 1] . . . ñNM−1[L+ 1]

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

2892 VOLUME 4, 2023



For NH , each column is the noise sequence for the l-th
antenna at the receiver denoted by n̂l ∈ C

M(L+1)−1 and each
row is denoted by ñHk [j].

We denote diagonal matrix �̄
l
is the covariance matrix

of n̂l, and for any given k and j, ñlk[j] is i.i.d., ∀l ∈
{1, 2, . . . ,N} [36]. Moreover, �̄

l = n̂ln̂
H
l is a diagonal

matrix, with �̄
l ≡ �̄,∀l across different PS antennas. And

the (M(L+ 1) − 1) × (M(L+ 1) − 1) diagonal matrix �̄ can
be constructed by

�̄ = diag

([
N0

d1
,
N0

d2
, . . . ,

N0

dM
,
N0

d1
,
N0

d2
, . . . ,

N0

dM
. . . ,

N0

d1
,
N0

d2
, . . .

N0

dM−1

])
,

where N0 is the one-sided power spectral density of additive
noise.
The detailed form of n = (fHN)H ∈ C

M(L+1)−1 is
given by
[

N∑

l=1

ñl1[1]fl,
N∑

l=1

ñl2[1]fl, . . . ,
N∑

l=1

ñlM[1]fl,
N∑

l=1

ñl1[2]fl,
N∑

l=1

ñl2[2]fl,

. . . ,

N∑

l=1

ñlM[2]fl, . . . ,
N∑

l=1

ñl1[L]fl,
N∑

l=1

ñl2[L]fl, . . . ,
N∑

l=1

ñlM[L]fl,

N∑

l=1

ñl1[L+ 1]fl,
N∑

l=1

ñl2[L+ 1]fl, . . . ,
N∑

l=1

ñlM−1[L+ 1]fl

]T
,

where fl is l-th entry of f . Since the noise gains are assumed
to be i.i.d. across different PS antennas, we have � = nnH

is the covariance matrix of n which can be represented by

� = ‖f‖2
2�̄ = N0�̃, (32)

where �̃ is the auxiliary matrix without factor N0 given by

�̃ = diag

(
‖f‖2

2

[
1

d1
,

1

d2
, . . . ,

1

dM
,

1

d1
,

1

d2
, . . . ,

1

dM
. . . ,

1

d1
,

1

d2
, . . .

1

dM−1

])
.

APPENDIX C
PROOF OF LEMMA 2
Recall that we construct the transmitted symbols from local
gradients and send these symbols in packets. Consequently,
at one communication round, we first obtain Ns combined
received signal vector ŝ+ ∈ C

L×1 at PS. Next, we stack these
vectors and obtain ˆ̃s+ ∈ C

D
2 ×1. Finally, we restore the true

gradient estimate vector ŵ+ ∈ R
D from ˆ̃s+.

From (12), we have E[‖et‖2
2] = ‖w(t)

+ − ŵ(t)
+ ‖2

2, which is

equals to ‖s̃(t)+ − ˆ̃s(t)+ ‖2
2, as well as,

∑Ns
i=1 ‖s(i)+ − ŝ(i)+ ‖2

2 at t-th
round. Note that the value of E[‖et‖2

2] has nothing to do
with whether the symbol is packed or not. For convenience
and without loss of generality, we let L = D, thus Eq. (12)
can be rewritten as

e2,t = s+ − ŝ+

= V
(
KH�−1K

)−1
KH�−1n. (33)

Then we have

E[
∥∥e2,t

∥∥2
2] = E

[
‖V

(
KH�−1K

)−1
KH�−1n‖2

2

]

= E

[
‖Un‖2

2

]

= E

[
Tr
[
(Un)(Un)H

]]

= E

[
Tr
(
UnnHUH

)]

= Tr(U�UH)

= Tr(VHV(KH�−1K)−1), (34)

where U = V(KH�−1K)−1KH�−1, is a auxiliary matrix
with L by M(L + 1) − 1 dimension; � is the covariance
matrix of n defined in Appendix B; Tr(·) returns the trace
of the matrix.
For further simplification, we let VHV = Q, and K = PKh,

where P can be obtain by changing the non-zero entry in K
to 1 and ML×ML diagonal matrix Kh can be given as

Kh = diag(fh1b1, fh2b2, . . . fhmbm, fh1b1, fh2b2, . . .).

Substituting the above into (34), we have

E[
∥∥e2,t

∥∥2
2] = Tr

(
Q[(PKh)H�−1PKh]−1

)

= Tr
(
Q[KhHPH�−1PKh]−1

)

= Tr
(
Q(KhHWKh)−1

)

= Tr
(
Kh−1W−1Kh−HQ

)

(a)= x̃T(W−1 � QT) ¯̃x
= x̃HĀx̃, (35)

where W = PH�−1P is a ML × ML hermitian matrix;
(a) stems from the equality Tr(DxADyBT) = xT(A �
B)y, [48] with Dx = diag(x) and Dy = diag(y),
and � denotes Hadamard product. Ā = W−1 �
QT is a ML × ML hermitian matrix, and, x̃ =
[(fh1b1)

−1, (fh2b2)
−1, . . . (fhmbm)−1, (fh1b1)

−1,

(fh2b2)
−1, . . . ]T ∈ CML×1.

To characterize the influence of noise scale on e2,t, we
can further rewrite Eq. (35) as

E[
∥∥e2,t

∥∥2
2] = N0x̃

HÃx̃, (36)

where Ã = (PH�̃
−1
P)−1 � QT , and the auxiliary matrix

�̃ = 1
N0

� is defined in (32).
Note that there are L groups of repeated elements in the

vector x̃, we can further simplify (35) by matrix blocking.
Specifically, Ã and x̃ can be written as

Ã =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

A11 A12 · · · A1L
A21 A22 · · · A1L
...

...
. . .

...

AL1 AL2 · · · ALL

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
, x̃ = {

x1 x2 · · · xL
}T

,

respectively, where Aij is M×M matrix, and the vector x has
been defined in (18), with xi ≡ x ∈ C

M×1,∀i ∈ {1, . . . ,L}.
VOLUME 4, 2023 2893



WANG AND GUO: JOINT PRE-EQUALIZATION AND RECEIVER COMBINING DESIGN FOR FL

Consequently, Eq. (36) can be rewritten as

E[
∥∥e2,t

∥∥2
2] = N0xHAx, (37)

where A = ∑L
i=1

∑L
j=1 Aij.

APPENDIX D
PROOF OF THEOREM 1
From (12), we know that et = e1,t + e2,t. Accordingly, we
have

E

[
‖et‖2

2

]
= E

[∥∥e1,t + e2,t
∥∥2

2

]

(b)≤ E

[(∥∥e1,t
∥∥

2 + ∥∥e2,t
∥∥

2

)2
]

(c)≤ 2
(∥∥e1,t

∥∥2
2 + E

[∥∥e2,t
∥∥2

2

])
, (38)

where (b) is from the triangle inequality, and (c) is from the
inequality ‖x1 + x2‖2

2 ≤ 2‖x1‖2
2 + 2‖x2‖2

2. Due to e1,t being
from device selection and independent of the communication
noise, the expectation on ‖e1,t‖2

2 can be removed.
To bound ‖e1,t‖2

2, we have the following equation in
[46, Sec. 3.1],

‖e1,t‖2
2 ≤ 4

(
1 −

∑M
m=1 |Dm|
|D|

)2(
α1 + α2‖∇F(wt)‖2

2

)
. (39)

In addition, We scale through inequality to get an enlarged
version of E[‖e2,t‖2

2]. Specifically,

E

[∥∥e2,t
∥∥2

2

]
= N0xHAx

(d)≤ N0λm‖x‖2
2

≤ N0λmMmax
m

|xm|2

≤ N0λmMmax
m

1

|fHhm|2|bm|2
≤ N0λmMmax

m

1

|fHhm|2 max
m

1

|bm|2
≤ N0λmMmax

m

1

|fHhm|2 max
m

v2
m, (40)

where (d) is from the proof below.
Proof of (d): We let x = Ry, where y is a vector ∈ C

m×1,
and R is a unitary matrix, satisfying RHAR = �, where �

is a diagonal matrix. Substituting x with Ry, we obtain

xHAx = yH�y =
m∑

i=1

λi|yi|2 ≤
m∑

i=1

λm|yi|2 = λmyHy

= λmxHRRHx = λm‖x‖2
2. (41)

Moreover, for all m, we have

v2
m = 1

L

L∑

�=1

(
w̃m,t[�] − 1

L

L∑

�′=1

w̃m,t[�
′]
)2

= 1

L

L∑

�=1

w̃2
m,t[�] −

(
1

L

L∑

�′=1

w̃m,t[�
′]
)2

≤ 1

L

L∑

�=1

w̃2
m,t[�]

= 1

L
‖∇Fm(wt)‖2

2

= 1

|Dm|2L‖
∑

(xi,yi)∈Dm

∇f (wt; xi, yi)‖2
2

(e)≤ 1

|Dm|2L

⎛

⎝
∑

(xi,yi)∈Dm

‖∇f (wt; xi, yi)‖2

⎞

⎠
2

(f )≤ 1

|Dm|2L

⎛

⎝
∑

(xi,yi)∈Dm

√
α1 + α2‖∇F(wt)‖2

2

⎞

⎠
2

= 1

L

(
α1 + α2‖∇F(wt)‖2

2

)
, (42)

where (e) is from the triangle inequality and (f ) is from
Assumption 4, i.e., Eq. (15). Substituting (42) into (40), we
have

E[
∥∥e2,t

∥∥2
2] ≤ N0λmM

L
max
m

1

|fHhm|2
×
(
α1 + α2‖∇F(wt)‖2

2

)
. (43)

Combining (16), (38), (39) and (43), we obtain

E
[
F(wt+1)

] ≤ E[F (wt)] + α1

ω



− ‖∇F(wt)‖2
2

2ω
(1 − 2α2
), (44)

where 
 has been defined in (21).
Subtracting F(w�) on both sides of (44), and using the

equality ‖∇F(wt)‖2
2 ≥ 2μ(F(wt) − F(w�)) [46], we have

E
[
F(wt+1) − F

(
w�

)
] ≤ α1

ω

 + E

[
F(wt) − F

(
w�

)]
	, (45)

where 	 has been defined in (21). Applying (45) recursively,
we complete the proof.

APPENDIX E
PROOF OF SUFFICIENT CONDITIONS FOR FL
CONVERGENCE
Combining (39), (43), we have

‖e1,t‖2
2 + E[‖e2,t‖2

2] ≤ 

(
α1 + α2‖∇F(wt)‖2

2

)
. (46)

Substituting Lemma2 and the condition 
 < 1
2α2

into (46),
we have

N0xHAx <
1

2

(
α1

α2
‖∇F(wt)‖2

2

)
− ‖e1,t‖2

2. (47)

From (39), it can be observed that ‖e1,t‖2
2 has an upper

bound. Therefore, as long as the above inequality holds when
‖e1,t‖2

2 takes this bound, then for any other ‖e1,t‖2
2, the

N0xHAx is already sufficiently small. Substituting the upper

bound 4(1 −
∑M

m=1 |Dm|
|D| )2(α1 + α2‖∇F(wt)‖2

2), we have a
sufficient condition for convergence.
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