
Received 26 September 2023; accepted 12 October 2023. Date of publication 17 October 2023; date of current version 2 November 2023.

Digital Object Identifier 10.1109/OJCOMS.2023.3325106

Two-Party Adaptor Signature Scheme Based on IEEE
P1363 Identity-Based Signature

XINJIE ZHU 1,2, DEBIAO HE 1,3 (Member, IEEE), ZIJIAN BAO 1, CONG PENG 1, AND MIN LUO 1,4

1School of Cyber Science and Engineering, Wuhan University, Wuhan 430072, China

2Institute of Information Technology, Shenzhen Institute of Information Technology, Shenzhen 518172, China

3Key Laboratory of Computing Power Network and Information Security, Ministry of Education, Shandong Computer Science Center,
Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China

4Shanghai Key Laboratory of Privacy-Preserving Computation, Matrix Elements Technologies, Shanghai 201204, China

CORRESPONDING AUTHORS: D. HE AND Z. BAO (e-mail: hedebiao@163.com; baozijian@whu.edu.cn)

This work was supported in part by the Major Research Plan of Hubei Province under Grant 2023BAA027; in part by the Shandong Provincial Key Research and

Development Program under Grant 2021CXGC010107; in part by the National Natural Science Foundation of China under Grant 62202339, Grant 62172307,

and Grant U21A20466; in part by the New 20 Project of Higher Education of Jinan under Grant 202228017; in part by the Special Project on Science

and Technology Program of Hubei Province under Grant 2020AEA013 and Grant 2021BAA025; and in part by the Fundamental Research

Funds for the Central Universities under Grant 2042023KF0203.

ABSTRACT Adaptor signature is extended from the standard digital signature, which conceals a secret
value in the “pre-signature”. The one who knows the secret value can transform it into a completed
signature. Adaptor signatures are useful in addressing blockchain scalability issues, and have been used
to build blockchain scaling protocols, such as payment channels or atomic swaps. Recently, someone
propose two-party adaptor signature to enhance the privacy in application of adaptor signatures. However,
we notice that there is no identity-based two-party adaptor signature scheme so far. Based on IEEE
P1363 standard identity-based signature scheme, a secure two-party adaptor signature is constructed in
this paper. Moreover, under the random oracle model, we analyze the security of our proposed P1363-
based two-party adaptor signature. Finally, we make a comparison between our scheme and other adaptor
signature schemes in computation and communication overheads, the result shows the costs of our scheme
are acceptable.

INDEX TERMS Two-party signature, adaptor signature, IEEE P1363, payment channel.

I. INTRODUCTION

THE EVOLVING blockchain technology has attracted a
surge of interest from academia, industry and govern-

ment agencies to enable secure payments in a decentralized
system. However, most of the blockchain applications need
to face the problem of scalability of the blockchain plat-
form [1]. For example, Bitcoin can only process about 10
transactions per second, While the throughput of VisaNet is
almost 1700 transactions. This situation severely limits the
development of blockchain applications and degrades the
user experience.
Adaptor signature is extended from the standard dig-

ital signature. It was first proposed by Poelstra [2] to
help build blockchain scaling protocols, such as Payment

Channel Networks (PCNs) [3], and was later formalized by
Aumayr et al. [4]. In adaptor signatures, the signer creates
a pre-signature with a hidden hard relation, then the one
who knows the hard relation witness can convert the pre-
signature to a completed one. Meanwhile, we can verify
the completed signature with standard signature verification
algorithms. Anyone is able to extract the secret witness with
the pre-signature and the completed signature.
Some blockchain scaling protocols aim to handle the

transactions offchain and only put the final state onchain,
such as payment channels [5]. With adaptor signatures, the
transaction sender can pre-sign a transaction to lock some
coins with a hard relation such as hash pre-image, then
the witness can be selled, and the buyer can adapt the

c© 2023 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME 4, 2023 2717

HTTPS://ORCID.ORG/0009-0003-5187-5341
HTTPS://ORCID.ORG/0000-0002-2446-7436
HTTPS://ORCID.ORG/0000-0002-2145-9713
HTTPS://ORCID.ORG/0000-0002-9958-3255
HTTPS://ORCID.ORG/0000-0002-1819-9332

ZHU et al.: TWO-PARTY ADAPTOR SIGNATURE SCHEME BASED ON IEEE P1363 IDENTITY-BASED SIGNATURE

pre-signature and make a transaction to spend the coins.
While the hard relation behind the pre-signature can be set
with multiple hash values and different hash algorithms,
the related blockchain applications can be more flexible
and efficient, such as payment channels, payment routing
in PCNs [6] or atomic swaps [7], [8], [9]. Many applica-
tions behind it are used to address blockchain scalability
issues, which shows huge potential of adaptor signatures in
blockchain scalability.

A. MOTIVATION
While applying adaptor signature to blockchain application,
the verification of the constructed payment transaction con-
sist of two signatures, one for adaptor signature and another
for transaction signature, which can be used to distinguish it
from a normal payment transaction. Some [10], [11] suggest
using two-party adaptor signatures to solve this drawback,
the main idea of which is to replace the two verification steps
of adaptor signature and transaction signature by one verifi-
cation. With two-party adaptor signature, the transactions
in the application such as payment channels are gener-
ated collaboratively by the two users in the channel, and
acted the same as normal transactions. Therefore the appli-
cation of two-party adaptor signature can prevent this kind
of transactions from censorship.
Meanwhile, we notice that there is no identity-based

two-party adaptor signature scheme so far. With identity-
based cryptosystem, people can replace public key with
other’s identity (e.g., email address). It is more user-friendly
than public-key cryptosystem, and simplifies key manage-
ment. Recently, there have been a number of efforts trying
to apply identity-based cryptosystems to blockchain that
have achieved positive effects, such as combination with
the Internet-of-Things (IoT) [12], [13], which removes the
dependency of public key infrastructure (PKI), and improves
efficiency and transparency of the systems. HIBEChain [14]
is an good example that shows blockchain system based
on identity-based cryptosystem can achieve high scalabil-
ity and accountability, which demonstrates the potential of
identity-based blockchain systems for large-scale industrial
IoT applications. Observing the trend towards the application
of identity-based cryptosystems in the blockchain, we believe
it is necessary to build a two-party identity-based adaptor
signature scheme, so we make the following contributions.

B. OUR CONTRIBUTIONS
In this paper, we construct a two-party identity-based adap-
tor signature protocol for the IEEE P1363 standard [15].
Specifically, the pre-signature in our proposed protocol
is generated with the communication of two parties. We
also implement our protocol on a device and compare its
performance with other schemes. The main contributions are
summarized as below:
• We propose a secure two-party adaptor signature

scheme based on IEEE P1363 standard identity-
based signature scheme. The distributed pre-signature

generation phase works with the communication of
two parties.

• We give a security proof of our adaptor signature
scheme under the random oracle model. The result
shows that our scheme meets the security properties
of the two-party adaptor signature.

• We evaluate the performance of our scheme, and make
a comparison with other adaptor signature schemes.

C. ORGANIZATION
The remaining of this paper is structured as follows. In
Section II, we review the related work of adaptor signature
schemes. In Section III, we introduce some preliminar-
ies. In Section IV, we give basic concepts. The details
of the proposed two-party adaptor signature are presented
in Section V, and we analyze its security in Section VI.
Findings from the performance evaluation are shown in
Section VII. Finally, Section VIII concludes this paper.

II. RELATED WORK
Poelstra [2] first introduced a concept named “scriptless
scripts”, which gave the notion of adaptor signature, and
proved it was useful in blockchain scaling applications such
as PCNs, payment channel hubs or atomic swaps. Then
Aumayr et al. [4] formalized the adaptor signature as a stand-
alone primitive, the schemes in their work are constructed
with Schnoor and ECDSA signatures. Fournier [16] also tried
to give a formal definition of adaptor signature at the same
time, but his definition was weaker, and not suitable for some
applications. Concurrently, Thyagarajan and Malavolta [17]
proposed a scheme named lockable signature, which is sim-
ilar to adaptor signature, and can be built with any signature
scheme. Lockable signature is a weaker primitive than adap-
tor signature, as it needs an honestly created partial signature
(e.g., through MPC protocols) and the witness of the hard
relation must be known while generating signatures.
Malavolta et al. [10] presented two-party threshold adaptor

signature protocols with Schnoor and ECDSA signatures,
and built an anonymous multi-hop lock mechanism based
on them. However, they did not formalize the two-party
adaptor signature, therefore a formal security proof for these
schemes is missing. Then Erwig et al. [11] gave the definition
of two-party adaptor signatures, and showed a generic way
to construct adaptor signature schemes with identification
schemes. Klamti and Hasan [18] constructed a two-party
adaptor signature scheme, which is built with code theory,
thus has a huge costs of computation and big pre-signature
size.
Additionally, Qin et al. [19] also gave a generic approach

to construct adaptor signature from identification schemes,
but their construction is more practical for the lattice-based
instantiation. Meanwhile, they proposed adaptor blind
signature and linkable ring adaptor signature. After that,
Dai et al. [20] gave a formalization definition for unlinka-
bility of adaptor signatures, and designed a generic method
to construct unlinkable adaptor signatures. Their approach

2718 VOLUME 4, 2023

allowed more Flexible instantiations and minimal assump-
tions. Moreno-Sanchez et al. [21] constructed an adaptor
signature scheme for the linkable ring signature in Monero,
which change the transaction script logic and improve
its efficiency in largescale applications. Tairi et al. [22]
proposed a primitive named anonymous atomic locks, which
can be used to achieve three-party conditional transactions
in payment channel hubs, and give an instantiation using
adaptor signatures.
With the development of quantum computers, many digi-

tal signature schemes are under threat of being broken, and
adaptor signature is under the same situation. Therefore,
it is important to build secure adaptor signature schemes
that can resist quantum attacks. Esgin et al. [23] designed
the first lattice-based adaptor signature scheme LAS, which
relies on standard lattice assumptions, namely SIS and LWE.
However, the LAS protocol has some shortcuts in commu-
nication overhead and privacy protection, which limits its
application. Then Tairi et al. [24] designed an adaptor sig-
nature scheme based on isogenies named IAS, which needs
lower storage space than LAS, but with higher computation
cost. Further more, Gilchrist [25] introduced a post-quantum
adaptor signature using SQISign signature, which is based
on Isogeny and therefore require less storage.

III. PRELIMINARIES
In this section, we briefly review the related preliminaries
and basic security assumptions used in this paper.

A. BILINEAR MAPS
Let (G1,G2,GT) be a set of three cycle groups with the
same order q, then e : G1×G2 → GT is a bilinear map [26]
with following three properties:

1. Bilinear: For all g1 ∈ G1, g2 ∈ G2,∀a, b ∈
Zq, e(ga1, g

b
2) = e(g1, g2)

ab;
2. Nondegenerate: ∃g1 ∈ G1, g2 ∈ G2, e(g1, g2) �= 1;
3. Computable: Given the elements g1 ∈ G1, g2 ∈ G2,

the e(g1, g2) can be computed efficiently.

B. DIGITAL SIGNATURE
Generally, a digital signature [27] scheme � =
(Gen, Sign, Vrfy) includes three algorithms:
• Gen(1λ): Given a security parameter λ as input, this

algorithm outputs a pair of private key sk and public
key pk.

• Signsk(m): Given private key sk and message m as
input, this algorithm outputs a signature σ .

• Vrfypk(m, σ): Given public key pk, message m and
signature σ as input, this algorithm outputs a verify
result b ∈ {0, 1}. If b = 1, then the signature is valid;
otherwise, it is invalid.

A secure digital signature scheme must meet the following
two properties:
1) correctness: For all message m and valid key pair

(sk, pk), it holds that Vrfypk(m, Signsk(m)) = 1.

2) (strong) existential unforgeability under chosen mes-
sage attack (EUF-CMA or SUF-CMA): In EUF-CMA,
for a public key pk, a PPT adversary is not able to
generate a valid signature on a fresh message m even
with ability to access a signing oracle. In SUF-CMA,
for arbitrary message m, it is impossible to generate a
new valid signature on it with a PPT adversary.

C. IEEE STANDARD FOR IDENTITY-BASED SIGNATURE
We briefly introduce the IEEE standard for identity-based
signature scheme [28]. The scheme consists of the following
four algorithms:
• Setup: Given a security parameter λ, this algorithm

generates public parameters PP as follows:
a) Generates the cylic groups (G1,G2,GT) with the

same order q, and a bilinear map e : G1 ×
G2→GT .

b) Chooses two random generators Q1 ∈ G1 and
Q2 ∈ G2.

c) Selects a random secret value s in Z∗q as the secret
key of server, then computes Ppub = s · Q2 and
sets g = e(Q1,Q2).

d) Sets PP = {Ppub, g,Q1,Q2,G1,G2,GT , e}.
• Extract: Given the public parameters PP, the server’s

secret s and the user’s ID, this algorithm computes
the user’s identity hID = H1(ID), where H1 is a hash
function of {0, 1}∗ → Z

∗
q, then it outputs the user’s

private key dID = (s+ hID)−1 · Q1.
• Sign: Given the public parameters PP, the user’s pri-

vate key dID, and message m, this algorithm randomly
chooses r ∈ Zq and computes u = gr, h = H2(m, u)
and S = (r + h) · dID, where H2 is a hash function of
{0, 1}∗ × GT → Z

∗
q, then it returns σ = (h, s) as the

signature of m.
• Verify: Given the public parameters PP, the user’s

public key hID, a message m and signature σ , this
algorithm computes u′ = e(S, hID · Q2 + Ppub) · g−h,
then it returns 1 if h = H2(m, u′); otherwise, returns 0.

D. HARD RELATION
Let R be a binary relation, LR be the language for describing
the relation, then we have LR := {Y|∃y s.t. (Y, y) ∈ R}. If
LR meets the following three properties, then it is a hard
relation:

1. There exists a PPT algorithm GenR(1λ) that can
take security parameter as input and output a pair
(Y, y) ∈ R.

2. The relation R is decidable in poly-time.
3. For any PPT adversary, the probability of extracting

a valid witness y for Y ∈ LR is negligible.

E. NON-INTERACTIVE ZERO-KNOWLEDGE PROOF
A non-interactive zero-knowledge (NIZK) [29] proof scheme
consists of two algorithms: proof generate scheme π ←
Prove(Y, y) and proof verify scheme {0, 1} ← Verify(Y, π).

VOLUME 4, 2023 2719

ZHU et al.: TWO-PARTY ADAPTOR SIGNATURE SCHEME BASED ON IEEE P1363 IDENTITY-BASED SIGNATURE

With a NIZK protocol, the prover can convince the ver-
ifier that there exists a witness y for the statement Y
without leaking any additional information. The NIZK
proof used in our work needs to have the following three
properties:

1. Completeness: Verify(Y,Prove(Y, y)) = 1 for all
(Y, y) ∈ R.

2. Soundness: For any (Y, y) /∈ R, Verify(Y,Prove(Y, y))
= 0 except with negligible probability.

3. Zero-knowledge: There exists a PPT simulator S that
can output a proof π for any (Y, y) ∈ R.

IV. BASIC CONCEPTS
A. FORMAL DEFINITION
Basically, adaptor signature scheme has two steps: the signer
generates a pre-signature for a message and a commitment
of a secret value, then the person with the secret value has
ability to convert the pre-signature into a completed signa-
ture. Different from the single-party adaptor signatures, in
the two-party identity-based adaptor signatures, pre-signature
is generated with the cooperation of two parties. Meanwhile,
both the pre-signature and the signature should be valid under
the user’s identity hID. Here is the formal definition of our
two-party identity-based adaptor signature [11].
Definition 1 (Two-Party Identity-Based Adaptor

Signature): Given a hard relation R and a two-party
digital signature SIG2 = (Setup, Gen,�sign, Verify),
a two-party adaptor signature is run between par-
ties A0,A1 and consists of the following algorithms:
(Setup, Gen, GenR, pSign, pVerify, Adapt, Ext). The details
are described as follows:

• Setup(1λ): Given a system security parameter λ, this
algorithm outputs a public parameter set PP.

• Gen(PP): Given a public parameter set PP, this algo-
rithm generates the user’s private keys DA1

ID and DA2
ID,

which can be stored on two devices A1 and A2.
• GenR(1λ): Given a system security parameter λ, this

algorithm generates a hard relation statement/witness
pair (z,Y) ∈ R and a zero-knowledge proof π .

• pSign〈DA1
ID ,D

A2
ID 〉

(m, z, π): Given a message m ∈ {0, 1}∗,
the user’s private keys DA1

ID,DA2
ID, a statement z ∈ LR

and a zero-knowledge proof π , this algorithm generates
a pre-signature σ̃ with the cooperation of two devices
A1 and A2.

• pVerifyhID(m, z, σ̃): Given a message m ∈ {0, 1}∗, the
user’s identity hID, a statement z ∈ LR and a pre-
signature σ̃ , this algorithm outputs a bit b ∈ {0, 1}.
If the pre-signature is valid, then b = 1; otherwise,
b = 0.

• Adapt(σ̃ ,Y): Given a pre-signature σ̃ and a witness
Y , this algorithm generates a completed signature σ .

• Ext(σ, σ̃ , z): Given a signature σ , a pre-signature σ̃

and a hard relation statement z, this algorithm outputs
a witness Y that satisfies (z,Y) ∈ R.

B. SECURITY MODEL
Here we give the correctness and security properties of the
two-party identity-based adaptor signature [11].
Definition 2 (Two-Party Pre-Signature Correctness): A

two-party adaptor signature satisfies two-party pre-signature
correctness if for any message m ∈ {0, 1}∗ and hard relation
statement/witness pair (z,Y) ∈ R, it holds that:

Pr

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

pVerifyhID(m, PP← Setup(1λ)

z; σ̃) = 1∧ (DA1
ID,DA2

ID)← Gen(PP)

VerifyhID(m; σ) = 1 (z,Y, π)← GenR(1λ)

∧ σ̃ ←
�pSign〈DA1

ID ,D
A2
ID 〉

(m, z, π)

(z,Y ′) ∈ R σ := Adapt(̃σ ,Y)

Y ′ := Ext(σ, σ̃ , z)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 1. (1)

Then we give the definition of the security properties
for two-party adaptor signature. A two-party adaptor signa-
ture should satisfy unforgeability, similar to the definition
of EUF-CMA, this property means that if there exists a
malicious party, the party cannot generate a valid signature
without help of the other party. Compared to EUF-CMA,
the adversary in adaptor signature can additionally access
pre-signing oracles to obtain pre-signature and hard relation
statement, and it is hard for the adversary to forge a legit-
imate signature of message m. Here we give the definition
of 2-aEUF-CMA security, where “2” represents “two-party”
and “a” represents “adaptor”.
Definition 3 (2-aEUF-CMA Security): A two-party adap-

tor signature scheme aSIG2 satisfies 2-aEUF-CMA security
if for any PPT adversary A, the probability of winning
the aSigForgebA,aSIG2

experiment is negligible, means that
Pr[aSigForgebA,aSIG2

(λ) = 1] < ε(λ). The b ∈ {0, 1} marks
which party is being corrupted by the adversary, and the
detail of experiment aSigForgebA,aSIG2

is defined as follows:

1) Q := ∅: The challenger C creates an empty message
query list Qm.

2) PP← Setup(1λ): The challenger C executes Setup(1λ)

phase to output public parameters PP.

3) (DA1−b
ID ,D

A′b
ID) ← Gen(PP): The challenger C obtains

a key pair (DA1−b
ID ,D

A′b
ID) by executing Gen(PP), then

uses the DA1−b
ID to simulate the honest party P1−b

4) (DAbID)← A(PP): The challenger C forwards PP to the
adversary A to make it generates its key DAbID, therefore
simulating the malicious Party Pb.

5) (z,Y, π) ← GenR(1λ): The challenger C creates a
hard relation statement/witness pair (z,Y) ∈ R, then it
generates a zero-knowledge proof π for the relation.

6) m∗ ← AOb
�S

,Ob
�pS (hID,DAbID): Adversary A has the

ability to access signing and pre-signing oracles Ob
�S

and Ob
�pS

, where it can obtain the corresponding sig-
nature and pre-signature. Then A selects a message
m∗ that is not in the list Qm.

2720 VOLUME 4, 2023

7) σ̃ ← �A
pSign〈DA1−b

ID ,·〉.
(m∗, z, π): Adversary A obtains

the pre-signature σ̃ of message m∗.
8) σ ∗ ← AOb

�S
,Ob

�pS (σ̃ , z): With ability to call signing
oracle and pre-signing oracle, adversary A outputs a
forged signature σ ∗ under the signature σ̃ and relation
statement z.

9) Outputs {0, 1}: If the forged signature σ ∗ satisfies
VerifyhID(m∗, σ ∗) = 1 ∧ m∗ /∈ Qm, then adversary A
wins the experiment, returns 1;otherwise, returns 0.

For an adaptor signature, there has a requirement that any
valid pre-signature (even from a malicious adversary) can be
converted to a completed one, this property is defined next.
Definition 4 (Two-Party Pre-Signature Adaptability): A

two-party adaptor signature scheme aSIG2 satisfies two-
party pre-signature adaptability if for any statement/witness
pair (z,Y) ∈ R and message m ∈ {0, 1}∗, the pre-
signature σ̃ meets pVerifyhID(m, z, σ̃) = 1 and we have
Pr[VerifyhID(m, Adapt(σ̃ ,Y))] = 1.
Below is the definition of witness extractability, which

means a PPT adversary can extract the witness Y for
the message/statement (m, z) with a legitimate signature/pre-
signature pair (σ, σ̃).
Definition 5 (Two-Party Witness Extractability): A two-

party adaptor signature scheme aSIG2 satisfies Witness
Extractability if for any PPT adversary A, the probability of
winning the aWitExtA,aSIG2 experiment is negligible, means
that Pr[aWitExtA,aSIG2(λ) = 1] < ε(λ), the experiment
aWitExtA,aSIG2 is defined as follows:

1) Q := ∅: The challenger C executes Setup(1λ) phase to
generate public parameters PP.

2) PP← Setup(1λ): The challenger C executes Setup(1λ)

phase to output public parameters PP.

3) (DA1−b
ID ,D

A′b
ID) ← Gen(PP): The challenger C obtains

a key pair (DA1−b
ID ,D

A′b
ID) by executing Gen(PP), then

uses the DA1−b
ID to simulate the honest party P1−b

4) (DAbID)← A(PP): The challenger C forwards PP to the
adversary A to make it generates its key DAbID, therefore
simulating the malicious Party Pb.

5) (m∗, z∗, π)← AOb
�S

,Ob
�pS (hID,DAbID): AdversaryA has

the ability to access signing and pre-signing oracles
Ob

�S
and Ob

�pS
, where it can obtain the corresponding

signature and pre-signature. Then A selects a message
m∗ that is not in the list Q and generate a proof π for
the statement z∗.

6) σ̃ ← �A
pSign〈DA1−b

ID ,·〉.
(m∗, z∗): Adversary A obtains the

pre-signature σ̃ of message m∗.
7) σ ∗ ← AOb

�S
,Ob

�pS (σ̃ , z∗, π): With ability to call sign-
ing oracle and pre-signing oracle, adversary A outputs
a forged signature σ ∗ under the signature σ̃ and
relation statement z.

8) Y ′ := Ext(σ ∗, σ̃ , z∗): The challenger C extracts witness
Y ′ with σ ∗, σ̃ and z∗.

9) Outputs {0, 1}: If the signature σ ∗ and witness Y ′ sat-
isfies VerifyhID(m∗, σ ∗) = 1 ∧ m∗ /∈ Q ∧ (z∗,Y ′) /∈
R, then adversary A wins the experiment, returns
1;otherwise, returns 0.

Definition 6 (Security of Two-Party Adaptor Signature):
If a two-party adaptor signature scheme aSIG2 satisfies
2-aEUF-CMA security, two-party pre-signature adaptability
and two-party witness extractability, we say it is a secure
two-party adaptor signature scheme.

V. PROPOSED TWO-PARTY ADAPTOR SIGNATURE
PROTOCOL
In this section, we construct a two-party identity-based adap-
tor signature scheme for the IEEE P1363 standard. Our work
is based on the two-party P1363 signature scheme given
in [30]. The details of our proposed protocol (as shown in
Fig. 1) are given below.
• Setup: Given a security parameter λ, this algorithm

generates public parameters PP as follows:
a) Generates the cyclic groups (G1,G2,GT) with

the same order q, and a bilinear map e : G1 ×
G2 → GT .

b) Chooses two random generators Q1 ∈ G1 and
Q2 ∈ G2.

c) Selects a random secret value s in Z∗q as the secret
key of server, then computes Ppub = s · Q2 and
sets g = e(Q1,Q2).

d) Sets PP = {Ppub, g,Q1,Q2,G1,G2,GT , e}.
• Gen: Given a user’s ID and KGC’s secret key s, this

algorithm generates the user’s private keys DA1
ID and

DA2
ID as follows:
a) KGC generates a random number d1 in Z

∗
q,

computes DA1
ID = d1 · Q1.

b) KGC computes d2 = s
s+H1(ID)

d−1
1 (mod q) and

g1 = gd
−1
1 , then DA2

ID = (d2, g1).

Note that the two private keys DA1
ID and DA2

ID will be
stored on two devices A1 and A2 respectively. The
user’s private key DID = d2D

A1
ID.• GenR: Given a security parameter λ, this algorithm

generates a hard relation statement/witness pair (z,Y)

and NIZK proof π as follows:
a) Select a random value Y ∈ G1, then calculate

z = e(Y,H1(IDA) ·Q2+Ppub), where H1(IDA) is
the identity hID of the user.

b) Set the hard relation Iz := {(z,Y) : z =
e(Y,H1(IDA) · Q2 + Ppub)}.

c) Generate a zero-knowledge proof π =
Prove(z,Y).

d) Output the hard relation statement/witness pair
z,Y and the proof π .

• pSign: Given the user’s two private key DA1
ID, D

A2
ID, a

message m ∈ {0, 1}∗ and a hard relation state/proof
pair (z, π), this algorithm generates a pre-signature σ̃

as follows:

VOLUME 4, 2023 2721

ZHU et al.: TWO-PARTY ADAPTOR SIGNATURE SCHEME BASED ON IEEE P1363 IDENTITY-BASED SIGNATURE

FIGURE 1. The design of two-party P1363-based adaptor signature protocol.

1. A1 → A2 : {request}
A1 sends a signature request to A2.

2. A2 → A1 : {μ1, μ2}
i) While receiving the signature request from A1,
A2 selects two random numbers k1, k2 ∈ Z

∗
q.

ii) A2 calculates μ1 = gk1
1 , μ2 = gk2 .

iii) A2 sends {μ1, μ2} to A1.
3. A1 → A2 : {l}

i) While receiving the message from A2, A1
selects two random numbers k3, k4 ∈ Z

∗
q.

ii) A1 calculates μ = μ
k3
1 · μ2 · gk4 · z, h =

H2(m||μ) and l = (k4 − h).
iii) A1 sends {l} to A2.

4. A2 → A1 : {s1, s2}
i) While receiving the message from A1, A2

calculates s1 = k1 · d2(mod q) and s2 =
(l+ k2) · d2(mod q).

ii) A2 sends {s1, s2} to A1.
5. A1 outputs the pre-signature σ̃

i) While receiving the message from A2, A1

calculates S̃ = s1k3Q1 + s2DA1
ID.

ii) A1 outputs the pre-signature σ̃ = (h, S̃, π, z).
• pVerify: Given a user’s public key hID, a pre-signature

σ̃ , a message m, and a statement z, this algorithm
returns 1 if the pre-signature is valid; otherwise, it
returns 0. The pre-signature is verified as follows:
a) Parse σ̃ as (h, S̃, π, z).
b) Compute bzk = Verify(z, π).
c) Compute P = hID · Q2 + Ppub.

d) Compute w = e(S̃,P) · z · gh.
e) If (h = H2(m||w)) ∧ bzk = 1), then return

1;otherwise, return 0.

• Adapt: Given a pre-signature σ̃ and the witness
Y , this algorithm output the completed signature as
follows:

a) Parse σ̃ as (h, S̃, π, z).
b) Compute S = S̃+ Y .
c) Return completed signature σ = (h, S).

• Ext: Given a pre-signature σ̃ , a signature σ and a rela-
tion statement z, this algorithm computes the witness
Y as follows:

a) Compute Y = S− S̃.
b) Check whether (z,Y) ∈ Iz.
c) If yes, return Y; otherwise, return ⊥.

VI. SECURITY ANALYSIS
Here we analyze the security properties of our proposed
protocol, and prove that it achieves the security goals of
two-party adaptor signature.
Lemma 1: The two-party P1363 identity-based adaptor

signature scheme aSIGP1363
2 achieves two-party pre-signature

adaptability.
Proof: For any message m ∈ {0, 1}, hard relation Iz : (z,Y),

we know that z = e(Y,H1(IDA) ·Q2+Ppub) and S = S̃+ Y ,
if pVerifyhID(m, z, σ̃) = 1, then we have:

h = H2(m,w)

= H2

(
m, ẽ

(
S̃, hID · Q2 + Ppub

)
· z · gh

)

2722 VOLUME 4, 2023

= H2

(
m, ẽ

(
S̃+ Y, hID · Q2 + Ppub

)
· gh

)

= H2

(
m, ẽ

(
S, hID · Q2 + Ppub

) · gh
)

Obviously, the signature σ converted from pre-signature
σ̃ is a valid P1363 signature. �
Lemma 2: The two-party P1363 identity-based adap-

tor signature scheme aSIGP1363
2 achieves pre-signature

correctness.
Proof: For an arbitrary user ID, we know that DID =

d2D
A1
ID = (s + hID)−1 · Q1, hID = H1(ID) and z =

e(Y,H1(IDA) · Q2 + Ppub). For the pre-signature σ̃ = (h, S̃)
generated by pSign〈DA1

ID ,D
A2
ID 〉

(m, z, π), we need to check

h = H2(m, μ), then we have:

h = H2(m,w)

= H2

(
m, e

(
S̃,P

)
· z · gh

)

= H2

(
m, e

(
S̃, hID · Q2 + Ppub

)
· z · gh

)

= H2

(
m, ẽ

(
k3 · s1Q1 + s2DA1

ID, hID · Q2

+ s · Q2

)
· z · gh

)

= H2

(
m, ẽ

(
k1 · k3 · d2Q1 + (k4 − h+ k2) · d2D

A1
ID,

(s+ hID) · Q2

)
· z · gh

)

= H2

(
m, ẽ

(
k1 · k3 · d2 · d−1

1 DID + (k4 − h+ k2)DID,

(s+ hID) · Q2

)
· z · gh

)

= H2

(
m, ẽ

((
k1 · k3 · d−1

1 + k2 + k4 − h
)
DID,

(s+ hID) · Q2

)
· z · gh

)

= H2

(
m, ẽ

((
k1 · k3 · d−1

1 + k2 + k4 − h
)
Q1,Q2

)

·z · gh
)

= H2

(
m, gk1·k3·d−1

1 +k2+k4−h · gh · z
)

= H2(m, μ)

After checking the correctness of NIZK, we have
pVerifyhID(m, z, σ̃) = 1. As the Lemma 1 is correct, the
check VerifyP1363

hID
(m; σ) = 1 achieves for the signature σ

that Adapt(σ̃ ,Y) outputs. At last, we know that Y = S− S̃,
so the return value of algorithm Ext is the witness of Iz,
which completes the proof. �
Lemma 3: Suppose that IEEE P1363 identity-based sig-

nature scheme is SUF-CMA secure and R is a hard relation,
then our two-party P1363 identity-based adaptor signature
scheme aSIGP1363

2 satisfies 2-aEUF-CMA security.
Proof: Let A be the adversary who plays the

aSigForgebA,aSIG2
game with simulator S . We assume S can

access the signing oracle O�S(·), and S has control of hash
oracleH and pre-signing oracleO�pS . ThenAmakes signing
oracle queries(O�S), pre-signing oracle queries(O�pS) and

hash queries(H) to S . Then we give the proof by considering
of two cases: adversary corrupts device A1 or device A2. �
Adversary corrupts A1 (b = 0): As the definition of

aSigForge0
A,aSIG2

experiment, adversary A interacts with
simulator S as follows:

1) The simulator S creates an empty message query list
Qm and an empty hash query list QH .

2) The simulator S executes Setup(1λ) phase to output
public parameters PP.

3) The simulator S obtains a key pair (DA2
ID,D

A′1
ID) by

executing Gen(PP), and uses the DA2
ID to simulate the

honest device A2.
4) The simulator S forwards PP to the adversary A to

make it generates its key DA1
ID. Then A simulates the

malicious device A1.
5) The simulator S creates a hard relation state-

ment/witness pair (z,Y) ∈ R, and computes a NIZK
proof π for Iz := {(z,Y) : z = e(Y,H1(IDA) · Q2 +
Ppub)}, then sends z, π to adversary A.

6) The adversary A makes signing oracle queries(O�S),
pre-signing oracle queries(O�pS) and hash queries(H)

to S . As for the message mi ∈ {0, 1}∗ chosen by A,
S responses the queries as follows:
Hash query H(x): While querying the hash value of x,
firstly S queries list QH to see if H(x) exists; if exists,
then return it; otherwise, select a random H(x) in Z

∗
q,

then stroes (x,H(x)) in list QH and return H(x).
Sign query O0

�S
(mi): While querying the signature

value of mi, S make a signing query to oracle O�S to
get signature σ , then return σ .
The signature is distributively generated in the way
given in [30]. As the device A1 is corrupted by A,
S needs to simulate the operations that A executes
during the distributed signature generation with abil-
ity to invoke adversary A. On receiving the query of
message mi, the sign oracle O0

�S
works as follows:

a) For the query of message mi, S calls original
P1363 Sign(mi) to get signature (h, S). Then A
interacts with S as follows.
Case 1:

i) For the first message sent by S , if μ1 =
gk1

1 = gk1d
−1
1 and μ2 = gk2 , A computes μ =

μ
k3
1 ·μ2 · gk4 and generates h′, then A replies

S with (μ, k3).
ii) While getting the message from A, S sets

s1 = k−1
3 · S and replies (s1, k

−1
3) to A.

Case 2:

i) The steps described in A1 are not executed by
A and replaced by the following computation:
μ = gx, h = H2(mi, μ). Then (μ, x) is sent
to S .

ii) While getting the message from A, S selects
two random numbers s1, s2 ∈ Z

∗
q and sends

(s1, s2) to A.

VOLUME 4, 2023 2723

ZHU et al.: TWO-PARTY ADAPTOR SIGNATURE SCHEME BASED ON IEEE P1363 IDENTITY-BASED SIGNATURE

b) A finally computes signature σ ∗, then the
simulation will be terminated by S and outputs
signature σ ∗.

Pre-sign query O0
�pS

(mi, z, π): While querying the
pre-signature of mi and z, S responses as follows:

a) Queries to O0
�S

(mi) and gets the signature σ .
b) Computes S̃ = S− Y .
c) Updates the list Qm := Qm ∪ {mi}.
d) Outputs the pre-signature σ̃ = (h, S̃, π, z).

7) A chooses a challenge message m∗ ∈ {0, 1}∗ and
makes a query to S about pre-signature of (m∗, z, π),
S responses with σ̃ = O0

�pS
(m∗, z, π).

8) A generates a forged signature σ ∗ under the signature
σ̃ and relation statement z, then outputs it.

9) On receiving the σ ∗, S checks whether the signature
σ ∗ satisfies VerifyhID(m∗, σ ∗) = 1 ∧m∗ /∈ Qm. If it is
valid, returns 1; otherwise, returns 0.

While σ ∗ is legitimate and the message m∗ is not in list
Qm, S can use the message-signature pair (m∗, σ ∗) to attack
the strong unforgeability of the P1363 signature scheme.
Advantage Analysis: While simulator returns 1, adversary

can get witness Y by running Ext(σ, σ̃ , z), but the probability
is negligible. The advantage of adversary A is AdvAaSigForge =
AdvAP1363−SUF−CMA + ε(λ), which is also negligible.
Adversary corrupts A2 (b = 1): In this case most steps

are the same as the case of b = 0, but there is something
different. During the simulation of sign query O1

�S
(mi), the

signature is finally generated by S , so adversary A cannot
forge a valid signature without knowing the private key of
S . Therefore we let S abort the simulation for some random
points. S , the details are given in the description of O1

�S
(mi).

As the definition of aSigForge1
A,aSIG2

experiment, adver-
sary A interacts with simulator S as follows:

1) The simulator S creates an empty message query list
Qm and an empty hash query list QH .

2) The simulator S executes Setup(1λ) phase to output
public parameters PP.

3) The simulator S obtains a key pair (DA1
ID,D

A′2
ID) by

executing Gen(PP), and uses the DA1
ID to simulate the

honest device A1.
4) The simulator S forwards PP to the adversary A to

make it generates its key DA1
ID. Then A simulates the

malicious device A2.
5) The simulator S creates a hard relation state-

ment/witness pair (z,Y) ∈ R, and computes a NIZK
proof π for Iz := {(z,Y) : z = e(Y,H1(IDA) · Q2 +
Ppub)}, then sends z, π to adversary A.

6) The adversary A makes signing oracle queries(O�S),
pre-signing oracle queries(O�pS) and hash queries(H)

to S . As for the message mi ∈ {0, 1}∗ chosen by A,
S responses the queries as follows:
Hash query H(x): While querying the hash value of x,
firstly S queries list QH to see if H(x) exists; if exists,

then return it; otherwise, select a random H(x) in Z
∗
q,

then stroes (x,H(x)) in list QH and return H(x).
Sign query O1

�S
(mi): While querying the signature

value of mi, S make a signing query to oracle O�S to
get signature σ , then return σ .
As the device A2 is corrupted by A, S needs to simu-
late the operations that A executes during the signature
generation phase with ability to invoke adversary A. In
the simulation of sign oracle O1

�S
, S selects a random

number i ∈ {1, . . . , t(n)+1}, where t(·) represents how
many times that adversary A runs this protocol. If i
is chosen correctly, then S can perform a successful
simulation of O1

�S
. On receiving the query of message

mi, the sign oracle O1
�S

works as follows:

a) For the query of message mi, S calls original
P1363 Sign(mi) to get signature (h, S). Then A
interacts with S as below.

i) For the first message sent by A, if μ1 =
gk1

1 = gk1d
−1
1 and μ2 = gk2 , then S com-

putes μ = gk1d
−1
1 k3+k2 and generates h′, then

S sends h to A. Otherwise, the simulation
will be terminated by S .

ii) For another query of message m2, if it is the
i − th time that A runs the protocol, then
S terminates and returns ⊥. Otherwise, the
simulation continues.

b) S finally computes signature σ ∗. Then the sim-
ulation will be terminated by S and outputs
signature σ ∗.

While i ∈ {1, . . . , t(n) + 1}, adversary A will obtain
t(n) correct signatures. Therefore we get the following
equation:

μ∗ = e
(
S∗,H1(ID)Q2 + Ppub

)
gh

= e(S∗, (H1(ID)+ s)Q2)

gh

=
e
((
k1k3d

−1
1 + k2 + h

)
d1d2Q1, (H1(ID)+ s)Q2

)

gh

= g

(
k1k3d

−1
1 +k2+h

)

gh
= gk1k3d

−1
1 +k2

Pre-sign query O1
�pS

(mi, z, π): While querying the
pre-signature of mi and z, S responses as follows:

a) Queries to O1
�S

(mi) and gets the signature σ .
b) Computes S̃ = S− Y .
c) Updates the list Qm := Qm ∪ {mi}.
d) Outputs the pre-signature σ̃ = (h, S̃, π, z).

7) A chooses a challenge message m∗ ∈ {0, 1}∗ and
makes a query to S about pre-signature of (m∗, z, π),
S responses with σ̃ = O1

�pS
(m∗, z, π).

8) A generates a forged signature σ ∗ under the signature
σ̃ and relation statement z, then outputs it.

2724 VOLUME 4, 2023

9) On receiving the σ ∗, S checks whether the signature
σ ∗ satisfies VerifyhID(m∗, σ ∗) = 1 ∧m∗ /∈ Qm. If it is
valid, returns 1; otherwise, returns 0.

While σ ∗ is legitimate and the message m∗ is not in list
Qm, S can use the message-signature pair (m∗, σ ∗) to attack
the strong unforgeability of the P1363 signature scheme.
Advantage Analysis: While simulator returns 1, adversary

can get witness Y by running Ext(σ, σ̃ , z), but the probability
is negligible. Additionally, the simulator only terminates in
the sign oracle O1

�S
, while the probability is also negligible.

Thus we get the advantage of adversary A: AdvAaSigForge =
AdvAP1363−SUF−CMA + ε(λ), which is negligible.
Lemma 4: Suppose that IEEE P1363 identity-based sig-

nature scheme is SUF-CMA secure and R is a hard relation,
then our two-party P1363 identity-based adaptor signature
scheme aSIGP1363

2 satisfies two-Party Witness Extractability.
Proof: Let A be the adversary who plays the

aWitExtA,aSIG2 game with simulator S . The proof we give
here is in common with the previous proof for Lemma 3,
but the hard relation in aSigForgebA,aSIG2

is generated by
simulator S , while in the aWitExtA,aSIG2 , the witness Y is
only known to A.
We assume S can access the signing oracle O�S(·), and

S has control of hash oracle H and pre-signing oracle O�pS .
Then A makes signing oracle queries(O�S), pre-signing ora-
cle queries(O�pS) and hash queries(H) to S . Then we give
the proof by considering of two cases: adversary corrupts
device A1 or device A2.
Adversary corrupts A1 (b = 0): As the definition of

aSigForge0
A,aSIG2

experiment, adversary A interacts with
simulator S as follows:

1) The simulator S creates an empty message query list
Qm and an empty hash query list QH .

2) The simulator S executes Setup(1λ) phase to output
public parameters PP.

3) The simulator S obtains a key pair (DA2
ID,D

A′1
ID) by

executing Gen(PP), and uses the DA2
ID to simulate the

honest device A2.
4) The simulator S forwards PP to the adversary A

to make it generates its key DA1
ID. Then A simulates

the malicious device A1. Additionally, A generates a
hard relation statement/witness pair (z,Y) ∈ R, and
computes a NIZK proof π for Iz := {(z,Y) : z =
e(Y,H1(IDA) · Q2 + Ppub)}.

5) The adversary A makes signing oracle queries(O�S),
pre-signing oracle queries(O�pS) and hash queries(H)

to S . As for the message mi ∈ {0, 1}∗ chosen by A,
S responses the queries as follows:
Hash query H(x): While querying the hash value of x,
firstly S queries list QH to see if H(x) exists; if exists,
then return it; otherwise, select a random H(x) in Z

∗
q,

then stroes (x,H(x)) in list QH and return H(x).
Sign query O0

�S
(mi): While querying the signature

value of mi, S make a signing query to oracle O�S to
get signature σ , then return σ .

The way that the sign oracle O0
�S

works is described
in the proof of Lemma 3.
Pre-sign query O0

�pS
(mi, z, π): While querying the

pre-signature of mi and z, S responses as follows:
a) Gets the witness Y throuth the witness extractor

of the NIZK scheme; if (z,Y) /∈ R, terminates
and return ⊥.

b) Queries to O0
�S

(mi) and gets the signature σ .
c) Computes S̃ = S− Y .
d) Updates the list Qm := Qm ∪ {mi}.
e) Outputs the pre-signature σ̃ = (h, S̃, π, z).

6) A chooses a challenge message m∗ ∈ {0, 1}∗ and
makes a query to S about pre-signature of (m∗, z, π),
S responses with σ̃ = O1

�pS
(m∗, z, π).

7) A generates a forged signature σ ∗ under the signature
σ̃ and relation statement z, then outputs it.

8) Simulator S extracts witness Y ′ throuth Ext(σ ∗, σ̃ , z∗).
9) On receiving the σ ∗, S checks whether the signa-

ture σ ∗ and witness Y ′ satisfies VerifyhID(m∗, σ ∗) =
1 ∧ m∗ /∈ Q ∧ (z∗,Y ′) /∈ R. If it is valid, returns 1;
otherwise, returns 0.

While σ ∗ is legitimate and the message m∗ is not in list
Qm, S can use the message-signature pair (m∗, σ ∗) to attack
the strong unforgeability of the P1363 signature scheme.
Advantage Analysis: As the simulator only terminates

during the step a) of pre-sign query, and the probability
is negligible. Thus we get the advantage of adversary A
is AdvAaWitExt = AdvAP1363−SUF−CMA + ε(λ), which is also
negligible.
Adversary corrupts A2 (b = 1): In this case most steps

are the same as the case of b = 0, and we show the differ-
ences in the previous proof of Lemma 3. As the definition
of aWitExt1A,aSIG2

experiment, adversary A interacts with
simulator S as follows:

1) The simulator S creates an empty message query list
Qm and an empty hash query list QH .

2) The simulator S executes Setup(1λ) phase to output
public parameters PP.

3) The simulator S obtains a key pair (DA1
ID,D

A′2
ID) by

executing Gen(PP), and uses the DA1
ID to simulate the

honest device A1.
4) The simulator S forwards PP to the adversary A

to make it generates its key DA1
ID. Then A simulates

the malicious device A2. Additionally, A generates a
hard relation statement/witness pair (z,Y) ∈ R, and
computes a NIZK proof π for Iz := {(z,Y) : z =
e(Y,H1(IDA) · Q2 + Ppub)}.

5) The adversary A makes signing oracle queries(O�S),
pre-signing oracle queries(O�pS) and hash queries(H)

to S . As for the message mi ∈ {0, 1}∗ chosen by A,
S responses the queries as follows:
Hash query H(x): While querying the hash value of x,
firstly S queries list QH to see if H(x) exists; if exists,
then return it; otherwise, select a random H(x) in Z

∗
q,

then stroes (x,H(x)) in list QH and return H(x).

VOLUME 4, 2023 2725

ZHU et al.: TWO-PARTY ADAPTOR SIGNATURE SCHEME BASED ON IEEE P1363 IDENTITY-BASED SIGNATURE

Sign query O1
�S

(mi): While querying the signature
value of mi, S make a signing query to oracle O�S to
get signature σ , then return σ .
The way that the sign oracle O1

�S
works is described

in the proof of Lemma 3.
Pre-sign query O1

�pS
(mi, z, π): While querying the

pre-signature of mi and z, S responses as follows:

a) Gets the witness Y throuth the witness extractor
of the NIZK scheme; if (z,Y) /∈ R, terminates
and return ⊥.

b) Queries to O1
�S

(mi) and gets the signature σ .
c) computes S̃ = S− Y .
d) updates the list Qm := Qm ∪ {mi}.
e) outputs the pre-signature σ̃ = (h, S̃, π, z).

6) A chooses a challenge message m∗ ∈ {0, 1}∗ and
makes a query to S about pre-signature of (m∗, z, π),
S responses with σ̃ = O1

�pS
(m∗, z, π).

7) A generates a forged signature σ ∗ under the signature
σ̃ and relation statement z, then outputs it.

8) Simulator S extracts witness Y ′ throuth Ext(σ ∗, σ̃ , z∗).
9) On receiving the σ ∗, S checks whether the signature

σ ∗ satisfies VerifyhID(m∗, σ ∗) = 1 ∧m∗ /∈ Qm. If it is
valid, returns 1; otherwise, returns 0.

While σ ∗ is legitimate and the message m∗ is not in
list Qm, S can use the message-signature pair (m∗, σ ∗)
to attack the strong unforgeability of the P1363 signature
scheme.
Advantage Analysis: The simulator terminates in two

cases: step a) of pre-sign query and step ii) of sign
oracle O1

�S
. Both of these two cases have a negligible

probability. Thus we get the advantage of adversary A
is AdvAaWitExt = AdvAP1363−SUF−CMA + ε(λ), which is also
negligible.
Lemma 5: Suppose that two-party IEEE P1363 identity-

based adaptor signature scheme satisfies 2-aEUF-CMA
security, two-party pre-signature adaptability and two-party
witness extractability, then the two-party adaptor signature
scheme is secure.
Proof: According to Lemma 1-4 and Definition 6, the

two-party P1363 identity-based adaptor signature scheme is
secure. �

VII. EXPERIMENTAL EVALUATION
We implemented our protocol with the MIRACL library,
including the core algorithms of the scheme and NIZK
proof. The operating environment is a macOS desktop
computer with Intel Core i5-1038NG7 16.00GB RAM.
Then we analyze the performance of our 2-P1363-based
adaptor signature scheme and make a comparison with
2-Schnoor-based, ECDSA-based and SM2-based adaptor sig-
natures, where “2” represents “two-party”. We first give
a complexity analysis of main algorithm in our proto-
col, then we make a timing benchmark to show the
computation times, finally we analyze the communication
cost.

FIGURE 2. Comparison of different schemes in execution time (milliseconds).

A. COMPLEXITY ANALYSIS
We make a complexity analysis of five phases in these four
protocols, including GenR, pSign, pVerify, Adapt and Ext.
The Setup and Gen phases are the same as the original signa-
ture scheme, which can be ignored. Result of the comparison
is shown in Table 1. We use M1,M2,MT ,Mq to represent
the multiplication operation in G1,G2,GT and Z

∗
q respec-

tively, the addition operation in G1,G2 and Z
∗
q is denoted

as A1,A2 and Aq. We also need exponentiation operation in
GT and modular inversion in Z

∗
q, which is represented by

ET and Minv. The pairing operation is denoted as P, and the
H is a hash operation.

Meanwhile, we use Gπ and Vπ to represent NIZK proof
generation and verification. As for the NIZK proof scheme
used in our evaluation, we choose the �-protocol for
ECDSA-based, SM2-based and our 2-P1363-based adaptor
signature, which is efficient and practical for our application.
In the pSign phase of our protocol, the generation of

signature is distributed, so we spilt it into 4 steps, step 1
refers to the computation by A2 after receiving a request from
A1, step 2 refers to the computation by A1 after receiving
first message from A2, step 3 refers to the computation by
A2 after receiving the message from A1, and step 4 refers
to the computation by A1 after getting all messages from
A2. Due to the use of bilinear pairs, the complexity of our
scheme in GenR phase and pVerify phase is obviously higher.
Further more, the distributed pSign phase also requires more
computation, especially the exponentiation operation in GT .

B. TIMING BENCHMARK
Fig. 2 shows the execution time of each procedures, note
that we execute each entry for 10000 times and compute the
average value. We choose BN Curve over GF(p) (256-bit
modulus p, k = 12) for implemention.
The result shows the execution time of our protocol in

GenR, pSign and pVerify phases are higher, due to the extra
expensive pairing and exponentiation operation in GT and
multiplication operation in G2. The cost of GenR phase
is about three times than ECDSA-based and SM2-based
schemes. The pVerify phase in our protocol needs almost
ten times of the execution time than ECDSA-based and

2726 VOLUME 4, 2023

TABLE 1. Complexity analysis of algorithms.

TABLE 2. Communication costs of different schemes.

SM2-based schemes. The pSign phase is distributed in our
scheme, so the comparison is not important here. Finally,
the performance in Adapt and Ext phases are actually the
same in all these four schemes, and the execution time can
be ignored.

C. COMMUNICATION COST
As for the communication cost, we mainly consider the pre-
signature size here, as the key size and completed signature
size of these schemes are the same as the original signature
schemes. Note that the elements in Z

∗
q is 32 bytes, and the

size for elements in G1 and GT is 64 bytes.
The pre-signature size of ECDSA-based and SM2-based

schemes are 4|Z∗q|+|G1|, while the NIZK proof size is 2|Z∗q|.
As the 2-Schnoor-based scheme does not need a proof, the
pre-signature size of it is 2|Z∗q|. The pre-signature in our
scheme is (h, S̃, π, z), and (h, S̃, z) are elements in Z

∗
q,G1

and GT respectively. Additionally, the NIZK proof size in our
protocol is |Z∗q|+2|GT |, so the pre-signature size in our pro-
tocol is 2|Z∗q|+ |G1|+3|GT |. We give the comparison result
in Table 2. With the additional NIZK proof, our protocol is
surely with a larger pre-signature size than 2-schnoor-based
protocol. While our protocol is designed for identity-based
application, we think the extra costs is acceptable.

VIII. CONCLUSION
In this paper, we propose a secure two-party adaptor signa-
ture based on IEEE P1363 standard identity-based signature
scheme. Specifically, the pre-signature in our protocol is
generated with interactions of two devices, and cannot be
computed from only one device (lost or stolen). We formally
prove that our protocol satisfies 2-aEUF-CMA security,
two-party pre-signature adaptability and two-party witness

extractability. The performance evaluation shows that the
overhead of our protocol is acceptable. As for future work,
we will try to design adaptor blind signature and ring adaptor
signature based on our protocol.

DATA AVAILABILITY
The experimental data used to support the findings of this
study are available from the corresponding author upon
request.

CONFLICTS OF INTEREST
The authors declare that they have no conflicts of interest.

REFERENCES
[1] J. Xie, F. R. Yu, T. Huang, R. Xie, J. Liu, and Y. Liu, “A survey

on the scalability of blockchain systems,” IEEE Netw., vol. 33, no. 5,
pp. 166–173, Sep./Oct. 2019.

[2] A. Poelstra. “Scriptless scripts.” 2017. Accessed: Aug. 10, 2023.
[Online]. Available: http://diyhpl.us/wiki/transcripts/layer2-summit/
2018/scriptless-scripts/

[3] G. Malavolta, P. Moreno-Sanchez, A. Kate, M. Maffei, and S. Ravi,
“Concurrency and privacy with payment-channel networks,” in Proc.
ACM SIGSAC Conf. Comput. Commun. Security, 2017, pp. 455–471.

[4] L. Aumayr et al., “Generalized channels from limited blockchain
scripts and adaptor signatures,” IACR, Bellevue, WA, USA,
Rep. 2020/476, 2020. [Online]. Available: https://eprint.iacr.org/2020/
476.

[5] C. Decker and R. Wattenhofer, “A fast and scalable payment network
with bitcoin duplex micropayment channels,” in Proc. Symp. Self-
Stabil. Syst., 2015, pp. 3–18.

[6] R. Yu, G. Xue, V. T. Kilari, D. Yang, and J. Tang, “CoinExpress: A
fast payment routing mechanism in blockchain-based payment channel
networks,” in Proc. 27th Int. Conf. Comput. Commun. Netw. (ICCCN),
2018, pp. 1–9.

[7] M. Herlihy, “Atomic cross-chain swaps,” in Proc. ACM Symp. Princ.
Distrib. Comput., 2018, pp. 245–254.

[8] A. Deshpande and M. Herlihy, “Privacy-preserving cross-chain atomic
swaps,” in Proc. Int. Conf. Financ. Cryptogr. Data Security, 2020,
pp. 540–549.

[9] S. A. Thyagarajan, G. Malavolta, and P. Moreno-Sanchez, “Universal
atomic swaps: Secure exchange of coins across all blockchains,” in
Proc. IEEE Symp. Security Privacy (SP), 2022, pp. 1299–1316.

[10] G. Malavolta, P. Moreno-Sanchez, C. Schneidewind, A. Kate, and
M. Maffei, “Anonymous multi-hop locks for blockchain scalability and
interoperability,” IACR, Bellevue, WA, USA, Rep. 2018/472, 2018.

[11] A. Erwig, S. Faust, K. Hostáková, M. Maitra, and S. Riahi, “Two-
party adaptor signatures from identification schemes,” in Proc. IACR
Int. Conf. Public-Key Cryptogr., 2021, pp. 451–480.

[12] P. Sharma, N. R. Moparthi, S. Namasudra, V. Shanmuganathan, and
C.-H. Hsu, “Blockchain-based IoT architecture to secure healthcare
system using identity-based encryption,” Expert Syst., vol. 39, no. 10,
2022, Art. no. e12915.

VOLUME 4, 2023 2727

ZHU et al.: TWO-PARTY ADAPTOR SIGNATURE SCHEME BASED ON IEEE P1363 IDENTITY-BASED SIGNATURE

[13] D. Pavithran, J. N. Al-Karaki, and K. Shaalan, “Edge-based
blockchain architecture for event-driven IoT using hierarchical iden-
tity based encryption,” Inf. Process. Manage., vol. 58, no. 3, 2021,
Art. no. 102528.

[14] Z. Wan, W. Liu, and H. Cui, “HIBEChain: A hierarchical identity-
based blockchain system for large-scale IoT,” IEEE Trans. Dependable
Secure Comput., vol. 20, no. 2, pp. 1286–1301, Mar./Apr. 2023.

[15] IEEE Standard Specifications for Public-Key Cryptography, IEEE
Standard 1363-2000, 2000.

[16] L. Fournier. “One-time verifiably encrypted signatures A.K.A. adap-
tor signatures.” 2020. Accessed: Aug. 10, 2023. [Online]. Available:
https://api.semanticscholar.org/CorpusID:212743751

[17] S. Thyagarajan and G. Malavolta, “Lockable signatures for
blockchains: Scriptless scripts for all signatures,” in Proc. IEEE Symp.
Security Privacy, 2021, pp. 937–954.

[18] J. B. Klamti and M. A. Hasan, “Post-quantum two-party adaptor
signature based on coding theory,” Cryptography, vol. 6, no. 1, p. 6,
2022.

[19] X. Qin, H. Cui, and T. H. Yuen, “Generic adaptor signature,” IACR,
Bellevue, WA, USA, Rep. 2021/161, 2021.

[20] W. Dai, T. Okamoto, and G. Yamamoto, “Stronger security and generic
constructions for adaptor signatures,” in Proc. Int. Conf. Cryptol.,
2022, pp. 52–77.

[21] P. Moreno-Sanchez, A. Blue, D. V. Le, S. Noether, B. Goodell, and
A. Kate, “DLSAG: Non-interactive refund transactions for interop-
erable payment channels in monero,” in Proc. Int. Conf. Financ.
Cryptogr. Data Security, 2020, pp. 325–345.

[22] E. Tairi, P. Moreno-Sanchez, and M. Maffei, “A2L: Anonymous atomic
locks for scalability in payment channel hubs,” in Proc. IEEE Symp.
Security Privacy (SP), 2021, pp. 1834–1851.

[23] M. F. Esgin, O. Ersoy, and Z. Erkin, “Post-quantum adaptor signatures
and payment channel networks,” in Proc. Eur. Symp. Res. Comput.
Security, 2020, pp. 378–397.

[24] E. Tairi, P. Moreno-Sanchez, and M. Maffei, “Post-quantum adaptor
signature for privacy-preserving off-chain payments,” in Proc. Int.
Conf. Financ. Cryptogr. Data Security, 2021, pp. 131–150.

[25] V. Gilchrist, “An isogeny-based adaptor signature using SQIsign,” M.S.
thesis, Dept. Combinatorics Optim., Univ. Waterloo, Waterloo, ON,
Canada, 2022.

[26] R. Dutta, R. Barua, and P. Sarkar, “Pairing-based cryptographic
protocols: A survey,” IACR, Bellevue, WA, USA, Rep. 2004/064,
2004.

[27] J. Katz, “Digital signatures: Background and definitions,” in Digital
Signatures. Berlin, Germany: Springer, 2010.

[28] P. S. Barreto, B. Libert, N. McCullagh, and J.-J. Quisquater, “Efficient
and provably-secure identity-based signatures and signcryption from
bilinear maps,” in Proc. 11th Int. Conf. Theory Appl. Cryptol. Inf.
Security, Chennai, India, Dec. 2005, pp. 515–532.

[29] M. Blum, P. Feldman, and S. Micali, “Non-interactive zero-
knowledge and its applications,” in Providing Sound Foundations for
Cryptography: On the Work of Shafi Goldwasser and Silvio Micali.
New York, NY, USA: ACM, 2019, pp. 329–349.

[30] D. He, Y. Zhang, D. Wang, and K.-K. R. Choo, “Secure and efficient
two-party signing protocol for the identity-based signature scheme
in the IEEE P1363 standard for public key cryptography,” IEEE
Trans. Dependable Secure Comput., vol. 17, no. 5, pp. 1124–1132,
Sep./Oct. 2020.

XINJIE ZHU received the bachelor’s degree
from the School of Cyber Engineering, Xidian
University, Xi’an, China, in 2020. He is cur-
rently pursuing the master’s degree with the Key
Laboratory of Aerospace Information Security
and Trusted Computing Ministry of Education,
School of Cyber Science and Engineering, Wuhan
University, Wuhan, China. His research interests
include cryptographic protocols and blockchain.

DEBIAO HE (Member, IEEE) received the Ph.D.
degree in applied mathematics from the School
of Mathematics and Statistics, Wuhan University,
Wuhan, China, in 2009, where he is currently
a Professor with the School of Cyber Science
and Engineering. He has authored or coau-
thored more than 100 research papers in refer-
eed international journals and conferences, such
as IEEE TRANSACTIONS ON DEPENDABLE AND

SECURE COMPUTING, IEEE TRANSACTIONS ON

INFORMATION FORENSICS AND SECURITY, and
Usenix Security Symposium. His main research interests include cryptogra-
phy and information security, in particular, cryptographic protocols. He is on
the editorial board of several international journals, such as ACM Distributed
Ledger Technologies: Research & Practice, Frontiers of Computer Science,
and IEEE TRANSACTIONS ON COMPUTERS.

ZIJIAN BAO received the M.S. degree in com-
puter application technology from the School of
Computer Science and Engineering, Northeastern
University, Shenyang, China, in 2019. He is cur-
rently pursuing the Ph.D. degree with the Key
Laboratory of Aerospace Information Security
and Trusted Computing Ministry of Education,
School of Cyber Science and Engineering, Wuhan
University, Wuhan, China. His research interests
include cryptographic protocols.

CONG PENG received the Ph.D. degree in applied
mathematics from the School of Mathematics
and Statistics, Wuhan University, Wuhan, China,
in 2021, where he is currently an Associate
Professor with the School of Cyber Science and
Engineering. His research interests mainly include
applied cryptography and data security.

MIN LUO received the Ph.D. degree in computer
science from Wuhan University, Wuhan, China,
in 2003, where he is currently a Professor with
the School of Cyber Science and Engineering.
He has authored or coauthored more than 50
research papers in refereed international journals
and conferences, such as IEEE Symposium on
Security and Privacy and IEEE TRANSACTIONS

ON INFORMATION FORENSICS AND SECURITY.
His research interests include cryptography and
information security, in particular, blockchain
security.

2728 VOLUME 4, 2023

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Helvetica-Condensed-Bold
 /Helvetica-LightOblique
 /HelveticaNeue-Bold
 /HelveticaNeue-BoldItalic
 /HelveticaNeue-Condensed
 /HelveticaNeue-CondensedObl
 /HelveticaNeue-Italic
 /HelveticaNeueLightcon-LightCond
 /HelveticaNeue-MediumCond
 /HelveticaNeue-MediumCondObl
 /HelveticaNeue-Roman
 /HelveticaNeue-ThinCond
 /Helvetica-Oblique
 /HelvetisADF-Bold
 /HelvetisADF-BoldItalic
 /HelvetisADFCd-Bold
 /HelvetisADFCd-BoldItalic
 /HelvetisADFCd-Italic
 /HelvetisADFCd-Regular
 /HelvetisADFEx-Bold
 /HelvetisADFEx-BoldItalic
 /HelvetisADFEx-Italic
 /HelvetisADFEx-Regular
 /HelvetisADF-Italic
 /HelvetisADF-Regular
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

