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ABSTRACT Technology solutions must effectively balance economic growth, social equity, and environ-
mental integrity to achieve a sustainable society. Notably, although the Internet of Things (IoT) paradigm
constitutes a key sustainability enabler, critical issues such as the increasing maintenance operations,
energy consumption, and manufacturing/disposal of IoT devices have long-term negative economic, soci-
etal, and environmental impacts and must be efficiently addressed. This calls for self-sustainable IoT
ecosystems requiring minimal external resources and intervention, effectively utilizing renewable energy
sources, and recycling materials whenever possible, thus encompassing energy sustainability. In this work,
we focus on energy-sustainable IoT during the operation phase, although our discussions sometimes
extend to other sustainability aspects and IoT lifecycle phases. Specifically, we provide a fresh look
at energy-sustainable IoT and identify energy provision, transfer, and energy efficiency as the three
main energy-related processes whose harmonious coexistence pushes toward realizing self-sustainable
IoT systems. Their main related technologies, recent advances, challenges, and research directions are
also discussed. Moreover, we overview relevant performance metrics to assess the energy-sustainability
potential of a certain technique, technology, device, or network, together with target values for the next
generation of wireless systems, and discuss protocol, integration, and implementation issues. Overall, this
paper offers insights that are valuable for advancing sustainability goals for present and future generations.

INDEX TERMS Energy efficiency, energy harvesting, energy sustainability, energy transfer, green wireless
communication, IoT, machine learning.

I. INTRODUCTION

THE VISION of a sustainable society is relentlessly
pursued by industry, academic research, and regulatory

bodies following the famous United Nations’ sustainable
development goals introduced in 2015.1 In general,

1. Refer to https://sdgs.un.org/goals.

sustainability is stimulated by simultaneously developing
the economy, promoting social equity, and protecting the
integrity of the environment for current and future genera-
tions [1], as captured by the so-called sustainability triangle
illustrated in Figure 1. Therefore, associating sustainabil-
ity solely with environmentally conscious (also referred
to as “green”) practices is a widespread misconception
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FIGURE 1. Sustainability triangle (with economy, environment, and society as
corners) and energy sustainability supported by EP, ET, and EE processes and related
technologies.

since sustainability comprises Economic, Societal (Equity),
and Environmental factors (also known as the 3 E’s of
sustainability).
Quantifying/measuring and developing standardized met-

rics and benchmarks for sustainability is quite a challenging
endeavor because i) sustainability is a subjective concept that
can be assessed differently by various stakeholders; ii) the
interdependencies, trade-offs, and feedback loops between
the multiple interconnected systems and performance corners
(economic, societal, and environmental) must be captured;
and iii) pursuing specific long-term perspectives while mea-
suring and tracking progress in the short term may not be easy
and viable in general. This is why, despite numerous attempts
over the years, e.g., [2], [3], [4], [5], [6], [7], [8], [9], none
of them have gained significant traction.
Regardless of the diverse assessment criteria and meth-

ods, sustainability enablers are generally well-established
and include Internet of Things (IoT) technologies [10], [11],
[12], [13], [14], [15], [16], [17], [18], [19], [20], [21], [22],
[23], [24], [25], [26]. Specifically, IoT solutions promote
i) economic development (by enabling automation, facilitat-
ing accurate decision-making via massive data collection
and real-time processing, optimizing resource usage and
efficiency, improving maintenance processes, and reducing
systems’ downtime); ii) social equity and well-being (by
providing enhanced safety and security measures against
potential safety hazards or security breaches and by facili-
tating flexibility and barrier-free experience to the end users
via the ubiquitous provision of services and the exploitation
of remote-controlled or completely autonomous systems);
and iii) environment protection (by optimizing energy usage
and reducing waste/pollution); thus advancing sustainability
goals.
Notably, IoT systems are turning wireless connectivity into

a basic utility, like water and electricity, while becoming
increasingly massive [18], [20]. Specifically, the number of

IoT devices is forecast to almost triple from 9.7 billion in
2020 to more than 29 billion IoT devices in 20302 to support
sustainable agriculture [13], [23], [27], [28], [29], trans-
portation [10], [13], [14], manufacturing [11], [26], wireless
charging [13], [15], [16], [21], [22], [26], e-health [12],
[13], [23], [30], cities [12], [13], [14], [31], [32], [33],
water/air/energy management [13], [14], [15], [23], [33],
[34], [35], computing [10], [12], [14], [15], [36], [37], and
many other use cases. Interestingly, this massive IoT growth
poses sustainability challenges on its own mostly due to the
increased maintenance operations, energy consumption (EC)
to charge the IoT devices but also to store and process the
massive amount of IoT data at the data and computing cen-
ters, and manufacturing/disposal of IoT devices, which may
have long-term negative economical, societal, and environ-
mental impacts. This calls for self-sustainable IoT ecosys-
tems, which require minimal external resources or interven-
tion and can function independently by utilizing renewable
energy sources and recycling materials whenever possible.
Notice that truly self-sustainable IoT approaches must con-
sider sustainability aspects along the entire IoT product life-
cycle, i.e., planning, manufacturing, deployment, operation
(including the target use case), maintenance, and disposal.

A. ENERGY-SUSTAINABLE IOT ECOSYSTEM
Undoubtedly, one of the critical aspects of self-sustainable
IoT systems is energy. Self-sustainable solutions must be
energy-sustainable, which entails green3 energy autonomy
when considering solely the operation phase of an IoT prod-
uct lifecycle. Energy-sustainable IoT operation is precisely
the focus of this work, although our discussions some-
times extend to other sustainability aspects and IoT lifecycle
phases. Readers interested in specific discussions on sustain-
ability at planning, manufacturing, deployment, maintenance,
and disposal phases are encouraged to refer to [11], [26],
[33], [38], [39], [40], [41], [42], [43].
The main energy processes that are present in an energy-

sustainable IoT ecosystem are illustrated in Figure 1 together
with the sustainability triangle and discussed below.
Energy Provision (EP): refers to the charging process(es)

exploiting green energy sources. Currently, the information
and communication technology industry accounts for
1 − 1.5% of the global electricity use [44], a figure that could
rise to nearly 4% considering the increasing traffic demands
at the transmission networks and the computation require-
ments at the data centers [45]. Consequently, the implementa-
tion of sustainable energy in this sector will have a significant
impact on the environment considering that the current aver-
age global carbon intensity factor4 is approximately 0.441 kg
of CO2 emissions per kWh. Furthermore, certain EP imple-
mentations enable the production of electricity at a local
level, thereby making electricity (and also information and

2. Refer to https://www.statista.com/statistics/1183457/iot-connected-
devices-worldwide.

3. Green energy refers to energy from renewable sources.
4. Refer to https://ourworldindata.org/grapher/carbon-intensity-electricity.
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communication technology services) accessible to remote
communities.
Energy Transfer (ET): refers to the intentional movement

of energy from one device/system to another. This is
required, for instance, when green energy sources are not
available for direct exploitation (or provide insufficient
energy). In such cases, another device/system powered by
green sources can transfer such required energy. The global
market projections indicate a significant increase in the value
of ET technologies, reflecting the growing interest in this
field. As per [46], the global market of ET is projected to
surge from USD $5, 705.1 million in 2020 to $35, 226.4 mil-
lion by 2030, with a resulting average annual growth rate
of 21.3%. Consequently, technological breakthroughs in ET
will generate new business opportunities, enable previously
infeasible IoT use cases, and facilitate the ubiquity of ET
services across the globe.
Energy Efficiency (EE): refers to the ability of a

device/system/process to perform its intended function with
minimal energy and thus is a measure of how effectively
energy is used to achieve a desired outcome [47]. Obviously,
EE directly impacts the environment and economy sustain-
ability corners as it pushes to minimize EC and processing,
i.e., toward more responsible energy usage. Notably, an ambi-
tious goal for the sixth generation (6G) of wireless systems is
to realize 10−100-fold EE gains with respect to the current
fifth-generation (5G) networks [48]. Notice that EE designs
are often low-complexity/cost, thus promoting sustainability
in other IoT lifecycle phases as well.
The harmonious coexistence of the above processes

ultimately pushes to zero dirty-EC, thus, realizing truly
energy-sustainable IoT systems.

B. CONTRIBUTIONS & ORGANIZATION OF THIS WORK
The realization of energy-sustainable IoT connectivity
depends critically on the technological advancements in
the EP, ET, and EE processes, and their holistic integra-
tion. Notably, the related state-of-the-art discussions are
sparse in the literature as most works focus on a specific
enabling technology. Only a few other works, such as those
listed in Table 1, have a wider scope, although still lim-
ited in terms of technology enablers, recent advances, key
performance indicators (KPIs), challenges, and/or research
directions, and their link to sustainability. Moreover, they
generally lack clarity regarding the role or classification
of the discussed technologies/approaches toward supporting
(self)-sustainable IoT connectivity, e.g., by associating them
with the corresponding EP, ET, and EE processes.
Our work aims to address the aforementioned research

gap by making the following contributions:

• We provide a fresh look at energy-sustainable IoT.
Moreover, we identify EP, ET, and EE as the three main
energy-related processes whose harmonious coexistence
pushes toward realizing self-sustainable IoT systems.
This is mostly covered in Section I.

• We discuss the main technologies, recent advances,
and challenges and associated research directions
for EP (Section II), ET (Section III), and EE
(including communication (Section IV) and learn-
ing/computation (Section V)-related aspects processes
to support sustainable IoT connectivity.

• We present a set of energy-related performance metrics
to assess the absolute/relative performance potential of a
certain technique, technology, device, or network. They
are classified as i) energy conversion and transfer, ii)
energy storage and consumption, iii) EE ratio (EER),
and iv) other metrics. Also, we overview related KPIs
for the next generation of wireless systems. This is
comprehensively covered in Section VI.

• We discuss the integration of the surveyed technologies,
suitable protocols and cross-layer designs, scalability
issues, tools and testing/validation frameworks, and real-
world IoT implementations targeting energy-sustainable
IoT ecosystems. This, and corresponding challenges and
opportunities, are covered in Section VII.

In addition to these, we summarize the key relevant chal-
lenges and research directions both per technology and at
the system level in Section VIII. Figure 2 illustrates how the
structure of the paper covers the integration of the EP, ET,
and EE processes. Finally, Table 2 lists the acronyms used
throughout this article in alphabetical order.

II. ENERGY PROVISION (EP)
The need for a reliable energy supply to power the IoT
has made EH technologies appealing to reduce/eliminate the
need for batteries. There are readily available energy sources
in our environment such as sunlight, wind, heat, electromag-
netic (EM) radiation, and many others. Table 3 summarizes
the advantages, limitations, and attractive use cases for the
EH technologies covered in this section.
To power devices’ electronics, EH circuits must transform

the various energy forms into electric energy. For this, the
architecture of a generic EH device, illustrated in Figure 3,
consists of three main components:

• transducer, which turns a physical variable (or its
variations) into electricity;

• power management unit, which accommodates the out-
put signal of the transducer to power the devices’
electronics and/or charge the storage element. One
important function of this block is to dynamically match
the output impedance of the transducer to a variable
input impedance of a rectifying circuit or other device’s
peripherals;

• energy storage component, e.g., a battery or a super-
capacitor, which buffers the variations of the ambient
energy. We refer the reader to Section VI-B for more
details on this component.

A. LIGHT-BASED EH
Light-based EH systems exploit the photovoltaic effect to
generate electricity from light using photovoltaic cells (PVs).

VOLUME 4, 2023 2611
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TABLE 1. Representative survey/overview/tutorial papers related to energy-sustainable IoT connectivity (2017-2023).

Notice that sunlight can provide 100 mW/cm2 of average
power density (APD) outdoors (only during the daytime),
whereas combined artificial light and indirect sunlight can
illuminate indoors with 100 μW/cm2 APD [49]. This opens
the opportunity for indoor sensors illuminated by artificial
light sources [50], a mixture of artificial and sunlight, e.g., in

asset tracking [51], and for those in remote places exposed
to sunlight with high probability, e.g., sensor and base sta-
tions (BSs) in smart agriculture applications [52]. However,
these reference values can change depending on the geo-
graphic location, weather conditions, and indoor working
hours. Increasing the conversion efficiency (CE) of PVs

2612 VOLUME 4, 2023



FIGURE 2. Integration of the EP, ET, and EE processes throughout the structure of the paper. The terms in brackets refer to KPIs, which are discussed in Section VI.

under different ambient light conditions is key for reducing
the footprint, increasing the cost-effectiveness, and accel-
erating the adoption of light-based EH systems. In this
front, multi-junction PVs, which, as shown in Figure 4a,
are constructed by stacking multiple p-n junctions, become
appealing as each layer is optimized for harvesting at dif-
ferent wavelength regions, thus, increasing total harvested
energy [53]. However, multi-junction PVs are challenging
and expensive to manufacture, which motivated researchers
to propose the replacement of some silicon layers with
perovskite PVs. Perovskite-based multi-junction cells facil-
itate tuning the optical properties of the PVs for improved
response in the solar spectrum and lower the manufacturing
costs considerably [54]. Unfortunately, perovskite PVs’ insta-
bility in real-life conditions significantly degrades their CE
over the long-term (compared to silicon PVs), which makes
them (currently) a less favorable option for widespread
use [55].
Concentrator photovoltaics (CPVs) are an alternate solu-

tion to boost the harvested energy. This system, as shown in
Figure 4b, relies on a built-in light concentrator to focus the
incoming light from multiple directions on a very small semi-
conductor area [56]. This eliminates the need for complex
electro-mechanical tracking mechanisms, which increase the
operational expenditure, aka OpEx, and limit the possible
use cases, such as in tiny Bluetooth transmitters, due to
the resulting heavier design and moving parts [57]. Note
that a high concentration of sunlight increases the operating
temperature of CPVs, thus decreasing their efficiency.
In general, the seamless integration of light-based EH with

the corresponding application is required. This is favored

by CPVs, which allow the miniaturization of light-based
EH systems to the millimeter and sub-millimeter scale with
reduced manufacturing costs [58]. Recent developments even
allow the implementation of flexible CPVs accommodat-
ing multiple PV modules in a small surface, leading to
improved performance and seamless integration with a multi-
tude of device designs [59]. Moreover, thin-film PVs improve
the integration capabilities by allowing the deployment of
light-based EH systems on complex-shaped surfaces such
as cars’ roofs and umbrellas [60]. In this regard, the recent
introduction of organic and perovskite PVs permits printing
PVs on practically any surface (e.g., check the IoT device
in [61]) without impacting their mechanical properties or
transparency [62]. Despite their current low efficiency, the
abundance of required raw materials, low-cost and scal-
able manufacturing process, and the possibility of using
biodegradable materials, make these cells a green choice
for future EH IoT implementations.

B. HEAT-BASED EH
Heat-based EH exploits temperature changes in the sur-
rounding environment [63]. Specifically, thermoelectric gen-
erators (TEGs) turn spatial gradients of temperature on
the device’s surface into electric energy. TEGs work on
the principle of the Seebeck effect, due to which a
pair of dissimilar materials exposed to different temper-
atures generate electricity [64]. The basic TEG’s archi-
tecture is illustrated in Figure 5a and consists of a set
of n- and p-type semiconductors connected electrically in
series, and thermally in parallel. To maximize the out-
put power, one side is connected to a heat sink which

VOLUME 4, 2023 2613
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TABLE 2. List of most common acronyms.

increases the temperature difference with respect to the
side exposed to the heat source. In practice, an array
of thin-film TEGs becomes more appealing as one can
accommodate more devices per unit volume, thus increasing

the harvested energy [65]. Moreover, the miniaturization of
the TEGs makes heat-based EH difficult since a very small
surface area may not suffice to capture spatial temperature
gradients.

2614 VOLUME 4, 2023



TABLE 3. Comparison among EP technologies.

FIGURE 3. Anatomy of an EH device.

FIGURE 4. Efficient light-based EH: (a) multi-junction PV and (b) CPVs.

Pyroelectric generators are an alternate implementation
of heat-based EH that can transform temporal temperature
variations into electricity. In principle, pyroelectric mate-
rials have an asymmetric crystallographic structure whose
charges’ disposition changes in response to a temperature
variation [66]. Figure 5b illustrates the basic architecture

FIGURE 5. Basic architecture of (a) heat-based EH and (b) pyroelectric generator.

and operating principle of a pyroelectric generator. When the
material is heated, its lattice structure expands creating more
space for the charges to move, which weakens the polariza-
tion. On the contrary, the entire structure shrinks when the
material is cooled, thus reinforcing the lattice asymmetry
and increasing the spontaneous polarization of the material.
In either case, the temperature variations will cause a flow
of electrons between the electrodes to compensate for the
new charges’ disposition in the crystal.
Heat-based EH technologies are especially useful

for waste heat recovery, e.g., in automotive applica-
tions [67], for powering wearables (using the tempera-
ture changes in the human body) [68], and in industrial
facilities [69].

C. MICROBIAL FUEL CELLS (MFCS)
MFCs exploit bioelectrochemical conversion to harness the
energy resulting from the metabolic processes of microor-
ganisms to generate electricity. MFCs are useful in such
scenarios where the devices interact with organic matter,
such as compost, wastewater, and ponds [70].
Notice that MFCs require a continuous supply of fresh

materials to prevent the microorganism from depriving the
available organic matter and hence stopping the electricity
generation. To solve this problem, plant MFCs leverage the
plants’ root exudates and rhizodeposits, resulting from the
photosynthesis process, to continuously feed the microor-
ganisms [71], as illustrated in Figure 6. Plant MFCs can
be regarded as a form of converting the sunlight stored as
chemical energy in plants into electricity. Factors such as
plant species, weather conditions, soil nutrients, and micro-
bial diversity heavily determine the lifetime and output power
of this technology [71].
Further development directions focus on boosting the

output power and lowering the manufacturing costs of cur-
rent MFCs. In this regard, the authors in [72] showed
that stacking multiple MFCs boosts the CE compared
to individual MFCs. Moreover, the authors in [73], [74]
discussed how to build cost-effective MFCs as well as
key properties of the components such as high conductiv-
ity, large surface area, porosity, durability, and corrosion
resistance.

VOLUME 4, 2023 2615
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FIGURE 6. Plant MFC operating principle.

D. VIBRATION-BASED EH (VEH)
VEH is the process of converting mechanical energy in the
form of vibration (including acoustic vibrations), impact,
deformation, or friction into electric energy. As Figure 7
shows, there are four main types of mechanical-based EH:

• Piezoelectric energy harvesters, which exploit the direct
piezoelectric effect, i.e., certain materials, such as
quartz, generate electrical charges under mechanical
stress [75]. The output power depends on the relative
directions of the electric field and the stress/strain for
the polarization direction of the piezoelectric material.

• Triboelectric energy harvesters, which exploit the tri-
boelectric effect, i.e., certain materials generate elec-
trical charges when they contact and separate from
another material. Due to their relatively small form
factor and high APD, these harvesters are widely
used in wearables to harness energy from human
motion [76].

• Electrostatic energy harvesters, which are variable
capacitor structures. Specifically, their capacitance
changes when the plates’ overlap area or the gap dis-
tance varies in response to an external force. The basic
operating principle consists of exciting the capacitor
with an external power supply when the capacitance
is maximum. Then, the energy is harvested when the
potential energy stored in the capacitor increases in
response to a smaller capacitance value [77]. Due to
the high polarization voltage required in this method,
some electrostatic energy harvesters incorporate elec-
trets, which are quasi-permanent electric dipoles that
can hold electrical charges for years.

• Vibration EM energy harvesters, which exploit
Faraday’s law of induction, i.e., the relative movement
between a wire coil and a permanent magnet produces
an electromotive force.

FIGURE 7. Basic working principle of VEH: (a) vibration EM, (b) piezoelectric,
(c) triboelectric, and (d) electrostatic.

VEH presents a significant challenge: the resonant
frequency of the EH device must match the input envi-
ronmental frequency to maximize the output power [78].
However, ambient energy frequency can vary considerably,
demanding the adjustment of the resonant frequency to
ensure a reliable energy supply. There are various approaches
in the literature to achieve this, including manual mechani-
cal tuning [79], mechanical self-tuning [80], and electronic
self-tuning [81]. Another solution is to design the device
to resonate at multiple frequencies, thereby expanding its
frequency response spectrum. For this, hybrid energy har-
vesters [82] or arrays of multiple harvesters [83] can be used,
with each device resonating at a different frequency.
Another challenge of VEH is the relatively low frequency

of ambient vibrations with respect to the resonant frequency
of the devices. To address this issue, frequency up-conversion
mechanisms have been proposed. For instance, by apply-
ing a strong external force for a brief period, e.g., using
a free-moving mass, the system may vibrate at its natural
resonant frequency [84]. Alternatively, one can lower the
harvester’s natural resonant frequency by reducing the stiff-
ness of its moving parts. This can be achieved, for instance,
by replacing them with fluids [85].
Finally, ambient VEH is often the result of multiple

external forces acting in different directions. Thus, allow-
ing devices to harvest energy from multiple directions, e.g.,
using two-dimensional [86] and three-dimensional [87] EH
devices, can boost the total output power.

E. FLOW-BASED EH
Flow-based EH leverages the kinetic energy of naturally or
artificially originated fluid flows, such as water streams and
wind currents, to generate electricity. Notice that in most
use cases, the underlying physical principles of VEH are
also applicable to flow-based EH. Therefore, this subsection
focuses on wind-based EH and, in particular, on their form
factor, blade design, and energy-efficient design for medium-
to large-scale electricity generation.

2616 VOLUME 4, 2023



FIGURE 8. Wind turbine architectures: (a) Powerpods internal blades system,
(b) Savonius turbines, and (c) Vortex Bladeless generator.

Traditional wind turbines leverage the kinetic energy of
the wind to turn the rotor of an electric generator. Wind
turbines are usually deployed in farms for large-scale elec-
tricity generation. However, massive IoT deployments are
more likely to appear in cities where installing a huge wind
turbine is not always feasible. Thus, research and industry
efforts have been focused on building compact and cost-
effective designs of wind-based EH systems. A significant
issue with traditional wind turbine design is the potential
threat to wildlife posed by the rotating blades. To address
this, Halcium has created the PowerPods,5 which are portable
wind turbines designed for residential areas. The blades of
the PowerPods are contained within the pod, as shown in
Figure 8a, making them safe for people, pets, and wildlife in
close proximity. The shell of the PowerPods captures wind
from multiple directions and channels it through small exits,
increasing the wind speed and therefore the harvested energy.
Different from traditional wind turbines, PowerPods utilize
vertical-axis blades whose low aerodynamic noise pollution
and ability to operate under unstable wind flow (without
needing a yawing mechanism) make them appealing for
urban environments [88]. Vertical-axis turbines are also the
basis of the so-called Savonius turbines (shown in Figure 8b)
which are reliable and cost-effective systems that can operate
under turbulent wind flows and stormy weather [89]. Notice
that traditional wind turbines require a braking mechanism
to operate under such conditions as high wind speeds can
cause the system to shatter becoming a hazard for the nearby
areas.
Another development area in wind-based EH involves

blade-less turbines, e.g., Vortex Bladeless6 shown in
Figure 8c, which leverages the vortex shedding phe-
nomenon [90]. Vortex shedding occurs when a fluid flow
separates from a solid surface and creates vortices. In the
case of the Vortex Bladeless, the vortex shedding effect
causes a vertical mast to oscillate in resonance with the wind
flow. One advantage of this design is the reduced mainte-
nance costs, as there are no moving parts that can wear
out through friction. However, the system can experience
mechanical fatigue and stress at the base of the oscillat-
ing mast. Additionally, the smaller footprint of the Vortex
Bladeless compared to traditional wind turbines allows for

5. For more information please check https://www.halcium.com/.
6. For more information please check https://vortexbladeless.com/.

FIGURE 9. Architecture of (a) DC combining, (b) broadband, (c) extended dynamic
range, (d) RF combiner, and (e) hybrid combiner.

the installation of multiple units in the same area, potentially
compensating for their individual lower performance.

F. RF-EH
RF-EH technology utilizes a rectenna to convert EM waves
into direct-current (DC) power, which can be harnessed to
power and/or charge small electronic devices and batteries.
The rectenna is composed of a receiving antenna and a recti-
fier plus a matching network to maximize the power transfer
efficiency (PTE). The main sources of ambient RF energy
are classified as [21]: i) static, which corresponds to energy
transmissions that remain relatively stable over time, e.g.,
from television and radio transmitters, allowing long-term
predictability of the energy supply, thus favoring the network
planning, and ii) dynamic, which supplies time-varying
energy over a certain region, either because of fluctuating
transmit power levels or mobility, e.g., from WiFi/mobile
access points or devices, thus should be adaptive and allow
operation over multiple frequencies.
The main challenge of ambient RF-EH circuits lies in

how to guarantee an appropriate performance given mostly
unpredictable EM conditions. Notice that the receive signal
parameters, e.g., carrier frequency, bandwidth, polarization,
and antenna orientation determine the amount of harvested
energy. Hence, key desirable features of RF-EH circuits
include performing EH i) from multiple bands, which can
be accomplished by using wideband, multi-band, or tunable
receivers [21], ii) from multiple spatial directions, for which
omnidirectional antennas are preferred, iii) from randomly
polarized signals, which is mostly implemented by some
sort of circularly polarized antenna; and iv) from a vari-
ety of input power levels, in which case the RF-EH adjust
the sensitivity and saturation levels to obtain the most from
the ambient energy source. Figs. 9a-c illustrate the basic
architecture of some of the aforementioned receivers.
Multi-antenna RF-EH circuits, as shown in Figure 9a,

Figure 9d, and Figure 9e, are another alternative to boost
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TABLE 4. Comparison among WET technologies.

the amount of harvested energy. In such case, the incoming
signals can be combined i) in the RF domain; ii) in the DC
domain, or iii) hybridly in both domains [91]. Multi-antenna
rectennas also improve the spatial selectivity of the antenna
in the direction of the maximum incident signal, if properly
adjusted. However, for ambient RF-EH the optimal receive
beamforming is difficult to attain due to the non-dedicated
nature of the transmissions. To cope with this problem,
several low-complexity solutions, including codebook-based
beamforming, were proposed in [91] such that an ambient
RF-EH device sweeps a phase shift table in an initial phase
seeking the configuration that yields the best performance
for exploitation in a second phase.
Magnetostrictive antennas are an alternative to rectennas.

In such a case, the transducer is built with multiferroic
structures that are able to sense the magnetic component
of EM waves and, in response, produce vibrations. Then,
a mechanically connected piezoelectric EH converts the
vibrations into electrical energy. This allows for realiz-
ing an ultra-compact receiver, which is up to two orders
of magnitude smaller than state-of-the-art rectennas [92].
Metamaterials-aided designs are another solution for real-
izing ultra-compact RF-EH implementations, due to the
sub-wavelength periodicity of the unit cells within the lat-
tice structure. Metasurfaces-aided RF-EH boosts the CE as
it allows wider beamwidths, polarization-independent oper-
ation, built-in and less lossy matching networks, and higher
antenna gains [93].

III. ENERGY TRANSFER (ET)
ET refers to the intentional transmission of energy using
dedicated transmitters to power EH devices, and thus it is
mostly/inherently wireless, leading to WET. In contrast to
ambient EH, WET provides a controllable and predictable
energy supply and the tools for increasing the end-to-end
power CE. In Table 4, we compare the current development
state of the WET technologies discussed in this section.

A. LASER-BASED WET
The most common implementations of laser-based WET are
laser power beaming and distributed resonant beam charging.
In the former case, shown in Figure 10a, a laser diode at
the transmitter steers an optical beam towards a PV cell at

FIGURE 10. Laser-based WET architectures: (a) laser power beaming and
(b) distributed resonant beam charging.

the receiver (similar working principle as in conventional
solar power systems). Meanwhile, in the latter, the receiver
bounces back a portion of the incident energy towards a
gain medium at the transmitter, which amplifies the light and
initiates a resonant beam [94], as illustrated in Figure 10b.

Although the above two implementations are regarded
as long-RG WET technologies, laser power beaming pro-
vides superior coverage, in the order of several km [95],
and may be key for intra-satellite WET applications [96],
charging UAVs [97], and energy transmission from solar-
powered satellites to terrestrial stations [98]. However, the
performance of the laser power beaming heavily depends
on the line-of-sight (LOS) and the atmospheric conditions.
Besides, laser power beaming raises safety concerns due to
the potential harm to the living species’ tissue. Notably, low-
ering the transmission frequency is appealing to provide a
hazardous-free system, although incurring high maintenance
cost and lower efficiency (and therefore trading efficiency
for safety) [95]. Alternatively, it is advisable to monitor the
periphery of the beam path for detecting intruders [98].
Differently, resonant beam charging is inherently safe

as any interruption of the link causes the resonance to
stop immediately. In addition, the system is capable of
supporting mobile users without the need for a tracking
system as long as LOS conditions hold, thanks to its
self-aligning capabilities which have been experimentally
validated (e.g., cf. [99]). Moreover, the transmitter’s ability to
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generate simultaneous resonating beams also enables native
multi-user support [100]. However, broadcasting energy to
multiple receivers is typically more inefficient, often motivat-
ing time division-multiple device-charging protocols [101].
To overcome the LOS limitations, UAVs [94] or supporting
reflectors [102] can relay energy transmissions to charge
devices out of the coverage of the main transmitter.

B. ACOUSTIC WET
This technology leverages acoustic waves to charge EH
devices by typically equipping transmitters and receivers
with piezoelectric transducers [103]. Acoustic WET works
in any medium capable of propagating pressure waves,
e.g., metal, air, and human tissue, but it is particularly
convenient in EM wave absorption-prone mediums, such
as Faraday shielding structures [104] and water. Besides,
for the same operating frequency, acoustic WET transmit-
ters/receivers have a more compact form factor and achieve
a higher directivity than those implementations based on EM
WET [105].
Similar to other WET technologies, the channel attenu-

ation, which varies significantly according to the medium,
affects severely the system performance. Notably, one can-
not increase deliberately the intensity of the acoustic waves
as it may cause hearing impairments, body heating, and
other unpleasant effects in humans and animals depending
on the operating frequency [106]. Notice that the attenua-
tion increases with the impedance mismatch of the medium
between the transmitter and the receiver since traveling
waves may encounter different materials in their path. This
has motivated the use of glue or electromagnets to ensure a
firm connection of both the transmitter and receiver to the
matching layers in the path (when solid) and therefore reduce
the propagation losses [104]. Moreover, when receivers are
deployed inside a Faraday shielding structure but not con-
nected to it, one can rely on hybrid WET approaches in
which the last section of the transmission path relies on a
different WET technology, such as inductive coupling [107].
Phased acoustic arrays, illustrated in Figure 11, which

are composed of multiple piezoelectric transducers, also
aid in overcoming medium attenuation by focusing the
energy toward the receiver direction using sound beams.
In fact, the performance of transmit phased acoustic arrays
increases with the number of transducers given a form fac-
tor constraint [105], [108]. Further improvements can be
achieved by also equipping the receiver with phased acoustic
arrays and hence allowing different combining techniques
to improve the PTE, similar to a traditional multiple-input
multiple-output (MIMO) wireless link [109]. Notice that
the achievable performance of a phased acoustic array also
depends on the transducers’ geometry and arrangement, and
the array’s aperture and diameter [110].
Finally, acoustic WET can also provide heterogeneous

quality of service (QoS) to the end users. For instance,
acoustic transmitters can use Lamb waves to create a pat-
tern of peaks and valleys in solid structures. Therefore,

FIGURE 11. Acoustic phased-arrays architecture and use cases: (a) multiple
piezoelectric transducers at the transmitter to power a sensor network embedded in
pipelines and (b) phased-array at the receiver to extend the operating RG.

by changing the operating frequency, the resulting vibra-
tions charge the devices deployed in different locations of
the same structure with a different intensity [111]. Besides,
adaptive acoustic beamforming also serves to discriminate
which devices to charge depending on their locations and
energy demands [112]. This might be especially useful in
sensor networks embedded in structures such as buildings
or bridges.

C. INDUCTIVE COUPLING-BASED WET
This technology exploits the inductive coupling phenomenon.
The simplest setup consists of two wire coils coupled by a
magnetic field such that the oscillating magnetic field in the
transmitter’s coil passes through the receiver’s coil inducing
an alternating current. This forms a highly efficient air-gap
transformer whose performance depends on the operating
frequency and the mutual inductance between both coils.
However, this basic setup performs poorly when both coils
are misaligned or too separated.
One can extend the charging coverage by tuning both

coils to resonate at the same frequency. This is commercially
known as magnetic resonant coupling, which compared to
the basic inductive coupling, is more resilient to coils’ mis-
alignment. The most common magnetic resonant coupling
methods include an external capacitor to compensate for the
internal inductive reactance and extra coils for tuning and
impedance matching. The first implementation is easier to
realize, but the second one achieves a higher CE given that
there are no power losses in external resonators [113].

Magnetic resonant coupling allows a transmitter to charge
multiple nodes simultaneously. Here, the internal resistance
of the resonators can be adjusted to control the mutual induc-
tance among coils and hence boost the PTE. For instance,
increasing the internal resistance of the nearest receivers may
increase the harvested energy at the most distant receivers,
although at a higher transmit power cost [114].
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Deploying multiple transmitters also improves the system
performance. On the one hand, the optimal transmitter
deployment guarantees uniform power coverage and ensures
a minimum available energy at the receivers regardless
of their locations [115]. On the other hand, coordinated
transmissions from multiple transmitters can result in a
constructive combination of the magnetic fields at the
receivers’ locations, which is known as distributed magnetic
beamforming [116].

D. CAPACITIVE COUPLING-BASED WET
This technology exploits the capacitance coupling phe-
nomenon. The basic architecture consists of two pairs of
transmit and receive plates each coupled by an electric field.
One pair forwards the displacement current while the other
provides the return path to close the circuit. Capacitive cou-
pling systems come in two different flavors depending on
how the plates are arranged. The horizontal capacitive cou-
pler has the transmitter’s (and receiver’s) plates placed side
by side in the same plane, while the vertical capacitive cou-
pler has both the forward and return paths overlapped in the
direction of the electric field. Although the former architec-
ture has the highest coupling, it comes at the cost of being
bulky and less reliable due to the large number of required
components. For a fixed device size, one can enhance the
coupling of the system by combining the geometry of the
basic architectures and adding more plates [117].
Some critical challenges in capacitive coupling systems

include the high excitation frequency/voltage due to the
large capacitive reactance of the coupling and the con-
trol of the fringing electric fields, i.e., the non-uniform
field at the edge of the plates, within safe limits. To cope
with these issues, resonant matching networks can be added
at both the transmit and receive sides. They compensate
for the reactive losses in the system, hence reducing the
required excitation voltage. Further, they can be designed
as a transmit voltage gain stage to drop the displacement
current of the plates, hence reducing the fringing field to
the safety limits. Herein, the size of the inductors in the
matching network is key to realizing compact designs. As
an example, one can exploit the successive impedance trans-
formation that provides multistage matching networks [118].
The required amount of gain and compensation of such a
matching network depends on the ratio between the load and
excitation currents, and the misalignment/distance between
couplers [119].

Different from inductive coupling, capacitive coupling
systems are more tolerant to the plates’ misalignment, reduce
the risk of interference to neighboring networks, and do not
induce eddy currents in nearby metallic objects. Moreover,
they are lighter, easy to integrate, and more mechanically
robust. That is why they are regarded as promising for pow-
ering medical implants, vehicles, consumer electronics, and
rotary electric machines [120], [121].

E. RF-WET
RF-WET technology relies on intentional RF transmissions
to charge RF-EH devices. The main challenge of this tech-
nology is its limited coverage due to the channel attenuation
and the regulations on the maximum radiating power of the
RF energy transmitters, hereinafter referred to as power bea-
cons (PBs). For this reason, directive antennas are preferred
to increase the incident RF power in the desired direction
without increasing the transmitter’s radiating power. Notice
that when serving multiple users, the PB can utilize an omni-
directional antenna to provide basic service guarantees and
a directional antenna (for out-band) energy transmissions to
meet more specific user equipment (UE) requirements [122].
However, in case the PB is equipped with non-reconfigurable
antenna(s), a mechanical sweeping of the service area may
be needed to charge those devices otherwise located in the
minimum of the radiation pattern [123].
Another potential technique to extend RF-WET coverage

is channel state information (CSI)-based energy beam-
forming. The main challenge here resides in the often
unavoidable cost of instantaneous CSI acquisition, especially
when powering a massive number of devices with strict HW
constraints, which may null or even reverse the gains from
accurate CSI-based transmit strategies. This has motivated
alternative strategies relying on statistical CSI [124], received
energy feedback [125], and positioning information [123].
Conveniently deploying the PBs is also key to overcoming

channel attenuation, banning blind spots, and homogenizing
the incident RF power according to the network require-
ments [22], [126], [127]. Notably, distributed single-antenna
PBs offer better service than a single PB equipped with
the same total number of antennas due to the reduced
charging distance [127] and the reduced number of EH
devices to be charged per PB [22]. Robotic WET, in which
the PBs move [128] or fly [129], becomes also appeal-
ing not only to reduce the link distance but also to power
the devices deployed in hard-to-reach places or to meet
temporary service requirements during emergencies. Other
potential technologies to boost the coverage of RF-WET are
also discussed in Sections IV-B and IV-C.
The next generation of wireless systems envisions

extremely large antenna arrays to compensate for the
attenuation at high-frequency bands, increase reliability, and
reduce interference. Consequently, many future IoT deploy-
ments may operate in the radiating near-field (or Fresnel
region) of the transmit antennas, which contrasts with the
traditional assumption of far-field operation. As Figure 12
illustrates, under such operating conditions, a PB can focus
the energy in a particular location as opposed to what hap-
pens in far-field conditions, where the energy is steered
towards a certain angular direction. As a consequence,
near-field RF-WET will generate less RF pollution, thus
interference, in both angle and distance domains and a
reduced human RF exposure [130]. Moreover, the CE achiev-
able in the near-field can be significantly high even when the
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FIGURE 12. Near-field vs far-field beamforming.

energy receiver is not in the focal point of the transmitter’s
antenna [131].

Due to the above, RF-WET is usually regarded as a short-
distance solution to charge low-power devices. However,
some experiments have shown energy transmissions over
distances greater than 1 km distance with a peak incident
power of several Watts at the rectenna [132]. Long-distance
RF-WET could also help bypass the complicated infrastruc-
ture of the electric network to power hard-to-reach locations
or to provide an energy supply during emergency situations.7

IV. ENERGY EFFICIENT COMMUNICATION
TECHNOLOGIES
Once the energy is available for operation through EP/ET
mechanisms as those outlined in Sections II and III, the
device(s) and/or the network(s) must ensure its efficient
usage. Indeed, every technique and technology conceived for
performance improvements in terms of coverage, throughput
(THP), dependability, and other KPIs, can be in princi-
ple leveraged for EC reduction as well, hence, EE. That
is the case of massive MIMO [133], [134], UAV-based
connectivity [135], [136], [137], satellite-assisted communi-
cations [138], [139], cooperation and diversity mechanisms
[140], [141], [142]. Nevertheless, there are some tech-
nologies/techniques that are natively conceived for energy-
limited/efficient operation, and these constitute the scope of
this section.
Notice that the primary EC sources in a device or network

are i) the utilization of active circuit components such as tran-
sistors and power amplifiers, which require a power source
to function, and ii) the running applications. Therefore, to
enable energy-efficient and/or low-power operation, the use
of active techniques and devices must be limited when pos-
sible while relying on efficient passive architectures. This
comes with several challenges as active devices, although
consume energy, can facilitate high-performance computing
and communication, while passive devices (e.g., resistors,
capacitors, inductors) are much less flexible and may dis-
sipate energy in the form of heat as they interact with
electric signals. This motivates the use of semi-passive/active
architectures, which include some active techniques and

7. Please refer to https://emrod.energy/ for more details.

FIGURE 13. BC systems and main components.

components to efficiently support the application demands
for which they are deployed, and/or tunable operational
models as enabled by WuR technology. These approaches
are discussed next through key technologies. Specifically,
backscatter communication (BC), metasurface-aided commu-
nication, radio stripes, and WuR technologies are overviewed
in Sections IV-A–IV-D, respectively. Meanwhile, the ML
approach, focused on intelligently reducing the EC burden of
computation/communication application tasks at the devices
and networks, is discussed in Section V.8

A. BACKSCATTER COMMUNICATIONS
BCs are passive and involve backscatter tag(s) reflecting the
signal from nearby transmitter(s) and modulating it by adjust-
ing its amplitude, frequency, and/or phase via impedance
mismatching tuning. At the receiver, the backscattered sig-
nal is processed to extract the information added by the
backscatter tag. The typical components and types of BC
systems are illustrated in Figure 13. Notice that the transmit-
ter(s) may be dedicated or non-dedicated, the latter leading
to the so-called ambient BC systems.
There are multiple implementation options for powering

the backscatter tags, e.g., relying on EH from ambi-
ent/dedicated RF signals [146], [147], [148], solar energy,
vibration, and/or thermal gradient [51], [147]. In general,
the energy buffer can be as small as a capacitor of several
nF, or as large as a digitally-controlled supercapacitor or
rechargeable microbattery. The nature of the energy buffer
depends on the application. A capacitor may suffice for ultra-
low power applications, and it is not often regarded as a
buffer but simply as another stage element within the cir-
cuitry. In other cases, a large and intelligently controlled
energy buffer is required to enable substantial gains in RG
and operating time that could not have been attained oth-
erwise. Such energy storage topology influences also the

8. Please note that our focus in this work is on technologies (other
than wireless communication standards/protocols) that we believe are most
relevant for enabling low-power IoT connectivity in the near future. The
interested reader can refer to other potential technologies such as molecular
communication [143], printable electronics [144], and passive radar [145].
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type of modulation/demodulation of the backscatter signals,
which can be digital or analog as in conventional commu-
nication systems, and may be activated by a wake-up code
detector [149].

Table 5 lists representative state-of-the-art BC systems
along with their distinctive features and performance figures.

1) KEY BC TOPOLOGIES

As shown in Figure 13, there are two key BC topologies:
monostatic and bistatic. In traditional or monostatic backscat-
ter systems, the transmitter and receiver are integrated, e.g.,
in RFID, while they are separate in bistatic systems.9 The
latter implementation offers [170]:

• Temporal flexibility: The tag has additional time slots to
transmit data rather than being restricted to waiting for
a single reader’s protocol-bound inquiry. This allows
the backscatter tag (functioning as a sensor node) to
transmit the sensory data immediately upon availability,
which might be crucial in many sensing scenarios.

• Spatial flexibility: The position of the receivers can
be optimized. Moreover, the spatial deployment of
backscatter tags can be quite flexible in urban and
metropolitan areas with high ambient RF APD, while in
other scenarios, dedicated transmitter(s) can be strate-
gically placed in optimal locations to balance the
scalability and performance of backscatter tags.

• Technology flexibility: A variety of excitation signals
can be exploited, e.g., from ambient RF sources such as
TV or frequency modulation (FM) radio towers, cellular
BSs, and WiFi access points, while several modulation
schemes may be supported.

Due to the above, bistatic BC technology has become
increasingly popular. Notice that the transmitter(s) and
receiver(s) may not be independent entities in bistatic
systems, but they may cooperate. For instance, the authors
in [161] propose for them to share link settings and metrics to
improve the BC link performance. Nevertheless, cooperation
is not possible in the case of ambient BC systems.

2) USE CASES

The applications of BC technology are numerous as illus-
trated in Figure 14 and are rapidly increasing. The three
main use cases are related to

• Invasive monitoring: BC technology may be useful in
scenarios where sensors must be instrumented in an
invasive manner because it can potentially eliminate the
need for replacing batteries and the corresponding high
cost. That is the case of applications such as i) structural
monitoring, e.g., to ensure safe and reliable operation
of railways, pipelines, dams, bridges, and aircraft, and
ii) implantable health-care monitoring [170].

9. Note that the term “backscatter” may not be accurate for the bistatic
architecture since the signal does not necessarily scatters back, but toward
the receiver.

FIGURE 14. Illustration of some BC applications.

• Ubiquitous localization and sensing: The astonishing
spatial diversity offered by the massive prolifera-
tion/deployment of backscatter (battery-free) devices
(e.g., attached to everyday objects) can be exploited to
extend networks’ localization and sensing capabilities
as envisioned by the 6G paradigm [171].

• Smart world: By incorporating backscatter tags into
everyday objects, not only network sensing capabilities
are naturally extended, but also each of these objects is
digitized and becomes a source of information and/or
control unit with added value.

An appropriate choice between (non-passive) radios and
BC for an application depends on the operating distance,
data rate requirement, and power budget [172]. There is no
one-size-fits-all solution. In general, BC is more energy-
efficient but may not cope with stringent requirements in
terms of coverage and rate. Indeed, BLE radio is likely the
best option currently to support 1 Mbps at 20-40 m, while
BC fits better for applications requiring around 100 kbps
at 5-10 m. However, this is also a matter of deployment
topology, cost, and other KPIs such as reliability, latency,
and security as required by the target application. Please
refer to Section VII for further discussions on this.

3) CHALLENGES AND RESEARCH DIRECTIONS

Many state-of-the-art BC designs as those implementing
LoRa and BLE backscatter in Table 5 are quite mature and
deployable. However, there are still a number of challenges
that require attention in the coming years to fully realize
the potential of BC technology and enable its seamless inte-
gration with 5G and beyond generations, thus paving the
way for the most advanced and futuristic applications. A
compilation of such key challenges and associated research
directions is presented below.

• Imperceptible integration to everyday objects:
Fabricating BC miniaturized electronic compo-
nents and integrating them into small, and diverse,
form factors is challenging, and so is the imperceptible
integration into everyday objects. Printed electronics
may be appealing here and also the exploitation of
meta-materials with favorable electrical properties (see
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TABLE 5. Some representative state-of-the-art (2017-2022) BC systems.

Section IV-B) to achieve small computational materials
that can communicate using backscatter.

• High-frequency operation: Most current BC systems
operate at well-established microwave frequencies.

However, expanding the operation to higher frequencies
(e.g., mm-wave and THz) may bring substantial ben-
efits since more antennas per unit area can be
packed, producing very directional transmit, receive,
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and backscattered beams while achieving longer com-
munication RGs. Unfortunately, ambient RF energy
availability is more limited in such a high-frequency
operation regime, which may prevent exploiting ambi-
ent BC. Instead, dedicated RF signals/sources are
required together with novel low-complex protocols that
efficiently handle the issues related to beam search,
especially for flexible bistatic BC systems.10 Notice that
current high-frequency BC prototypes are monostatic,
e.g., [173], [174], [175], [176], or non-flexible bistatic,
e.g., [177], thus, much further research is needed to
realize flexible high-frequency BC systems suited to
real-life applications.

• Wide-band and frequency-agnostic designs: Wide (ultra-
wide)-band BC designs (including advanced modulation
schemes) are needed for supporting high data-rate
applications, e.g., sensing and interaction related to aug-
mented reality, which constitutes a challenging research
direction. Also, frequency-agnostic BC systems able to
operate across different protocols, locations, and appli-
cations, would be extremely appealing. In this regard,
HW innovations, as well as low-power algorithms, are
required to dynamically identify which frequency bands
have the strongest signal.

• Security: Due to the limited power/complexity of
BC systems, guaranteeing secure communications is
extremely difficult. Notice that the i) accurate identi-
fication of a fake ambient BC tag, and ii) mitigation of
interference generated by a tag maliciously backscat-
tering ambient signals to a nearby reader, remain open
problems in the literature. A promising direction lies in
designing quantum backscattering mechanisms [178].

• Enhanced RF-EH sensitivity: RF EH, as the charging
source, facilitates small form-factor and battery-free BC
implementations. Unfortunately, RF-EH sensitivity is
orders of magnitude worse than that of a BC receiver,
which limits the connectivity RG. Improving RF-EH
sensitivity, preferably up to two orders of magnitude,
is a fundamental research and engineering challenge.11

Techniques exploiting leakage power reduction, technol-
ogy scaling, and sub-threshold operating using voltage
scaling may be key to achieving this goal.

• BC networks: Most of BC research and prototyping is
focused on the physical layer (PHY) with piecemeal
evaluation. A full-layer design constitutes a challeng-
ing next step for maturing the technology and realizing
scalable, integrated, and practical BC networks with the
capabilities for realizing, e.g., carrier sense, network
management, and polling of devices.

10. In monostatic systems, the tags can be designed to be retrodirective
(i.e., capable of reflecting an incident signal toward the source direction
without prior knowledge of its direction of arrival) to close a directional
link with the reader, e.g., by using phase conjugate arrays, Van Atta arrays,
and leaky-wave antennas [26].

11. Under free-space propagation conditions, every 6 dB improvement
in sensitivity roughly doubles the operating distance [172].

FIGURE 15. EM-based elementary metasurface functions.

B. METASURFACE-AIDED COMMUNICATIONS
Metasurfaces are surfaces composed of metamaterials with
sub-wavelength thickness. The so-called metamaterials have
special properties when interacting with EM radiation, and
thus metasurfaces may support several functions as shown
in Figure 15 [179], [180]:

• Reflection/refraction of the incident RF waves to a given
reflecting/refracting direction;

• Absorption, by which the reflected/refracted signals
corresponding to an incident RF wave are nulled;

• Beamforming, by which the incident RF waves are
focused toward a given direction/location. Collimation
is the complementary operation;

• Polarization change of the reflected RF waves with
respect to the incident ones. For example, incident RF
waves are transverse electric polarized, and reflected
RF waves are transverse magnetic polarized;

• Splitting, by which multiple reflected or refracted RF
waves are created from the incident RF waves;

• Analog processing includes mathematical operations at
the EM level, e.g., the RF waves refracted by a meta-
surface can be the first-order derivative or the integral
of incident RF waves.

These functions motivate the use of metasurfaces for improv-
ing wireless systems performance, e.g., for passive signal or
energy relaying [181] and wireless sensing [182].
Metasurfaces are low-cost fully-passive devices with zero

EC, which can be engineered to statically perform one or
several of the above functions. However, more recently,
the research community and industries are pursuing a more
dynamic approach, where the operation of the metasurfaces
is SW-controlled in real-time, thus, leading to intelligent
metasurfaces. Next, we briefly discuss the main configu-
rations of intelligent metasurfaces in the state of the art:
i.e., intelligent reflective surface (IRS) and large intelligent
surface (LIS), associated research challenges, and relevant
research directions. A list of representative prototypes and
experiments with metasurfaces in the last years is presented
in Table 6 along with their main distinctive features.

1) IRS

As illustrated in Figure 16, IRS (also known as reconfig-
urable intelligent surface - RIS) is a metasurface composed
of a large number of N subwavelength-spaced passive scat-
tering metamaterial elements. Each scattering element can
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TABLE 6. Some representative state-of-the-art (2017-2022) experiments and prototypes of reconfigurable metasurfaces.

be controlled in an SW-defined manner by the so-called IRS
controller, which can be embedded or separated, to properly
tune the EM properties of the output signals given a set
of incident RF signals impinging the scattering elements.
Therefore, IRS is a promising technology to dynamically
control the radio propagation environment and improve the
wireless system performance in a cost/energy-effective man-
ner. Specifically, an IRS can reflect the incident signals
so they are added constructively in the desired direction
to increase the signal power (so-called passive beamform-
ing) or destructively for mitigating undesired interference,
either for high data rate, dependable, secure, NLOS, or wide-
coverage communications, and RF-WET (including joint
communication and RF-WET).

Conventional IRSs, so-called passive IRSs, e.g., [183],
[184], [185], [186], [187], [190], [191], [192], [193], [195],
[196], [197], [198], [199], [200], [201], are composed of
fully passive reflecting elements and the only active EC
comes from the controlling HW (IRS controller and related
active circuitry). This allows low-power/cost energy-efficient
implementations that do not incorporate additional RF radi-
ation into the environment, which is undoubtedly appealing
in terms of sustainability.
Unfortunately, the effective coverage of passive IRS may

be seriously limited since the reflected signal suffers high
product-distance path loss, which critically constrains the
signal power at the receiver(s). This can be addressed
by either equipping the IRS with an increasingly massive
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FIGURE 16. IRS architecture and assisted communication.

number of passive elements and/or conveniently deploying
the IRS closer to the transmitter/receiver to reduce the cas-
caded channel path loss. Unfortunately, these options are
not always viable due to, e.g., deployment difficulty (limited
space and unavailable site) and enormous training overhead
for the CSI acquisition required to optimize the operation of
the passive IRS elements in real time. This has motivated
the introduction of active IRS [202], [203].

In active IRS, the reflecting elements incorporate
reflection-type amplifiers, which are implemented without
high-cost and power-hungry RF chains and that can simulta-
neously alter the signal’s phase and amplitude to enhance the
signal power at the receiver. This requires modestly higher
EC and HW cost compared to conventional IRS.
Interestingly, the achievable signal-to-noise ratio scales as

O(N) and O(N2) when using active and conventional IRS,
respectively [203]. The limited gain when using active IRSs
is due to the noise power amplification introduced by the
active design. Nevertheless, an active IRS implementation
still provides superior rate performance (subject to a given
total power budget constraint) in comparison to a conven-
tional IRS when N is moderate thanks to the additional signal
power amplification gain [203]. Table 7 illustrates the main
features of conventional and active IRSs with competing
relaying technologies. All in all, there is no one-size-fits-all
solution (as usually in engineering), and the use of one
technology over another depends on the specific network’s
characteristics, constraints, and performance requirements.

2) LIS

LIS is a metasurface equipped with RF circuits and signal
processing units and composed of a virtually infinite num-
ber of elements to form a spatially continuous transceiver
aperture. This structure can be used to transmit/receive com-
munication signals across the entire surface by leveraging the
hologram principle [204].12

For instance, an LIS may be comprised of multiple waveg-
uides, e.g., microstrip. Each waveguide may embed a large
set of radiating metamaterial elements whose frequency
response can be externally and individually adjusted by

12. Alternatively, a LIS can be implemented as an IRS-aided antenna
by deploying an external communication and antenna module to wirelessly
feed the IRS for active communication [205], e.g., [188], [189]. Another
LIS implementation can be based on discrete photonic antenna arrays inte-
grating active optical-electrical detectors, converters, and modulators for
transmission, reception, and conversion of optical or RF signals [204].

FIGURE 17. LIS implemented with multiple microstrips. Each microstrip is
connected to a single RF chain.

varying the local electrical properties. Each microstrip is
fed by one RF chain, and the input signal is radiated by
all the elements located on the microstrip, as shown in
Figure 17 [131]. The figure also illustrates an example of
transmitting a signal using a single microstrip with multiple
elements.

3) CHALLENGES AND RESEARCH DIRECTIONS

Some key challenges and associated research directions
for maturing metasurface-assisted communication technol-
ogy and making it a reality in future sustainable networks
are briefly discussed in the following:

• Low-cost/energy control: The use of tunable reflect-
ing elements with discrete amplitude/phase shift levels
favors cost/energy-effective implementations. However,
this may significantly limit the beamforming/reflection
capabilities of the metasurface, especially in the case of
limited form-factor implementations. Therefore, further
studies are required to unveil such underlying trade-offs.
Moreover, further research is required on the meta-
surface controller circuitry, which interfaces with all
the tunable reflecting elements and constitutes the only
EC source in passive IRS implementations. Specifically,
low-cost/energy-effective control mechanisms must be
developed to connect and communicate with massive
tunable elements, and thus agilely and jointly control
their EM behaviors on demand.

• CSI acquisition: A tunable passive beamform-
ing/reflection typically requires accurate CSI, which
is challenging to acquire in practice. The two main
approaches proposed in the literature for passive IRS
(without any active RF chain or reflection-type ampli-
fier), but that still require further research in terms of
performance trade-offs, are [181]: i) estimate the con-
catenated (TX-IRS and IRS-RX) channel with some
known IRS reflection patterns, or ii) exploit feedback
from the TX/RX pertaining to their received signals that
are reflected by the IRS (no explicit channel estimation).
Meanwhile, CSI acquisition for active IRS is generally
more challenging because explicit CSI of the separate
TX-IRS and IRS-RX links, instead of the cascade CSI,
is needed due to the amplification noise. The research
addressing this issue is still incipient, e.g., cf. [203].
Notably, approaches exploiting limited CSI as those
relying, e.g., on positioning information [206], may be
appealing.
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TABLE 7. Main features of IRS and competing relaying technologies.

FIGURE 18. Structure of a radio stripe system. Each radio stripe can be connected to one or multiple central processing units (CPUs).

• Advanced metasurface implementations: The most
commonly investigated/prototyped metasurface appli-
cations are those related to passive beamform-
ing/reflection. However, as illustrated in Figure 15,
there are several other metamaterial functions, which are
so far only incorporated into non-flexible/configurable
implementations. In the next years, SW-controlled engi-
neering solutions must be developed exploiting these
metamaterial functions for real-life applications. For
this, accurate physics- and EM-compliant models are
needed.

• Data-driven optimization: Accurate modeling/analysis
and optimum design/implementation/deployment of
IRSs/LISs are challenging due to the inherent complex-
ity of such systems. This calls for efficient data-driven
methods, e.g., based on deep learning (DL), rein-
forcement learning (RL), and transfer learning [207].
Moreover, low-complexity/energy ML mechanisms, the
so-called TinyML (see Section V-C), seem appealing for
incorporation into the metasurface controller circuitry
for more cost/energy-effective implementations.

C. RADIO STRIPES
Massive MIMO technology addresses challenging 5G
performance requirements, especially in terms of network
coverage, capacity, and THP. However, the required high
manufacturing and operating expenses, as well as the
increased EC, make the development and deployment of
truly large-scale antenna arrays extremely difficult. This

motivates the research on more affordable and low-power
MIMO architectures that can scale with the number of
antennas more sustainably. The metasurface-aided commu-
nication architectures overviewed in Section IV-B constitute
one active research front in this direction. Indeed, IRSs can
be deployed to efficiently assist already-deployed MIMO
networks (thus, avoiding the need to install new active
HW); while LIS are basically low-power/cost massive MIMO
that can replace traditional MIMO HW in many scenarios.
However, the deployment of IRS/LIS alone may not ful-
fill all the use cases’ constraints/requirements, at least in
the near future, for which alternative low-power/cost MIMO
architectures are still needed. That is the case of the radio
stripes system discussed in the following.
Radio stripe systems enable cost/energy-effective dis-

tributed massive MIMO [208]. In such a system, with
architecture depicted in Figure 18, antenna elements and
circuit-mounted chips (including power amplifiers, phase
shifters, filters, modulators, and A/D and D/A converters)
are serially located inside the protective casing of a cable
or a stripe, which also provides synchronization, data trans-
fer, and power supply via a shared bus. Unlike traditional
massive MIMO BSs, radio stripes [22], [208]: i) allow imper-
ceptible/flexible installation in existing construction elements
and alleviate the deployment permissions problem, ii) sup-
port native system resiliency to failures, and iii) facilitate
low EC due to the inherent low-complex and distributed
architecture functionality. Also, additional HW, including
temperature/vibration sensors and microphones/speakers, can

VOLUME 4, 2023 2627



López et al.: ENERGY-SUSTAINABLE IoT CONNECTIVITY

FIGURE 19. IoT device with WuR architecture for the same-band operation of WuR
and main radio. Note that different architectures may or may not include all the
components, such as a WuR with Tx capabilities.

be deployed in the radio stripes to provide additional
features/services, e.g., fire/burglar alarms, earthquake warn-
ings, indoor positioning, and climate monitoring/control.
Due to the above, radio stripes technology is attractive

for supporting energy-efficient (and sustainable) networks.
Applications are numerous, e.g., to: i) facilitate high
spatial multiplexing and low EC in indoor communica-
tions [209], ii) increase the coverage and end-to-end PTE
of RF-WET [22], [210], and iii) support ultra-reliable low-
latency communications in industrial IoT networks [211]. In
general, although the last few years have witnessed signifi-
cant advances in this technology (e.g., see [212], [213], [214]
and references therein), more advanced/efficient resource
allocation schemes, circuit implementations and prototypes,
and distributed processing architectures to avoid costly sig-
naling between the antenna elements, still pose open research
challenges.

D. WuR
Duty cycling, consisting of turning off the radio component
of a device, pausing its MCU, and using a timer to acti-
vate the device periodically, extends the lifetime of devices
with limited battery capacity (BCAP). However, the device
with the radio off cannot exchange data, which may result
in excessive communication delays [215]. This motivates the
adoption of WuR, which allows activating the devices’ main
radio on-demand when there is data to communicate. Since
its EC is several orders of magnitude lower than that of the
traditional main radio, e.g., about 1000 times lower [216],
the WuR can be kept always on, in contrast to the duty
cycling operation. Furthermore, although the EC for operat-
ing a clock is relatively low, it is still non-zero, while this
EC may be eliminated entirely by employing WuRs.
Figure 19 illustrates an exemplary architecture of a WuR-

capable device, which includes a low-power radio that
receives and detects the WuR signal to activate the main radio
for communication. The specific components and their inclu-
sion in different architectures can vary based on the design
requirements and specific use cases. A typical WuR setting
is illustrated in Figure 20. The main radio of the device
remains deactivated (OFF) until it is required for communi-
cation, or until a special packet known as the Wake-up signal
(WuS) is received by the WuR, which generates an interrupt
signal to the main MCU to switch it ON. Subsequently, the
main radio can exchange data packets with the other node in

FIGURE 20. Typical triggering using WuR scheme (top) and the WuS packet
structure (bottom).

a conventional manner [217]. Figure 20 also illustrates the
composition of a WuS packet. Note that the frame header
consists of the wake-up preamble and start frame delimiter,
a standard byte pattern agreed upon between the transmitter
and the receiver. The preamble is used for synchronization
whereas the start frame delimiter indicates the start of the
frame that contains relevant information. Meanwhile, the
address field contains the destination node identifier and
the payload contains application data, commands, or extra
instructions specified by the UE or application. Finally, there
is an error detection frame, using cyclic redundancy check,
aka CRC, to check data integrity [217].
The main benefits of using WuR are:

• EE i) avoiding unnecessary idle listening, ii) avoiding
energy wasting related to start-up/power-down, and iii)
combining with uplink reference signaling such that
even high-speed UEs can reside in the sleep state for
long periods, while not increasing the handover failure
rate [218], [219].

• Short buffering delay [219].
• Synchronization assistance [218], [219].
• Low wake-up reconfiguration need for many realistic
unsaturated traffic scenarios [218], [219].

• Less signaling overhead [219].

1) WUS STANDARDIZATION

Figure 21 depicts a timeline overview of the key aspects
and features associated with WuS in each 3rd Generation
Partnership Project (3GPP) Release. Within the 3GPP stan-
dardization process, WuS was initially introduced in Release
15 [220], [221] as a paging signal sent over the PHY down-
link shared channel that “wakes up” a UE from an idle state
so that it can prepare to receive data. Concerns towards
enabling energy-efficient techniques resulted in a feature for
5G called low-power WuS in Release 16 [222], [223]. Next,
we primarily focus on the standardization of WuR within
3GPP.
Release 16 and Release 17 incorporate improved cross-

slot scheduling [226], [227]. Specifically, the network can
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FIGURE 21. 3GPP Release evolution related to WuS.

inform a device when there is a guaranteed minimum time
interval between downlink packet transmissions, leading to a
significant reduction of unnecessary RF operations. In addi-
tion, group focus WuS is defined, allowing the network to
wake up a configurable group of UEs (instead of all UEs) by
configuring the WuR of each UE to listen for a specific pat-
tern or sequence in the WuS that is unique to their assigned
group, thereby reducing EC [226]. Another feature is that
the network transmits a PHY downlink control channel-based
WuS before active on-duration within discontinuous recep-
tion cycles. This allows for UEs to avoid PHY downlink
control channel monitoring during on-durations within which
the network is not transmitting any data to the UE, and may
enable between 15% and 30% energy savings. Alternatively,
WuS may allow for shorter discontinuous reception cycles,
i.e., faster response time, with similar EC [226].
Release 17 specified power-saving enhancements for

reduced-capability devices, referred to as RedCap, while
Release 18 promises to provide further EE gains [228].
The current set of work and study items for 3GPP Release
18 radio access network (RAN) features is split into four
RAN working groups. Specifically, the first group (RAN1),
is responsible for the PHY specification including PHY
channels and modulation, PHY multiplexing and channel
coding, PHY procedures and measurements, as well as PHY-
related UE capabilities. Within the 5G-Advanced Release
18 scope, low-power WuS and WuR constitute a new study
item in RAN1, which aims at studying power-saving schemes
that do not require existing signals to be used as WuS
and includes i) evaluation methodologies for low-power
WuS/WuR for power-sensitive small form-factor devices; ii)
evaluation of low-power wake-up receiver architectures and
WuS designs to support wake-up receivers; iii) PHY proce-
dures and higher layer protocols to support WuS; and iv)
UE EE gains compared to the existing Rel-15/16/17 UE
power saving mechanisms and their coverage availability,
and latency impact [229]. Finally, WUR standardization is
also being carried out by IEEE, e.g., as a part of IEEE
802.11ba standard [230].

2) STATE-OF-THE-ART

WuR constitutes a promising technique for achieving IoT
devices’ lifespan superior to 10 years [216], [225], [231],
and thus has recently received significant attention from
the scientific community. For example, the authors in [231]

presented a WuR-enabled BLE device targeting an IoT sce-
nario where such battery-powered massive IoT devices do not
support direct 3GPP connections. Real-life results show that
the system meets the over-10-year lifetime target while satis-
fying the latency requirements for 5G IoT devices. Similarly,
the authors in [232] shed some light on BLE-compatible
sensor devices enriched with a WUR, and their results
demonstrate EE gains in low-latency applications (under 2s).
In [233], the authors optimize operational parameters, deter-
mined by BS at the beginning of the session, to save energy.
Meanwhile, an accurate traffic forecasting model is proposed
in [218] to optimize the wake-up parameters, achieving up
to 35% EC reduction. Additionally, [234] proposes a super-
regenerative WuR solution to improve EE in human-body
communication. Herein, WuR operates at a very low data
rate, e.g., 1.25 kbps, for higher sensitivity while consuming
∼40 μW. Likewise, the authors in [235] show the EE from
using WuR in wireless body area network applications with
event-driven traffic and propose a WuR capable of receiv-
ing small control commands besides WuS. All in all, the
different WuR proposals vary depending on the particular
protocols used, the type of circuitry, and the application.
Here, we summarize the main classification of WuR research
in Table 8.

3) CHALLENGES AND TRADE-OFFS

Using a WuR brings two main impacts on the devices’
performance. On the one side, there is the problem of miss-
detection of the WuS, which happens when the device does
not receive the page occasion scheduled within the WuS
for information exchange. As a result, the device misses
the chance to wake up and has to wait until the next page
occasion, increasing the latency of packets/information. On
the other hand, due to the inherent simplicity of the WuS,
the problem of false alarms needs to be addressed. In a
false alarm event, the device/WuR receives a page occasion
needlessly when no information is intended to be transmit-
ted/received. Therefore, special attention to these problems
is needed when using WuR [218].

Some key challenges and research directions are:
• WuS may complicate radio resource management and
device scheduling in the network due to sleep patterns,
reducing potential EE gains. In this context, employing
advanced ML-based scheduling algorithms considering
the sleep patterns of devices may be appealing [218].

VOLUME 4, 2023 2629



López et al.: ENERGY-SUSTAINABLE IoT CONNECTIVITY

TABLE 8. WuR taxonomy.

• A design where the WuR utilizes a different frequency
band than the main radio increases the complexity
and cost of the devices. Therefore, in-band operation
and RF integrated circuit-embedded WuR implemen-
tation is desired. However, this approach complicates
resource management and reduces the available spectral
resources for transferring application data.

• Beamformed WuS at mm-waves and mobility manage-
ment is still an open challenge since beam sweeping for
WuS is required to reach a desired device. The network
should be able to optimize the number of beams in a
single WuS burst utilized for waking up the device.

• Applying WuR brings trade-offs between EE and
other KPIs, depending on the application scenario, like
latency, reliability, and robustness [219]. Therefore,
more research should be directed in this direction,
especially when dealing with massive low-power IoT
scenarios.

V. ENERGY-EFFICIENT ML
Native ML support is essential for dealing with the increas-
ing complexity and automation of 6G networks while
improving their performance [236], [237], [238], [239]. ML
techniques can help address issues such as increasing traf-
fic demands, real-time QoS requirements, and resource
allocation. However, these benefits usually come at high
computational and memory requirements. Therefore, energy-
efficient ML algorithms are paramount for network sustain-
ability [240].

Several ML features affect EC. In general, larger models,
i.e., with more parameters, require more energy to be trained
and exploited. Also, training time (TRNT) and inference time
(INFT) directly affect the EC at the training and inference
phases, respectively. Therefore, the trade-offs between power
cost and performance reward require special attention.
As shown in Figure 22, ML approaches are broadly classi-

fied as supervised learning (SL), unsupervised learning (UL),

FIGURE 22. High-level representation of SL, UL, and RL working principles.

and RL. In SL, the model is trained on a labeled dataset that
contains the correct outcome for the corresponding input. SL
can be used for tasks such as predicting energy usage based
on historical data or identifying energy-efficient products
based on specific features [241]. Meanwhile, UL does not
require labeled data and thus can be used, e.g., to identify
patterns in energy usage data, detect anomalies that may
indicate energy waste, or reduce the dimensionality of the
data [242]. In RL, effective solutions are learned over time
given constraints imposed by the inputs and without attempt-
ing to find hidden categories or structures. RL is suitable for
solving problems with multiple optimal solutions [243], such
as optimizing energy usage in buildings or predicting optimal
times to charge electric vehicles. Notice that RL algorithms
can be computationally intensive, but they have the potential
to improve EE over time by learning from experiences and
making adjustments accordingly [244].
ML in wireless communications can be approached from

three distinct perspectives: i) the network side, ii) the edge,
and iii) the device side, as illustrated in Figure 23. Note
that network-based computing treats mobile devices as data
collectors sending data to cloud servers for processing. The
drawback of this scenario is the introduced overhead and
potentially severe latency [245]. Also, ML algorithms can
be complex, data-hungry, and computationally costly on the
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FIGURE 23. ML at the network, at the edge, and at the device side.

network side. Contrary, ML at the device side must be
simpler (i.e., of lower power/cost), while a balance/trade-off
between these two extremes is achievable by implementing
ML at the edge. Indeed, ML at the edge takes advan-
tage of local processing and data storage capabilities while
communicating with the network and devices. Specifically,
pre-trained models are offloaded from the cloud to individ-
ual devices, such that they can make inferences locally. This
allows for more efficient and effective use of ML in wire-
less communications. However, it can only support tasks that
require lightweight computations [245].
Next, we discuss each of the aforementioned approaches,

Indeed, our purpose here is to explore the application of ML
algorithms in specific local aspects of IoT connectivity, such
as computation task optimization and offloading decision-
making, which provide EE enhancements.

A. ML AT THE NETWORK SIDE
Currently, RANs account for 73% of the total EC in modern
cellular networks [246]. Therefore, intelligent resource man-
agement is imperative to maximize EE, and thus minimize
EC. Specifically, the current trend is to replace rule-based
heuristics with optimal parameters configured through the
knowledge acquired by data-driven approaches [246]. In this
regard, ML models play a crucial role in enabling intelligent
networks to characterize their environment, predict system
changes in real-time, and react accordingly [240].

1) ML ALGORITHMS

Choosing the most appropriate ML algorithm is critical for
solving EE problems on the network side. The algorithm
choice should be based on the specific problem, network
architecture, and available data. A comprehensive/holistic

approach that considers all aspects of the network, including
HW, SW, and communication protocols, is needed to design
energy-efficient solutions [247], [248], [249]. Moreover, the
specific EE problem, the architecture and the characteris-
tics of the network, the available data, and the strengths and
weaknesses of each ML algorithm must be considered [247],
[248], [249]. For instance, decision trees are suitable for
routing optimization, while support vector machines are
effective for network anomaly detection and prediction.
Genetic and clustering algorithms are well-suited for opti-
mizing the placement of network and edge resources [250],
[251], [252], while clustering algorithms are also appeal-
ing for grouping network devices, e.g., based on their EC
patterns [252].

DL is one of the most popular ML algorithms at
the network side [242]. Specifically, deep SL (DSL) and
deep RL (DRL) are commonly used on the network side
due to the availability of labeled data and the effective-
ness and flexibility of the models. Both can be used to
optimize EC by adjusting the network resources based on
the network traffic load. By combining feature extraction
with prediction, DL models classify, predict, and make
accurate decisions more effectively than traditional ML
algorithms [242]. This is because DL architectures such
as multi-layer perceptrons, convolutional neural networks
(NN) [253], and transformers [254] can estimate complex
mappings between input and labels in the training data [253],
all while efficiently utilizing HW-based accelerators such
as graphical processing units (GPU) for training and infer-
ence [255]. Other benefits include the distribution of process-
ing, avoiding redundant capacity in hotspots, and the efficient
marshaling of big data, generated in-network or at user
devices.

VOLUME 4, 2023 2631



López et al.: ENERGY-SUSTAINABLE IoT CONNECTIVITY

Notably, DL has its own drawbacks, e.g., i) DL requires
large amounts of training data, whose curation and labeling
may be costly and face privacy concerns; ii) DL algorithms
are largely black boxes with low interpretability and explain-
ability; and iii) DL may require dedicated ML accelerators
for efficient operation [246], [256]. All in all, the DL bene-
fits may be outweighed by the costs in many cases, calling
for careful and informed designs/implementations.

2) USE CASES AND APPLICATIONS

In 6G networks, ubiquitous intelligence is key for provid-
ing efficient and personalized services. However, this poses
a challenge in terms of data management and EC [257].
Indeed, EC can increase considerably unless energy-efficient
approaches are used [258]. Thus, there is a pressing need
for developing lightweight, flexible, and adaptive solutions
that effectively tame the dynamics of the environment and
minimize EC in practical IoT networks [246]. This has moti-
vated the adoption of DRL for solving a variety of wireless
communication problems [259], making it a valuable tool for
data-driven optimization in new-generation systems [246].
ML forecasting network environment can help DRL

algorithms converge faster to proper operational policies,
resulting in faster adaptation to changing conditions and
greater EE in network operations [246]. Indeed, they can
trigger well-informed decisions to address integration issues
with IoT devices. For instance, ML models can analyze his-
torical data from IoT devices and predict their traffic patterns
and energy requirements. This information can then be used
to optimize resource allocation, dynamically adjust power
management settings, and improve EE. In [260], ML is used
to estimate empirical path loss and shadowing. These esti-
mations guide transmission power adjustments, leading to
significant energy savings of up to 43% compared to con-
ventional protocols. Moreover, DRL is exploited in [261] to
design an adaptive LoRa strategy for improved reliability
in industrial applications, while [262] uses a combination
of decentralized and centralized RL for allocating spreading
factor and transmission power to the devices, showing sig-
nificant improvement in both network level good-put and
EC, especially for large and highly congested networks.
Additionally, ML models can help identify IoT behavior pat-
terns, such as peak usage times and idle periods of devices,
enabling the implementation of energy-saving strategies
like sleep modes and adaptive transmission power control.
Ultimately, ML-driven insights can contribute to achieving a
coordinated balance between network performance and EE
in IoT environments.
Notably, novel DRL schemes have been proposed to man-

age advanced sleep modes in BSs. Specifically, in [263], the
sleeping level length is set by the BS in a sequential manner.
When the cell becomes idle, the BS departs from the deepest
level of sleep and gradually switches to higher activity levels.
At each stage, the BS decides the number of slots for the cur-
rent sleep mode. Most relevant components must thus only be
active (consuming energy) when handling actual data [246].

In this scheme, the BS is the agent, and the network is the
environment, including the traffic load, available energy, and
the state of other network devices. The BS takes actions (i.e.,
sets the sleeping level length) based on its observations of
the environment (i.e., traffic load and energy budget), and the
RL algorithm provides feedback (i.e., rewards or penalties)
based on the EC and network performance. The RL algo-
rithm aims to maximize the reward by finding the optimal
sleeping level and duration for the BS while maintaining the
required network performance.
On the other hand, demand forecasting, i.e., predicting

how much time and resources will be spent on applications,
is a key problem in data center management. Notice that
good forecasting techniques can lead to minimizing EC by
scheduling jobs efficiently [264]. Network-level data usually
exhibit significant spatiotemporal variations, which can be
utilized for network diagnosis and management, UE mobil-
ity analysis, and public transportation planning [245]. In
this context, DL has the potential to improve EE in a vari-
ety of settings by improving demand forecasting, optimizing
resource allocation, and identifying patterns and trends in
data that can be used to reduce EC.
Establishing a data collection path model is another

solution for minimizing EC. Specifically, data collection
can avoid visiting needless nodes and collecting unreli-
able/correlated data, resulting in outperforming traditional
data collection methods in both energy and delay. In that
direction, proactive caching can also contribute to EC
minimization using forecasted lookup patterns to jointly
optimize computation offloading policies and caching deci-
sions [265]. These approaches may minimize radio interface
usage, which is a significant EC source in IoT devices.

3) OPEN-RAN (O-RAN) AND VIRTUALIZATION AS KEY
TECHNOLOGICAL ENABLERS

Open interfaces are appealing for the operators to swiftly
introduce novel services and tailor the network to their own
requirements. Motivated by this, RAN is evolving towards
the O-RAN concept, which focuses on openness and intelli-
gence [266]. O-RAN brings new business opportunities and
encourages local 5G innovations. O-RAN aims at decou-
pling the RAN components from their underlying SW and
HW components, enabling operators to cover more users in
a cost-effective, secure, and energy-efficient manner [267].
In O-RAN, the RAN is disaggregated into three main

building blocks: i) radio unit (RU), ii) distributed unit
(DU), and iii) centralized unit (CU) [266] as shown in
Figure 23. Also, the O-RAN ALLIANCE has defined differ-
ent interfaces within the RAN including those for i) fronthaul
between RU and DU and ii) midhaul between DU and CU.
Another feature of O-RAN is the RAN intelligent controller,
which adds programmability to the RAN and the ability to
introduce new services and features [266], [267], [268].
The open interfaces/protocols of O-RAN enable a seam-

less integration of ML models to optimize radio resource
management, interference mitigation, and network planning.
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In addition, O-RAN supports real-time data processing and
analysis, which is essential for ML algorithms that require
fast and accurate decision-making. This enables intelligent
and adaptive management of the RAN, resulting in better
network performance, improved UE experience, and lower
operating costs. These all may be crucial to extend the bat-
tery lifetime (BL) of IoT devices [268], [269], and support
energy-sustainable IoT ecosystems in general.
Notice that network functions virtualization (NFV) enables

network functions to be implemented as SW applications
running on virtualized infrastructure. This improves EE in
several ways, such as reducing the required number of phys-
ical network devices, dynamically scaling network functions
based on demand to avoid over-provisioning, and optimizing
energy usage across the network through centralized man-
agement and orchestration [270]. Furthermore, NFV allows
for the implementation of EE features like sleep modes and
power management in network devices, leading to even fur-
ther EC reduction while maintaining network performance.
In general, O-RAN and NFV are two complementary tech-
nologies that can work together to improve the EE and
flexibility of wireless networks.
O-RAN initiative is still in its infancy, with a lot of work

in progress. Hence, it is important that future research activ-
ities specifically focus on practical and real-world trials with
respect to the virtualized RAN concepts [271], which heavily
rely on self-organization and other ML-based approaches.

B. ML AT THE EDGE
ML at the edge (popularly known as edge ML [236] or edge
intelligence [272]) refers to the training and use of ML mod-
els across the computing continuum: on UEs, edge nodes,
and cloud servers, rather than only in cloud-based central-
ized setups. his is a rapidly evolving field with prominent
innovation opportunities and impact [273], [274].
This topic is often studied from two viewpoints. First, ML

on edge refers to adapting ML methods for the distributed
edge environment, while ML for edge is the use of ML meth-
ods for the benefit of the edge environment [236], [275]. As
an example of ML on edge, distributed learning and inference
allow the efficient distribution of ML computations across
the computing continuum. This allows optimizing the over-
all processing time, resulting in lower EC of in/near-sensor
devices [240]. Moreover, ML on edge can reduce latency,
allow localized filtering of unwanted data, and increase
system uptime as data is locally processed. On the other
hand, edge ML can introduce various benefits, including the
application of a predictive approach in troubleshooting. With
edge ML, real-time data can be analyzed by ML models
to proactively identify potential issues or anomalies before
they escalate into critical problems. This can provide EE
gains and minimize the downtime of IoT systems. Moreover,
operational efficiency and EE can be promoted in IoT envi-
ronments by reducing unnecessary offloads and tasks and
optimizing resource utilization [276], [277].

Shortcomings that need to be addressed include: i) com-
plexity due to coordination issues related to IoT con-
straints like processing power, memory, and delay in
real-time applications; ii) heterogeneity, opportunism, and
geographical distribution of computing resources; iii) fluc-
tuating or intermittent connectivity; iv) security and privacy;
v) standardization-related concerns like interoperability of
IoT with ML integration; and vi) accuracy and latency issues
in real-time applications [238], [272].

1) ML ALGORITHMS

ML can be used for multiple purposes in the context of
edge computing. For example, edge computing can filter
data, with only relevant data getting transmitted between the
user devices, the edge nodes, and the cloud. This results
in substantial savings in terms of bandwidth and cost of
data transmission [23]. Moreover, advanced ML techniques
can be utilized, for example, to optimize computation tasks,
make offloading decisions on a wireless device, and identify
the best scheduling solutions for working and sleeping time,
thus lowering EC and enhancing EE [257].
There are several ML approaches that can be applied at

the edge depending on the application requirements and con-
straints. These include distributed learning, referring to a
family of methods such as federated learning (FL) for dis-
tributing the learning and training data/process across various
nodes [278], and transfer learning, a method for transferring
knowledge between ML models in different domains [23].
For example, FL and other variants of distributed learning
have emerged as possible solutions for solving complex oper-
ational decisions at the edge side [257] (Figure 23). Although
undoubtedly beneficial, FL faces some challenges [257]:

• Expensive communication and synchronization. FL
communication overhead may be limited by reducing
the number of i) communication rounds and ii) gradients
in each communication round.

• Security/privacy/robustness issues. FL must: i) provide
protection against malicious attacks, ii) support privacy,
iii) tolerate heterogeneous HW, and iv) support robust
aggregation algorithms.

• Model size (MDS). A large FL MDS might be unsuitable
for an IoT device, especially given stringent real-time
constraints. Thus, efficient training and inference are
necessary for massive and heterogeneous networks.

2) USE CASES AND APPLICATIONS

IoT places significant demands on three main areas: trans-
mission, storage, and computation. Indeed, IoT devices
generate a large volume of data and have limited storage and
computational capabilities, thus edge-based storage and com-
puting are appealing. Such an edge integration effectively
accelerates data uploads/computation, reduces response and
device active time, and improves EE [279].
Edge computing is a rapidly evolving field, and the trend is

towards moving cloud functions to the network edges [280].
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Edge computing benefits the advancement and implementa-
tion of 5G and beyond networks with applications such as
augmented/virtual reality [281], low-complexity IoT [279],
Internet of Vehicles [282], and video stream analysis [283].
Delay-sensitive augmented/virtual reality applications can be
migrated to edge servers to guarantee a high-quality user
experience with a timely response. For low-complexity IoT
tasks, edge servers can reduce the HW complexity and
increase device lifespan by processing tasks that were orig-
inally done locally. Additionally, edge cloud networks close
to vehicles can improve transportation safety, reduce traffic
congestion, and provide value-added services. By utilizing
the capabilities of MEC networks, video playback can be
expedited, and user experience can be enhanced. Moreover,
smart meters can be used to detect electricity consumption
and gather data into a central controller to facilitate real-time
power control, leading to improved systematic EE.
The spatial and temporal correlation of IoT traffic data is

exploited in dual prediction and data compression techniques.
Specifically, dual prediction techniques use the correlation
between the current and previous data to predict future data
values. On the other hand, data compression techniques use
the correlation between the different sensor nodes to com-
press the data before transmission. Both techniques reduce
the amount of data that needs to be transmitted and hence
the EC and bandwidth requirements [10].

At the edge, communication-efficient FL and efficient
training aims at reducing the required communication over-
head of the training process while maintaining or improving
the model’s performance. Federated parallelization is an effi-
cient training FL technique for parallelizing the training
process across multiple devices and thus accelerating the
training. Efficient training can also be conducted via distil-
lation which consists of training a small model that mimics
the behavior of the original model; therefore, significantly
reducing the amount of required training data [257].

3) MEC - A KEY TECHNOLOGICAL ENABLER

MEC, or multi-access edge computing, is an architecture
for mobile networks. MEC was introduced to address the
latency issue during mobile cloud computing offloading,
pushing computing and storage resources to the edge with the
aim of bringing those resources as well as applications and
services near the end-users. MEC is characterized by two key
features, namely, low latency and high workload capacity,
stemming from proximity to users and their devices [284].
However, MEC has unique design considerations, such as
complex wireless environments and MEC servers’ inherently
limited computational capabilities [10].

Computation offloading is a significant MEC feature as it
may prolong the lifespan of IoT devices by delegating com-
putation tasks to edge devices as long as the communication
overhead remains reasonable [252]. Specifically, the amount
of energy that a mobile node can save by offloading an appli-
cation depends on the number of computation instructions
and communication data. If the computation instructions

FIGURE 24. EE when using computation offloading [285].

are much larger than the communication data, it is more
energy-efficient to offload the computation-intensive appli-
cation to the server. However, if communication is expensive,
it is better to carry out the application at the mobile node
itself. The condition also depends on the bandwidth available
for communication, where a large bandwidth can save com-
munication time and improve EE [252]. Figure 24 illustrates
when offloading can save energy [285].
There are various energy-efficient offloading methods:

i) computation-based methods, which involve partitioning the
offloading application program and offloading computation-
intensive parts; ii) communication-based methods, which
involve reducing the amount of communication by aggre-
gating or compressing data [285]; and iii) hybrid/joint
optimizations methods, which involve collaboratively exe-
cuting tasks on the mobile node and the cloud to minimize
EC while ensuring the total execution of tasks [286]. The
study in [286] demonstrated that computation offloading can
reduce EC and increase battery life up to 50% for practical
applications.
Notice that establishing a MEC infrastructure, especially

server locations, is the first step toward constructing a MEC
system. For this, the system planners and administrators
must consider the deployment cost, demand for computa-
tion, and availability of renewable energy sources for EP in
the case of green MEC [250], [251], [284], [287]. Indeed,
green MEC is an emerging technology that combines the
benefits of MEC with energy-efficient computing and EP
from renewable sources to create a more sustainable and
eco-friendly approach to mobile computing [287]. The need
for green MEC arises from the growing awareness of the
environmental impact of mobile computing and the increas-
ing demand for sustainable solutions. As mobile networks
and devices become more ubiquitous and essential to our
daily lives, their EC and carbon footprint also increase.
Green MEC may reduce this impact by optimizing the use
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of resources and energy-efficient computing techniques. One
method for designing green MEC systems is dynamic right-
sizing, where the EC of a MEC server is dependent on its
utilization, and a server should consume energy proportional
to its workload [288].13 To achieve energy-efficient servers,
the processing speeds of lightly-loaded edge servers can
be reduced. Another method is geographical load balancing
(GLB) [287], which utilizes spatial variations in workload
patterns, temperatures, and electricity costs to direct the flow
of workload between different data centers. These methods
can help to reduce the EC of MEC systems and provide
a carbon-neutral energy supply, leading to more sustainable
and environmentally friendly network operations [287].

C. ML AT THE DEVICE: TINYML
TinyML focuses on computationally efficient and
HW-constrained ML algorithms for low-power IoT
devices [289]. TinyML-equipped IoT devices can energy-
efficiently execute tasks and make autonomous decisions
without continuously relying on cloud/network services.
This reduces network traffic and latency in decision-making
and increases privacy. Due to this and its on-device data
processing capability, TinyML may assist with intermittent
connectivity/computing.

1) USE CASES AND APPLICATIONS

In the following, several use cases and applications moti-
vating the deployment of ML on the device side are
discussed.
Energy Management is a promising solution to enable

i) energy-neutral operation (ENO) in always-on IoT devices
utilizing EH [290] and ii) efficient allocation of PV energy
from a single-panel or off-grid system to multiple tasks [291].
In this regard, TinyML models can forecast future EH val-
ues to help devise a proactive ENO strategy for IoT devices.
Besides, when the number of EH samples becomes insuf-
ficient to elaborate a forecast on the incoming ambient
energy, energy management strategies can still benefit from
TinyML by using the current battery state and previous EH
measurements [290]. Again, PV power prediction is neces-
sary for proper energy management/distribution among tasks.
The study in [291] employs TinyML to perform PV power
prediction and suggests that it can also serve as an indicator
for measuring the effects of aging on the power-generating
capacity of solar panels.
In addition, TinyML may jointly ensure EE and the QoS

of the data transmitted by an IoT device with multiple radio
access technologies (RATs) by enabling a proper RAT selec-
tion. This can be implemented by considering situational
characteristics, such as the available energy on the device
and the size/urgency level of data to be transmitted [292].
Also, TinyML may support complex event processing (CEP),

13. In a typical MEC system, the EC of a server is often fixed, regard-
less of its utilization or workload. This means that even if the server is
underutilized, it still consumes a significant amount of energy, leading to
wastage and higher energy costs. Refer to the EPC metric in Section VI-D1.

which aims to identify complex event patterns in real-time
data streams from multiple sources using predefined logic
rules.14 Note that large IoT deployments pose a challenge
for CEP in performing sequence matching over raw data due
to unexpected events or outliers not covered by predefined
rules, motivating the use of ML-based CEP. Nowadays, the
data privacy and latency issues faced by centralized IoT
are empowering the idea of performing ML-based on-device
CEP in IoT. Interestingly, the authors in [293] designed a
framework that puts together TinyML and CEP for machine
safety monitoring in a distributed IoT network.
Object detection running in EH IoT devices constitutes

another application opportunity for TinyML. Indeed, data
privacy and latency requirements in various object detec-
tion applications, such as intelligent video surveillance and
number-plate recognition, are encouraging the idea of on-
device processing in IoT, thus calling for efficient TinyML
implementations. Due to the dynamic nature of the EH
environment, on-device processing must be aware of the
available energy on the device, and also of the time, energy
that must be collected, and the deadline to complete a task.
Interestingly, TinyML is used in [25] to detect a person over
a battery-less IoT device. This study also suggests the use of
TinyML for applications where battery-less devices require
a long lifetime and are difficult to reach.
TinyML allows performing predictive maintenance pro-

cedures, e.g., for detecting and preemptively solving the
impending failures that a system might face, over an MCU-
based sensor device rather than on the cloud. For instance,
authors in [297] implemented TinyML to perform anoma-
lous behavior detection tasks over the sound recordings of
the ToyADMOS dataset [298], where spectrograms (images
generated from audio) are used as input. It is shown that
optimizing the audio sampling rate used to form a spectro-
gram can lead to a decrement in the spectrogram dimensions,
which further leads to a reduced INFT, required memory,
and EC. In addition, [299] introduces TinyML for detect-
ing various kinds of faults in a solenoid valve, which is
an electro-mechanical actuator. Here, the transient response
of the drive current of the solenoid valve is used as input
to the TinyML model. This encapsulates information about
the solenoid valve’s electro-mechanical action, from which
predictions about the present working condition can be made.
Finally, TinyML is appealing for realizing tiny robots.

Note that legged robots use imitation learning [300] and RL
to learn their walking gaits. However, such procedures are
not functional for tiny robots, which are low-cost resource-
constrained robots that can potentially be used in search &
rescue operations, military reconnaissance, space robotics,
and routine equipment monitoring [301]. To address this,
authors in [302] proposed exploiting TinyML techniques,
such as graph freezing and float16 quantization, to shrink the

14. For instance, CEP can be used in a manufacturing plant to detect a
sequence of events that occur before a machine breaks down by monitoring,
e.g., changes in pressure, temperature, and vibration, and thus triggering an
alert for maintenance.
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FIGURE 25. Techniques enabling EE in ML [294], [295], [296].

trained walking gaits of the NN MDS by 8×. Graph freezing
made all NN variables constant and float16 quantization
changed the floating point weights from 32-bit to 16-bit.

2) ENABLING TECHNIQUES

Next, we discuss the techniques to support energy-efficient
ML models. They are illustrated in Figure 25, while rep-
resentative state-of-the-art works using them are listed in
Table 9 together with key features.

• Neural architecture search (NAS) aims to find the best
NN architecture that can fit in the available MCU
resources. For instance, the authors in [303] proposed
MCUNet, a framework to optimally handle/utilize the
MCU resources. MCUNet consists of TinyNAS, a low-
complexity NAS, and TinyEngine, an inference library
that reduces the required runtime memory. The latter
utilizes a memory scheduling method to reduce the
SRAM required by an ML model during its infer-
ence, thus reducing the EC per inference. Meanwhile,
a drop in the required SRAM frees up the MCU
memory, thus allowing TinyNAS to select a larger
ML model to achieve higher accuracy. As shown in
Table 9, MCUNet achieves higher accuracy compared
to MobileNetV2 [304] and ResNet-18 [305], while
utilizing relatively less SRAM and Flash. All in all,
MCUNet may provide energy-cum-memory efficient
NN architectures that can be implemented on an MCU.

• Parallel ultra-low power (PULP) is an IoT pro-
cessor architecture providing SW-level acceleration
for TinyML. PULP adopts both data and thread-
level parallelism to deliver a steady performance
irrespective of the operating voltages and mW-level
computations/inference. As shown in Table 9, PULP

uses 3.5× less energy than ARM Cortex-M4 proces-
sor and also exhibits a significantly lower INFT. For
instance, the authors in [306] adopted PULP-based
MCU to facilitate the parallel run in non-neural ML
algorithms, while a fast NN (FANN)-on-MCU frame-
work supporting both ARM Cortex-M series MCUs
and PULP-based MCUs is used in [307]. The lat-
ter framework can be used with both fixed-point and
floating-point NN models.

• Model compression allows the creation of models
that are compact enough to fit on limited-capability
devices and efficient enough to run with limited power.
Specifically, model compression is a collection of
techniques aimed at reducing the ML MDS, thereby
enhancing its efficiency in terms of memory usage
and computational requirements [308]. Several model
compression techniques are commonly employed in
TinyML: i) quantization, which reduces the precision of
the numbers used in the model, significantly decreasing
MDS and computational requirements [309]. For exam-
ple, coarse quantization drastically reduces the precision
of an NN model’s parameters to less than 8 bits, making
the model suitable for an MCU. Moreover, the quantized
NN model enjoys less EC and faster computation than
its full-precision counterpart. However, these advantages
come at the cost of lower NN accuracy [310]; ii) prun-
ing, which eliminates parts of the NN that contribute
little to the output, such as weights that are close to
zero [311]; iii) knowledge distillation, which trains a
smaller model (the student) to mimic the behavior of a
larger model (the teacher). The smaller model is then
used in place of the larger model, resulting in significant
computational savings [312]; and iv) weight sharing,
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TABLE 9. Representative state-of-the-art works on energy-efficient TinyML (2020-2022).

which involves using the same weights for multiple
neurons, reducing the total number of weights that need
to be stored [313]. By applying these and other tech-
niques, it is possible to create small, efficient models
that can run on low-power devices, thereby expanding
the ML applications.

• Self-attention allows each input in a sequence to weigh
the importance of all other inputs, thereby enabling
each element to “attend to” or “focus on” all other
elements in the sequence [254]. This enables high lev-
els of parallelization and increased efficiency, and it is
a significant departure from traditional recurrent NNs
or long short-term memory networks, which typically
focus on preceding words in a sequence. Note that the
self-attention mechanism is a core component of the
Transformer architecture [254], which is revolutionizing
natural language processing. In the context of TinyML,
the benefits of self-attention and Transformer architec-
tures can be manifold. Firstly, the ability to process
sequence data in a non-temporal manner allows for more
efficient computation, which is crucial for low-power
edge devices [318]. Secondly, the parallelizability of
Transformer architectures makes them well-suited to the
resource-constrained environments typical of TinyML
applications. By processing all elements of a sequence
simultaneously rather than sequentially, Transformers
can deliver faster INFT, which is crucial for real-
time applications on edge devices [319]. However,
the original Transformer models are often too large
and computationally intensive for TinyML applica-
tions. Therefore, further research on model compression
techniques and efficient Transformer variants, such as
TinyBERT [320] and DistilBERT [321] is needed. For

example, AttendNets, a TinyML model, combines self-
attention with a machine-driven design exploration,
resulting in a compact deep NN with low-precision
parameters. As shown in Table 9, AttendNets achieves
better performance in terms of accuracy, EC, and
memory consumption than MobileNet-V2 for pictorial
recognition with ImageNet-50 dataset [322].

• Memory access techniques aim to reduce the average
DRAM access energy in an inference. Note that HW
accelerators, consisting of DRAM (off-chip part), and
SRAM and compute engine (on-chip parts), are required
to implement complex NNs, such as CNN, on a device.
The portion of the NN layer that an accelerator can
process at a single time instance depends on the data
storage capacity of SRAM. Also, the same input data
could be used in multiple NN operations, which leads to
multiple DRAM accesses for the same data. Notably, the
energy required for DRAM access is relatively higher
than that for a NN operation, which means that a sig-
nificant amount of energy can be saved by exploiting
memory access techniques. Indeed, authors in [315]
recommend using ROMANet [294], a memory access
technique to cut down the average energy-per-DRAM-
access, on-chip buffer access energy, and the number
of DRAM accesses. Specifically, ROMANet partitions
an NN layer and then schedules the processing of the
portions to minimize the number of DRAM accesses.
Based on the data storage capacity of SRAM, data is
partitioned into various blocks. Then, ROMANet maps
them to the available DRAM and SRAM resources to
minimize the row buffer conflicts and maximize the
bank-level parallelism, respectively. The advantages of
using ROMANet with various NN architectures, such
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as AlexNet [323], VGG-16 [324], and MobileNet [325],
are clearly visible in Table 9.

The reader interested in TinyML can refer to the python
package hls4ml [326], which allows designing ML algo-
rithms for low-power FPGA or ASIC devices. Through
hls4ml, it is possible to optimize the HW implementation of
TinyML models by leveraging the parallelism and pipelining
capabilities of FPGA. This can lead to more efficient use of
HW resources and reduced EC.

3) FUTURE DIRECTIONS

Bio-inspired optimization [327] may brush aside unnecessary
ML computations, providing potential benefits for TinyML.
Furthermore, alternate NN models, such as spiking NN [328]
and analog NN [329], should be investigated for TinyML
design. Also, new computing models for TinyML systems
are needed, while the existing computing models, such as
in-memory computing, require further research in the con-
text of TinyML systems. Note that MobileNet is a baseline
deep NN model for edge computing, however, no baseline
TinyML model is currently available for the end devices.
Indeed, a baseline TinyML model serving as a reference
point for future TinyML models is appealing. Finally, a fer-
roelectric RAM [330] based MCU is a viable option for
tinyML applications where some data must be retained on
the device along with the tinyML code. Ferroelectric RAM
offers non-volatile storage and allows flexible memory par-
titioning for tinyML code and data storage. Also, it allows
writing a single data word to memory in ∼ 100 ns, whereas
flash memory demands several ms to perform the same oper-
ation. However, these non-volatile RAMs are currently bulky
and have a significantly limited number of write cycles, so
further research and technological advances are still needed
to make them really appealing.

VI. ENERGY-RELATED PERFORMANCE METRICS
The potential of a technique/technology, especially when
compared to a competitor, can only be assessed via relevant
metrics quantifying performance. Herein, we discuss several
performance metrics related to energy that serve this purpose
for the discussed IoT techniques and technologies at a com-
ponent/device and/or system/network level. The key features
of the discussed performance metrics in terms of related
energy processes, application level (at the component/device
or system/network level), and relevance/applications are sum-
marized in Table 10. Meanwhile, Table 11 lists relevant
performance targets (i.e., KPIs) for the current and next
generation of wireless systems. The numeric values are
indicative and were extracted from the vast literature con-
sulted for this work, together with data extrapolation and
trend analysis in some cases.

A. ENERGY CONVERSION AND TRANSFER METRICS
Every energy conversion/transfer process introduces losses
and other potential non-linearities affecting device/network
EE. Some related metrics are discussed below.

1) COMPONENT EE (CEE)

CEE refers to the ratio of the output to the total energy at
the input of a certain electronic component. CEE considers
losses due to heat, friction, and other inefficiencies, and
describes the effectiveness of electronic components such
as power supplies, power amplifiers, motors, filter circuits,
phase shifters, etc. The ideal CEE value is 100% or 1.

2) EH INPUT/OUTPUT RELATIONSHIP

The main parameters impacting the performance of EH cir-
cuits are sensitivity, saturation, and CE. Sensitivity refers
to the minimum magnitude or change in the input signal
required for the EH circuit to produce a usable electric sig-
nal. Saturation, on the other hand, occurs when the circuit
reaches maximum output and thus the harvested power is
independent of any input power increase. Both sensitivity and
saturation metrics correspond to absolute values of power or
energy, while the EH CE is defined as the ratio of the out-
put to the total input power. Notably, CE is a non-linear
function of the input power, and EH datasheets commonly
include input-output power transfer curves under different
settings and emphasize the maximum achievable CE (here-
inafter referred to as max CE). Notice that in WET systems,
one can exploit the fact that CE depends on the operating
conditions, such as the operating frequency, incident energy,
and distance to the source, to drive the EH circuits to their
maximum CE.

3) APD OF EH TRANSDUCERS

This metric refers to the ratio of the EH transducer’s peak
output power to its size under specific operating conditions.
It is given in W per unit of area/volume and characterizes
the miniaturization level achievable by an EH transducer.

4) PTE

This metric, given as a percentage or a dimensionless
quantity, refers to the ratio of the power captured by EH
receiver(s) to the power consumed by the corresponding
transmitter(s) and captures the joint energy CE of the trans-
mitter(s), the medium, and the EH circuit(s). Several factors
can affect PTE, including the distance between the ET and
EH receiver and the specific WET technology.

5) EH COVERAGE

This comprises a set of metrics characterizing the EH
effectiveness in a given IoT network. For example,

• Average harvested energy (AHE) characterizes the aver-
age energy harvested by (either a specific or random)
device in the network in a given time period. It can be
given in J, or W if time is normalized.

• Energy outage probability (EOP) denotes the probability
that the energy harvested by a device in a certain period
falls below an energy threshold ξ . Such a threshold may
indicate the energy required for the device operation or
the execution of a relevant task. EOP is the complement
of the energy coverage probability.
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TABLE 10. Performance metrics and related key features.

• Meta distribution of the harvested energy (MDHE)
is the distribution of the EOP conditioned on certain
time/spatial-varying network parameters, thus, it is a
finer-grained performance metric compared to the typ-
ical EOP. For instance, within the stochastic geometry
framework, the authors in [21], [331] express MDHE as
the distribution of the EOP conditioned on the locations
of the RF ETs. In this context, MDHE can be interpreted

as the fraction of IoT devices in each realization of the
point process (i.e., each possible network realization)
that have harvested energy above ξ with probability at
least ε.

Notice that EOP and MDHE are relevant metrics for
networks with battery-less IoT devices. Meanwhile, AHE
can suffice in scenarios where devices are equipped with
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TABLE 11. Some performance metrics and associated target values for current and next generation of wireless systems.

batteries, especially when AHE is measured per device. All
in all, these metrics measure the extent to which a region
or network has access to EH services and/or can reliably
maintain an energy supply over time. Therefore, they can be
used to assess the level of energy availability/ubiquity.

B. ENERGY STORAGE AND CONSUMPTION METRICS
1) BCAP AND ENERGY DENSITY (ED)

BCAP, given in ampere-hour (Ah), refers to the amount
of potential energy (usually chemical energy) that batteries
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can store. Over time, batteries’ electrodes degrade due to
continuous chemical reactions causing capacity fades and
unexpected voltage drops. Notice that even when batteries
remain disconnected from an external circuit, the internal
chemical reactions will cause a self-discharge thus reducing
the amount of energy stored over time.
The ED of a battery measures the amount of power a

battery can store per unit of volume (Wh/m3) or weight
(Wh/kg). High ED batteries can provide longer battery life
while maintaining a compact and lightweight form fac-
tor. The factors that mainly impact batteries’ ED are their
chemistry and internal cell design.

2) LIFETIME

In general terms, the lifetime of a device/component is a
measure of its durability and refers to the period of time over
which the device/component is expected to remain functional
and perform its intended tasks without requiring significant
repairs or maintenance. When the device/component is a bat-
tery, we refer to BL, which is influenced by many factors
such as the chemistry and design of the battery, the condi-
tions under which it is used and stored, the level of usage
and discharge, and the charging and maintenance practices
over time. The BL may be given by the number of charging
cycles the battery can endure before its capacity decreases
significantly, or by the time the battery can hold a charge
before it needs to be recharged.
Finally, there is also the so-called network lifetime,

which refers to the time period a network functions as
intended. This metric is obviously related to the lifetime
of the devices, but the relationship depends on the specific
network’s applications and performance requirements.

3) EC

The EC of a component/device, specified in J, depends on
the specific operation modes, i.e., active, idle, and sleep
states, and the time spent in each. As briefly discussed in
Section IV-D, duty cycling takes care of properly schedul-
ing these states to reduce EC subject to QoS requirements.
Notably, tasks such as computation and communication,
mostly executed in active modes, consume different amounts
of energy. For instance, transmitting typically consumes more
energy than receiving data wirelessly, and the EC from com-
putational tasks increases with the computation complexity.
Obviously, the EC of a system/network is given by the sum
of the EC of its components/devices.
The EC scales linearly with the floating-point opera-

tions per second (FLOPS) and the million instructions per
second (MIPS) in digital signal processors and computer
systems, respectively [332]. The scaling factor depends on
the amount of computational work, the number and type
of functional units, the clock frequency, and the complexity
of the instruction set architecture. Therefore, FLOPS and
MIPS units are usually more useful than J units for EC

performance comparisons in these systems.15 Nevertheless,
when assessing network EC performance figures, one may
inevitably rely on J units and averages over different states,
workloads, components/devices, etc.
Other three key metrics related to EC are:
• Net harvested energy (NHE), which represents the
amount of energy that is available for use by an EH
device after considering losses, i.e., due to energy con-
version and storage, and EC related to the EH protocol,
e.g., for CSI acquisition in RF-WET systems [333].

• Relative power saving (RPS), which quantifies the EC
reduction driven by a certain approach compared to a
specific benchmark [218].

• Peak demand (PKD), which measures the highest level
of energy demand during a given period. It can be used
to assess the capacity of a renewable energy system to
meet maximum demand and identify opportunities for
demand management and energy storage [334].

4) GREEN EC SHARE (GECS)

The exploitation of renewable sources is fundamental to
support IoT sustainability and thus will continue expand-
ing in the next few years. Consequently, quantifying their
relative contribution to the total energy budget of IoT
devices/networks/systems is increasingly relevant. For this,
the GECS metric, which quantifies the portion of the energy
consumed from renewable/green sources relative to the total
EC, is undoubtedly attractive. Through GECS, one can
get a clear understanding of the extent to which a given
IoT device/network/system relies on green energy sources.
GECS can even evolve to quantify the energy contribu-
tion from specific renewable sources, thus, supporting more
granular insights. Notice that this metric can be used as a
benchmark to set targets for increasing the green energy
share(s) of a solution, as part of a broader sustainability
strategy.

5) LEVELIZED COST OF ELECTRICITY (LCOE)

This metric evaluates the economic feasibility of electricity
generation systems. It is defined as the ratio of the estimated
electricity cost and the estimated power plant’s electricity
generation during its lifetime, thus given in monetary units
per kiloWatt-hour (e.g., $/kWh). In the context of renewable
energy, LCOE estimation is heavily determined by the ambi-
ent energy availability over the system lifetime. In fact, the
number, size, and complexity of the EH transducer/circuits
and the energy storage vary depending on the geographic
location. Besides, the uncertainty in the amount of electric-
ity generated by the system may cause unexpected expenses

15. However, comparing different systems in terms of FLOPS/MIPS
may be sometimes misleading for EC assessment. For instance, there are
processors with architectures specialized for specific tasks. That is the
case of security accelerators, whose designs are optimized for encryp-
tion/decryption operations. Due to their specialized architecture, these
processors require significantly less energy compared to conventional
general-purpose processors when performing the required computations.
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due to outages or energy trading with the grid to cope with
sporadic high electricity demands. Fortunately, energy trad-
ing can also be a source of revenue if the network sells
its surplus energy (cf. Section VII-A3). One important con-
sideration is the market dynamics that may occur over the
anticipated lifespan of EH systems, which is typically around
30 years. This timeframe allows for the potential increase in
renewable energy market penetration, as well as the devel-
opment of technological breakthroughs. These advancements
could lead to reduced LCOE due to lower costs for spare
parts and more efficient electricity generation.
Finally, LCOE can be extrapolated in WET-enabled

networks to estimate the ratio between the electricity cost
to the harvested energy. In such cases, the system PTE, the
deployment of the ETs, and CE of the EH circuits may be
the main impacting factors when estimating LCOE.

6) GRID RELIABILITY/STABILITY (GRS)

GRS captures the ability of the (micro)grid to maintain a sta-
ble energy supply, despite fluctuations in demand and supply,
especially when considering contributions from renewable
energy sources. It can be given in percentage and used to
assess the resilience of the grid and identify opportunities
for improving grid management and infrastructure.

C. EER METRICS
An alternative (and popular) way to define EE is the ratio
between the achievable QoS performance and the corre-
sponding EC/PC that is required, or the ratio between the
EC/PC and the corresponding achievable QoS performance.
We define this category of EE metrics as EER and notice that
they differ from one another in the type of QoS performance
metric that is used.
Resource allocation based on optimized EER metrics has

been a popular approach in wireless communication engi-
neering, e.g., [133], [134], [141]. However, this may not
always be the most effective way to balance performance
and EC in all scenarios, unless the EER metrics already
include some guarantee for QoS support and/or maximum
EC. If not, minimizing EC while maintaining QoS require-
ments, e.g., [135], [137], [140], [210], [335], or maximizing
performance given energy constraints, e.g., [131], [202],
[205], [290], [336], [337], may be more important.
Although algorithmically/analytically optimizing EER

metrics may not always make sense due to intrinsic opera-
tional constraints, they are certainly useful for comparison
and drawing valuable performance insights. Next, we briefly
discuss relevant QoS performance metrics and associated
EER units.

1) DATA TRANSFER METRICS

This is a set of highly related measures used to evaluate data
transmission performance over wireless networks, e.g.,

• spectral efficiency, in bps/Hz, measures the amount
of data that can be transmitted per unit of time and
frequency spectrum;

• THP (capacity), in bps, measures the amount of data
that can be transmitted over a wireless link or network
(under ideal conditions) within a given period of time;

• ε−capacity, in bps, constitutes the best upper-bound
for the attainable THP (capacity) supporting an outage
probability that does not exceed ε;

• goodput, in bps, measures the useful data rate (consid-
ering overhead and error correction) delivered to the
end-user/application;

• effective capacity, given in bits per channel use (bpcu),
constitutes the highest arrival rate that can be served
by a network under a particular latency constraint, thus
capturing PHY and link layer characteristics.

The corresponding EER metrics are often given in bits/Hz/J,
bits/J (or J/bit), or bpcu/J.

2) RANGE (RG) OR COVERAGE AREA (CA)

RG refers to the maximum distance over which a specific
device, or a generic technology device, can transmit/receive
signals effectively, according to, e.g., target QoS guarantees.
Similarly, CA refers to the geographical area within which
wireless connections can be established and maintained with
certain QoS guarantees.16 The corresponding EER metrics
are often given in W/m or W/m2, i.e., characterizing the
required amount of power per distance/area unit.
Related to CA, but specifically for IRS-assisted networks,

the authors in [338] proposed the so-called area of influ-
ence (referred to as AroI) metric. AroI comprises the
area of significantly improved wireless connectivity trig-
gered by the IRS(s) when optimizing for the whole area
under consideration instead of a single nominal receive
position. Notably, the spatial resolution of IRSs in hori-
zontal and vertical axes depends on the specific element
array, thus, AroI specified in m2 might be insufficient.
Similarly, in non-terrestrial networks, including those com-
posed at least partially of UAVs, high-altitude platforms, and
satellites, the network becomes inevitably three-dimensional.
In such scenarios, the CA may evolve to coverage vol-
ume (CV) and the corresponding EER to be measured
in W/m3.

3) BANDWIDTH

This metric corresponds to the frequency region in which a
technology or device operates, e.g., harvests sufficient energy
in the case of RF-EH networks. Note that for some com-
munication systems, especially those with frequency hopping
(e.g., BLE or LoRa), there might be two different bandwidth
notations: i) signal bandwidth referring to the bandwidth of
one channel and ii) system bandwidth referring to the band-
width of all channels used by the system. Another special
case of interest is in IRS-assisted networks, where there is
the so-called bandwidth of influence (BoI), which indicates

16. Sometimes, RG/CA and associated QoS guarantees, e.g., expressed
via data transfer metrics, appear directly intertwined in the form of new
metrics such as area spectral efficiency and area THP/capacity.
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the frequency region in which, any wave hitting the IRS,
will be reflected [338]. The corresponding EER metric is
given in Hz/W.

4) ACCURACY

This metric somewhat characterizes the proximity of a mea-
sured/estimated value to the true value. Both relative units,
such as percentages and relative errors (e.g., probability of
error, miss-detection (PMD), false-alarm (PFA)), and abso-
lute units, such as mean absolute error (MAE), root mean
square error (RMSE), and standard deviation (STD), can
be used depending on the scenario/application. Next, three
specific examples are briefly discussed.

• ML accuracy (MLA) is a crucial KPI for any ML
model, especially TinyML, which is subject to tight
HW and SW-related constraints. In general, the def-
inition of learning accuracy depends on the task for
which the ML model has been employed. For exam-
ple, for anomalous behavior detection [339] and object
detection [25] tasks, MLA may be the percentage of
correct predictions an ML model makes. Meanwhile,
for tasks such as PV power prediction [291], learning
accuracy can either be defined by the RMSE or MAE
among the predictions and actual observations.
Notice that the EER metric corresponding to an ML
model may be expressed as the ratio between the
relative/absolute accuracy that is achievable per EC
at each inference step. Specifically, the corresponding
EER metric can be expressed in %/J when using rel-
ative accuracy metrics. Finally, recall that FLOPs can
be also used as a measure of energy as discussed in
Section VII-B3, thus, resulting in %/FLOP EER units.

• Localization accuracy (LA) is the precision with which
a system can estimate the position of an object or
feature in a given environment. LA can be given in
angular or distance units, which may correspond to
RMSE, MAE, or STD statistics. For instance, indoor
localization systems supported by future 6G wireless
communication systems may operate with sub-meter
STD LA [340]. The corresponding EER metric may
be given in rad/W or m/W.

• Wake-up accuracy (WUA) refers to the ability of a
WuR to reliably detect WuS and avoid false alarms.
WUA is typically characterized by two other metrics:
PFA and PMD [218]. PFA refers to the probability that
the WuR wakes up erroneously in the absence of WuS
(false positive, FP). On the other hand, PMD refers to
the probability that the WuR fails to wake up in the
presence of WuS (false negative, FN). Specifically, PFA
is given by FP/(FP+TN) while PMD is FN/(TP+FN),
where TP (true positive) is the number of times the
WuR correctly detects WuS, and TN (true negative) is
the number of times the WuR correctly determines that
WuS is not present. Moreover, WUA is calculated as
(TP + TN)/(TP + TN + FP + FN). Both PFA and

PMD depend on various factors such as the type of
WuS used, the power level of the signal, the distance
between the transmitter and receiver, and the RF con-
ditions of the environment. The accuracy of WuR can
be improved by optimizing these parameters and using
more sophisticated WuS detection algorithms [219].

D. OTHER METRICS
1) ENERGY PROPORTIONALITY COEFFICIENT (EPC)

This metric represents the PC of a device/system as a func-
tion of the offered load. In general, the observed PC increases
non-linearly with the load, and the PC in an idle state is often
non-negligible, e.g., network switches consume up to 85% of
their peak PC when idle [341]. EPC is defined in [−1, 1],
where EPC = 1 (−1) means that each increase in load
leads to an equal increase (decrease) in EC, while EPC = 0
describes the case when the system EC is constant and does
not depend on the load.
Three other metrics related to EPC are [341]:

• Energy proportionality index (EPI), which captures the
difference between the measured power and the ideal
power, i.e., the power that the device should consume if
it is fully energy proportional. EPI is expressed in the
region between idle and peak PC only. EPI = 0 (1) indi-
cates that the EC is agnostic (fully energy proportional)
to the workload.

• Idle-to-peak power ratio (IPR), which measures the ratio
between the idle and the peak PC. IPR values tending
to zero indicate energy-proportional designs.

• Linear deviation ratio (LDR), which captures the devi-
ation of the observed PC from the fully proportional
case, i.e., a straight line connecting idle and peak PC
values. LDR = 0 corresponds to a linear system.

2) WET EXPOSURE LEVEL

This metric describes how different WET energy-carrying
signals disturb the surrounding environment.
A common metric to characterize RF transmissions is

the power spectral density (in W/Hz), which describes the
power distribution of a signal across different frequency
components. In the spatial domain, one can resort to the
effective isotropic radiated power (in W) which is the hypo-
thetical power that an isotropic antenna must radiate to
yield the same signal strength as the actual RF transmission
in the direction of the antenna’s maximum gain. Besides,
the EM field (EMF) radiated by RF sources may cause
disturbances in nearby equipment operating in the same
frequency band. For such a case, international organizations
have resorted to EM compatibility, a boolean metric that
takes on “pass” or “fail” and describes the ability of elec-
tronic equipment to successfully operate in a certain EM
environment without being affected by (or affecting) other
devices.
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International EMF exposure limits are available, e.g.,
ICNIRP guidelines [342], which are set with large mar-
gins to protect against both short- and long-term health
effects. Limits are provided for whole-body and local expo-
sure scenarios while considering both general public and
occupational environments (cf. [343] for their impact on the
RF-WET performance). The exposure limit values relate to
basic physical quantities that are known to induce adverse
health effects. For instance, the specific absorption rate
(SAR, in W/kg), specific absorption (SA, in kJ/kg), absorbed
power density (in W/m2), and absorbed ED (in kJ/m2) are
basic physical quantities measuring the absorption rate of
EM energy in the human body. Other reference quantities
that are more easily evaluated, e.g., incident power density
(in W/m2), incident ED (kJ/m2), electric field strength (in
V/m), and magnetic field strength (in A/m) are also pro-
vided. These have been derived from the basic restrictions
to provide a more practical way to demonstrate compliance.
Reference levels provide an equivalent degree of protection
as the basic restrictions, and thus an exposure is taken to
be compliant with the guidelines if it is shown to be below
either the relevant basic restrictions or relevant reference
levels. There are also EMF exposure assessment standards
available for wireless communication and WET technologies.
The exposure to ultrasound signals is commonly evalu-

ated by measuring the intensity of the pressure wave in dB,
scaled to a frequency sensitivity response curve. However,
the exposure duration is also relevant, as prolonged expo-
sure can cause hearing impairments in animals whose hearing
response falls within the operating frequency. In humans, the
impact of ultrasound signals is primarily characterized by
two indexes: the thermal index and the mechanical index.
The thermal index is a unitless metric that measures the
ratio between the acoustic power penetrating the skin and
the amount of power required to raise the body temperature
by one degree Celsius. On the other hand, the mechanical
index indicates the ability of the acoustic signal to create
tissue mechanical stress and damage.

3) WAKE-UP TIME

Wake-up or start-up time refers to the time it takes for an IoT
device to wake up from a low-power sleep state and become
fully operational, thus it is given in time units. This is an
important factor in determining EC and responsiveness of a
network implementing duty cycling and/or WuR. Typically,
wake-up time depends on several factors such as the type of
device, the complexity of the wake-up process, and the power
management scheme used. For instance, some devices may
require a longer wake-up time to initialize, calibrate, or pre-
heat sensors or to establish a wireless connection. Similarly,
wake-up time can be longer if the device is in a deep sleep
mode that requires more time to restore the device’s state. To
optimize EC and responsiveness, it is important to minimize
the wake-up time. This can be achieved by using low-power
HW components, optimizing the SW for fast wake-up time,
and selecting appropriate power management schemes [344].

4) INFT

INFT refers to the time it takes for an ML model to make a
prediction (i.e, inference) on a new data sample. INFT can be
affected by the complexity of the model, the size of the input
data, the HW configuration, and the SW implementation.
This metric is relevant for scenarios demanding real-time
inference and/or low EC (since EC is proportional to active
time) such as power management and sleep mode handling.

5) MDS

This metric refers to the amount of memory required to store
the model’s parameters and configuration, thus it is given in
bytes (kB, MB, etc.). A small MDS makes the ML model
easier to deploy on resource-constrained devices and/or can
lead to fast INFT since the number of computation param-
eters during the inference phase is limited [345]. However,
reducing the MDS can also have a negative impact on model
performance, since smaller models may have limited capacity
to capture complex patterns in the data.

6) PEAK SRAM FOR INFERENCE

SRAM is an onboard memory space that accepts both read
and write operations. Thus, an ML model’s mutable param-
eters during its runtime are stored in SRAM. Notably, the
peak memory required by a TinyML model during its infer-
ence, also called peak SRAM, becomes noteworthy in MCUs
because of the limitations on onboard available memory. The
standard units to express peak SRAM are kB and MB. Also,
the peak SRAM depends on the memory scheduling proce-
dure carried out by an inference library, while NAS decides
MDS. The available SRAM on an MCU sets an upper bound
on peak SRAM, while flash memory on an MCU constrains
MDS [303].

VII. INTEGRATION, PROTOCOLS, AND DEPLOYMENTS
Energy-sustainable IoT ecosystems require the seamless
integration of the EP, ET, and EE-related technologies
overviewed in this paper. This must be supported by proper
multi/cross-layer protocol designs, energy-aware/efficient
connectivity solutions, advanced simulation/testing tools, and
validation procedures. This section delves into these crit-
ical aspects, namely integration, protocols, and real-world
deployments as illustrated in Figure 26, highlighting their
pivotal role in advancing sustainability KPIs.

A. TECHNOLOGY INTEGRATION
Herein, we discuss the integration of the surveyed tech-
nologies with IoT ecosystems while indicating the unique
challenges and opportunities that arise.

1) HYBRID EH

The performance of ambient EH technologies is severely lim-
ited by the uncontrollability and unpredictability of ambient
sources. This can be addressed by integrating multiple trans-
ducers into a single device. As shown in Figure 27, a hybrid
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FIGURE 26. Integration, protocols, and deployments for energy-sustainable IoT. Herein, we also illustrate lightweight data-interchange formats, e.g., .xml and .json, and the
database management tool MongoDB, which can be used for ML model storage and distribution, configuration files, and measurement formatting.

energy harvester can harness energy from either multiple or
a single energy source. In the former case, the system can
benefit from a higher AHE if all the sources are simul-
taneously available or can reduce the EOP of the energy
supply as it is more likely that at least one of the sources
is available [346]. As an example, Figure 27a illustrates a
device harvesting energy from the wind and sunlight simul-
taneously. Observe that AHE is greater during sunny hours
while harnessing energy from the wind compensates when
sunlight is unavailable. In the case of single-source hybrid
EH, the system incorporates additional transducers to harness
the wasted energy from another EH process. For instance,
Figure 27b shows that the excessive heat created in CPVs
for light EH can constitute an additional EH source by using
a heat-based transducer [347]. Besides, multiple transducers
designed for harnessing energy from the same source type
can be combined to create a more versatile EH system. For
instance, Figure 27c shows that one can increase the AHE,
enable dynamic matching to the frequency of the source, or
allow the transducer to resonate at multiple frequencies by
combining different types of VEH transducers [76]. Finally,
EH from ambient or dedicated sources can amicably coexist,
e.g., dedicated ET may be turned off when ambient energy

is sufficient for the device operation, thus saving energy at
the energy transmitter [348].

Packing multiple transducers into a single device to realize
hybrid EH is not exempt from challenges. First, it increases
the manufacturing costs and compromises the aesthetics and
form factor of the device. Hence, the trade-offs between
extended device lifetime with the added costs require care-
ful analysis. Second, it increases the HW’s complexity in
dealing with transducers’ varying characteristics and optimal
operating conditions. Indeed, the power management cir-
cuits must combine different output voltage levels and match
the internal impedance of multiple transducers [349] to
maximize the NHE. Finally, the environmental conditions
can affect each transducer differently, which may affect the
overall performance and lifetime of a hybrid EH system.

2) ENERGY MANAGEMENT AND FORECASTING

Harvesting energy from ambient sources and its judicious
usage are equally essential to achieving IoT ENO. Figure 28
shows the energy management techniques discussed next.
Digital circuits’ EC comprises dynamic and static PC

components [350]. The former results from the switching
activity when load capacitances are charged and discharged
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FIGURE 27. Hybrid EH systems from (a) multiple sources using PVs and wind
turbines, (b) a single source using a CPV and heat-based energy harvesters for heat
waste recovery in the cooling system, and (c) a single source using different VEH
transducers.

and short-circuit currents flow during state transitions.
Meanwhile, the static PC is caused by the leakage cur-
rents throughout reverse-biased semiconductors’ junctions
and sub-threshold conduction of inactive transistors. Notice
that EC increases with the supply voltage following a
square and linear law in the dynamic and static compo-
nent cases, respectively. Hence, an effective technique to
reduce the overall EC consists of dynamically scaling the
supply voltage and the clock frequency to just meet the
application demands [351]. However, reducing the supply
voltage/clock frequency leads to slower circuits, motivating
modern digital circuits to be designed using multi-voltage
architectures where each sub-system is operated at a dif-
ferent voltage/clock frequency. Such a design increases the
complexity of the power distribution network and requires
voltage level shifters to guarantee the correct transfer of logic
levels between different power domains [351]. Finally, the
supply/clock signal on inactive sub-systems in digital cir-
cuits may be cut off to prevent leakage using the so-called
power/clock gating techniques. Under such a paradigm, con-
ditional logic operates the circuits that provide power and
clock to the sub-systems, pushing them into a deep sleep
state whenever inactive. This technique was used in [352]
to design a heterogeneous integrated circuit composed of
an always-on ultra-low-power MCU for power management
and reduced wake-up time and a general-purpose MCU,
with higher computational capabilities, for communication,
processing, and sensing. Notice that the additional logic

FIGURE 28. Energy management techniques for digital circuits.

required for implementing power and clock gating techniques
increases circuit complexity, cost, clock signal delays, and
EC [353].

Combining the aforementioned approaches with proac-
tive energy management techniques is key to boosting the
reliability and lifetime of EH-enabled applications [354].
As a first step, one can enable SW-reconfigurable power
management circuits that cater to varying operating circuit
conditions while adaptively pushing the system into μW PC
levels when energy is scarce [355]. This enables running ML
algorithms to aid in the complex process of optimizing the
previously discussed power management techniques [351].
Indeed, ML methods may help predict the availability and
demand for energy through historical data extrapolation and
thus facilitate preemptive scheduling maximizing EE.
In general, real-time data aggregation, advanced

predictions, and adjustable algorithms are needed to ensure
accurate predictions and efficient energy allocation [356].
For instance, at a device level, an RL-based TinyML algo-
rithm using past samples from the EH process and the
current battery level may judiciously allocate energy for
future operations [290]. The main limitation of the approach
in [290] is that the TinyML algorithm is trained offline which
ignores that unpredictable changes in EH patterns can lead to
improper energy management strategies. A potential solution
to address this limitation could involve integrating retraining
procedures at the edge or cloud level.
Leveraging predictive analytics and ML algorithms for

proactive energy management shows promise for effi-
cient IoT energy management [354]. Depending on the
model’s complexity, robustness, and delay considerations
(cf. Section VI-C4, VI-D4, and VI-D5), implementation may
be more feasible to occur on-device or on the edge/network
side. These strategies together allow for the optimization
of the EC of IoT devices in accordance with their real-
time needs, leading to longer BL and contributing to the
sustainable operation of IoT ecosystems.
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3) ENERGY TRADING & MICROGRIDS

The exploitation of renewable sources to power self-
sufficient energy transmitters becomes an appealing solution
on the road toward sustainable networks [357]. However,
although energy management and forecasting techniques can
help match energy generation and demand, this is not always
possible, calling for energy trading mechanisms.
The above vision aligns with the emergence of microgrids,

which are becoming increasingly popular to provide reliable
and sustainable electricity in remote areas. A microgrid is
a local energy network that comprises renewable electric-
ity generators (cf. Section II), energy storage, fuel-based
generators, and controllers/inverters. Notice that fuel-based
generators can be used as a backup source of elec-
tricity when renewable sources cannot meet the energy
demand alone while the controllers/inverters ensure that
energy flows efficiently between the various microgrid
components.
Since energy trading with the main grid serves as a

backup for renewable-powered WET systems [358], mini-
mizing/maximizing LCOE/GECS while achieving a reliable
network operation is necessary. This is not only more envi-
ronmentally friendly but also reduces energy production and
distribution costs. Moreover, direct energy trading among
energy transmitters can also be possible using wired and
wireless links that bypass the hierarchy of the power grid
distribution network. In the case of wireless energy trad-
ing, static energy transmitters can exchange energy using,
for instance, RF-WET and laser power beaming, to transfer
energy over large distances. Moving/flying energy transmit-
ters can benefit from these but also from near-field WET
technologies, such as inductive coupling and acoustic WET,
which provide high PTE, to trade energy with static trans-
mitters. The idea here is that those transmitters cannot be
equipped with large solar panels or wind turbines, so it is
more beneficial for them to trade with other ground infras-
tructures with superior ambient EH capabilities [16], [359].
Finally, energy transmitters can trade their surplus energy
using the grid distribution network [360]. This scenario
becomes useful in the case when there is no direct con-
nection between the parties, e.g., when the seller and the
buyer transmitters are operated by different companies or
deployed so distant from each other that a direct connection
becomes infeasible.
Scalable algorithms are needed to support the increas-

ing number of trading energy transmitters. Also, the latter
may be managed by different operators, posing a challenge
in terms of privacy and security. This motivates the use
of DLT, which can provide transparency to the transac-
tions and protect the ledger against possible forging by
energy transmitters/receivers behaving maliciously [361].
In other situations, the operators may not want to dis-
close their generation capacity and demand, hence poten-
tially limiting the information exchange during the trading
process [362].

4) ENERGY-AWARE SENSING AND COMPUTING

Although accurate energy availability forecasting, efficient
energy management, and energy trading techniques (cf.
Sections VII-A2 and VII-A3) can help prevent energy out-
ages and task execution interruptions, they may not avoid
them completely. These adverse events may still occur
in those cases where the devices must uninterruptedly
monitor/sense the environment, report, and/or execute high-
complex tasks given limited energy availability. Sensing,
computing, and communication protocols must consume
extremely low energy and be resilient against these situations.
Herein, we focus on the former two, while communication
technologies and protocols are addressed in Section VII-B.
In terms of sensing, the concept of “context sensing from

EH patterns” is gaining traction. This is based on the observa-
tion that EH patterns often reflect the context in which energy
is being harvested. For instance, kinetic-powered wearable
IoTs can identify and tally the user’s steps as the energy
harvester produces distinctive peaks in its signal with each
footstrike [363], while a thermoelectric energy harvester can
detect changes in surface temperature from the variations
in the EH signal [364]. Note that by substituting dedicated
sensors with a context detection algorithm based on the EH
patterns, the device EC might reduce significantly.17 The
two basic approaches for sensing from EH signals are [365]:
i) analyzing the patterns of the instantaneous power gener-
ated by the EH transducer, which allows the detection of a
rich set of contexts at the expense of frequent sampling of
the fluctuating power values; and ii) analyzing the amount of
the total energy accumulated in the storage over a specific
period of time, which consumes less energy by sampling
the stored energy only once in a while at the expense of
more coarse-grained context sensing. Very simple TinyML
(cf. Section V-C) algorithms, e.g., for peak detection, moving
average computation, etc, may be used for these tasks.
In terms of computation, efficient “checkpointing” tech-

niques are necessary to periodically save volatile states in
non-volatile memory so that the program execution can
restart from a known state if the power supply fails. Notice
that all variables and registers stored in the volatile memory
during the program execution are completely lost in an
energy-outage situation. The main challenges encountered
by checkpointing techniques for EH IoT devices and main
state-of-the-art approaches are [365]:

• Non-negligible EC: the energy overhead of check-
pointing increases with the number of variables to be
copied/stored/reloaded. Therefore research on the area
focuses on identifying how often to implement check-
pointing and specific stages/locations for it. One appeal-
ing approach lies in inserting potential checkpoints to

17. Readers may refer to [365] for further details on possible applications,
e.g., human activity recognition, transportation mode detection, estimation
of calorie expenditure, gait recognition, hotword detection, HVAC airflow
monitoring, and acoustic communication.
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the program at compile-time and activating checkpoint-
ing processes at run-time. Observe that checkpointing
after a function call, instead of during the call, is desir-
able since it requires copying less volatile variables
to non-volatile memory. However, having too separated
checkpoints may lead to “Sysyphean loops”, which hap-
pen when the energy harvested since the previous power
cut-off is repeatedly not enough to reach the next check-
point. This motivates the use of a watchdog timer to be
triggered when the program re-executes from a check-
point or a task boundary, e.g., to launch a checkpointing
process when the timer interrupt occurs to mandatorily
split previously uncompleted code group into two or
multiple smaller groups [366].

• State inconsistency: complete state preservation is guar-
anteed when variables are exclusively stored in either
volatile or non-volatile memory, not split between both.
All variables in volatile memory are saved in non-
volatile memory at a checkpoint, allowing consistent
state recovery after power loss. Yet, most systems
employ a small volatile memory for frequently used
variables, placing the rest in non-volatile memory for
efficiency. During rollbacks, volatile memory variables
revert, while non-volatile memory variables retain new
values, leading to potential data inconsistencies. This
can be addressed by decomposing a longrunning pro-
gram into a sequence of short and atomic tasks [367],
[368], and leveraging the concept of “idempotency”.18

• Timing inconsistency: power failures can cause times-
tamp discrepancies, especially in IoT devices interfaced
with multiple sensors. Notice that battery-powered
devices use a real-time clock to prevent this, but EH
IoT devices lack consistent power, leading to inconsis-
tent timestamps in reported sensor data. This motivates
the tracking of the time elapsed between power failures,
e.g., using remanence decay of SRAM and capacitor for
timekeeping [369], [370]. Note that time tracking can
also be done by receiving relevant information from the
network (e.g., cellular or satellite) after recovering, but
this might lead to more EC.

The use of non-volatile RAMs combining features of
RAM (fast access to any address) and flash (being non-
volatile) may be appealing to avoid the above challenges
(cf. Section V-C3).
Finally, efficient sensing and computation mechanisms for

ultra-low-power EH devices can leverage i) event-driven pro-
cessing, e.g., triggering computation tasks only when specific
sensor data thresholds or conditions are met, reducing the
need for continuous polling; ii) in-node pre-processing, e.g.,
essential features extraction from sensor data before trans-
mission; iii) adaptive sampling, e.g., dynamically adjusting
sampling rates based on the current operating conditions

18. Specifically, an idempotent task can be executed multiple times with-
out producing different results. To ensure idempotency, the task should
not contain any idempotency violation, which is a write instruction to a
non-volatile memory that was first accessed by a read instruction.

or the importance of the sensed data, conserving energy
during periods of lower activity; iv) task schedulers that
prioritize sensing and computation tasks according to their
urgency and importance; v) feedback loops, which may allow
adjusting computation and sensing parameters based on
changing environmental conditions or system performance,
ensuring optimal resource utilization; and vi) HW/SW co-
design to exploit the strengths of both domains for efficient
computation and sensing.

5) SECURITY AND PRIVACY IN ENERGY-SUSTAINABLE
IOT

IoT ecosystems comprise low-capability devices that are
responsible for collecting data, pre-processing it, and/or con-
trolling certain processes, e.g., sensors and actuators, but also
edge and network devices and cloud servers, which execute
complex processing tasks to support user applications and
services. IoT protocols and data management/analytics must
optimize and harmonize the operation of all these hetero-
geneous system components, and do so while supporting
security and privacy, which is inherently challenging.
For low-capability IoT devices, the main security attacks

are related to [371], [372]:
• eavesdropping, which consists of intercepting and stor-
ing messages interchanged by the authorized devices,
and thus supposes a data leakage and privacy threat;

• denial of service, including mainly jamming and flood-
ing. A typical example of a jamming attack is the trans-
mission of interfering signals that affect the performance
of the communication channel. Meanwhile, a flood-
ing attack may consist of the transmission of bogus
messages, whose processing consumes energy and may
ultimately deplete the IoT battery, e.g., BLE and LoRa
devices may be flooding-sensitive [373]. In fact, a WuR
device may experience the so-called denial of sleep, by
which it is maintained awake by a malicious system
continuously sending it wake-up requests.

• side-channel information leakage, where the malicious
node leverages magnetic leaks, EM, EC, and/or timing
information PHY features to obtain private data or secret
keys;

• spoofing, which consists of impersonating trusted enti-
ties or devices to deceive the system, thus often leading
to unauthorized access or data manipulation;

• replay, which consists of retransmitting previously cap-
tured legitimate data to gain unauthorized privileges or
manipulate system behavior;

• data disturbing and reprogramming, which consists of
partially/totally modifying information and/or program
data on a sensor, e.g., security parameters, sensing con-
ditions, reporting destinations, by direct access to the
node, or simply by feeding it with malicious data.
Intermittent computing procedures such as checkpoint-
ing are typically used to support the operation of EH
devices (cf. Section VII-A4), but may, unfortunately,
facilitate these security breaches, e.g., a malicious
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adversary could read the data on the checkpoint, check-
point tamper after system restoration, or execute a
checkpoint replay attack;

• EH hampering, which consists of hampering the amount
of ambient energy that the IoT device harvests, e.g., to
force the device to lower its security level or to delay
the transmission of highly sensitive data.

Notice also that EH-IoT devices in certain applications may
go off for long periods and then back on, thus hiding possible
attacks that tamper with the device.
Considering that performing cryptographic operations and

processing/transmitting large data overhead, including sig-
natures, keys, padding, drains valuable energy resources,
extremely lightweight security and privacy-preserving mech-
anisms must be carefully designed [374] and operate at
lower layers mostly. For instance, they could rely on
adaptable security levels and waiting queues for highly con-
fidential data such that the device transmits data when it
has the energy to encrypt it [372], and TinyML-assisted
approaches [315]. In the case of denial of sleep attacks, a
simple approach is to generate/update the wake-up address
of each WuR node in a pseudo-random fashion based on
key material known only by authorized peers [375].

Unfortunately, even lightweight mechanisms may not be
incorporated into such IoT devices in many cases due to
their extremely low energy availability and complexity, and
they must completely rely on network/edge protocol stack
security to secure their data. The IoT network/edge protocol
stack must ensure compatibility and security across a wide
variety, and potentially massive number, of IoT devices, plat-
forms, and communication technologies. Moreover, keeping
IoT devices up-to-date with the latest security patches and
firmware updates may be challenging, especially in remote
or inaccessible locations. These issues call for efficient
encryption, key management, authentication, and authoriza-
tion mechanisms. Also, IoT ecosystems may be divided into
segments or zones, each with its own security policies and
access controls, to limit the impact of a security breach and
help contain potential threats.
ML is a fundamental tool to support IoT security [374],

e.g., by helping detect anomalies and patterns indicative
of security breaches or attacks. Due to its tendency to be
resource-intensive, ML approaches are mainly leveraged on
the network side, although edge and device sides are increas-
ingly exploiting them as well (cf. Section V). Note that
ML may also help a malicious system to become smarter.
For instance, a malicious system may correlate a certain
IoT device activity with the surrounding environment condi-
tions, and use such information to predict the type of sensed
data or energy availability. Therefore, every system action
and potential information that may be derived from it, and
observed/sensed, must be carefully considered.
Finally, ML and DLT (e.g., blockchain) integration can

drastically improve EE and privacy/security of transactions

in 5G and beyond networks [376], [377], [378]. Specifically,
DLT allows value transactions between parties through
decentralized trust but suffers from large communication
overhead and difficulty in handling massive two-way connec-
tions, which may be mitigated by ML approaches. Indeed,
ML can enhance DLT security and efficiency by providing
intelligent data analysis and prediction capabilities [257].
A relevant application scenario for ML and DLT inte-
gration within the context of self-sustainable and secure
IoT ecosystems is that of energy trading and microgrids
(cf. Section VII-A3).

6) TOOLS AND TESTBEDS

Tools and testbeds provide controlled environments for real-
istic experimentation, enabling the identification/solution
of potential energy inefficiencies, protocol bottlenecks,
and integration issues. By simulating and analyzing the
performance of IoT devices and systems, potential IoT
designs/ strategies can be validated prior to real-world
deployment.
Key tools for EH circuit/HW modeling and design include

LTspice, PSIM, Simplis, MathWorks Simscape Electrical,
Altium Designer, and KiCad. Meanwhile, the following tools
are undoubtedly appealing for device/system-level simulation
and forecasting purposes:

• PLECS, which is a simulation platform that includes
support for modeling EH systems. It allows the
modeling and simulation of various EH sources and
circuits in both continuous-time and discrete-time
domains.

• OpenModelica [379], which is an open-source modeling
and simulation environment supporting the development
of models for various physical systems, including EH
devices. It allows the modeling and analysis of the
behavior of energy harvesters in complex systems.

• WRF, which is a widely used atmospheric simulation
system that provides detailed weather forecasts, espe-
cially for solar radiation, wind speed, and other weather
parameters that impact energy generation from solar
panels and wind turbines.

• SIMULIA (part of Dassault Systèmes), which is a suite
of simulation tools that includes capabilities for study-
ing multiphysics systems, including EH applications. It
can be used to simulate the mechanical and electrical
aspects of EH devices.

• PVLIB Python [380], which is an open-source library
providing functions to estimate/forecast solar irradi-
ance, module temperature, and energy output from
photovoltaic systems.

• EH Module in NS-3 [381], which allows the simulation
of the EH capabilities of IoT devices and the study of
their interaction with communication protocols.

• HOMER Energy, which allows forecasting energy
generation based on historical data and system
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TABLE 12. Features and KPIs of IoT communication technologiesd .

specifications and provides microgrid optimization
capabilities.

These tools and many others allow for investigating integra-
tion capabilities, expected performance, and valid protocols
of EH-based devices and systems.
Although the above tools also provide testbed capabili-

ties to some extent, they are often limited, thus calling for
more advanced platforms for modeling and testing com-
plex ecosystems. For instance, researchers may resort to
Contiki or RIOT, open-source operating systems specifi-
cally designed for IoT devices, to develop and test IoT
applications with a focus on energy optimization. Indeed,
Contiki provides various built-in protocols, including CoAP
and MQTT,19 and supports energy-efficient communication
and management features. Moreover, COOJA, which is a
network simulator specifically designed for Contiki, may
be used to simulate large-scale IoT networks and evaluate
the EC of IoT devices under different conditions. Finally,
tools such as OpenLCA and SimaPro for life cycle assess-
ment are becoming appealing to quantify the environmental
impact of IoT products/services while considering the entire
lifetime.

19. CoAP is defined in RFC 7252 as a UDP-based transport protocol,
a limited HTTP, developed for devices with limited memory, storage and
computing power, limited battery power, and low bandwidth. Meanwhile,
MQTT is a lightweight, publish-subscribe, IoT network protocol for message
queue/message queuing service.

B. PROTOCOLS, CROSS-LAYER DESIGNS, AND
SCALABILITY
1) IOT CONNECTIVITY LANDSCAPE

The IoT connectivity landscape is broad, with both short-
and long-RG technology solutions as illustrated in Table 12.
Also, connectivity protocols like MQTT, CoAP, and AMQP
can enable seamless communication among heterogeneous
IoT devices. In general, energy-sustainable IoT connectivity
solutions must i) support EH, WET, and/or energy trading, ii)
achieve high EE and spectral efficiency, iii) guarantee long
BL, iv) be scalable and support high connection density, and
v) require low maintenance and intervention. Current IoT
connectivity solutions are far from achieving these goals,
but firm steps are currently being taken in these directions.
Short-RG IoT connectivity technologies feature protocols

with a sub-km communication RG, e.g., RFID, Bluetooth,
WiFi, Z-Wave, Thread, ZigBee, EnOcean, and NFC, and
target use cases such as audio streaming, well-being moni-
toring, and home/industry automation. RFID is a passive BC
technology [12], [158], [173], [194], which often directly
incorporates EH and WuR techniques, while Bluetooth
and WiFi have dedicated protocols for low-power devices,
namely i) BLE [232], [382], which incorporates WuR,
standard duty cycling, and an energy-efficient adaptive
frequency hopping mechanism, and ii) IEEE 802.11ah (WiFi
HaLow) [383], which implements smart power management
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techniques such as distance-based power control. Z-Wave is
designed specifically for smart home devices and applica-
tions, utilizing a mesh network topology such that devices
can act as repeaters and may choose the most energy-efficient
communication routes within the mesh network [384], [385].
Thread also utilizes a mesh network topology, although sup-
porting IPv6, which enables direct IP connectivity for devices
without requiring translation or additional overhead [384].
Finally, standards like EnOcean and ZigBee Green Power
have defined a radio interface to specifically operate battery-
less EH devices (even using RF-EH/WET in the case of
EnOcean) [384], while the NFC alliance is currently focus-
ing efforts on developing a standard for EP at short distances
over the existing NFC radio interface.
Meanwhile, long-RG IoT connectivity technologies fea-

ture protocols with a communication RG from several to
tens km, e.g., LoRa, ZigFox, NB-IoT, and LTE-M, and suit
use cases such as smart agriculture, asset tracking, and envi-
ronmental monitoring. Notably, LoRa devices are capable
of dynamically re-configuring their transceivers, e.g., the
spreading factor and bandwidth, so that transmissions can
achieve longer distances with a given power budget [151],
[385], [386]. SigFox and NB-IoT devices communicate over
narrow bandwidth channels to reduce the received noise
power and simplify the receiver’s front-end design [227],
[385]. NB-IoT and LTE-M implement extended discontinu-
ous reception that allows the devices to enter a sleep mode
for long durations while periodically waking up to check
for incoming data, thus reducing the waking-up frequency
and conserving energy [222], [227]. A key difference is
that LTE-M supports higher bandwidth (1.4 MHz) and thus
cannot be deployed in guard bands, like NB-IoT. Finally,
note that contrary to LoRa/Sigfox, both NB-IoT and LTE-M
support IP from UE while the transceivers often imple-
ment TCP/IP, MQTT, CoAP, and even FTP and HTTP
stacks.

2) ENERGY-AWARE PROTOCOLS

Energy-aware protocols are crucial to meet/improve energy-
sustainability KPIs (cf. Section VI). The main challenges
are associated with the diverse composition of IoT devices,
variable network conditions, and specific application require-
ments. Therefore, IoT protocols must be adaptive and
manage energy resources based on availability and demand
patterns [246]. For instance, data transmissions may be trig-
gered avoiding ultimately compromising present and future
system states, which inevitably requires energy-awareness.
At the MAC and network layer, Low-Energy Adaptive

Clustering Hierarchy, Time-Slotted Channel Hopping, and
Routing Protocol for Low Power and Lossy Networks,
designed to adapt to the data paths that are most fre-
quently traveled, are incipient examples of energy-aware
protocols. Meanwhile, content-based protocols focused on
retrieving content to minimize expenditure of energy [387]
are appealing at higher layers.

Incorporating intelligence into energy-aware protocols
may promote efficient resource allocation, real-time power
management, and EE increase [246]. Additionally, ML facil-
itates the recognition of common device behavior patterns,
aiding the implementation of energy-saving strategies like
sleep modes and adaptive power control. Ultimately, this
alliance of power-driven insight can combine the efficiency
of network power and the EE of the network, and promote
the integration of energy-aware protocols into the IoT.
The grant-free spectrum access scenario, where the IoT

devices attempt to access the transmission medium directly,
without prior control signaling, thus saving energy but
increasing the collision probability, constitutes an ML appli-
cation opportunity. Indeed, integrating ML here may allow
IoT devices to acquire optimal transmission strategies pro-
gressively, thereby minimizing collision occurrences and
promoting network scalability. Numerous ML-based grant-
free spectrum access mechanisms have already surfaced in
existing literature, e.g., [388], [389], [390] discussing dis-
tributed RL-based spectrum access mechanisms. Specifically,
the time-slot selection task is modeled as a Markov game
in [388] and equilibrium points within this game are learned
through a reward-inaction RL algorithm. In the case of [389],
the spectrum access mechanism leverages the information
about the inner states of the device to determine time-slot
selection probabilities. Here, the RL algorithm approximates
the intricate mapping between the inner states and slot
selection probabilities. Meanwhile, the authors in [390] por-
tray the IoT devices as RL agents trained over time, while
developing coordination among their spectrum access mech-
anisms, leading to successful message transmissions. Still,
further work is needed to consider the energy availability
issues and thus design energy-aware MAC protocols.
Finally, note that these protocols are not only limited by

the IoT devices’ characteristics but also the network side’s
and the variety of emerging technologies such as distributed
MIMO, IRS, and LIS. Such technologies may not only have
advantages but also intrinsic limitations regarding resource
allocation and interoperability, which must be considered.

3) CROSS-LAYER OPTIMIZATION

An IoT ecosystem mainly includes the following lay-
ers [391]: i) HW/sensing/actuation, ii) local processing
and storage, iii) communication, iv) cloud computing (and
storage), and v) application. Each of them has its own sub-
layers and typical EE-promoting techniques. For instance,
sleep/wake-up, self-organization, and approximate comput-
ing in TinyML [315] are HW/sensing layer techniques, while
EH and intermittent computing-related techniques, includ-
ing NAS, network pruning, quantization, and ROMANet in
TinyML [315], correspond to the local processing and stor-
age layer. TinyML MDS is decided by NAS, while TinyML
peak SRAM during inference can be reduced by optimizing
the memory scheduling using ROMANet. The communica-
tion layer comprises the (sub-)layers of the communication
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FIGURE 29. Cross-layer designs: (a) direct layer interactions and (b) layer
interactions via coordination planes.

protocol stack, including scheduling, access, and rout-
ing protocols. Meanwhile, centralized optimization, virtual
machines, and caching correspond to the cloud computing
layer, and data aggregation, predictive analytics, and user-
centric customization techniques pertain to the application
layer. By considering the interdependencies and interac-
tions between layers and optimizing accordingly, the system
performance may largely improve, increasing lifetime, reduc-
ing costs, enhancing QoS in dynamic environments, and
improving sustainability.
The traditional cross-layer perspective is illustrated in

Figure 29a and lies in creating new interfaces establishing
direct paths between non-adjacent layers (or sub-layers) for
parameter sharing. Many of the energy-aware protocols from
Section VII-B2 exploit this approach. However, this can lead
to tightly coupled layers as changes in one layer may require
corresponding adjustments in multiple other layers, thus
compromising modularity and making the system complex
and difficult to manage. Also, excessive information shar-
ing between distant layers might raise security and privacy
concerns. This may be mitigated by introducing coordina-
tion planes, which are cross-section views of the protocol
stack on which interlayer coordination algorithms can be
applied. This was proposed in [392] within the commu-
nication protocol stack environment/layer while identifying
four key coordination planes, namely security, QoS, mobility,
wireless link adaptation, and energy. This framework must
evolve to incorporate energy and sustainability aspects over
the layers and sub-layers as illustrated in Figure 29b.
All in all, holistic approaches are needed for orchestrat-

ing the wide spectrum of technical approaches discussed
throughout the paper across the IoT ecosystem layers.

4) TOPOLOGY, DATA, AND LOAD MANAGEMENT

Topology, data, and load management play crucial roles in
achieving scalable energy-sustainable IoT networks. Indeed,
by optimizing the physical layout and data processing tasks
of the network, EC, EH/EP capabilities, and connectiv-
ity performance can be improved. For instance, clustering
nodes into groups or hierarchies can alleviate scalabil-
ity issues and minimize EC [393], while an appropriate

and dynamic deployment of RF PBs can improve the EH
statistics of RF-EH IoT networks and/or lower the deploy-
ment/maintenance costs of the PBs network [126], [357].
Also, the expansion of MEC (cf. Section V-C) and dis-
tributed data storage capabilities can help reduce latency,
communication, and energy costs, supporting scalability and
EE. Energy-aware self-organizing networks and routing pro-
tocols (cf. Section VII-B2) are appealing as well. In terms of
data management, techniques such as i) data fusion, integrat-
ing data collected from multiple sensors while filtering out
redundant or irrelevant information; ii) resource-constrained
data storage models, optimizing storage and computing
resources; iii) distributed and replicated storage, reducing
reliance on centralized data centers; and iv) energy-aware
compression techniques reducing the size of data being
transmitted; may be leveraged depending on the scenario
characteristics and performance requirements [394], [395].
Note that data management is intrinsically related to load
management as well, which comprises i) load balancing tech-
niques, distributing tasks and data processing load evenly
across devices; ii) edge and fog computing offload work-
loads to devices and fog nodes, reducing the need for data
transmission to remote clouds [396]; iii) dynamic resource
allocation, adjusting network topology and parameters based
on real-time conditions. Regarding the latter, ML techniques
(cf. Section V) can be exploited to analyze data patterns and
predict workload demands for efficient resource allocation.
Finally, DLTs provide a tamper-proof and transparent

ledger that is crucial for data fusion and storage [377], [397].
Also, the corresponding consensus mechanisms optimize
resource allocation and facilitate load balancing, thus pro-
moting EE. This synergy between IoT strategies and DLT
integration promises enhanced data security, efficient ET
and trading (cf. Section VII-A3), and optimized resource
utilization, advancing energy-sustainability goals.

C. REAL-WORLD CASE STUDIES AND APPLICATIONS
Herein, we delve into real-life implementations that pertain
to the surveyed technologies on the road to achieving energy-
sustainable IoT. In particular, we focus on those relying on
the discussed EP and ET technologies to supply energy.
Table 13 summarizes our discussion.
Light-based EH is a popular technology for com-

mercial EH-powered solutions due to its high availabil-
ity/harvestability compared to other solutions. Inspired by
this, SODAQ20 developed Track Extreme, a device for
asset tracking. Every time the Tracker Extreme detects the
asset moves, it obtains its location based on WiFi and
GPS signals which then can report over BLE, NB-IoT, or
LTE-M radio solutions. Similarly, Xeelas21 developed Series
S2, a light-based EH device with applications in indus-
trial monitoring and asset tracking that can communicate

20. Please refer to https://sodaq.com/ for more details.
21. Please refer to https://www.xeelas.nl/?lang=en for more details.

2652 VOLUME 4, 2023



TABLE 13. Real-world IoT implementations comprising EP/ET.

over 2G, LTE-M, and 2.4 GHz. In the transportation sec-
tor, AGC Automotive22 has developed the Jack device for
fleet management operations. The Jack utilizes vibration sen-
sors to detect impacts on the vehicles’ windshields while
the measurements are uploaded to the ML-powered cloud
application via a BLE gateway for damage evaluation and
reporting. Accounting for the duration of indoor human activ-
ities, enerthing R© has developed a thin-film PV specifically
optimized for indoor EH. The solution is utilized for pow-
ering the enerSENSORS devices for Industry 4.0 and smart
building applications. The enerSENSORS utilize a LoRa
radio to upload the measurements to a cloud-based service
that runs ML algorithms to aid decision-making processes
based on the received measurements. The enerSENSORS
also support over-the-air configurations via an NFC radio.23

Undoubtedly, RF-EH stands over its technological coun-
terparts in achieving small form factor implementations due
to its relative simplicity. This technology is exploited by
Wiliot24 for the IoT Pixels, which is a credit card-sized smart
label intended for smart healthcare and supply chain manage-
ment applications. The device communicates over Bluetooth
with a cloud service to report temperature measurements
and location information. The cloud service transforms the
raw sensory information into the corresponding physical

22. Please refer to https://www.smart-jack.com/ for more details about
their Jack project.

23. Please refer to https://www.enerthing.com/en/products/ for more
details about enerthing’s portfolio.

24. Please refer to https://www.wiliot.com/ for more details.

domains using ML algorithms. Meanwhile, researchers at the
Georgia Institute of Technology developed a multi-antenna
solution in [398] for a card-sized device to boost the output
power of RF-EH. Their prototype implements a low-power
MIMO solution using Rotman lenses. Rotman lenses achieve
beam scanning by adjusting the time delays created in the
microstrips network that feeds the antenna elements; hence,
eliminating the need for phase shifters.
EnOcean25 designs devices capable of harvesting energy

from vibrations, light, and heat, and communicating over
Bluetooth, Zigbee, and EnOcean R©. EnOcean’s solutions also
provide support for adding an external WuR circuitry as an
energy-saving mechanism. The company targets smart spaces
(occupation maximization), EE, and smart homes. Similarly,
Sensemore26 developed Infinity, a self-sustained device that
can harvest energy from heat and light. The Infinity device
communicates over BLE to an ML-powered cloud service,
which can evaluate the condition of industrial machinery
based on sensory data. Aiming at reducing cost and form
factor, ONiO R© developed ONiO.zero, a tiny MCU that inte-
grates power management, memory, BLE transceiver, and
support for WuR circuitries. Currently, ONiO.zero targets
batteryless applications, such as a marketed remote control,
which can be sustained by EH from vibrations, multiband
RF-EH, light, and thermal energy.27

25. Please refer to https://www.enocean.com/ for more details.
26. Please refer to https://sensemore.io/ for more details.
27. Please refer to https://www.onio.com/ for more details.
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TABLE 14. Summary of the main challenges and associated research directions of the overviewed technologies.

Efforts to develop commercial ET applications are
also substantial. For example, Wi-Charge28 developed the

28. Please refer to https://www.wi-charge.com/ for more details.

laser-based AirCordTM technology, which aims at meeting
the energy demands of industrial IoT, healthcare, gaming,
and retail applications. Wi-Charge transmitters are hybrid
nodes capable of transmitting energy and communicating
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TABLE 15. Summary of key (sub-)system-level technical challenges and associated research directions.

with the devices via WiFi. The transmitters communicate
through a cloud-based ML controller that allocates power
to the different devices based on their power requirements,

battery level, power availability, and customer-set priority.
Similarly, Ossia R© is working on an RF-WET/EH MIMO
system. Ossia’s Cota R© Real Wireless PowerTM technology
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also relies on an ML-powered cloud service for user charging
management.29 Finally, a company named Emrod is aiming
to solve some of the challenges faced in the current power
distribution grid network via an RF-WET solution. Emrod
envisions a system for transferring energy over long dis-
tances by utilizing a network of relays in the path between
the transmitter and the receiver to guarantee LOS radio link.
Each node is equipped with a massive antenna array to
enhance coverage. Currently, the company is also target-
ing space-based energy applications that redirect the solar
energy harvested in space to power earth applications via
RF-WET and aims at using this technology as a means for
connecting hard-to-reach renewable energy generators to the
main power grid.

VIII. CONCLUSION & OUTLOOK
In this work, we provided valuable insights into energy-
sustainable IoT and claimed it could only be supported by the
harmonious coexistence of EP, ET, and EE processes. These
processes refer to charging exploiting green energy sources,
the intentional movement of energy from one device/system
to another, and the ability of a device/system/process to
perform its intended function with minimal energy. We
overviewed the main technologies corresponding to these
processes together with their use cases, recent advances,
challenges, and research directions. Specifically, EH tech-
nologies based on light, heat, MFCs, vibration, flow, and
RF were discussed within the EP processes. In the case of
ET, the focus was on RF, inductive/capacitive coupling, laser,
and acoustic-based technologies. Meanwhile, in terms of EE
support, we focused on technologies enabling low-power
communication, namely BC, metasurface-aided communi-
cation, radio stripes, and WuR, and also ML approaches
aiming to reduce the EC burden of application tasks at the
device/edge/network side. In general, the appropriateness of a
specific technology/technique depends on the characteristics
and performance requirements of the target application, and
increasingly on their sustainability support level. This may be
assessed by considering proper performance metrics. Indeed,
we discussed relevant performance metrics to assess energy-
sustainability potential and listed some relevant target values
for specific technologies in the next generation of wireless
systems. Moreover, we discussed protocol, integration, and
implementation issues at the technology and system level.
Table 14 compiles a summary of the main challenges

and corresponding research directions of all the discussed
technologies, while Table 15 does the same but from a
system-level perspective instead of technology-wise. Observe
that although the focus of this work was on IoT energy-
sustainability aspects during the operation phase, a truly self-
sustainable ecosystem must consider sustainability aspects
along the entire product lifecycle, i.e., planning, manufac-
turing, deployment, operation (including the target use case),

29. Please refer to https://www.ossia.com/ for more details.

maintenance, and disposal. The natural progression of our
work is to expand in this direction.
Finally, policy and regulatory frameworks play a pivotal

role in shaping the adoption and deployment of truly sustain-
able IoT solutions. Indeed, ensuring effective government
policies, incentivizing sustainable manufacturing practices,
and fostering international cooperation are essential. This is
often challenging since policy and regulatory factors i) vary
significantly across different regions, ii) are subject to fre-
quent changes, and iii) can be context-specific and dependent
on the specific application of IoT technologies. Additionally,
the establishment of robust data privacy laws and standard-
ized regulations must strike a balance between responsible
IoT deployment and safeguarding user information. Going
forward, it is imperative to address these policy and regula-
tory challenges and explore their intersection with technical
advancements to promote the development of self-sustainable
IoT ecosystems along the entire product lifecycle.
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