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ABSTRACT Orthogonal frequency-division multiplexing (OFDM) is a key technology for cellular and
Wi-Fi systems, but its performance may be degraded by hardware impairments. Existing works focus
mostly on single hardware impairment in OFDM systems, without considering the joint effect of hard-
ware impairments on the entire system. In this paper, hardware impairments including nonlinear power
amplification, clipping, in-phase/quadrature-phase (IQ) imbalance, phase noise, carrier frequency offset,
and sampling clock offset in OFDM systems are simultaneously considered. We propose end-to-end
deep learning-based designs, which jointly optimize transmitter and receiver, to effectively mitigate the
performance loss due to hardware impairments. For single-antenna systems and 2×2 multiple-input and
multiple-output (MIMO) systems, the proposed design featuring the dense layer neural network (DLNN)
significantly outperforms traditional impairment-mitigating methods under both the additive white Gaussian
noise (AWGN) channel and the Rayleigh fading channel. Meanwhile, the complexity of the proposed
scheme is six times smaller. For 2×4 MIMO systems, the proposed design featuring the residual dense
convolution dense neural network (ResNet-DCDNN) outperforms the traditional methods by a large mar-
gin. Additionally, transfer learning is applied to effectively address the issue of time-varying impairment
levels.

INDEX TERMS Deep learning, orthogonal frequency-division multiplexing (OFDM), hardware impair-
ments, end-to-end design, multiple antennas, transfer learning.

I. INTRODUCTION

THE ORTHOGONAL frequency-division multiplexing
(OFDM) technology has been widely adopted for

wireless communications, including Wi-Fi and cellu-
lar systems [1], [2]. However, the performance of
OFDM systems is sensitive to the front-end non-
idealities [3], [4], [5], which may cause problems such as
signal nonlinearity, clipping, in-phase/quadrature-phase (IQ)
imbalance, phase noise (PN), carrier frequency offset (CFO),
and sampling clock offset (SCO). Algorithms have been
proposed to compensate individual hardware impairments
such as CFO [6], [7], [8], IQ imbalance [9], [10], phase
noise [11], [12], [13], clipping [14], [15], and SCO [16], and
deep learning-based approaches have also been proposed to
tackle clipping [17], phase noise [18], and CFO [19] issues.

However, an OFDM system design that takes multiple hard-
ware impairments into account has never been proposed, as
far as we know. Note that some previous works focus on
the analysis or resource allocation of systems with hard-
ware impairments instead of the mitigation of hardware
impairments [20].
In this paper, we simultaneously consider all the aforemen-

tioned hardware impairments, and propose end-to-end joint
transmitter-receiver designs to combat the hardware impair-
ment effects. For single-input and single-output (SISO) and
2×2 multiple-input and multiple-output (MIMO) systems,
we propose a design featuring the dense layer neural network
(DLNN), which significantly outperforms the traditional
schemes in terms of symbol error rate (SER) with lower
complexity under both the additive white Gaussian noise
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FIGURE 1. Hardware impairments considered in this paper.

(AWGN) channel and the Rayleigh fading channel. For
2×4 MIMO systems, we propose a design featuring the
residual dense convolution dense neural network (ResNet-
DCDNN), which achieves an SER much lower than the
traditional methods. The proposed designs are shown to
perform well for both cases of same and different impair-
ments at different antennas. Additionally, transfer learning
is applied to effectively address the issue of time-varying
impairment levels. To the best of our knowledge, this is the
first work that successfully mitigates multiple impairment
effects simultaneously.
The rest of this paper is organized as follows. In Section II,

the system model and the problem formulation are elab-
orated. In Section III, related works to be compared are
reviewed. Then, in Section IV, the deep learning-based end-
to-end designs for combating impairments are proposed.
The simulation results are presented in Section V. Finally,
Section VI concludes this paper.

II. SYSTEM MODEL
A. OFDM SYSTEM
We consider an OFDM system with hardware impairments
at both the transmitter (TX) and the receiver (RX), as shown
in FIGURE 1. The transmitter consists of symbol map-
per, OFDM modulator, digital-to-analog (D/A) converter,
lowpass filter, local oscillator, and power amplifier (PA),
while the receiver consists of the corresponding functions
in the reversed order, i.e., local oscillator, lowpass filter,

analog-to-digital (A/D) converter, OFDM demodulator, and
symbol demapper. An OFDM modulator typically performs
serial-to-parallel (S/P) conversion, inverse fast Fourier trans-
form (IFFT), and cyclic prefix (CP) insertion, and an OFDM
demodulator performs CP removal, fast Fourier transform
(FFT), and parallel-to-serial (P/S) conversion.
Let us assume a deterministic, complex lowpass filtered

signal xL(t) = xI(t) + jxQ(t) which is used to modulate
the radio frequency (RF) carrier at frequency f0. When the
transmitter is ideal, i.e., without hardware impairments, the
passband signal xRF(t) is given by

xRF(t) = �
[
xL(t)ejω0t

]

= xI(t) cos(2π f0t) − xQ(t) sin(2π f0t), (1)

where xI(t) and xQ(t) are respectively the in-phase and
quadrature-phase elements of the ideal complex baseband
signal xL(t), and ω0 = 2π f0. The ideal receiver recovers
xL(t) from xRF(t) by multiplying xRF(t) with e−jω0t, followed
by the filtering at frequency −2f0.
The hardware impairments considered in this paper

include nonlinear power amplification, clipping, IQ imbal-
ance, phase noise, CFO, and SCO at both the transmitter
and the receiver. The impairments are elaborated in detail
in the following subsections. For ease of description, in the
following introduction of impairments, s(t) and d(t) repre-
sent the ideal input signal and the distorted output signal,
respectively.
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B. NONLINEAR POWER AMPLIFICATION
Most power amplifiers in the transmitter can be driven into
saturation. The nonlinear behavior of power amplifiers can
be modeled in general by a power series expansion with
order K and corresponding coefficient ak, i.e., the output
d(t) is given by [21]

d(t) =
K∑
k=1

akx
k
RF(t), (2)

where xkRF(t) represents the kth power of the ideal passband
signal xRF(t) in (1). Let s(t) represent the ideal complex
baseband signal xL(t), then

xkRF(t) = 1

2k

[
s(t)ejω0t + s∗(t)e−jω0t

]k

= 1

2k

k∑
m=0

(
k
m

)
sm(t)

(
s∗(t)

)k−me(jω0t)(−k+2m). (3)

Under narrowband transmission, only the terms very close to
frequency f0 matter. By setting −k+2m = ±1 and k = 2p+1,
y(t) can be simplified as

d(t) = s(t)
(K−1)/2∑
p=0

a2p+1

22p

(
2p+ 1
p+ 1

)
|s(t)|2p. (4)

If we choose K = 3, i.e., with third-order nonlinearity
considered, d(t) becomes

d(t) = s(t)

[
a1 + 3a3

4
|s(t)|2

]
. (5)

The level of distortion depends on the value of input power
backoff (IBO) which defines the average reduced power of
the signal in comparison with the power at the compression
point. Then, IBO is written as [22].

IBO = 10 log 10
(
Psat/Pavg

)
, (6)

where Psat is the average power of the transferred signal at
the compression point and Pavg is the average power of the
transferred signal.

C. CLIPPING
The sampling rate and the bit resolution of the required D/A
and A/D converters are usually a limiting factor. Using more
quantization bits increases the precision of the signal conver-
sion between the digital and analog domains, but the cost is
higher. Furthermore, OFDM has the large peak-to-average
power ratio (PAPR) problem. Since the amplitude of the
OFDM signal approximately follows a complex Gaussian
process, which is the result of an addition of N random
variables, the amplitude may vary from positive infinite to
negative infinite. However, hardware components usually
have finite input range and this causes non-linear distor-
tions on the signal. Therefore, the resolution limit leads to
the clipping effect during the conversion between analog

and digital domains. The signal suffering clipping can be
expressed as

di =
{
si, |si| < A,

A sign(si), |si| ≥ A,
(7)

where i ∈ {I,Q} denotes the real or the imaginary part of
the signal and A denotes the clipping level of the D/A or
A/D converter. The clipping level is defined as the amplitude
level above which the OFDM signal will be clipped. Clipping
level has no unit because this level is set relative to the signal
amplitude.

D. IQ IMBALANCE
IQ imbalance happens when two mixers driven by the local
oscillator in quadrature, referred to as I and Q branches,
have mismatched gains and/or phases. This imbalance can
happen at the transmitter, receiver, or both. In the following
we take the IQ imbalance at the receiver as an example,
assuming that the transmitter is ideal and the receiver is
affected by the IQ imbalance. It is assumed that the IQ
imbalance happens at the receiver with the phase mismatch
�φ and the amplitude mismatch ε. The ideal passband signal
s(t), s(t) = sI(t)+ jsQ(t), is converted to the baseband signal
d(t) by multiplying it with sLO(t):

d(t) = s(t)sLO(t)

= [
sI(t) cos(ω0t) − jsQ(t) sin(ω0t)

]

× [
cos(ω0t) − jε sin(ω0t + �φ)

]

= {
0.5 + 0.5ε

[
cos(�φ) − j sin(�φ)

]}

× [
sI(t) + jsQ(t)

]

+ {
0.5 − 0.5ε

[
cos(�φ) + j sin(�φ)

]}

× [
sI(t) − jsQ(t)

]

= K1s(t) + K2s
∗(t), (8)

where

K1 = 0.5 + 0.5ε(cos(�φ) − j sin(�φ))

=
(

1 + εe−j�φ
)
/2 (9)

and

K2 = 0.5 − 0.5ε(cos(�φ) + j sin(�φ))

=
(

1 − εej�φ
)
/2 (10)

are the coefficients of the ideal signal s(t) and the distortion
term s∗(t), respectively.

E. PHASE NOISE
Non-ideal oscillators may cause random phase fluctuations
at the output, resulting in the signal distortion. This effect
can be formulated as

d(t) = s(t)ejθ(t), (11)

where θ(t) is the phase distortion. Note that for multiple-
antenna systems with multiple RF chains, oscillators in
different RF chains may suffer different phase noise [23].
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FIGURE 2. Typical constellations under the effects of impairments for single-carrier
QPSK systems (AWGN channel, 20 dB SNR).

F. CARRIER FREQUENCY OFFSET
The CFO happens when there is an oscillator mismatch
between the transmitter oscillator and the receiver oscillator.
The CFO may destroy the orthogonality between subcarriers
and cause inter-carrier interference (ICI). With the CFO, the
received signal d(t) becomes

d(t) = s(t)ej�ft, (12)

where �f is the frequency difference between the transmitter
oscillator and the receiver oscillator.

G. SAMPLING CLOCK OFFSET
Sampling clock offset happens when the sampling period Ts
has an offset δ compared to the ideal sampling frequency.
With the sampling clock offset, even if the initial sampling
point is optimal, the subsequent sampling points slowly drift
with time. If the receiver clock is faster (or slower) than
the transmitter clock, fractional samples should be added
(or removed) from the received symbol. With the sampling
clock offset, the sampled received signal becomes

d[n] = s(n · (1 + δ)Ts)

= s(nTs + nδTs), 0 ≤ n ≤ N − 1. (13)

H. IMPAIRMENT CHARACTERISTICS
FIGURE 2 shows typical QPSK constellations of a single-
carrier system suffering from nonlinear power amplification,

FIGURE 3. Typical constellations under the effects of impairments for OFDM
systems with QPSK modulation (AWGN channel, 20 dB SNR).

clipping, phase noise, CFO, and SCO, respectively. Phase
noise adds uncertainty to the phase of the signal and makes
the points on the constellation spread out, leading to a phe-
nomenon known as “constellation spreading” and a random
rotation of the constellation. The CFO also causes a rota-
tion of the constellation points, and the degree of rotation is
affected by the offset. The SCO causes symbol timing mis-
alignment between the transmitter and the receiver, causing
received symbols misplaced on the constellation diagram.
The effects of power amplifier nonlinearity and clippling,
however, are less significant. For OFDM systems, the char-
acteristics of different impairments are less distinct, as shown
in FIGURE 3. The nonlinearity in power amplifiers and the
clipping have more impacts on OFDM systems, distorting
the amplitude and phase of signals. The effects of phase
noise, CFO, and SCO are more like added noise but CFO
also causes a rotation of the constellation points.

III. REVIEW OF EXISTING METHODS COMPARED
IN THIS PAPER
In this section, existing methods which will be compared in
this paper are reviewed. Both traditional (non-DL) methods
and deep learning-based methods are discussed. Here we
define x and X as transmitted signal in the time domain and
in the frequency domain, respectively. The corresponding
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received signal are y and Y , and the symbol “′” denotes
signal that is distorted.

A. TRADITIONAL (NON-DL) METHODS
• Clipping Effect Compensation: The method proposed by
Kim et al. [14] models the clipped signal as the combi-
nation of the original signal and the clipping distortion.
Assuming that the channel is known, the estimated
signal X̂ can be obtained by the maximum likeli-
hood method after equalization. By using the selection
criterion and the orthogonal matching pursuit (OMP)
algorithm, the recovered clipping noise can be obtained
to find the clipping-corrected signal. Rietman et al. [15]
propose a simple clipping correction algorithm which
can be implemented easily in the digital receiver using
empty subcarriers. The recovered complex signal Ỹ in
the frequency domain can be expressed as

Ỹ = Y ′ − N

M
FPclip,yF

−1PemptyY
′, (14)

where N is the number of subcarriers, Y ′ is the clipped
received signal, F is the Fourier transform, and F−1 is
the inverse Fourier transform. Pempty projects the signal
onto M empty subcarriers, i.e., (Pempty Y)m = Ym if
m ∈ M and zero otherwise. Pclip,y projects the real
and imaginary parts of the signal onto the subcarriers
according to the clipping ratio A. The real part and the
imaginary part of the signal are zero if y is not equal
to the clipping ratio. The formula can be expressed as

Re
(
Pclip ,yx

)
n

=
{

Re(xn), if |Re(yn)| = A,

0, otherwise,

Im
(
Pclip ,yx

)
n

=
{

Im(xn), if |Im(yn)| = A,

0, otherwise.
(15)

• IQ Imbalance Compensation: Due to the IQ imbalance,
the distorted signal at the transmitter and the receiver
can be modeled as

x′ = Kt1x+ Kt2x
∗, (16)

y′ = Kr1y+ Kr2y
∗, (17)

where x′ and y′ are respectively the signal distorted
by IQ imbalance at the transmitter and receiver, and
Kt1/Kr1 and Kt2/Kr2 are respectively the same as (9)
and (10). If the IQ imbalance parameters are accurately
acquired, the compensation at the transmitter and the
receiver can be carried out respectively as

x̃ = x′ − ηtx′∗

Kt1
(
1 − |ηt|2

) , ỹ = y′ − ηry′∗

Kr1
(
1 − |ηr|2

) , (18)

where ηt = Kt2
Kt1

and ηr = Kr2
K∗
r1
. The algorithm proposed

by Zhang et al. [10] roughly estimates the imbalance
parameters by using least square. Then, the problem
is divided into two subproblems, one for the estima-
tion of ηt and the other for the estimation of ηr. The

algorithm first fixes one parameter as the initial esti-
mated value and then calculates another parameter until
convergence. After the first parameter converges, it takes
turn to update another parameter until convergence.

• Phase Noise Compensation: The method proposed by
Mir and Buttar [12] suppresses both the common phase
error and the ICI by using the least square method to
minimize the cost function. The received signal can be
expressed as y′ = h⊗ x · ejθ + n, where x denotes the
transmitted signal, h denotes the channel response, ⊗
denotes the linear convolution operation, and θ denotes
the phase noise. After removing the cyclic prefix and
taking the discrete Fourier transform, the frequency
domain signal can be expressed as

Y ′(k) = X(k)H(k)I(0) +W, (19)

where W represents the summation of the noise and ICI
terms. By using the zero-forcing equalization, the trans-
mitted signal can be estimated by X̂(k) = Y ′(k)C(k),
where C is obtained by

C(k) = I∗(0)H∗(k)
|I(0)H(k)|2 . (20)

The least square method is applied to minimize the cost
function to find I(0) and the equation can be expressed
as minI(0)

∑ |Y ′(k)−I(0)X(k)H(k)|2, which leads to the
estimation

Î(0) = Y ′(k)X∗(k)H∗(k)
|X(k)H(k)|2 . (21)

Therefore, the estimation of Î(0) can be carried out by
using (21). Since the result may not be accurate, the
decision feedback is used for the further enhancement
of the performance. In MIMO systems, the combined
effect of phase noise and IQ imbalance in the frequency
domain can be modeled as Y ′(k) = K1X(k)H(k)I(0) +
K2X∗(k)H∗(k)I∗(0) + W [13], where W represents the
summation of the noise and ICI terms. The algorithm is
designed to estimate the IQ imbalance effect first and
then the phase noise effect.
The paper by Bogana [13] estimates the IQ imbalance

in MIMO systems by using two consecutive training
symbols. After the estimation of the IQ imbalance,
the phase noise is estimated and updated by iterative
techniques.

• Carrier Frequency Offset Compensation: To estimate
the carrier frequency offset ξ , the phase difference
between the cyclic prefix and the corresponding rear
part of an OFDM signal is 2πNξ/N = 2πξ if there
is no channel effect. Therefore, in the paper by Nishad
and Singh [7], the carrier frequency offset is estimated
from the phase angle of the product of the rear part of
the OFDM signal and the cyclic prefix. The equation is
formulated as ξ̂ = (1/2π) arg{y′∗[n]y′[n + N]}, where
n = −1,−2, . . . ,−Ng and Ng is the length of cyclic
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prefix. The average is taken over the samples in a cyclic
prefix interval and can be expressed as

ξ̂ = (1/2π) arg

⎧⎨
⎩

−1∑
n=−Ng

y′∗[n]y′[n+ N]

⎫⎬
⎭, (22)

where arg(·) denotes tan−1(·). Zhang et al. [8] extend
this algorithm to MIMO systems. By denoting Xμ,g(k)
as the transmitted data at the kth subcarrier in the gth
block from the μth transmit antenna, the received time
domain signal at the mth receive antenna is expressed as
y′
m,g = E{ξ̂}FH ∑Mt

μ=1 diag(Xμ,g)Hμ,m + wm,g, where
w is the white Gaussian noise, F is the discrete Fourier
transform, E{ξ̂} is the phase rotation caused by the CFO,
and Mt is the total number of transmit antennas. With
the first P subcarriers used for data transmission and
the others being null subcarriers, the recovered received
signal in the frequency domain can be expressed
as Ỹg{ξ̂} = FEH{ξ̂}Y′

g after performing the CFO
compensation with a trial CFO value ξ̂ . They fur-
ther define Ỹg{ξ̂} = [ξ (0)

g {ξ̂}, ξ (1)
g {ξ̂}, . . . , ξ (N−1)

g {ξ̂}]T ,
where ξ

(k)
g {ξ̂} corresponds to the (k + 1)th row vector

of Ỹg{ξ̂} and η(k){ξ̂} = [ξ (k)
1 {ξ̂}, ξ (k)

2 {ξ̂}, . . . , ξ (k)
Mr

{ξ̂}].
By taking the first order derivative of the cost function,
C{ξ̂} = ∑N−1

k=0 det(η(k){ξ̂}η(k){ξ̂}H), the minimum can
be derived.

• Sampling Clock Offset Compensation: To compensate
for the sampling clock offset, an additional fractional
number of samples can be added or removed so that the
ICI caused by the SCO can be largely mitigated. The
method proposed by Briggs et al. [16] takes advan-
tage of the modulation of a fractional delay filter
which can produce the delay for resampling the signal.
However, an ideal fractional delay filter does not exist
in practical systems, resulting in the limitation on the
precision. For practical reasons, the method proposed
by Briggs et al. [16] is only used to produce the possi-
ble delay values which are in the interval between zero
and one.

B. DEEP LEARNING-BASED METHODS
• Clipping Effect Compensation: Sang and Xu [17] inves-
tigate the clipping effect with the help of neural
networks. Their proposed method based on deep learn-
ing reconstructs the signal in the frequency domain by
minimizing the mean squared error. Their method com-
bines both the advantages of neural networks and the
decision-aided reconstruction (DAR) algorithm. A four-
layer fully connected neural network is used and the
hyperbolic tangent is chosen as the activation func-
tion. The number of units is three times the size of
the input data. The mean squared error and the Adam
optimizer are chosen as the loss function and the opti-
mizer, respectively. The neural network resides after

FIGURE 4. Proposed deep learning-based OFDM architecture for single-antenna
systems.

equalization to reconstruct the signal. Then, the signal
is transformed to the time domain and the reconstructed
signal is compared with the clipping level. If the signal
amplitude is greater than the clipping level, the DAR
algorithm is used to detect the signal.

• Phase Noise Compensation: Park et al. [18] take advan-
tage of neural networks to compensate the phase noise
effect. Their proposed neural network is composed of
nine fully-connected layers with the number of units
four times the input size, and the softmax activa-
tion function as the output layer for data detection.
The leaky ReLU is used as the nonlinear activa-
tion function, and the stochastic gradient descent with
momentum (SGDM) optimizer is adopted to train the
neural network.

• Carrier Frequency Offset Compensation: After the sig-
nal is received at the receiver, the signal is directly fed
into the CFO equalization network to reduce the effect
of CFO, as proposed by Kumari et al. [19].

IV. PROPOSED END-TO-END DESIGNS
We propose deep learning-based transmitter and receiver for
single-antenna and multi-antenna OFDM systems. Two deep
neural network (DNN) implementations of the codec in the
transceiver, DLNN and ResNet-DCDNN, are proposed to
combat hardware impairments issues for both single-antenna
systems and multi-antenna systems. We will see later that
DLNN performs better for single-antenna systems and 2×2
MIMO systems while ResNet-DCDNN performs better for
2×4 MIMO systems.

A. PROPOSED ARCHITECTURE FOR SINGLE-ANTENNA
SYSTEMS
We first consider the single-antenna systems. The idea is
to insert a DNN-based encoder between S/P and IFFT at
the transmitter and a DNN-based decoder between FFT and
P/S at the receiver to combat the hardware impairments,
as illustrated in FIGURE 4. The DNN-based encoder and
decoder can be implemented by either DLNN or ResNet-
DCDNN. Note that the encoder and the decoder not only
cover functions originally served by symbol mapper and
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FIGURE 5. Proposed deep learning-based OFDM architecture for multi-antenna
systems.

symbol demapper, respectively, but also mitigate the hard-
ware impairments. Suppose that the input sequence data s
consists of symbols sk, where k denotes the index of the
symbol. To comply with the structure of the deep learning-
based encoder, sk is a one-hot vector which consists of zeros
and only one ‘1’. After S/P, the input sequence is fed into
the encoder composed of the deep neural network. Denoting
the kth output of the neural network as Xk, the encoder is
functioned as fθt(s) = Xk, where θt is the neural network
parameter set. Then, the output of the neural network, Xk,
is fed to the IFFT and then the time domain signal x(t)
is obtained. The decoder at the receiver takes the encoded
symbol Xk as the input and then outputs ŝk, i.e., the decoder
functions as gθr (Xk) = ŝk, where θr is the neural network
parameter set. Note that the only difference between the
proposed deep learning-based OFDM architecture and the
original OFDM structure is the extra neural network encoder
at the transmitter and the extra neural network decoder at
the receiver.
Note that this paper does not consider channel coding

since we would like to focus on how the impairments affect
the OFDM systems and how the proposed novel designs can
effectively mitigate the impairments.

B. PROPOSED ARCHITECTURE FOR MULTI-ANTENNA
SYSTEMS
For multi-antenna systems, we consider that each transmit
antenna has its own RF chain [23], [24] and suffers from
the same or different extent of hardware impairments, as
shown in FIGURE 5. Similar to single-antenna systems, a
DNN-based encoder is inserted between S/P and IFFT at the
transmitter and a DNN-based decoder is inserted between
FFT and P/S. Again, the DNN-based encoder and decoder
can be implemented by either DLNN or ResNet-DCDNN.

C. PROPOSED DLNN CODEC
The DLNN encoder is composed of five dense layers with
batch normalization and the ReLU activation function, while
the DLNN decoder is composed of four dense layers with
batch normalization and the tanh activation function, and one
dense layer with the sigmoid output, as shown in FIGURE 6

FIGURE 6. Proposed DLNN codec.

TABLE 1. Parameters of the proposed DLNN.

and summarized in TABLE 1. The encoder and the decoder
are trained as an autoencoder by minimizing the mean
squared error loss function.

D. PROPOSED RESNET-DCDNN CODEC
The ResNet-DCDNN encoder is composed of a plural block,
a unitary block, and a dense layer, followed by batch nor-
malization and the ReLU activation function, as shown in
FIGURE 7. The plural block consists of two paths, with
the lower path having three dense layers and the upper path
having one dense layer. All dense layers are followed by
batch normalization and the ReLU activation function. This
design is inspired by residual networks to avoid the vanishing
gradient problem. However, according to our experiments,
this design alone does not deliver satisfactory performance
at high signal-to-noise ratio (SNR). As a result, a unitary
block with two dense layers and the skip connection archi-
tecture is cascaded to the plural block. The dense layers are
followed by batch normalization and the ReLU activation
function. The parameters of the ResNet-DCDNN encoder
are summarized in TABLE 2.
The ResNet-DCDNN decoder is composed of two convo-

lution blocks along with the residual architecture, followed
by a convolutional layer, batch normalization, the tanh acti-
vation function, a dense layer, and the sigmoid output. A
convolution block has two convolutional layers with each
convolutional layer followed by batch normalization and the
tanh activation function. The kernel stride is one and the zero
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FIGURE 7. Proposed ResNet-DCDNN codec. ‘F’ in the convolution block means the
filter size specified in the ResNet-DCDNN decoder.

padding is applied. The parameters of the ResNet-DCDNN
decoder are summarized in TABLE 3. Note that the filter
size is determined by experiments.

TABLE 2. Parameters of the proposed ResNet-DCDNN encoder.

TABLE 3. Parameters of the proposed ResNet-DCDNN decoder.

For both DLNN and ResNet-DCDNN, the mean squared
error is adopted as the loss function, and the Xavier
initialization is adopted during training.

V. PERFORMANCE EVALUATION
In this section, we evaluate the performance of the
proposed deep learning-based OFDM architectures and the
encoder/decoder designs. Both the AWGN channel and
the Rayleigh fading channel are considered in the single-
and multi-antenna systems. The training parameters for the
single-antenna systems and the multi-antenna systems are
summarized in TABLE 4. The training data is generated as
follows. Since the proposed end-to-end architecture can be
regarded as an autoencoder, the input bits and the output bits
are the same. With 64 subcarriers each assigned 2 bits, in
each training epoch 64 2-bit information bits are generated
and then converted to one-hot vectors, or 64 4-bit one hot
vectors are generated directly. The training and testing of the
neural networks are run on a computer equipped with Intel
Core i7-8700 CPU@3.20GHz, 16GB DRAM, and NVIDIA
GeForce GTX 1080Ti graphics card.
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TABLE 4. Training parameters.

FIGURE 8. Example constellation points (resulted from 10 bit-sequence
realizations) after the DLNN encoder (i.e., before the IFFT) of the proposed deep
learning-based OFDM system.

The following schemes are compared:
• Trad w/o comp represents the traditional method
without any compensation.

• Proposed ResNet−DCDNN represents the method
using the proposed ResNet-DCDNN neural network.

• Proposed DLNN represents the method using the
proposed DLNN neural network.

• Ideal represents the situation when there are no hard-
ware impairment effects.

• [X] means the method proposed in the reference
paper [X].

• Non−DL Algorithms represents the combination of all
non-DL algorithms mentioned in Section III-A.

Note that although our compared schemes use different
equalizers such as zero forcing (ZF) and minimum mean
squared error (MMSE), their designs of algorithms are not
based on the equalizer. Therefore, we adopt the ZF equalizer
in all simulations. Also note that the impairment settings that
are widely considered in the literature are chosen.

A. CONSTELLATION
Before showing the performance of the proposed system,
example constellation points of the proposed system are
shown in FIGURE 8. This plot is generated by 10 bit-
sequence realizations and grouping every two outputs of
the DLNN encoder to form a complex vector. It can be

FIGURE 9. Performance comparison of various methods under (a) the clipping
effect at the transmitter with clipping level 1.5 and (b) the clipping effect at the receiver
with clipping level 1.5.

observed that the dense layers in the DLNN encoder result
in a very high order modulation, which is common for deep
learning-based systems with an end-to-end design.

B. PERFORMANCE OF SINGLE-ANTENNA SYSTEMS
We first show the performance of the proposed designs under
individual hardware impairments. Note that the same neu-
ral network is used for dealing with both the individual
impairments and all impairments considered simultaneously.
FIGURE 9 compares the symbol error rate of various

schemes under the clipping with saturation level 1.5 over
the AWGN channel. As shown in FIGURE 9(a) when only
the transmitter has the clipping effect, the proposed DLNN
outperforms all other methods. Note that the performance
of the proposed ResNet-DCDNN is worse than that of the
proposed DLNN for single-antenna systems. As shown in
FIGURE 9(b) when only the receiver has the clipping effect,
the proposed DLNN again outperforms all other methods.
This shows that unlike the other methods, the proposed
DLNN can deal with the clipping effect no matter the
clipping happens at the transmitter or at the receiver.
In FIGURE 10, the symbol error rate of various methods

under the phase noise with the noise power –10 dBc/Hz
(with the signal power set to unit) at both transmitter and
receiver over the AWGN channel is compared. It is shown
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FIGURE 10. Performance comparison of various methods under the phase noise
power -10 dBc/Hz at both the transmitter and the receiver.

FIGURE 11. Performance comparison of various methods under the IQ imbalance
with amplitude mismatch 0.3 and phase mismatch 23◦ at both the transmitter and the
receiver.

that the proposed DLNN outperforms all other methods.
Note that although the proposed ResNet-DCDNN outper-
forms some other methods, there is still a performance gap
to the proposed DLNN.
FIGURE 11 compares the symbol error rate of vari-

ous methods under the IQ imbalance with the amplitude
mismatch 0.3 and the phase mismatch 23◦ at both trans-
mitter and receiver over the AWGN channel. While both
ResNet-DCDNN and DLNN outperform the other methods,
the performance of ResNet-DCDNN is now superior and
approaches that of the ideal case.
The symbol error rate of various methods under the car-

rier frequency offset when δTs equals to 0.08 over the
AWGN channel is compared in FIGURE 12. Although the
proposed designs do not estimate and compensate the car-
rier frequency offset as well as the other methods, they still
have a significant performance gain over the method without
compensation.
FIGURE 13 compares the symbol error rate of various

methods under the sampling clock offset over the AWGN
channel. Although the proposed designs are not superior
to the method proposed by Briggs et al. [16] when the
offset is 400 ppm, the proposed DLNN outperforms their
method when the offset is 500 ppm. This means that when

FIGURE 12. Performance comparison of various methods under the receiver carrier
frequency offset when δTs equals to 0.08.

FIGURE 13. Performance comparison of various methods when (a) the sampling
clock offset is 400 ppm and (b) the sampling clock offset is 500 ppm.

the sampling clock offset is larger, the proposed approach
has advantages.
Finally, FIGURE 14 shows the performance of DLNN

under different impairment levels of various individual hard-
ware impairments. It can be observed that the proposed
DLNN is robust to different impairment levels. Note that
DLNN does not necessarily perform worse when the impair-
ment is more severe.
Now we consider all the hardware impairments simulta-

neously. Two hardware impairment settings are considered
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FIGURE 14. Performance of DLNN under different impairment levels of various
individual hardware impairments.

under the AWGN channel, with Setting 2 having more
severe hardware impairments than Setting 1, as shown in
TABLE 5. FIGURE 15(a) shows the results under Setting 1.
It can be seen that both the proposed designs significantly
outperform the other methods. In particular, although the
performance of the other methods may be comparable to
the proposed designs when individual hardware impairments
are considered, their performances are much worse than the
proposed designs when all hardware impairments are taken
into account. Under Setting 2, as shown in FIGURE 15(b),
the performance gap between the proposed DLNN and the
other methods is even larger.

FIGURE 15. Performance comparison of various methods for the single-antenna
system over the AWGN channel when all hardware impairments are considered.

TABLE 5. Hardware impairment settings for the single-antenna system (AWGN
channel).

When the Rayleigh fading channel is considered, the hard-
ware impairment settings are summarized in TABLE 6. It can
be seen in FIGURE 16 that the performance of the proposed
DLNN significantly outperforms all other methods, although
showing an error floor around SER 10−3.

C. PERFORMANCE OF MULTI-ANTENNA SYSTEMS
Now we evaluate the performance of the proposed designs
for MIMO systems. The 2 × 2 MIMO system is firstly eval-
uated, with two scenarios considered: the same hardware
impairments (with the settings summarized in TABLE 7)
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TABLE 6. Hardware impairment settings for the single-antenna system (Rayleigh
fading channel).

FIGURE 16. Performance comparison of various methods for the single-antenna
system over the Rayleigh fading channel when all hardware impairments are
considered.

TABLE 7. Hardware impairment settings for the 2×2 MIMO system with the same
hardware impairments (Rayleigh fading channel).

and different hardware impairments (with the settings sum-
marized in TABLE 8). Both the proposed DLNN and
ResNet-DCDNN outperform the other methods, and DLNN
has a clear advantage, as shown in FIGURE 17. Although
the performance of all methods degrades when there are dif-
ferent hardware impairments at different antenna chains, the
proposed DLNN performs significantly better than the other
methods.
FIGURE 18 shows the performance evaluation for the

2 × 4 MIMO system. Two scenarios are also considered:

TABLE 8. Hardware impairment settings for the 2×2 MIMO system with different
hardware impairments (Rayleigh fading channel).

FIGURE 17. Performance comparison of various methods for the 2×2 MIMO system
over the Rayleigh fading channel when all hardware impairments are considered.

the same hardware impairments (with the settings summa-
rized in TABLE 9) and different hardware impairments (with
the settings summarized in TABLE 10). Similar to the case
of the 2 × 2 MIMO system, both the proposed DLNN and
ResNet-DCDNN outperform the other methods. However,
now ResNet-DCDNN has the advantage, and it approaches
the ideal case for the scenario of same hardware impair-
ments. For the scenario of different hardware impairments
at different antenna chains, the proposed DLNN and the
proposed ResNet-DCDNN significantly outperform the other
methods.

VOLUME 4, 2023 2479



WU et al.: DEEP LEARNING-BASED END-TO-END DESIGN FOR OFDM SYSTEMS WITH HARDWARE IMPAIRMENTS

TABLE 9. Hardware impairment settings for the 2×4 MIMO system with the same
hardware impairments (Rayleigh fading channel).

TABLE 10. Hardware impairment settings for the 2×4 MIMO system with different
hardware impairments (Rayleigh fading channel).

Overall, the two proposed deep learning-based designs
effectively combat hardware impairments for not only SISO
systems but also MIMO systems. In general, DLNN is
outstanding for SISO and 2×2 MIMO systems while ResNet-
DCDNN finds advantages for 2×4 MIMO systems. This can
be clearly observed in FIGURE 19 comparing performances
of DLNN and ResNet-DCDNN for 2×2 and 2×4 MIMO
systems under the same settings shown in TABLE 11. It
can also be seen that 2×4 MIMO systems are more sensi-
tive to hardware impairments and have more significant SER
degradation compared to 2×2 MIMO systems when no com-
pensation is applied. However, with the proposed designs,
the performance of 2×4 MIMO systems is significantly
improved.

D. TRANSFER LEARNING FOR TIME-VARYING
IMPAIRMENT LEVELS
To address the issue of time-varying impairments, transfer
learning may be applied to fine-tune the trained weights

FIGURE 18. Performance comparison of various methods for the 2×4 MIMO system
over the Rayleigh fading channel when all hardware impairments are considered.

TABLE 11. Hardware impairment settings for comparing 2×2 and 2×4 MIMO
systems (different hardware impairments at different antennas, Rayleigh fading
channel).

according to the new impairment level. In FIGURE 20,
the training process with varying impairment levels is
shown. It can be observed that the loss becomes large at
the moment of change of the impairment level, but then
decreases with further training. FIGURE 21 compares the
performances of DLNN with and without transfer learn-
ing when the impairment level changes. It is shown that
transfer learning effectively solves the issue of time-varying
impairments.
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FIGURE 19. Performance comparison of DLNN and ResNet-DCDNN for 2×2 and 2×4
MIMO systems under the same setting (different hardware impairments at different
antennas, Rayleigh fading channel).

FIGURE 20. Training loss of DLNN with transfer learning under change of
impairment levels.

FIGURE 21. Comparison of performances of DLNN with and without transfer
learning under change of impairment levels.

E. COMPLEXITY
The execution time and the computational complexity of the
proposed designs and the non-DL algorithms are compared
in TABLE 12, where N denotes the number of subcarriers
and L denotes the length of the training sequence. When N
is set to 64 and L is set to 2, the computational complexity
of the non-DL algorithms is about 225. It can be seen that

TABLE 12. Comparison of execution time and computational complexity of various
methods.

the proposed designs have lower complexity. In particular,
the proposed DLNN is at least 6 times lower in execution
time compared to the non-DL algorithms. Even with the
extra neural network encoder and decoder, the complexity
of the proposed deep learning-based OFDM system is lower
than that of the OFDM system with traditional impairment-
mitigation algorithms.

VI. CONCLUSION
In this paper, we have proposed two deep learning-based
transmitter-receiver end-to-end designs for OFDM systems
with hardware impairments. The simulation results have
shown that the proposed DLNN and ResNet-DCDNN sig-
nificantly outperform existing methods. In particular, the
proposed DLNN has a superior performance for SISO and
2×2 MIMO systems, while the proposed ResNet-DCDNN
has the advantage for 2×4 MIMO systems. Moreover, no
matter the same or different hardware impairments are con-
sidered in MIMO systems, the proposed designs can deliver
excellent performance. Finally, when the impairment level
changes, transfer learning can fine-tune the weights of neural
networks to achieve satisfactory performance.
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