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ABSTRACT Rate-Splitting Multiple Access (RSMA) has been recognized as an effective technique to
reconcile the tradeoff between decoding interference and treating interference as noise in 6G and beyond
networks. In this paper, in line with the need for network sustainability, we study the energy-efficient
power and rate allocation of the common and private messages transmitted in the downlink of a single-cell
single-antenna RSMA network. Contrary to the literature that resorts to heuristic approaches to deal with
the joint problem, we transform the formulated energy efficiency maximization problem into a multi-
agent Deep Reinforcement Learning (DRL) problem, based on which each transmitted private message
represents a different DRL agent. Each agent explores its own state-action space, the size of which is
fixed and independent of the number of agents, and shares its gained experience by exploration with
a common neural network. Two DRL algorithms, namely the value-based Deep Q-Learning (DQL) and
the policy-based REINFORCE, are properly configured and utilized to solve it. The adaptation of the
proposed DRL framework is also demonstrated for the treatment of the considered network’s sum-rate
maximization objective. Numerical results obtained via modeling and simulation verify the effectiveness
of the proposed DRL framework to conclude a solution to the joint problem under both optimization
objectives, outperforming existing heuristic approaches and algorithms from the literature.

INDEX TERMS Energy efficiency maximization, rate-splitting multiple access (RSMA), deep reinforce-
ment learning (DRL).

I. INTRODUCTION

6G AND beyond communication networks must deal
with the ever more challenging issue of multi-user

interference, given the requirements for massive connectiv-
ity to be supported over the same physical resources. In
this context, Rate-Splitting Multiple Access (RSMA) has
been recognized as a promising technique to transcend the
immense controversy between decoding interference and
treating interference as noise in such multi-user commu-
nication systems [1]. The rate-splitting lies in splitting a
message into two or more parts that can be flexibly decoded
at one or more receivers, respectively. The common mes-
sage – as it is called – is intended for and decoded by all

the involved users in the transmission, contrary to the private
message intended for each user separately. As a result, when
decoding the private message, the interference originating
from the other users’ private messages is treated as noise.
By smartly controlling the split among the common and
private messages, an acceptable tradeoff between efficient
spectrum usage, multi-user interference management, and
signal processing complexity at the receivers is achieved [2].
In light of elucidating the performance limits of the

RSMA technique, systematic attempts have focused on
resource optimization in RSMA-based wireless networks.
Accordingly, the power control, precoder design, and rate
allocation should be jointly studied in single or multi-antenna
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systems, resulting in highly non-convex and combinatorial
optimization problems that are difficult to solve optimally
using conventional optimization techniques [3]. Moreover,
the network complexity in the number of wireless con-
nections, calls for robust optimization techniques that can
scale well and dynamically adapt to the environment. Deep
Reinforcement Learning (DRL) has been broadly considered
in communications and networking to handle the complexity,
scalability, and autonomicity issues therein [4]. Leveraging
the power of deep neural networks, DRL algorithms explore
a vast state-action space and conclude near-optimal solu-
tions to non-convex problems while allowing the network’s
self-adaptation based on the trained model.
In this article, we target energy efficiency maximization

in a single-antenna RSMA-based wireless network. To the
best of the authors’ knowledge, this is the first time in the
literature to design and propose a DRL-based framework
for energy-efficient power and rate allocation of the com-
mon and private messages transmitted in the downlink. The
optimization problem is transformed into a multi-agent DRL
problem, such that each agent autonomously explores its
own state-action space and contributes its gained experience
to a commonly trained neural network. Two different DRL
algorithms are properly configured and utilized to solve it,
namely the value-based Deep Q-Learning (DQL) and the
policy-based REINFORCE algorithm. The algorithms are
evaluated in terms of effectiveness in determining a solution
to the problem by comparison against other existing heuristic
approaches from the literature. Complementary to this and
for better revealing the benefits and tradeoffs of the obtained
solution when aiming at energy efficiency, we also analyze
and assess the proposed framework under the objective of
sum-rate maximization considering the same network set-
ting, which is again a problem that has not been similarly
targeted in the literature so far.

A. RELATED WORK
RSMA provides a generalization of several existing orthog-
onal and non-orthogonal multiple access techniques, leading
to superior performance in terms of achieved throughput
and spectral efficiency as has been theoretically proved
for two-user Single-Input Single-Output (SISO) [5] and
Multiple-Input Single-Output (MISO) [2] broadcast chan-
nels. The existence of such theoretical analyses provoked
active research around RSMA lately, with an emphasis on
resource allocation under various network settings. In [6]
and [7], the sum-rate and weighted sum-rate maximization
in the downlink of multi-user SISO and MISO systems
are targeted, respectively, by jointly performing power
control/precoder design and rate allocation. Other works,
e.g., [8], [9], are devoted to achieving a tradeoff between
energy and spectral efficiency in downlink single-cell and
multi-cell MISO systems. The aforementioned tradeoff is
formulated as a multi-objective optimization problem that
is either approximated by the weighted sum of the two

contradicting objectives [8] or decomposed into two sub-
problems solved iteratively [9]. Subsequently, the method
of Successive Convex Approximation (SCA) is used to
convexify the resulting problems and obtain a solution.
Toward accounting for sustainability and not restricting

the resource allocation procedure to achieving high data
rates, a different line of research pursues the maximization
of the studied system’s energy efficiency while potentially
ensuring some minimum rate requirements, e.g., [10], [11],
[12], [13], [14]. Similar to the above, the joint power
control/beamforming and common-rate allocation constitute
fundamental problems studied in SISO [10] and MISO [11]
broadcast channels under the energy efficiency optimization
objective. Both [10] and [11] conclude with suboptimal solu-
tions contrariwise to [12] that under a similar MISO setting
with [11] manages to obtain a globally optimal solution
based on Successive Incumbent Transcending (SIT) Branch
and Bound (BB) algorithm. Continuing with more complex
network settings, the authors in [13] and [14] investigate the
application of the RSMA technique in a Cloud Radio Access
Network (C-RAN) and a Reconfigurable Intelligent Surface
(RIS)-assisted network, accordingly. In the former, the typ-
ical power control and rate allocation problem is addressed
toward energy efficiency maximization subject to the addi-
tional per-base station’s transmission power and common
fronthaul links’ capacity constraints, whereas, in the latter,
the RIS’s phase-shift optimization is considered along.
The overwhelming majority of research works in the field

of RSMA network optimization has relied on model-oriented
and heuristic algorithms that (i) conclude suboptimal solu-
tions, (ii) are characterized by high computational complexity
as the network scales, and (iii) prohibit adaptability to the
network’s unpredictable changes. To tackle these challenges,
the application of DRL algorithms is becoming increasingly
popular. The works in [15], [16], [17], [18] provide represen-
tative examples of DRL algorithms successfully implemented
to solve optimization problems in various communication
environments. In [15] and [16], the power control toward
sum-rate maximization is modeled as a multi-agent DRL
problem, according to which the transmitter of each wireless
link, i.e., agent, autonomously executes its action in selecting
an appropriate transmission power level based on a com-
monly trained neural network, which is a paradigm referred
to as “centralized training and distributed execution” in
the literature. Value-based DQL, policy-based REINFORCE,
and actor-critic Deep Deterministic Policy Gradient (DDPG)
algorithms are then implemented and tested in this con-
text. In [17], the DQL algorithm is used to derive the
user pairing in the downlink of a Non-Orthogonal Multiple
Access (NOMA) network, while the joint channel selection
and power control problem is treated in [18] under both
value-based and actor-critic-based DRL algorithm imple-
mentations. Both works in [17], [18] consider the sum-rate
maximization objective.
Regarding the application of DRL algorithms for resource

optimization in RSMA networks, only a handful of research
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works can be found in the literature, i.e., [19], [20], [21],
[22], [23]. In [19] and [20], two similar policy-based DRL
algorithms are proposed to determine the beamforming in the
downlink of an RSMA network, targeting the system’s sum-
rate maximization. Under the same optimization objective,
the joint problem of uplink-downlink user association and
beamforming is tackled in [21] for a multiple Unmanned
Aerial Vehicle (UAV)-assisted RSMA network using an
actor-critic DRL algorithm. In [22], an actor-critic DRL
algorithm is introduced to perform computation offload-
ing decision-making, power allocation, and decoding order
optimization in the uplink of an RSMA-assisted Mobile
Edge Computing (MEC) network while aiming for the
minimization of the weighted sum of latency and con-
sumed energy. Last, accounting for communications powered
by energy harvesting, the authors in [23] design a DRL
framework to perform harvested power allocation from a
UAV to end-user devices, and then the beamforming in the
RSMA network is determined using the Minimum Mean
Square Error (MMSE) technique. It should be noted that
none of the aforementioned works in [19], [20], [21],
[22], [23] has inherited the paradigm of centralized training
and distributed execution by following a multi-agent DRL
modeling, while both continuous [19], [21], [22], [23] and
discrete [20], [21] action spaces have been scrutinized. In
the meantime, the energy efficiency maximization in RSMA-
based networks via DRL algorithms has been significantly
overlooked, creating a research gap.

B. CONTRIBUTIONS & OUTLINE
In this article, a DRL framework for energy-efficient power
and rate allocation of the common and private messages
transmitted in the downlink of a single-antenna RSMA-
based network is proposed for the first time in the literature.
Different from the existing works in the intersection of
RSMA and DRL, multi-agent DRL modeling is adopted,
according to which each private stream plays the role of a
different DRL agent that contributes its personal experience
from interacting with the environment toward training a com-
mon neural network. Two different DRL algorithms are then
utilized to solve the formulated DRL problem, namely the
value-based DQL and the policy-based REINFORCE. The
key contributions of this article are summarized as follows.

1) The non-convex energy efficiency maximization
problem is converted into a multi-agent DRL problem
by properly designing the states, actions, and rewards
to capture the problem’s objective and constraints
and ultimately obtain the joint power and rate solu-
tion sought while modeling each private stream as a
different DRL agent.

2) The multi-agent DRL modeling, the adoption of
the centralized training and distributed execution
paradigm, and the appropriate discretization of the
action space – for DRL algorithms’ application pur-
poses – result in a computationally scalable, though

robust, DRL framework that is independent of the
number of users in the network.

3) The applicability and adaptation of the proposed DRL
framework are also demonstrated for the treatment of
the system’s sum-rate maximization, which serves as a
basis for highlighting the benefits and tradeoffs of the
obtained solution when targeting energy efficiency.

4) The overall DRL framework’s performance is eval-
uated via modeling and simulation and numerical
results are presented that verify its superiority under
both optimization objectives when compared against
existing heuristic approaches from the literature.

The remainder of this article is organized as follows.
Section II presents the system model and the energy effi-
ciency maximization problem formulation. In Section III,
the multi-agent DRL modeling and distributed DRL archi-
tecture are discussed along with the description of the DQL
and REINFORCE algorithms. In Section IV, the sum-rate
maximization benchmark problem’s formulation and solution
are analyzed. Section V presents the numerical evaluation,
and Section VI concludes the paper.

II. PROBLEM STATEMENT
A. SYSTEM MODEL
We consider a single-cell single-antenna wireless network
consisting of a set of users N = {1, . . . ,N} served by a base
station positioned at the center of the cell. The multiplexing
of data transmissions for different users in the downlink
is performed over the same frequency band by employing
the RSMA technique. The message intended for user n is
denoted as Wn, which is further divided into two parts: a
common part Wc

n and a private part Wp
n . The common parts

intended for the different users, i.e., Wc
1, . . . ,W

c
n, . . . ,W

c
N ,

are combined and encoded into a single common stream
v0 that is transmitted to all users with downlink transmis-
sion power p0 [Watt]. On the other hand, the remaining
private messages Wp

n ,∀n ∈ N are encoded into separate pri-
vate streams vn and transmitted individually with power pn
[Watt], ∀n ∈ N . Given that the system operates on a per-
time slot basis, the transmitted signal by the base station at
time slot t is:

x(t) =
√
p(t)

0 v(t)0 +
N∑
n=1

√
p(t)
n v

(t)
n . (1)

The received signal by each user n is:

y(t)n =
√
G(t)
n p

(t)
0 v(t)0 +

N∑
j=1

√
G(t)
n p

(t)
j v

(t)
j + z(t)n , (2)

where G(t)
n denotes the channel gain from the base station to

user n and z(t)n ∼ CN (0, σ 2) is the corresponding Additive
White Gaussian Noise (AWGN). An overview of a simplified
two-user RSMA-based network is presented in Fig. 1.
With reference to the channel gain modeling, in this article,

block fading is adopted, such that:

G(t)
n = |h(t)

n |2βn, (3)
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FIGURE 1. Overview of simplified two-user RSMA-based network.

where βn is the large-scale fading that can remain the same
over several time slots, whereas the term h(t)

n represents
the small-scale Rayleigh fading. To model the time-varying
nature of the channel, Jake’s model [24] is used and the
small-scale Rayleigh fading is expressed as a first-order
Gaussian-Markov process:

h(t)
n = ρh(t−1)

n +
√

1− ρ2ζ (t)
n , (4)

where ζ
(t)
n ∼ CN (0, 1−ρ2) is an independent and identically

distributed random variable. The correlation parameter ρ is
ρ = J0(2π fdT), where J0 is the zero-order Bessel function,
fd is the maximum Doppler frequency, and T is the time slot
over which the correlated channel variation occurs.
Following the above, the achievable rate for decoding the

common stream v(t)0 transmitted by the base station to user
n is calculated as:

rc (t)
n = log2

(
1+ G(t)

n p
(t)
0

G(t)
n
∑N

j=1 p
(t)
j + σ 2

)
[
bps/Hz

]
. (5)

To guarantee the successful decoding of the common
stream v(t)0 by all users n ∈ N , the allocated decoding rates
c(t)n must adhere to the following condition:

N∑
n=1

c(t)n ≤ min
n∈N

rc (t)
n , (6)

where minn∈N rc (t)
n = rc (t)

1 , given the channel gains sorted
as G(t)

1 ≤ · · · ≤ G(t)
n ≤ · · · ≤ G(t)

N .
Furthermore, to ensure the successful implementation of

the Successive Interference Cancellation (SIC) technique at
the receiver of each user n, the following condition must be
met:

G(t)
n p

(t)
0 − G(t)

n

N∑
j=1

p(t)
j ≥ ptol, (7)

with ptol [Watt] indicating the receivers’ SIC decoding toler-
ance/sensitivity that is assumed to be the same for all users.

Eq. (7) is rewritten as G(t)
1 p(t)

0 −G(t)
1

∑N
n=1 p

(t)
n ≥ ptol, based

on the ordering of the channel gains.
After decoding the common stream, the decoding of the

corresponding private stream v(t)n takes place at the receiver
of each user, the achievable rate of which is:

rp (t)
n = log2

(
1+ G(t)

n p
(t)
n

G(t)
n
∑N

j=1,j �=n p
(t)
j + σ 2

)
[
bps/Hz

]
. (8)

As a result, the total achievable data rate of a user n in
the downlink of an RSMA-based network is:

R(t)
n = c(t)n + rp (t)

n

= c(t)n + log2

(
1+ G(t)

n p
(t)
n

G(t)
n
∑N

j=1,j �=n p
(t)
j + σ 2

)
. (9)

B. PROBLEM FORMULATION
In this article, the energy efficiency maximization is tar-
geted in the downlink of a single-antenna RSMA-based
wireless network that is defined as the ratio between the
sum of the total achievable data rates of all users in the
system, i.e.,

∑N
n=1 R

(t)
n , and the total consumed power by

the base station, i.e., p(t)
0 +

∑N
n=1 p

(t)
n . Toward achieving this

objective, the allocated by the base station common-stream
rates c(t) = [c(t)1 , . . . , c(t)n , . . . , c(t)N ]T , private-stream powers
p(t) = [p(t)

1 , . . . , p(t)
n , . . . , p(t)

N ]T , and common-stream power
p(t)

0 to the users, are optimized. Specifically, the correspond-
ing optimization problem to be solved by the base station is
formally written as follows:

max
c(t),p(t),p(t)

0

EE =
∑N

n=1 R
(t)
n

p(t)
0 +

∑N
n=1 p

(t)
n

(10a)

s.t.
N∑
n=1

c(t)n ≤ rc (t)
1 , (10b)

G(t)
1 p(t)

0 − G(t)
1

N∑
n=1

p(t)
n + σ 2 ≥ ptol, (10c)

p(t)
0 +

N∑
n=1

p(t)
n ≤ pmax, (10d)

c(t)n , p(t)
n ≥ 0,∀n and p(t)

0 ≥ 0. (10e)

Eq. (10b) and Eq. (10c) represent the required constraints
over the allocated common-stream rates and powers, respec-
tively, for the successful decoding and implementation of
the SIC technique at the receivers of the users, as described
earlier in Section II-A. Eq. (10d) indicates the base station’s
maximum power budget pmax [Watt], while Eq. (10e) defines
the feasible range of values of the different optimization
variables.

III. PROBLEM SOLUTION
In this section, the formulated energy efficiency
maximization problem is equivalently transformed into a
multi-agent DRL problem to capitalize on the architectural
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paradigm of centralized training and distributed execution.
Subsequently, the application of the value-based DQL and
policy-based REINFORCE algorithms is analyzed and
discussed to solve the multi-agent DRL problem.

A. MULTI-AGENT DRL MODEL & ARCHITECTURE
A typical multi-agent DRL problem is characterized by the
set of agents, the environment’s state space, the agents’
action spaces, and the reward function. The definition of
the aforementioned constituent elements in the context of
the studied optimization problem is as follows.
Agents: Each private stream v(t)n from the downlink trans-

mitted signal by the base station to the users is regarded as
a distinct agent in the considered transformation. Given that
there exists a one-to-one correspondence between the users
and the private streams, which are henceforth termed DRL
agents, we denote the set of agents as N = {1, . . . ,N} and
use index n to refer to a particular agent.
State: At each time slot, the agents observe specific

characteristics of the environment and create a correspond-
ing representation known as the state. In more detail, the
local state s(t)n observed by agent n encompasses relevant
information to the transmission of its corresponding private
stream v(t)n . Given that the power levels of the common and
private streams undergo changes at the end of each time
slot and remain constant during the subsequent slot [15], the
agent’s n state s(t)n at the beginning of time slot t is a tuple
of the following eight components:

1) the channel gain G(t)
n at time slot t;

2) the channel gain G(t−1)
n at time slot t − 1;

3) the interference sensed from the rest private streams at
the beginning of time slot t, i.e., G(t)

n
∑

j∈N ,j �=n p
(t−1)
j +

σ 2;
4) the interference sensed from the rest of the private

streams at the beginning of time slot t − 1, i.e.,
G(t−1)
n

∑
j∈N ,j �=n p

(t−2)
j + σ 2;

5) the power p(t−1)
n of the private stream;

6) the power p(t−1)
0 of the common stream;

7) the data rate rp (t)
n of the private stream at the beginning

of time slot t, calculated considering p(t−1)
n ,∀n ∈ N ;

8) the data rate c(t)n of the common stream.

Action: Each agent chooses and performs an action a(t)
n ∈

An from its set of possible actions An following some policy
π(a(t)

n |s(t)n ) conditioned on the current state s(t)n . Specifically,
the agent’s n action space is formally defined as:

An =
{

0, pn,min, pn,min ·
(
pn,max
pn,min

) 1
An−2

, . . . , pn,max

}
, (11)

where pn,max = pmax
N+1 is the maximum allowable transmission

power of the private stream v(t)n , with pmax denoting the base
station’s maximum power budget, and pn,min is a correspond-
ing minimum allowable power level. Also, An indicates the
cardinality of the set An.

After determining the selected actions a(t)
n ∈ An of all

agents at time slot t, the optimal values of (c(t), p(t)
0 ) that

maximize the system’s energy efficiency can be obtained
through analytically and exhaustively solving the following
optimization problem:

max
c(t),p(t)

0

∑N
n=1 c

(t)
n

p(t)
0

(12a)

s.t.
N∑
n=1

c(t)n ≤ rc (t)
1 , (12b)

c(t)n ≥ 0,∀n and p(t)
0 ∈ P0, (12c)

where by P0 we denote the set of feasible values of p(t)
0 :

P0 = { pmax−
∑

n∈N a(t)
n

P0
,
pmax−∑n∈N a(t)

n
P0−1 , . . . ,

pmax−∑n∈N a(t)
n

1 }
and P0 represents its cardinality. The problem in (12) reduces
to a linear programming problem for the different values
of p(t)

0 that can be, in turn, optimally solved in polynomial
time. It is remarkable that the obtained solution for (c(t), p(t)

0 )

satisfies constraints (10b) and (10d) owing to the proper def-
inition of problem (12). The satisfaction of the remaining
constraint in Eq. (10c) is guaranteed later by the definition
of the DRL problem’s reward function.
Reward: As a consequence of the chosen action a(t)

n , each
agent n transitions to a new state s(t+1)

n and receives a
scalar reward feedback signal f (t+1)

n . Aiming to maximize
the energy efficiency of the system, the agent’s feedback
signal increases with an increase in the normalized energy
efficiency EE

N , while it decreases with the level of viola-
tion of constraint (10c). Specifically, if constraint (10c) is
satisfied, the reward f (t+1)

n is given by:

f (t+1)
n = EE

N
, (13)

otherwise, it is calculated as follows:

f (t+1)
n = EE

N
·
⎛
⎝1+ tanh

⎛
⎝p(t)

0 −
N∑
j=1

p(t)
j −

ptol + σ 2

G(t)
1

⎞
⎠
⎞
⎠.

(14)

The function tanh(x) approaches −1 as x tends to negative
values. Hence, considering the definition of the reward in
Eq. (14), it follows that the latter tends to zero as the vio-
lation of constraint (10c) grows. This behavior allows the
agent to learn the negative impact of constraint violation.
Based on the proposed multi-agent DRL problem

modeling described above, the centralized training and
distributed execution architectural paradigm can be
adopted [15], [25]. Following this paradigm, a single general-
purpose model is trained centrally and shared among the
distributed agents. The agents interact with their environ-
ment and utilize the learned actions (or policies depending on
the employed DRL algorithm), generating experience sam-
ples that are then provided as feedback to the centralized
model trainer (see Fig. 2). This approach allows leverag-
ing the advantages of multi-agent DRL modeling in terms
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FIGURE 2. Overview of proposed multi-agent DRL architecture.

of reduced action and state spaces that require less memory,
computational resources, and execution time while maintain-
ing the stability and efficiency of a centralized solution. Each
agent explores its own state-action space, which in our case
consists of eight components that describe the state of the
agent and An power levels, i.e., actions, that are independent
of the number of users existing in the network, combating the
curse of dimensionality issue of discrete state-action space
modeling in DRL frameworks. Undoubtedly, the design of
the reward feedback signal is crucial to effectively optimize
the global objective by the agents’ distributed decisions and
actions. However, upon its successful definition, the agents
can quickly learn a more general model, benefiting from
one another. The centralized model training can also be
performed offline using data from a simulated wireless envi-
ronment and be further fine-tuned in real scenarios. In this
way, the burden of online training from the inherent large
volumes of data is eliminated.

B. DEEP Q-LEARNING: A VALUE-BASED ALGORITHM
DQL is a value-based algorithm that approximates the
Q-function Qπ (s, a), i.e., the expected reward when choos-
ing an action a in state s according to some policy π . The
definition of the Q-function Qπ (s, a) is given as follows:

Qπ (s, a) = E

[ ∞∑
τ=0

γ τ f (t+τ+1)

∣∣∣∣s(t) = s, a(t) = a

]
, (15)

where γ is the discounted rate that determines the importance
of future rewards, with γ ∈ [0, 1]. In the special case that
γ = 0, only the instantaneous reward is considered.

The Q-function satisfies the recursive Bellman equation:

Qπ (s, a) = E

[
f (t) + γ Qπ

(
s′, a′

)∣∣∣∣s(t) = s, a(t) = a

]
, (16)

describing the relationship of the value in state s with the
values in all states s′ that are likely to follow in the next
time slots. By solving Eq. (16), the optimal state-action value
Q∗(s, a) = maxa Qπ (s, a) can be determined, implying the
optimal policy π∗ = arg maxa Q∗(s, a). In the preceding

definitions, the subscripts n referring to the different agents
have been dropped for notation convenience.
To approximate the optimal Q-function Q∗(s, a), a neu-

ral network with parameter vector θq is used, referred to
as Deep Q-Network (DQN). Consequently, solving the DRL
problem reduces to determining the optimal parameter vec-
tor θq, regardless of the dimensions of the state-action
space. The DQN is trained from the experiences gained
by the distributed agents interacting with the environment.
Specifically, to combat potential instability issues of the
DQL algorithm due to the high correlation of the succes-
sive states observed by a particular agent, the experience
replay mechanism [26] is used. Based on this mechanism,
N different First In First Out (FIFO) queues of size M are
used, in which each agent n separately stores the experience
acquired at time step t of training, represented by the tuple
e(t)
n = (s(t−1)

n , a(t−1)
n , f (t)n , s(t)n ). A minibatch D(t) of size D

of experiences is randomly created at time slot t by a com-
mon randomizer, comprising an equal number of experiences
from the different agents’ queues, to eliminate training the
DQN over correlated agent experiences.
Given a minibatch D(t), the least-square error of the

trained DQN with parameters θq is calculated as:

L
(
θ (t)
q

)
=

∑

(s,a,f ′,s′)∈D(t)

(
y(t)DQN − Qπ

(
s, a; θ (t)

q

))2
. (17)

The target state-action value y(t)DQN is given by:

y(t)DQN = f ′ + γ max
a′

Qπ
(
s′, a′;w(t)

)
, (18)

where w(t) is the parameter vector of a second “target”
DQN – as it is called – that is updated to be equal to
the trained DQN, i.e., w(t) = θ (t)

q , once every Tu time slots.
The idea behind creating a second instance of the DQN that
is sporadically updated serves the purpose of eliminating the
correlation between the trained and the targeted state-action
value. In the special case that γ = 0, the target state-action
value coincides with the agent’s immediate reward f ′ and,
thus, there is no need to keep a target DQN instance.
To progressively derive a better approximation of the

Q-function, the trained DQN’s parameters θq are updated via
the gradient descend method with learning rate ηq ∈ (0, 1]:

θ (t+1)
q = θ (t)

q − ηq∇θqL
(
θ (t)
q

)
. (19)

Given the updated DQN’s parameters and the agent’s state,
the optimal action that is selected at each time slot t of the
designed DQL algorithm follows a dynamic ε-greedy policy.
Let Ne denote the number of episodes, each comprising
Nt time slots, then the exploration probability of randomly
selecting an action different from the optimal one a∗ =
arg maxa Qπ (s, a; θ (t)

q ), is given by:

εk = e−λk, k = 1, 2, . . . ,Ne, (20)

where λ ∈ [0, 1] is the exploration probability. The proposed
DQL algorithm is summarized in Algorithm 1.
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Algorithm 1 Deep Q-Learning Algorithm
1: Initialize Ne, Nt, ηq, λ, M, D.
2: Randomly initialize DQN’s parameters θq.
3: for k = 1 toNe do
4: Update εk based on Eq. (18).
5: Derive initial agents’ states s(1)

n ,∀n.
6: for t = 1 toNt do
7: if rand() ≤ εk then
8: Randomly select action a(t)

n ∈ An,∀n.
9: else
10: Select a(t)

n = arg maxan Q
π (s(t)n , an; θ (t)

q ),∀n.
11: end if
12: Set p(t) = [a(t)

1 , . . . , a(t)
n , . . . , a(t)

N ] and calculate
(c(t), p(t)

0 ) by solving problem (12).
13: Assign (p(t), c(t), p(t)

0 ) solution to the base station
and observe new states s(t+1)

n and rewards f (t+1)
n ,∀n.

14: Obtain and store experience e(t)
n ,∀n in the corre-

sponding agent’s n queue.
15: Create a minibatch D(t) and calculate ∇θqL(θ

(t)
q ).

16: Update DQN’s parameters θ (t+1)
q based on Eq. (19).

17: Set s(t)n ← s(t+1)
n ,∀n.

18: end for
19: end for

C. REINFORCE: A POLICY-BASED ALGORITHM
REINFORCE is a policy-based algorithm that directly gen-
erates the stochastic policy π(a|s) using a Deep Policy
Network (DPN) with θπ being the corresponding param-
eter vector. Therefore, the goal at each time slot t is to
derive the parameter vector θ (t)

π that maximizes the agents’
expected mean immediate reward defined as:

J(θπ ) = E

[∑N
n=1 f

(t)
n

N

]
. (21)

Then, the optimal policy π∗(s, a; θπ ) = arg maxπ J∗(θπ )

is derived that is applied by each agent to determine its
action a(t+1) at the next time slot.
To progressively conclude the parameters θπ that

maximize J, the gradient ascend method is used, such that

θ (t+1)
π = θ (t)

π + ηπ∇θπ
J
(
θ (t)

π

)
, (22)

where ηπ ∈ (0, 1] is the corresponding learning rate.
Due to the exploration of the algorithm in the state-action

space during the training phase, there is a high probabil-
ity that the values of the mean immediate rewards J(θπ )

obtained between sequential time slots diverge significantly
between each other. This behavior affects the algorithm’s
performance, resulting in its instability. To circumvent this
issue, each agent’s reward is normalized:

f̂ (t)n =
f (t)n − μ

(t)
f

σ
(t)
f

, (23)

Algorithm 2 REINFORCE Algorithm
1: Initialize Ne, Nt, ηπ .
2: Randomly initialize DPN’s parameters θπ .
3: for k = 1 toNe do
4: Derive initial agents’ states s(1)

n ,∀n.
5: for t = 1 toNt do
6: Select action a(t)

n ∈ An,∀n based on π(an|sn; θπ ).
7: Set p(t) = [a(t)

1 , . . . , a(t)
n , . . . , a(t)

N ] and calculate
(c(t), p(t)

0 ) by solving problem (12).
8: Assign (p(t), c(t), p(t)

0 ) solution to the base station
and observe new states s(t+1)

n and rewards f (t+1)
n ,∀n.

9: Calculate μ
(t)
f , σ

(t)
f , and f̂ (t)n ,∀n based on Eq. (23).

10: Calculate ∇θπ
J(θ (t)

π ) using f̂ (t)n ,∀n.
11: Update DPN’s parameters θ (t+1)

π based on Eq. (22).
12: Set s(t)n ← s(t+1)

n ,∀n.
13: end for
14: end for

where μ
(t)
f =

∑N
i=1 f

(t)
i

N and σ
(t)
f =

√∑N
i=1(f

(t)
i −μ

(t)
f )2

N represent
the mean value and the dispersion of the agents’ rewards at
time slot t. The proposed REINFORCE algorithm is outlined
in Algorithm 2.

IV. SUM-RATE MAXIMIZATION BENCHMARK
In this section, we extend our proposed DRL framework
analyzed in detail in Section III to account for an alter-
native objective, namely the sum-rate maximization in the
considered downlink RSMA-based communication network.
On the one hand, we aim to corroborate the applicability,
effectiveness, and efficiency of the devised DRL frame-
work under different optimization objectives, given that the
problem of sum-rate maximization has not been treated sim-
ilarly by the literature so far. On the other hand, we seek
to macroscopically identify and promote the significance
of targeting energy efficiency, resulting in a better trade-
off between resource utilization, system performance, and
algorithmic complexity.
The formal representation of the corresponding sum-rate

maximization problem toward optimizing the vectors of allo-
cated common-stream rates c(t) = [c(t)1 , . . . , c(t)n , . . . , c(t)n ]T ,
and the private and common-stream transmission powers
p(t) = [p(t)

1 , . . . , p(t)
n , . . . , p(t)

N ]T and p(t)
0 is as follows:

max
c(t),p(t),p(t)

0

N∑
n=1

R(t)
n (24a)

s.t.
N∑
n=1

c(t)n ≤ rc (t)
1 , (24b)

G(t)
1 p(t)

0 − G(t)
1

N∑
n=1

p(t)
n + σ 2 ≥ ptol, (24c)
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p(t)
0 +

N∑
n=1

p(t)
n ≤ pmax, (24d)

c(t)n , p(t)
n ≥ 0,∀n and p(t)

0 ≥ 0. (24e)

The definition of problem (24) is in accordance with
its energy efficiency counterpart and a similar approach
with Section III-A can be followed for its transformation
into a multi-agent DRL scenario. Each private stream v(t)n
of the downlink transmitted signal constitutes a different
agent whose description of the local state s(t)n comprises
the eight components analyzed in Section III-A. Each agent
autonomously chooses an action a(t)

n ∈ An from the set
of possible actions An in Eq. (11) after evaluating its state.
Based on the agents’ chosen actions, the values of (c(t), p(t)

0 )

that maximize the sum rate can be obtained by setting
p(t)

0 = pmax −∑N
n=1 p

(t)
n and solving the following linear

programming problem:

max
c(t)n ≥0,∀n

N∑
n=1

c(t)n (25a)

s.t.
N∑
n=1

c(t)n ≤ rc (t)
1 . (25b)

It should be noted that the common stream does not
interfere with the private streams and, thus, the allocation of
all available power, i.e., pmax −∑N

n=1 p
(t)
n , to the common

stream maximizes the sum rate [6]. This observation can be
easily derived by closely examining Eq. (5) and (6).

Last, to target the system’s sum-rate maximization, the
reward feedback signals provided to the agents should be
redefined accordingly. Following a similar rationale with the
one in Section III-A, if constraint (10c) is satisfied, the
reward f (t+1)

n provided to agent n at time slot t + 1 about
the action a(t)

n chosen at the previous time slot t is captured
by its normalized achieved data rate, i.e.,

f (t+1)
n = Rtn

N
, (26)

whereas, in case of the constraint violation, the reward is:

f (t+1)
n = Rtn

N
·
⎛
⎝1+ tanh

⎛
⎝p(t)

0 −
N∑
j=1

p(t)
j −

ptol + σ 2

G(t)
1

⎞
⎠
⎞
⎠.

(27)

The physical meaning and interpretation of the designed
reward are identical with Eq. (13) and (14) described earlier.

Subsequently, the proposed DRL framework based on the
value-based DQL algorithm or policy-based REINFORCE
alternative can be directly applied to render a solution to the
sum-rate maximization problem.

V. EVALUATION & RESULTS
In this section, the performance of the proposed DRL frame-
work for energy-efficient power and rate allocation in the
downlink of single-cell single-antenna RSMA networks is

TABLE 1. Simulation parameters.

evaluated via modeling and simulation. Throughout our
experiments, we consider N = 4 users randomly spa-
tially distributed with minimum and maximum distance
from the base station set as 10m and 500m, respectively.
The channel gain between the users and the base sta-
tion is calculated considering the log-distance path loss
model PL = 120.9 + 37.6 log(d) with d measured in
km and log-normal shadowing standard deviation equal to
8 dB [6]. The maximum Doppler frequency is fd = 10Hz
and the time slot duration is T = 20ms [15]. The rest
of the communication-related parameters are summarized in
Table 1.

Considering the definition of the action space in the multi-
agent DRL problem, a number of An = 10,∀n and P0 = 100
discrete power levels for the private and common streams
is considered unless otherwise explicitly stated. The struc-
ture of the neural networks used as part of the DQL and
REINFORCE algorithms is similar and is as follows. A
feedforward neural network with 3 hidden layers is chosen,
having 200, 100, and 40 neurons, respectively. The input
layer has 8 neurons, i.e., one neuron for each state feature,
while the output layer has An neurons equal to the num-
ber of power levels of the private streams. The Rectified
Linear Unit (ReLU) is chosen as an activation function,
while the specific values used for the DQN and REINFORCE
algorithms’ hyper-parameters are listed in Table 1. A com-
prehensive numerical analysis is included in the following,
justifying the selection of the latter values.
To characterize the effectiveness of the proposed DRL

algorithms in concluding a solution under both optimization
objectives, two heuristic approaches from the literature are
also considered and simulated. First, a heuristic algorithm
to solve the energy-efficient power and rate allocation is
used as a benchmark, where the decoupling of the joint
problem into distinct subproblems is performed. The respec-
tive algorithm is presented in [10] and is referred to as
“Heuristic” henceforth. Furthermore, regarding the sum-rate
maximization objective, a modified version of the Weighted
Minimum-Mean Square Error (WMMSE) [27] algorithm
is used to solve the power allocation problem and, then,
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FIGURE 3. Average energy efficiency per user under the (a) DQL and
(b) REINFORCE algorithms for different values of the learning rate when targeting
energy efficiency maximization.

determine the rate splitting for the RSMA network. The
latter benchmarking heuristic is denoted as “WMMSE”.
In the sequel, the plotted values of the energy efficiency

and sum rate metrics have been normalized with the num-
ber of users in the system to capture the average achieved
energy efficiency and rate per user. This representation serves
the purpose of accurately reflecting the performance of
the system under the specific number of served users. To
ensure reasonable system performance, we consider as suc-
cessful and valid those network and algorithm settings that
allow each user to achieve at least 1Mbps/Hz downlink data
rate [6].

A. DRL ALGORITHMS’ HYPER-PARAMETER ANALYSIS
First, we perform a numerical analysis over different val-
ues of the DRL algorithms’ hyper-parameters, reflecting
their impact on the algorithms’ behavior over the train-
ing episodes. The obtained results are indicatively presented
for the energy efficiency optimization objective, while simi-
lar observations can be rendered considering the sum-rate
maximization of the system. In Fig. 3(a) and 3(b), the
achieved energy efficiency is illustrated as a function of
the training episodes for different values of the DQL
and REINFORCE algorithms’ learning rates ηq and ηπ ,
respectively. In more detail, the learning rate controls the
adjustment level of the parameter vector, i.e., the neural
network’s weights, in response to the estimated error at each

FIGURE 4. Average energy efficiency per user under the DQL algorithm for different
values of the minibatch size when targeting energy efficiency maximization.

time slot. As a consequence, small values of the learning
rate, i.e., ηq = ηπ = 10−1, result in suboptimal solutions,
whereas larger values, i.e., ηq = ηπ = 10−5, 10−6, may
prevent optimization and cause the algorithms’ training to get
stuck. There is a turning point where optimal performance in
the achieved energy efficiency can be achieved for both DQL
and REINFORCE algorithms. The DQL algorithm performs
best for ηq = 10−2, 10−3, 10−4, whereas ηπ = 10−3, 10−4

are the values of the learning rate parameter yielding best
performance for REINFORCE algorithm. Under these par-
ticular values that training is performed successfully, both
algorithms present stable performance and reach almost iden-
tical energy efficiency levels. However, the REINFORCE
algorithm requires fewer episodes to conclude, exhibiting
stable performance from the very beginning. Concluding,
based on the results of Fig. 3(a) and 3(b), the learning rate
parameters are set equal to ηq = 10−2 and ηπ = 10−3 for
the rest of the simulation experiments.
Especially with reference to the DQL algorithm, the hyper-

parameter related to the size of the minibatch of experiences
used as input to the DQN should be additionally configured.
For this purpose, different values of the minibatch size D are
scrutinized, and the performance of the DQL algorithm in
the achieved energy efficiency is observed over the training
episodes. The results are presented in Fig. 4, where a similar
tradeoff between small and large values for the minibatch
size hyper-parameter is depicted. A minibatch with inade-
quate experience samples, i.e., D = 50, 100, may cause the
trained model to converge to a local maximum, whereas a
large size of the minibatch, i.e., D = 700, 1000, may have the
opposite effect and result in the DQN’s overtraining during
the very first episodes. This prohibits the DQN from learn-
ing actions by experiences gained at later episodes, yielding
solutions of lower achieved energy efficiency compared to
the optimal hyper-parameter setting. The latter optimal set-
ting is found for a minibatch size of D = 500 experience
samples officially selected for our experiments.
Apart from properly configuring the DRL algorithms, the

design of the state-action space is crucial for the solu-
tion outcome. In this context, controlling the size of the
agents’ action space is also performed numerically to strike a
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FIGURE 5. Average energy efficiency per user under the DQL and REINFORCE
algorithms for different numbers of power levels when targeting energy efficiency
maximization.

balance between achieved energy efficiency and algorithmic
complexity. Fig. 5 illustrates the achieved energy efficiency
under different numbers of power levels An for the private
streams for both DQL and REINFORCE algorithms. The
results reveal that there exists an “optimal” number of power
levels where the tradeoff between exploring different actions
and complexity in the exploration is optimal for both algo-
rithms, which in our case is An = 10,∀n as used in the
experiments overall.
Concluding, the trained DRL models follow the config-

uration that resulted from the hyper-parameter analysis so
far. The results presented for both DQL and REINFORCE
algorithms from this point and on correspond to the average
energy efficiency (and rate accordingly) given as output from
the trained deep model over Ne = 100 randomly simulated
episodes, comprising Nt = 500 time slots each.

B. SCALABILITY ANALYSIS
Subsequently, we conduct a scalability analysis consider-
ing an increasing number of users in the cell, aiming to
evaluate the performance of the proposed DRL framework
as the network size increases while comparing at the same
time against the “Heuristic” and “WMMSE” approaches.
The range considered regarding the number of users is
N = [2, 7] in alignment with good practices followed in
the existing literature of RSMA, e.g., [6], [8]. It should be
noted that the common and private streams transmitted by
the base station to the users are multiplexed over the same
frequency resources, resulting in interference between them,
as expressed in Eq. (5) and Eq. (8), respectively. Therefore,
for the interference not to become unbearable, an upper
bound in the number of users sharing the same frequency
band is considered in the literature, equal to N = 7. In case
more users should be considered in the simulation topology,
then the same problem with the proposed one will be solved
independently for different clusters of users that operate over
a different frequency band.
Fig. 6(a) demonstrates the achieved energy efficiency per

user for different numbers of users in the horizontal axis
when targeting the energy efficiency maximization of the
system. As expected, the results present a decaying trend

FIGURE 6. Average (a) energy efficiency and (b) rate per user under the DQL,
REINFORCE, “Heuristic”, and “WMMSE” approaches for different numbers of users
when targeting (a) energy efficiency and (b) sum-rate maximization.

under all approaches and algorithms as the number of users
gets higher due to the increased interference and the total
transmission power required in the downlink by the base
station. A significant gap is shown between the DRL-based
algorithms and the “Heuristic” approach for a small num-
ber of users transmitting over the same frequency band,
i.e., N = 2, 3. For larger values of N, when the system
is congested and constrained, the DRL algorithms and the
“Heuristic” perform closely. Especially for N = 6, 7, the
majority (if not all) of the comparative scenarios are unable
to conclude a solution that provides at least 1Mbps per
user. For this reason, their achieved energy efficiency value
is set equal to 0. The latter justifies that the number of users
sharing the same frequency resource cannot be arbitrarily
increased. Fig. 6(b) depicts the achieved average rate per
user for different numbers of users when seeking the sum-
rate maximization. In this simulation case, it is remarkable
that the “WMMSE” approach fails to conclude a solution
that secures a data rate higher than 1Mbps for each user for
N ≥ 4 contrariwise to the proposed DRL algorithms that can
provide an effective resource allocation solution for at least
five users under the same frequency band. In this way, the
power of DRL to explore a vast state-action space is further
demonstrated.
The outcome of the scalability analysis so far is that DRL

is more successful in deriving an energy-efficient power and
rate allocation in RSMA networks than a heuristic approach
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TABLE 2. Resulting testing time under the DQL, REINFORCE, “Heuristic”, and
“WMMSE” approaches for different numbers of users.

under both optimization objectives. In the following, we
also measure the resulting testing time, i.e., the execution
time of the resource allocation procedure based on the pre-
trained deep neural network over the testing dataset that
includes simulated channel gain distributions of the users
that are different from the ones used during pre-training.
The obtained numerical results are listed in Table 2. The
results reveal that the two DRL algorithms behave similarly
in the resulting testing time. However, both of them outper-
form the “Heuristic” approach, whose mean execution time
is 96.15 sec under the energy efficiency optimization objec-
tive. On the other hand, although the “WMMSE” approach
proves to be significantly faster than the DRL algorithms
during their testing, its ability to conclude a solution is
limited and restricted to a very small number of users.
Note that the cells missing numerical values refer to the
specific simulation cases with N = 6, 7, where a mini-
mum acceptable rate of 1Mbps for each user cannot be
secured by some of the different comparative algorithms and
approaches.
Our scalability analysis is complemented by a compari-

son against the well-known Q-Learning algorithm [4], which
allows for further justifying the need for solutions based on
deep neural networks to tackle optimization problems of
the scale and complexity of the examined one. Based on
the Q-Learning algorithm, the optimal Q-function is derived
after exhaustive exploration and calculation of its value for
the different state-action pairs, contrary to the proposed
DQL algorithm that employs a deep neural network to per-
form function approximation. The calculated value of the
Q-function for each state-action pair is stored in a lookup
table, i.e., the Q-table. For the implementation of the Q-
Learning algorithm, the modeling of the reward function
and the discrete action space in Section III-A are kept
unchanged, while the only differentiation lies in the design
of the state space that is discretized to facilitate the con-
struction of the Q-table. Directly discretizing the state space
of our proposed DRL framework that comprises eight dis-
tinct components (see Section III-A) leads to the creation
of a huge Q-table. For this reason, inspired by the major-
ity of Q-learning applications in wireless networks from the
literature, we consider that an agent’s n state is completely
captured by its channel gain G(t)

n at a particular time slot t,

TABLE 3. Average energy efficiency per user and resulting training time under the
DQL, REINFORCE, and Q-Learning approaches for different numbers of users.

i.e., s(t)n = G(t)
n [4]. The agent’s state, i.e., channel gain, is

further quantized into 10 value ranges, each of which creates
a separate row in the Q-table while the discrete actions form
different columns. Table 3 includes the obtained numerical
results regarding the achieved energy efficiency and resulting
training time. The training time of the DQL, REINFORCE,
and Q-Learning algorithms has been measured considering
4000, 200, and 100 episodes, respectively, where conver-
gence is reached. Also, a small number of users N has
been considered owing to the inherent difficulty of con-
structing a Q-table of all combinations of state-action pairs
for all users in the system. Despite the small scale of the
simulated system, the Q-Learning algorithm still concludes
a resource allocation solution of notably low energy effi-
ciency, i.e., approximately 49 times lower when N = 2
and 26 times lower when N = 3 compared to the DRL
algorithms.

C. NETWORK OPTIMIZATION OBJECTIVES ANALYSIS
To gain more insight into the impact of energy efficiency
optimization on the overall network’s performance, we pro-
ceed to a comparative examination between the performance
of the proposed DRL framework under (a) energy efficiency
and (b) sum-rate maximization objectives. In particular,
Fig. 7(a) and 7(b) demonstrate the achieved values under
both metrics when (a) energy efficiency and (b) sum-rate
maximization is targeted, respectively. To render this com-
parison even more plausible, we also account for different
values of the base station’s maximum power budget within
the range pmax = [20, 40] dBm, characterizing its total max-
imum emitted transmission power in the downlink at each
simulation scenario. Note that for each 5 dBm-increment of
pmax, we increase the number of power levels An concluded
from Fig. 5 by five to fairly maintain the sensitivity of explo-
ration within the action space An,∀n. The number of users
considered in this simulation case is N = 4.

Under the energy efficiency objective, both DRL algo-
rithms “stick” to the pursued minimum data rate requirement
for each user (see right part of Fig. 7(a)) and target to
maximize the achieved energy efficiency without neces-
sarily spending the total amount of power pmax available.
Apparently, there exists a turning point regarding the avail-
able maximum power budget and the resulting number of
power levels, where the DRL algorithms find the best solu-
tion to the problem. Specifically, both algorithms manage
to achieve a maximum energy efficiency level approxi-
mately equal to 46.5 bits/J/Hz, as shown in the left part
of Fig. 7(a) and coincide in that this is found for pmax =
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FIGURE 7. Average energy efficiency and rate per user under the DQL and
REINFORCE algorithms for different values of the base station’s maximum power
budget pmax when targeting (a) energy efficiency and (b) sum-rate maximization.

25 dBm. Regarding the sum-rate maximization, the two
designed DRL algorithms exhibit identical performance (see
Fig. 7(b)). Higher values of the parameter pmax allow for
achieving higher user data rates (right part of Fig. 7(b))
while decreasing the corresponding energy efficiency of the
system (left part of Fig. 7(b)). To be more specific, when
pmax gets doubled from 20 dBm to 40 dBm, a small incre-
ment of two times is observed in the user data rate due to
higher interference sensed by the users, which in conjunction
with the higher sum of transmission powers in the denom-
inator of the energy efficiency function, rapidly decreases
the energy efficiency by almost 15 times. Furthermore,
closely inspecting the right parts of Fig. 7(a) and 7(b),
it can be easily seen that for an average rate equal to
1.5 bps/Hz per user, the concluded energy efficiency under
the sum-rate maximization objective is 15 bits/J/Hz, whereas
a value close to 46.5 bits/J/Hz could be achieved if pursuing
the energy efficiency maximization, following the results
of Fig. 7(a). Interestingly, this comes with the cost of 31
times lower achieved energy efficiency when myopically
targeting the system’s sum-rate maximization, highlighting
the need to focus on energy-efficient resource allocation
approaches.

VI. CONCLUSION AND FUTURE WORK
In this paper, the problem of energy efficiency maximization
was investigated in a single-cell single-antenna RSMA
network. Specifically, the joint power and rate allocation of
the common and private messages transmitted in the down-
link of the RSMA network was designed to maximize the
system’s energy efficiency. To manage such a combinato-
rial problem, a multi-agent DRL modeling was proposed,
according to which the DRL agents were mapped to the
private streams that explore the wireless network via their
actions, i.e., private stream power allocations. The DRL
agents contribute their experiences gained to training a
common neural network, at which point, two different
DRL algorithms were properly configured and utilized. The
first DRL algorithm regarded the value-based DQL, while
the second corresponded to the policy-based REINFORCE.
The output of the respective DRL algorithm, which is the
optimal private-stream power allocations of the DRL agents,
was then used as input to a linear programming problem
that directly derived the common-stream power and rate
allocations for the considered network setting. The same
multi-agent DRL modeling, architecture, and algorithms
were also evaluated under a different network optimization
objective, namely the sum-rate maximization of the con-
sidered RSMA network. The proposed DRL framework
showed to perfectly adapt to both optimization settings and
conclude solutions that are closer to optimal when com-
pared against existing approaches and algorithms from the
literature.
Our current and future work focuses on the design and test-

ing of actor-critic-based algorithms over the same network
setup. Furthermore, the extension of the networking setting
to account for multiple antenna transmissions will be tar-
geted by adapting both the multi-agent DRL modeling and
architecture, as well as the employed DRL algorithms.
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