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ABSTRACT This paper proposes a novel approach that utilizes differential encoding to overcome the
channel estimation problem in communication systems with low-resolution quantization receivers. For
differentially encoded data, we derive the maximum likelihood detection rule for the canonical block-2
detectors, employing just two consecutive quantized observations at the channel output and without any
receiver-side channel state information. We establish the optimality of this maximum likelihood detection
rule within the class of block-L detectors, where L ≥ 3, under the condition that n = log2 M, with n and
M denoting the number of quantization bits and input alphabet size, respectively. The derived detector
has a simple and easily implementable structure, comparing the quantization region indices of consecutive
observations to determine the transmitted message index. By leveraging the structure of the derived
optimum detector, we obtain the expression for the message error probability in Rayleigh fading wireless
channels. Through asymptotic analysis in the high signal-to-noise ratio regime, we reveal a crucial finding
that achieving the same diversity order as infinite bit quantization with full channel knowledge requires
an additional two bits at the quantizer, in addition to the minimum requirement of log2 M bits. One bit
compensates for the low-resolution effect, while the other addresses the lack of channel knowledge. Finally,
we conduct an extensive simulation study to demonstrate the performance of the optimum detectors and
quantify the performance loss resulting from the absence of channel knowledge at the receiver.

INDEX TERMS Low-resolution quantization, ML detectors, D-MPSK modulation, symbol error proba-
bility, diversity order.

I. INTRODUCTION
A. BACKGROUND AND MOTIVATION

MILLIMETER Wave (mmWave) and Terahertz (THz)
communications have recently gained substantial

attention as pivotal technologies in next-generation wireless
networks [1], [2], [3]. These systems employ significantly
broader bandwidths and extensive antenna arrays at both
transmitter and receiver ends to facilitate beamforming
and spatial multiplexing [4]. Consequently, the utilization
of high-resolution analog-to-digital converters (ADCs) with
approximately 12-16 bits, coupled with high sampling rates,
results in a considerable power consumption burden at both

the transmitter and receiver components of these systems [5].
This is primarily due to the fact that the power consumption
of ADCs increases exponentially with their resolution level,
and linearly with their sampling rate [6], [7].

To address this challenge, there are two potential solu-
tions: the utilization of high-resolution but low-speed sub-
ADCs or the deployment of high-speed but low-resolution
ADCs [5]. Given that the use of a high-resolution, low-
speed sub-ADC architecture can introduce error floors due
to discrepancies among sub-ADCs [8], current research in
this domain has predominantly focused on adopting low-
resolution ADCs. Consequently, the concept of substituting
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power-intensive high-resolution ADCs with low-resolution
counterparts offers a promising solution for power con-
sumption concerns in upcoming wireless applications such
as mmWave [4] and THz communications [9], integrated
sensing and communication systems [10], [11], UAV deploy-
ments, and Low Earth Orbit (LEO) satellites. These appli-
cation areas exhibit either high energy consumption due to
demanding sampling rates and extensive antenna arrays (as
seen in massive multiple-input multiple-output (MIMO)) or
inherent power limitations when serving a substantial num-
ber of users dispersed over diverse geographical locations
(as observed in UAVs and LEO satellites).
To achieve high data rates in quantized systems, the

precise estimation of channel state information (CSI) plays
a pivotal role [12]. However, obtaining accurate CSI poses a
formidable challenge in such systems due to non-linearities
resulting from low-resolution quantization at the receiver,
hindering the realization of the full benefits of low-resolution
ADCs for efficient data communication [13]. Moreover,
in high-mobility scenarios such as those involving UAVs
and LEO satellites, the channel coherence times are typi-
cally short, and the Doppler effect is pronounced, further
exacerbating the difficulty of channel estimation when
low-resolution ADCs are employed.

B. RELATED WORK
Numerous channel estimation algorithms have been proposed
for low-resolution quantization based wireless systems [14],
[15], [16], [17], [18], [19], [20], [21], [22], [23]. The
maximum likelihood channel estimator for one-bit mas-
sive MIMO is presented in [14], where it can effectively
estimate both the direction and the norm of the chan-
nel with one-bit ADCs. It has been shown that the mean
squared error (MSE) in the proposed ML channel estima-
tor is better than the zero-forcing (ZF) type estimator and
the expectation-maximization (EM) method in [15]. The
paper [24] combines the EM algorithm with iterative hard
thresholding (IHT) to estimate sparse channels of one-bit
quantized systems. In [16] and [17], generalized approximate
message passing (GAMP) algorithms have been used for
channel estimation with one-bit ADCs exploiting the spar-
sity of the target vector. A linear minimum mean squared
error (LMMSE) and Bussgang LMMSE (BLMMSE) esti-
mators for one-bit massive MIMO systems are introduced
in [18] and [19], respectively. The BLMMSE estimator
in [19] exhibits superior performance than the LMMSE esti-
mator in [18] in terms of MSE. The BLMMSE estimation
method has been expanded to multi-bit resolution systems
in [20]. In [25], authors develop the low-resolution aware
linear minimum mean-squared error (LRA-LMMSE) chan-
nel estimator for a multiuser MIMO system with comparator
network aided receivers with one-bit ADCs. In [21], a joint
channel and data estimation algorithm has been proposed
and it demonstrates a notable enhancement in performance
when compared to the conventional approach of separately
handling channel estimation and data detection. Nonetheless,

the algorithm’s complexity is prohibitively high for practical
implementations [21].
The training overhead and complexity of all of these pilot-

based channel estimators above are too high. Additionally,
the pilot-assisted approach necessitates a greater num-
ber of base station (BS) antennas to achieve comparable
performance to infinite-resolution systems [26]. Therefore, it
is necessary to explore alternatives for pilot-assisted schemes
for channel estimation.
The papers [27], [28] proposed a mixed-ADC architec-

ture where most antennas are equipped with low-resolution
ADCs, while a few have high-resolution ADCs to acquire
precise CSI. This approach significantly reduces the error
floor associated with one-bit ADCs [29]. In [27], mixed-
ADC architecture with a relatively small number of high-
resolution ADCs is able to achieve a large fraction of the
channel capacity of conventional architecture where channel
estimates are acquired through the high-resolution ADCs.
In [28], a mixed-ADC architecture has been adopted for
frequency-selective channels, where it uses high-resolution
ADCs in the channel training phase. Mixed-ADC archi-
tecture relies on the assumption that each high-resolution
ADC can be linked to several RF chains through a switch.
However, this architecture comes with the drawback of
extensive hardware complexity due to the presence of ADC
switches. Additionally, the time required to obtain channel
estimates experiences a significant increase [20].
Instead of relying on conventional channel estimation

techniques as discussed earlier, researchers have recently
delved into the use of deep learning (DL) methods for
channel estimation in low-resolution quantization based
wireless systems [13], [30], [31], [32], [33], [34], [35],
[36], [37]. In [30], deep multilayer perceptrons (MLPs)
are employed, while [31], [32] utilize convolutional neu-
ral networks (CNNs) to learn the non-trivial mapping from
quantized received observations to channels for massive
MIMO channel estimation employing low-resolution ADCs.
The paper [33] employs generative supervised learning for
channel estimation, a method that can be trained with an ade-
quate number of pilots in an orthogonal frequency division
multiplexing receiver context.
The paper [34] employs conditional generative adversar-

ial networks (cGAN) to predict more realistic channels in
the context of one-bit multiuser massive MIMO systems.
In contrast, [35] proposes an innovative LSTM-based DL
model for channel matrix estimation using one-bit ADCs
in massive MIMO. Their results indicate that this proposed
model outperforms MLP, CNN, and cGAN-based channel
estimation schemes across various numbers of antennas and
SNR values. However, it is important to note that [35]
involves training two simultaneous models and the design of
a complex loss function. In another approach, [36] introduces
an autoencoder-inspired end-to-end architecture for the joint
tasks of channel estimation and mixed-ADCs allocation in
massive MIMO systems. It is worth mentioning that these
estimation techniques are currently constrained to scenarios
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with low noise levels. Consequently, their practicality and
applicability in real network settings may be limited due to
this restriction [35].

It is also important to highlight that when employing
existing deep learning-based methods, generating a more
realistic channel matrix can be challenging due to the loss
of information that occurs with successive layers in neural
networks [34]. Neural networks are well-suited for tasks
like classification or recognition, where the output is a
label and information loss may not significantly impact
performance [34]. However, in channel estimation which is
related to data generation, information loss can lead to poor
performance [35]. Therefore, it is challenging and important
to carefully design and investigate the loss functions of neu-
ral networks to mitigate information loss during the learning
process when tackling channel estimation.
Despite these efforts, the channel estimation error in

low-resolution quantization based systems remains con-
siderable compared to that in traditional high-resolution
systems [12], [38]. This discrepancy becomes even more
pronounced when the number of available pilot symbols is
restricted [39]. Moreover, when faced with hardware imper-
fections, the receiver is required not only to estimate channel
parameters but also to determine the quantization level of
the ADCs [40]. This significantly increases the complexity
of signal-processing overhead for channel estimation [13].
When the receiver relies on the estimated channel for data
detection (i.e., coherent detection), the substantial channel
estimation error further exacerbates the loss in data detection
performance.
Given these obstacles for channel estimation with low-

resolution ADCs, a fundamental question arises: Is it possible
to have reliable communication using low-resolution ADCs
without relying on channel estimation? We address this cru-
cial question in the current paper and develop novel detector
architectures, based on differential encoding at the trans-
mitter, that operate optimally without depending on the
availability of CSI at the receiver.

C. KEY CONTRIBUTIONS
In this paper, we develop a novel approach to overcome
the channel estimation problem in wireless systems with
low-resolution ADCs. Our approach involves an implemen-
tation of differential encoding at the transmitter, specifically
focusing on differential M-ary phase shift keying (D-MPSK)
modulation [41], [42], [43]. At the receiver, we employ a
non-coherent detection scheme that does not rely on CSI.
The detector, equipped with a low-resolution ADC, observes
coarsely quantized channel outputs for data detection. This
problem differs significantly from its high-resolution coun-
terpart, which is extensively researched in the literature [44],
[45], [46], in terms of system set-up, mathematical analysis
tools, and optimal detection rules.
Our main contributions are summarized as follows.
• We derive the maximum likelihood estimator (MLE) for
block-2 detectors that utilize two consecutive quantized

channel outputs to determine the transmitted message
index. We obtain the MLE for a general n (number of
quantization bits) and M (input alphabet size), satisfying
n ≥ log2 M for single-antenna systems. One form of
the MLE computes the most likely estimate for the
input message in a constant amount of time, which
is independent of n and M. These results extend the
canonical block-2 maximum likelihood detector with
high-resolution ADCs, and we derive them for the first
time in this paper for the low-resolution scenario.

• We investigate a scenario in which the detector can use a
block of L ≥ 3 quantized channel outputs to jointly esti-
mate the channel and decode data. When n = log2 M,
we show that the optimum block-2 MLE continues to be
the best estimator for the transmitted message indices
within the class of block-L detectors. Using the derived
MLE expressions, we obtain the message error probabil-
ity (MEP) formula as a performance metric and conduct
numerical analyses to demonstrate system performance
as a function of signal-to-noise ratio (SNR) for various
values of n and M.

• To evaluate the performance of the MLE in the high
SNR regime, we derive the system diversity order
(DVO) and show that two additional bits (in addition to
the minimum requirement of log2 M bits) are required
to achieve the same DVO as infinite bit quantization and
full CSI. One bit compensates for the impact of low res-
olution, while the other addresses the absence of channel
knowledge. This is the cost of noncoherence in phase-
quantized communications systems, which is derived
for the first time in the current paper. By establishing
the minimum number of bits required at the quan-
tizer to achieve the best DVO, our results complement
the previous information-theoretic work [47], [48] that
focuses on achievable data rates of phase-quantized non-
coherent receivers. Especially, when the link reliability
is at stake, our results provide pragmatic design rules
and quantization penalty metrics revealing how to trade-
off link reliability and the system energy consumption
by optimizing the number of quantization bits.

The material of this paper has been published in part
in [49], where the MEP analysis is focused only on the D-
QPSK modulation and the paper did not include the proofs
for the key theorems. The present paper expands upon the
results presented in [49], provides full details of the proofs
for the main theorems and also provides a rigorous error
probability performance and DVO analysis under D-MPSK
modulation with n-bit phase quantization. Our analytical
results in Theorems 4-5 along with the numerical results
presented in Section VII establish a fundamental asymptotic
reliability characterization for low-resolution ADC based
wireless systems with differential modulation in the high
SNR regime. These results do not appear in our previous
work [49], nor do they exist in any other previous paper in
the literature.
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Furthermore, the current manuscript presents a notable
difference from our prior studies in [50] and [5]. In those
earlier works, we studied the optimal detectors and error
rates within the context of coherent detection for wire-
less systems with low-resolution quantizers. In [5], we
derived the MLE for single-input-single-output (SISO) con-
figurations employing M-ary phase shift keying (MPSK)
modulation with n-bit quantization when the receiver has
full CSI. By using the structure of the derived detector, we
obtained expressions for the SEP, and for scenarios char-
acterized by Nakagami-m fading, we demonstrated that a
transceiver architecture becomes asymptotically optimal if
n ≥ log2 M+1. Subsequently, in [50], we extended the foun-
dational concepts from [5] to single-input-multiple-output
(SIMO) wireless communication systems with low-resolution
phase quantizers, and again when the receiver has full CSI.
Both papers [5] and [50] share the assumption of full CSI
accessibility at the receiver. In contrast, the present study
relaxes the full CSI assumption by introducing D-MPSK
modulation. This approach allows us to probe into optimal
detectors and error rates while operating under a scenario
where full CSI is not presumed.

II. SYSTEM SETUP
A. TRANSMITTER ARCHITECTURE
We consider a memoryless message source at the transmit-
ter, which generates message indices uniformly at random
from a given alphabet � = {0, . . . ,M−1}. The sequence of
message indices {λt}∞t=1 over time is independent and identi-
cally distributed (iid), where t ∈ N represents the time index.
The messages are converted into symbols for transmission
over the channel by using differential encoding, as described
below.1

At time t = 0, the modulator generates a symbol
S0 uniformly at random from the constellation set C =
{ej πM (2k+1)}M−1

k=0 . This symbol initiates the communication
process, and the transmitted symbol at time t is given by

St = St−1e
j 2π
M λt (1)

for all t ≥ 1. We note that St belongs to C for all t ∈ N

(with phase modulo 2π). It can also be seen that {St}∞t=0 is
an iid sequence of symbols over time with uniform marginal
distribution over C.

B. CHANNEL MODEL
We consider a block-fading wireless channel which remains
constant over a block of N symbols and changes from

1. The terms symbol and message are used to distinguish between what
is transmitted over the channel and the index of the information symbol
created by the source.

one block to another independently [51]. The input-output
relationship of the channel for the kth block is given by

Yt = √
SNRHkSt +Wt, (2)

where t ∈ [kN : (k + 1)N − 1], k ∈ N, Hk ∈ C is the
unit-power Rayleigh fading coefficient, Wt is the circularly-
symmetric zero-mean unit-variance additive white Gaussian
noise (AWGN) (i.e., both Hk andWt are distributed according
to CN (0, 1)) and SNR is the system signal-to-noise ratio.
The sequence of received symbols {Yt}∞t=1 forms a depen-
dent collection of random variables (a random sequence over
time) due to common randomness introduced by the channel.
The following lemma characterizes the joint distribution

of Yt0 and Yt1 for any two consecutive time indices t0 and t1.
Lemma 1: For any two consecutive time indices t0 and

t1 = t0 + 1, let Y = (Yt0 ,Yt1)
� ∈ C

2. Then, conditioned on
λt1 = λ ∈ �, Y is a jointly Gaussian complex random vector
with circularly symmetric distribution CN (0,K), where the
covariance matrix K = E[YY†] is given by (3), shown at the
bottom of the page and I2 in (3) is the 2-by-2 identity matrix.
Proof: The proof of this lemma follows by first establish-

ing joint Gaussianity for Yt0 and Yt1 , and then calculating
their covariance matrix. See Appendix A for details.
The statistical structure established in this lemma will

be key in our derivation for the MLE when the detector
utilizes two consecutive quantized channel output samples
to decide on the transmitted message index at the current
time. Using Lemma 1, it can also be seen that Yt1 |Yt0 =
y0 ∼ CN

(
SNR

1+SNRe
j 2π
M λy0,

1+2SNR
1+SNR

)
if λt1 = λ, and Yt0 and

Yt1 lie on the same channel fading block.

C. RECEIVER ARCHITECTURE
Our receiver architecture is based on a low-resolution ADC
that quantizes the phase of the channel output [52], [53].
This structure is motivated by the fact that the information
is encoded in the phase of the transmitted symbols in our
setting. Since the channel is circularly symmetric with inde-
pendent phase and amplitude [54], any form of amplitude
quantization will not provide useful information that will
assist the estimation process in this setting.
We note that there are several important reasons why we

focus on phase modulation and quantization in this paper.
Phase modulation is historically known to be optimum up
to modulation order 16 under peak power limitations [55].
It is also the optimum modulation scheme for achieving the
channel capacity with phase quantized outputs [56]. Phase
quantizers can be implemented using one-bit ADCs that
consist of simple comparators, and they attain low power
consumption levels (in the order of milliwatts). As given

K =

⎧⎪⎨
⎪⎩

(
1 + SNR

)[ 1 SNR
1+SNRe

−j 2π
M λ

SNR
1+SNRe

j 2π
M λ 1

]
if t0 mod N ∈ [0 : N − 2]

(
1 + SNR

)
I2 if t0 mod N = N − 1

(3)
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FIGURE 1. The receiver architecture with n-bit phase quantizer. The figure is
depicted for a block-2 detector for clarity, utilizing two consecutive symbols to
estimate the message indices.

in [57], the implementation based on time-to-digital con-
verters (TDCs) can also be adopted to further reduce the
area and power consumption of the phase quantizer.
As illustrated in Fig. 1, the received symbol Yt is first sent

through a low-resolution quantizer, and then the quantized
symbols at times t − 1 and t are used to determine the
transmitted message λt at time t ≥ 1. We assume that n bits
are used for quantization and n ≥ log2 M.
The quantization operation can be described formally as

follows. Let Qk be the kth quantization region (Q-region),
which is defined as the convex cone satisfying

Qk �
{
z ∈ C :

2π

2n
k ≤ Arg(z) <

2π

2n
(k + 1)

}
(4)

for k ∈ [0 : 2n − 1] and the principle argument Arg(z) is
always taken in [0, 2π). The quantizer q is defined as a
mapping from C to [0 : 2n − 1] that satisfies q(z) = k if
z ∈ Qk. Note that q is well-defined since the Q-regions are
mutually exclusive and collectively cover the complex plane.
For each Q-region, we also define an attraction region

(A-region) Ak according to (5), shown at the bottom of the
next page for k ∈ [0 : 2n − 1]. In this equation, B mod a
for a set B ⊆ R and a > 0 is defined as B mod a�{b
mod a : b ∈ B}. We note that the kth A-region is a convex
cone having angular separation 2π

M and centered around Qk.
The importance of A-regions for our analysis is given by
the following lemma.
Lemma 2: Let U and V be two complex Gaussian ran-

dom variables with distributions U ∼ CN (u, σ 2) and
V ∼ CN (v, σ 2) satisfying |u| = |v|. Then, if u ∈ Ak
and v /∈ cl(Ak), we have Pr{U ∈ Qk} > Pr{V ∈ Qk}, where
cl(Ak) represents the topological closure of Ak.
Proof: The proof follows from [5, Lemma 6].
We will use this lemma to maximize the likelihood func-

tion parameterized by the message indices λ ∈ �. Intuitively,
the distribution of U is better centered around Qk than that
of V if the conditions in Lemma 2 are satisfied, giving us the
inequality Pr{U ∈ Qk} > Pr{V ∈ Qk}. The following decom-
position of A-regions into Q-regions will also be used in our
MLE derivation.
Lemma 3: For k ∈ [0 : 2n−1], Ak can be decomposed into

Q-regions according to (6), shown at the bottom of the next
page, whereQUk is the upper kth Q-region defined asQUk �{z ∈
C : 2π

2n k+ π
2n ≤ Arg(z) < 2π

2n (k+ 1)} and QLk is the lower kth
Q-region defined asQLk�{z ∈ C : 2π

2n k ≤ Arg(z) < 2π
2n k+ π

2n }.
Proof: The proof of this lemma follows from the fol-

lowing intuitive idea. Ak is a cone with an angular width

of 2π
M centered around Qk. Therefore, it can contain 2n

2M
Q-regions (each of width 2π

2n ) in the clockwise and counter-
clockwise directions from the center of Qk. The proof of
the lemma depends on making this idea formal to have the
decomposition given in (6). See Appendix B for details.

III. OPTIMUM SIGNAL DETECTION
In this part, we will present the optimum signal detection
problem in the general form, and then specialize it to the
practical case where the detector utilizes only two con-
secutive quantized channel outputs (which we call block-2
detector) to decide on the transmitted message index. The
block-2 detector is the canonical detector used in high-
resolution quantization based D-MPSK systems [44], [45].
We will derive the MLE for the class of block-2 detectors for
low-resolution quantization and also show that it is optimum
among the class of block-L detectors in an important case
of n = log2 M, which includes DQPSK (i.e., M = 4) with
one-bit quantization for in-phase and quadrature channels
(i.e., n = 2).

This problem differs significantly from its high-resolution
counterpart. In a low-resolution quantization based system,
the output conforms to a nonlinear channel model due to the
nonlinearity introduced by the quantization process. In con-
trast, traditional high-resolution systems are built on a linear
channel model. Therefore, signal detection rules developed
for receivers with high-resolution ADCs often become
sub-optimal for receivers with low-resolution ADCs [8].
Utilizing low-resolution ADCs fundamentally alters both
the theoretical framework and practical implementation of
a communication setup [58].

A. GENERAL FORMULATION
In general, the detector can utilize a block of L quantized
observed channel outputs k = [k0, . . . kL−1]�, taken at con-
secutive times from t0 to tL−1 (i.e., ki = q(Yti)), to form
a block of L − 1 message indices λ̂ = [λ̂1, . . . , λ̂L−1]�
as an estimate for the actual message sequence λ =
[λt1, . . . , λtL−1 ]� transmitted from t1 to tL−1. The block size
L must be taken in the range [2 : N] since we need at least
two quantized channel outputs to estimate the input mes-
sages due to differential encoding and having L larger than
N does not help for the estimation problem since we lose
correlation structure completely at channel transition bound-
aries (i.e., see Lemma 1 for two consecutive channel outputs
and the same idea extends to the general case L ≥ 2).
Then, for L ∈ [2 : N], the MLE λ�(k) (also called maxi-

mum a posteriori (MAP) detector [59]) is the estimator that
satisfies

λ�(k) ∈ arg max
λ̂∈�L−1

Pr
{
λ = λ̂

∣∣q = k
}

(7)

for all k ∈ [0 : 2n − 1]L, where q = [q(Yt0), . . . , q(YtL−1)]
�

is the random quantized channel output vector of size L.2

2. We do not have any differentiation between random quantities and
their realizations in notation since it will be clear from the context which
quantities are random and which are their observed realizations.
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Since all input message sequences are equiprobable, we can
express (7) equivalently according to

λ�(k) ∈ arg max
λ̂∈�L−1

Pr
{
q = k

∣∣λ = λ̂
}
. (8)

In this formulation, the larger block sizes can help the
receiver to jointly estimate the channel and decode the data.
However, they also introduce extra decoding complexity
and processing delay. As seen in (7) and (8), the size of
the search space for λ�(k) increases exponentially with the
block size according to O(ML), and the size of the input
space over which λ�(k) must be well-defined also grows
exponentially according to O(2nL). Thus, in addition to the
search for the optimum decoder, these observations also ren-
der potential numerical learning models such as soft-max
regression useless for large L given the usually fast time
scales (e.g., 2-3 ms [51]) of the wireless channel coherence
time.

B. MLE FOR THE BLOCK-2 CASE
For the block-2 case, using (8), we can write the likelihood
function L(λ; k) of parameter λ (i.e., the estimate of the
transmitted message index) according to

L(λ; k) = Pr
{[
q
(
Yt0

)
, q

(
Yt1

)]� = k
∣∣λt1 = λ

}

= Pr
{
Yt0 ∈ Qk0 and Yt1 ∈ Qk1

∣∣λt1 = λ
}

=
∫

Qk0

fYt0 (y0)

∫

Qk1

fYt1 |Yt0 (y1|y0; λ)dy1dy0

for any k = [k0, k1]� ∈ [0 : 2n − 1]2, where

fYt0 (y0) = 1
π(1+SNR)e

− |y0|2
1+SNR and fYt1 |Yt0 (y1|y0; λ) =

1+SNR
π(1+2SNR)e

− 1+SNR
1+2SNR |y1− SNR

1+SNR ej
2π
M λy0|2 by using Lemma 1.

The following theorem establishes an MLE for the estimation
problem in (8) for the block-2 case.
Theorem 1: Let λ�(k) be given by

λ�(k) = min
{
λ ∈ � : ej

2π
M λQk0

⋂
Ak1 �= ∅

}
, (9)

where the set ej
2π
M λQk0 is defined as ej

2π
M λQk0�{zej 2π

M λ : z ∈
Qk0}. Then, λ�(k) is well-defined and satisfies

λ�(k) ∈ arg max
λ∈� L(λ; k)

for all k ∈ [0 : 2n − 1]2.
Proof: The key term which we focus on to estab-

lish the MLE formula in (9) is the integral expression

∫
Qk1

fYt1 |Yt0 (y1|y0; λ)dy1 in the likelihood function L(λ; k).
The proof of this theorem follows by showing that this inte-
gral is maximized for any y0 ∈ Qk0 whenever λ is chosen
according to (9). See Appendix C for formal arguments and
details.
Theorem 1 establishes a solution for (8) as the minimum

rotation required (in terms of message indices) to have a non-
empty intersection between Qk0 (i.e., Q-region containing the
first observation) and the A-region corresponding to Qk1 (i.e.,
Q-region containing the second observation). In the proof of
Theorem 1, we showed that ej

2π
M λQk0 = Q

(k0+ 2n
M λ) mod 2n .

Hence, using Lemma 3, an equivalent representation of λ�(k)
can be given as in Corollary 1 below, which makes the
structure of the solution more lucid.
Corollary 1: The MLE λ�(k) can also be expressed as

in (10), shown at the bottom of the next page.
A notable observation based on the MLE given in

Corollary 1 is the symbol-by-symbol detection interpretation
when n = log2 M. In this case, the Q-region and message
indices match each other (i.e., both are {0, . . . ,M−1}), and
the detector behaves as if it first estimates ej

π
M (2k0+1) and

ej
π
M (2k1+1) for the symbols St0 and St1 , respectively, and then

calculates their phase difference to estimate λt1 . We will use
this idea in the next section to show that the block-2 MLE
also gives us the optimum detection rule for L ≥ 3 when
n = log2 M.

In addition, the structure observed for n = log2 M moti-
vates a search for another MLE having a closed form
expression in terms of the difference between k1 and k0
even when n ≥ log2 M + 1. In the next theorem, we
provide another MLE that estimates the message index
based on the difference between k1 and k0 directly. This
MLE coincides with λ�(k) given in Theorem 1 except
for (k0 + 2n

M λ
�(k)) mod 2n = (k1 − 2n

2M ) mod 2n and
(k0 + 2n

M λ
�(k)) mod 2n = (k1 + 2n

2M ) mod 2n. In these two
cases, the set arg maxλ∈� L(λ; k) is not a singleton, and the
MLE λ��(k) in Theorem 2 chooses the other message index
in this set as an estimate for λt1 .
Theorem 2: Let λ��(k) be defined as

λ��(k) =
⌈
M

2n
(k1 − k0)− 1

2

⌉
mod M. (11)

Then, for all n ≥ log2 M, λ��(k) satisfies

λ��(k) ∈ arg max
λ∈� L(λ; k)

for all k ∈ [0 : 2n − 1]2.

Ak =
{
z ∈ C : Arg(z) ∈

[
2π

2n
k + π

2n
− π

M
,

2π

2n
k + π

2n
+ π

M

)
mod 2π

}
(5)

Ak =
⎧
⎨
⎩
Qk if n = log2 M

QU(
k− 2n

2M

)
mod 2n

⋃(⋃k+ 2n
2M−1

i=k− 2n
2M+1

Qi mod 2n

)⋃
QL(

k+ 2n
2M

)
mod 2n

if n ≥ log2 M + 1 , (6)
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Proof: To prove this theorem, we only consider n ≥
log2 M + 1 since (10) and (11) agree with each other for
n = log2 M. The proof for the case n ≥ log2 M + 1 follows
from considering three different sub-cases for the range of
k1 : (i) k1 ∈ [ 2n

2M : 2n − 2n
2M − 1], (ii) k1 ∈ [0 : 2n

2M − 1] and
(iii) k1 ∈ [2n − 2n

2M : 2n − 1], and showing that λ��(k) maxi-
mizes L(λ; k) in each sub-case. The details are provided in
Appendix D.
We first note that if n = log2 M, then

λ��(k) =
⌈
k1 − k0 − 1

2

⌉
mod M

= (k1 − k0) mod M,

which coincides with λ�(k) exactly in this case.
Secondly, the MLE given in Theorem 2 has a nice intuitive

interpretation. k1 −k0 gives a measure of “distance” between
two quantized channel outputs in terms of the number of
quantization regions. The scaling coefficient M

2n converts this
measure to another measure of “distance” in terms of the
input symbols. Finally, the ceiling operation and the term − 1

2
act as the correction factors to convert this final measure to
an estimate of the message index. We will use λ��(k) in our
numerical analysis to calculate message error probabilities
as it is very handy to implement both in numerical analysis
and also in practical embedded software implementations.
Remark: We note that the complexity of the optimum

detector in Theorem 2 is O(1) because it only compares
two quantization region indices to determine the most likely
input message index.

IV. OPTIMALITY OF THE BLOCK-2 MLE WITHIN THE
CLASS OF BLOCK-L DETECTORS
As discussed in the previous section, processing quantized
channel output blocks of size larger than 2 can help the
receiver to learn the channel states and simultaneously
decode the messages based on the learned channel con-
ditions. However, there is an extra decoding delay and
exponential computational complexity associated with this
approach.
On the other hand, the block-2 MLE given in Section III

has a simple structure, which is easy to implement in practi-
cal applications and process data in real time. It outputs the
most likely input message index in constant time for any
observation k ∈ [0 : 2n − 1]2, and any M and n satisfying
n ≥ log2 M (i.e., see Theorem 2). In the next theorem, we
will show that this simple structure continues to be optimum
among the class of block-L detectors when n = log2 M,
which is the minimum number of bits required to resolve
input messages. The proof idea uses a genie-aided detector
where the genie reveals perfect information about the channel

states to the receiver. The transmitter still uses differential
encoding to encode the messages.
Theorem 3: For n = log2 M, the block-2 MLEs given in

Theorems 1 and 2 are the optimum detectors among the
class of block-L detectors.
Proof: To prove this theorem, we consider a genie-

aided decoder where the genie provides perfect channel
information {Hk}∞k=0 and the decoder utilizes this information
to maximize the likelihood of message indices λ̂ =
[λ̂1, . . . , λ̂L−1]� as an estimate for the actual message
sequence λ = [λt1, . . . , λtL−1 ]� transmitted from t1 to tL−1.
The analysis of the genie-aided decoder is easier since
the channel outputs are conditionally independent given the
channel information. In Appendix E, we first establish the
MLE for the genie-aided detector and then show that this
MLE is exactly the same MLE we arrived at in Theorems 1
and 2 for n = log2 M when L = 2. This concludes the
proof.
Intuitively, given the channel knowledge, the genie-aided

detector defaults to the symbol-by-symbol estimation of the
sequence {St}∞t=0, and then the message sequence {λt}∞t=1
is estimated based on the phase difference between two
consecutive symbols in the estimated symbol sequence.

V. MESSAGE ERROR PROBABILITY
In this section, we calculate the message error probability
(MEP) for low-resolution quantization systems with differ-
ential encoding by using the MLE expressions derived in
Section III. To that end, we write the MEP as

p
(
SNR

) = Pr
{
λt �= λ��(q(Yt−1), q(Yt))

}
. (12)

We consider the D-MPSK modulation and the case where
both observations are on the same channel fading block. For
observations belonging to different fading blocks, we lose
the correlation structure and p(SNR) is equal to 1 − 1

M .
Theorem 4: For D-MPSK modulation with n ≥ log2 M,

p(SNR) is given according to (13), shown at the bottom of
the next page.
Proof: We first focus on the case where n = log2(M).

Without loss of generality, for any two consecutive time
indices t − 1 and t, let us assume that Yt−1 ∈ Qk given
according to (4) and λt = 0 (i.e., St = St−1). By applying
Theorem 2 and setting k1 = k0, we can ensure that there will
be no error in estimating the message λ��, since this implies
that q(Yt) = q(Yt−1). Then, the MEP can be expressed as
follows:

p
(
SNR

) =
2n−1∑
k=0

Pr{Yt−1 ∈ Qk,Yt /∈ Qk | λt = 0}
(a)= 2nPr{Yt−1 ∈ Q0,Yt /∈ Q0 | λt = 0}, (14)

λ�(k) =
{
(k1 − k0) mod M if n = log2 M

min
{
λ ∈ � :

(
k0 + 2n

M λ
)

mod 2n ∈
[
k1 − 2n

2M : k1 + 2n
2M

]
mod 2n

}
if n ≥ log2 M + 1

. (10)
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where (a) follows from the circular symmetry of the problem.
In order to derive p(SNR) in equation (14), we need to use

the joint distribution of real and imaginary parts of Yt−1 and
Yt. To this end, let Y = [Y re

t−1 Y im
t−1 Y re

t Y im
t ]�, where

Y re
t is the real part of Yt and Y im

t is the imaginary part of Yt.
Using Lemma 1, the pdf of Y can then be expressed

as (15), shown at the bottom of the page, where y =
[yt−1, yt]�.

Then, by using (15), we can express (14) as (16), shown
at the bottom of the page which is equivalent to the MEP
expression in Theorem 4 for n = log2(M).

The proof for n ≥ log2(M) + 1 follows from similar
arguments, with the main difference being how we express
p(SNR) in this case. The MEP, in this case, is given by

p
(
SNR

) = 2nPr{Yt−1 /∈ Ak,Yt ∈ Qk | λt = 0},

where Qk and Ak are given according to (4) and (5), respec-
tively.3 Using the joint distribution for Yt−1 and Yt given
in Lemma 1 and its circular symmetry property, we arrive
at (13). Therefore, we get the MEP expression in Theorem 4
for n ≥ log2(M)+ 1 as well.
For the special case of D-QPSK (i.e., M = 4) modulation

with n = 2, 3, Theorem 4 reduces to the following corollary.
Corollary 2: For D-QPSK modulation with n = 2, 3,

p(SNR) is given according to (17), shown at the bottom
of the page, where Q(·) is the complementary distribution
function of the standard normal random variable.
Proof: See Appendix F.

3. This can be seen by a randomization argument selecting one of the
message indices randomly with probability 0.5 to maintain symmetry in the
problem when there are two messages having the same maximum likelihood.

VI. THE DECAY EXPONENT FOR THE AVERAGE
SYMBOL ERROR PROBABILITY
In this section, we will analyze the communication robust-
ness that can be achieved with low-resolution ADCs by
focusing on the decay exponent of p(SNR), which is
given by4

DVO = − lim
SNR→∞

log p
(
SNR

)

log SNR
. (18)

Following the convention in the field, we will call DVO the
diversity order.

The following theorem establishes the DVO results for
D-MPSK modulation under Rayleigh fading.
Theorem 5: For D-MPSK modulation with n ≥ log2 M,

the DVO under Rayleigh fading is given according to

DVO =
{

1
2 n = log2 M and n = log2 M + 1
1 n ≥ log2 M + 2

. (19)

Proof: The proof follows by analyzing the decay rate of
p(SNR) for n = log2 M, n = log2 M+1 and n ≥ log2 M+2
case-by-case. In particular, for the case of n = log2 M, we
use the genie-aided receiver in Theorem 3 to show that
DVO = 1

2 . For n = log2 M + 1, we use the D-QPSK MEP
result in (17) to establish that DVO = 1

2 . For the final case
n ≥ log2 M + 2, we apply monotone convergence theorem
to show that p(SNR) in (13) decays according to SNR−1.
The details are given in Appendix G.
From Theorem 5, we know that the DVO of the low-

resolution quantization based systems is the same as that of
infinite-bit quantization based systems, which is equal to 1

4. The limit in (18) exists for the optimum detectors that we study in
the current paper. Hence, there is no ambiguity in the definition of DVO.

p
(
SNR

) = 1 − 2n

π2
(
2SNR + 1

)
∫ ∞

0

∫ yret tan
(

π

2n−1

)

0

∫ ∞

0

∫ yret−1 tan
(

2π
M +ψ

)

yret−1 tan(ψ)
G(y) dyimt−1 dy

re
t−1 dy

im
t dyret (13)

where G(y) = exp{− SNR+1
2SNR+1‖y‖2

2 + 2SNR
2SNR+1 Re(yt−1y∗t )}, y = [yt−1, yt]�, and

ψ =
{

0 if n = log2 M or n = log2(M) + 1
−(

2
(
n− 1 − log2 M

) − 1
)
π

2n−1 if n ≥ log2(M) + 2.

fY(y) = 1

π2
(
2SNR + 1

) exp

{
− SNR + 1

2SNR + 1
‖y‖2

2 + 2SNR
2SNR + 1

Re
(
yt−1y

∗
t

)}
, (15)

p
(
SNR

) = 1 − 2n

π2
(
2SNR + 1

)
∫ ∞

0

∫ yret tan
(

π

2n−1

)

0

∫ ∞

0

∫ yret−1 tan
(

π

2n−1

)

0
fY(y) dyimt−1 dy

re
t−1 dy

im
t dyret (16)

p
(
SNR

) = 1 − 4

π

∫ 2π

0

∫ ∞

0
Q2

(
−√

2SNRr cos θ
)
Q2

(
−√

2SNRr sin θ
)
re−r2

dr dθ. (17)
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when n ≥ log2 M + 2 under Rayleigh fading. Since this is
the optimum DVO, we can conclude that it is enough to
use log2 M+ 2 bits at the quantizer to achieve the optimum
DVO with D-MPSK modulation, which is two additional
bits on top of the minimum requirement of log2 M bits to
resolve input messages. The first additional bit is required to
overcome the quantization noise in the system. In comparison
with [5], the other additional bit at the quantizer is required
to overcome the lack of channel knowledge and thereby to
achieve the optimum DVO when the channel knowledge is
not available at the receiver.

VII. NUMERICAL RESULTS
In this section, we present the numerical results that will
help us to illustrate the key theorems of the paper and to
comprehensively investigate the MEP performance of the
optimum detectors derived in the previous sections as well
as several quantization penalties.

A. ERROR PROBABILITY PERFORMANCE
In Fig. 2, a numerical comparison of the MEP for D-MPSK
is presented, considering various values of n, the number of
quantization bits. The impact of n on the error probability
performance, as stated in Theorem 5, is crucial in determin-
ing the decay exponent for the MEP, and hence the link
reliability, of a low-resolution ADC-based system operating
without channel information at the receiver.
We have used the Monte Carlo simulation method to gen-

erate the simulated results in Fig. 2, while the analytical
results are obtained by using the error probability expression
we derived in Theorem 4. The simulated and analytical MEP
curves we present in Fig. 2 demonstrate that the analytical
results accurately track the simulated results for all cases.
These performance curves further indicate that the MEP for
n = log2 M and n = log2 M + 1 cases are nearly identical,
and the decay slope of MEP is 1

2 . This is in accordance with
one of the key results in Theorem 5. On the other hand, when
n is increased to log2 M + 2, there is a significant improve-
ment in the MEP with a corresponding change in the decay
slope of MEP. This observation suggests a change in the
diversity order and that D-MPSK requires two additional bits
(besides log2 M) to achieve the maximum diversity order of
1 under Rayleigh fading, as emphasized in Theorem 5. One
of these bits serves to mitigate the impact of low-resolution
quantization at the receiver, while the other bit compensates
for the absence of channel knowledge.

B. QUANTIZATION PENALTY
While phase quantization with less number of quantization
bits is desirable, due to less processing complexity at the
receiver, it deteriorates the MEP performance of the system.
In this part, we will study a quantization penalty metric to
quantify the increase in the MEP. To that end, we define

(SNR,M, n) as



(
SNR,M, n

) = 10 log

(
p
(
SNR,M, n

)

p
(
SNR,M,∞)

)
, (20)

FIGURE 2. MEP curves as a function of SNR for D-MPSK. M = 4, 8, 16 and
n = log2 M , log2 M + 1, log2 M + 2, log2 M + 3, ∞.

where we used notation p(SNR,M, n) to indicate the MEP
for D-MPSK modulation and n-bit quantization. We note that
the quantity 
(SNR,M, n) quantifies the increment in the
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FIGURE 3. �(SNR, M , n) as a function of SNR. M = 4, 8, 16 and
n = log2 M , log2 M + 1, log2 M + 2.

MEP (in dB scale) when employing a low-resolution ADC
with n bits compared to the scenario of using a full-resolution
ADC (n = ∞).
To illustrate this point further, we have generated the MEP

curves for M = 4, 8, 16 and n = 2, 3, 4, 5,∞ by using our
analytical error probability expression in Theorem 4 and
zooming in the SNR = 12 dB region in Fig. 2. As demon-
strated in this figure, when the SNR is kept fixed at 12 dB,
changing from n = log2(M) to ∞-bit quantization incurs
a quantization penalty of around 
(12dB, 4, 2) ≈ 3.44,

(12dB, 8, 3) ≈ 1.42, 
(12dB, 16, 4) ≈ 0.34 resulting
in a 2.2-fold, 1.4-fold and 1.1-fold increase in the MEP,
respectively.
It is critical to compare these values with the scenario

where we increase n from n = log2 M + 2 to ∞. The value
n = log2 M+2 is significant because it is the point where the
system attains the full DVO, resulting in a phase transition of
the decay exponent in the MEP. This phenomenon has been
established and demonstrated in Theorem 5. When the SNR
is fixed at 12 dB, transitioning from n = log2(M) + 2 to
an infinite number of bits, the utilization of a low-resolution
ADC at the receiver incurs a quantization penalty of approx-
imately 
(12, dB, 4, 4) ≈ 0.35, 
(12, dB, 8, 5) ≈ 0.19,
and 
(12, dB, 16, 6) ≈ 0.04. Consequently, this leads to
an increase in the MEP by a factor of 1.08, 1.04, and
1.01, respectively. This result indicates that the increase in
MEP resulting from using n = log2 M + 2 instead of ∞
is exceedingly minor, as opposed to using n = log2 M or
n = log2 M+1. Importantly, this finding also provides a key
design guideline and a practical rule of thumb for utilizing
low-resolution ADCs at the receiver. It provides guidance on
determining the sufficient number of bits needed to achieve
nearly identical performance to that of infinite-bit quanti-
zation. We demonstrate this finding further in Fig. 3 for a
wide range of SNR values.
Another perspective on this matter involves comparing the

additional SNR required to attain the same MEP when utiliz-
ing (n−1)-bit quantization instead of n-bit quantization. We

FIGURE 4. MEP curves as a function of SNR under coherent detection with MPSK
modulation [5] and non-coherent detection with D-MPSK modulation. M = 4, 8, 16 and
n = log2 M , log2 M + 1, log2 M + 2, log2 M + 3.

quantify the corresponding increment in SNR according to

�(MEP,M, n) = 10 log

(
SNRn−1

SNRn

)
, (21)
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where SNRn and SNRn−1 are the SNR values required to
achieve a specific MEP with n and n− 1 quantization bits,
respectively. As an example case, if we fix the MEP at 0.03
and transition from n = 4 to n = 5 for M = 4, we find
that �(0.03, 4, 5) ≈ 0.8 dB. This indicates that to achieve
an MEP of 0.03 with 4-bit quantization, we require 0.8 dB
higher transmit power compared to using 5-bit quantization.
This metric provides a means to balance the MEP and power
consumption to achieve a desired reliability level for the
communication link. By utilizing the number of quantization
bits as a lever, we can effectively trade off between MEP
and power consumption.

C. EFFECT OF THE AVAILABILITY OF CSI AT THE
RECEIVER
Next, we focus on the effect of CSI availability at the receiver
on the MEP performance of the system. As we established
in Theorem 5, the optimum D-MPSK detector with low-
resolution quantization at the receiver attains the full DVO
when n = log2 M + 2 and performs as good as the opti-
mum coherent detector in the DVO sense (see [5] for the
coherent detection case). Besides the asymptotic DVO anal-
ysis provided in Theorem 5, the performance comparison of
non-coherent and coherent systems requires further investi-
gation to discover the additional SNR requirement for the
D-MPSK to overcome the lack of channel knowledge at
the receiver for finite SNR values. This is what we will
investigate in this part.
Fig. 4 displays the plot of MEP versus SNR for MPSK

with coherent detection and D-MPSK with non-coherent
detection. In order to generate the MEP curves for the MPSK
modulation with coherent detection, we use the symbol error
probability expressions given in [5]. The MEP curves for D-
MPSK modulation with non-coherent detection are obtained
by using Theorem 4.
It is evident that when n = log2 M, the value of DVO

is 1
2 regardless of whether CSI is available at the receiver

or not. However, for n = log2 M + 1, the value of DVO
varies considerably depending on the availability of CSI.
Specifically, to attain the maximum DVO with non-coherent
detection, the quantizer must possess at least log2 M + 2
bits, whereas, with coherent detection, log2 M + 1 bits are
sufficient. Therefore, in the absence of CSI at the receiver,
an extra bit is necessary at the quantizer to achieve the full
DVO. This additional bit can be considered a penalty for
not having CSI at the receiver.
We also observe that there is an increase in MEP for a

given SNR with D-MPSK modulation compared to MPSK
modulation. We can quantify this increase in the MEP as


 ′(SNR,M, n
) = 10 log

(
p
(
SNR,M, n

)
D-MPSK

p
(
SNR,M, n

)
MPSK

)
, (22)

where p(SNR,M, n)D-MPSK and p(SNR,M, n)MPSK is the
MEP for M-DPSK and MPSK modulations with n-bit
quantization, respectively.

FIGURE 5. � ′(SNR, M , n) as a function of SNR. M = 4, 8, 16 and
n = log2 M , log2 M + 1, log2 M + 2.

As depicted in Figure 5, when the SNR is maintained
at a constant level of 18 dB, the transition from QPSK
to D-QPSK (i.e., M = 4) yields 
 ′(18dB, 4, 2) ≈ 1.46,

 ′(18dB, 4, 3) ≈ 7.37, and 
 ′(18dB, 4, 4) ≈ 3.35, resulting
in a 1.4-fold, 5.46-fold, and 2.16-fold increase in MEP. This
example clearly demonstrates that the maximum discrepancy
in MEP between QPSK and D-QPSK modulations occurs
at n = 3. This is because we can achieve the full DVO
of 1 with n = 3 bits if CSI is available at the receiver,
while the DVO = 1

2 when the receiver does not have access
to CSI and n = 3 (see Theorem 5). This finding can be
generalized to modulation orders M greater than 4 since the
coherent system achieves the full DVO at n = log2 M + 1
while the non-coherent system still operates at DVO = 1

2 at
n = log2 M + 1.
Furthermore, we observe that to attain an equivalent MEP

in D-MPSK modulation with n-bit quantization compared
to MPSK modulation, a higher SNR must be maintained.
In this context, we will examine another penalty metric to
quantitatively measure the additional SNR required. To that
end, we define

�′(MEP,M, n) = 10 log

(
SNRD-MPSK

SNRMPSK

)
, (23)

where SNRD-MPSK and SNRMPSK are the SNR required
to achieve a certain MEP with D-MPSK and MPSK mod-
ulations, respectively. If we consider a fixed MEP value
of 0.1, the transition from QPSK to D-QPSK results
in �′(0.1, 4, 2) ≈ 3 dB, �′(0.1, 4, 3) ≈ 9 dB, and
�′(0.1, 4, 4) ≈ 3 dB. This indicates that achieving a MEP
of 0.1 with D-QPSK and 3-bit quantization requires eight
times more transmit power compared to QPSK modula-
tion with 3-bit quantization. However, when employing
4-bit quantization, only twice the transmit power of QPSK
modulation is needed with D-QPSK modulation. That is,
when we have enough number of bits to achieve the full
DVO in both cases, the SNR penalty reduces to the usual
3 dB penalty that we have in the ∞-bit quantization case.
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FIGURE 6. MEP curves as a function of SNR with D-QPSK modulation under
Nakagami-m fading. n = 2, 3, 4, 5, m = 1, 2, 3.

Surprisingly, this is also the case when both coherent and
non-coherent systems do not have enough number of quan-
tization bits to achieve the full DVO. The maximum SNR
penalty occurs at n = log2 M + 1, where the coherent
system operates at the full DVO = 1 whereas the non-
coherent system still needs an additional bit to achieve
DVO = 1.

D. COMPARISON UNDER NAKAMAGI-M FADING
In this section, we will compare and contrast the system
performance results of the detector presented in Theorem 2
under different fading conditions to Rayleigh fading under
which the optimum detector was derived. To that end, we will
consider the Nakagami-m fading model which characterizes
a broad range of fading phenomena ranging from severe to
moderate and no fading conditions as the shape parameter m
varies over [0.5,∞) [60] and it reduces to Rayleigh fading
for m = 1. We set the spread parameter � = 1 in our
simulations to make sure that H has unit power.

We have used the Monte Carlo simulation method
to generate the simulated results in Fig. 6 which pro-
vides performance comparison curves for Nakagami-m
fading under D-QPSK modulation with n = 2, 3, 4, 5 and
m = 1, 2, 3.

These performance curves indicate that the MEP for n =
log2 M and n = log2 M + 1 cases are nearly identical, and
the decay slope of MEP is similar to that under Rayleigh
fading (i.e., 1

2 for m = 1, 2, 3). On the other hand, when n is
increased to log2 M + 2, there is a significant improvement
in the MEP with a corresponding change in the decay slope
of MEP to m. This observation suggests a change in the
diversity order and that D-MPSK with two additional bits
(besides log2 M) achieves the maximum diversity order of
m under Nakagami-m fading. One of these bits serves to
mitigate the impact of low-resolution quantization at the
receiver [5], while the other bit compensates for the absence
of channel knowledge.

FIGURE 7. PEP curves as a function of SNR with D-QPSK modulation. n = 2, 3, 4, 5.
te = 12, 27.

E. EFFECT OF CHANNEL CODING AND PACKET ERROR
PROBABILITY
Finally, we investigate the performance of the optimum
detectors with channel coding. To this end, we focus on the
simple linear Bose-Chaudhuri-Hocquenghem (BCH) block
codes [61]. The packet error probability (PEP) for D-
QPSK modulation with BCH codes, used as a means of
forward error correction, is plotted as a function of SNR
in Fig. 7. The results are obtained by using the optimum
block-2 detector in Theorem 2 by decoding each transmit-
ted packet symbol-by-symbol and using a BCH code with
a 255-bit codeword that can correct up to te bit errors.
The curves in this figure clearly demonstrate that commu-
nication reliability increases significantly by using coded
transmissions. However, we note that achieving greater error-
correcting capability comes at the cost of an increase in
the number of redundant bits and a decrease in the system
goodput.

VIII. CONCLUSION
In this work, we have studied differential encoding to over-
come the channel estimation challenge in low-resolution
ADC-based communication systems. We derived the opti-
mum maximum likelihood block-2 detectors, characterized
their message error probability performance and established
the optimality of block-2 detectors among the class of
block-L detectors when n = log2 M. We performed an ana-
lytical and numerical study to illustrate the performance
of the optimum detectors. We derived MEP for D-MPSK
modulation under Rayleigh fading and conducted an asymp-
totic analysis to investigate the corresponding change in the
slope of decay for MEP with SNR. Our results indicate
that D-MPSK requires two extra bits on top of log2 M to
achieve the maximum diversity order. The future extensions
of the current work will include an investigation of the
system performance under more general fading scenarios
and multi-antenna transmissions.
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APPENDIX A
PROOF OF LEMMA 1
First, consider the case t0 mod N = N − 1. Then, we have
Yt0 and Yt1 in two different fading blocks and are therefore
subject to two different iid fading coefficients Hk and Hk+1
for some k satisfying t0 = (k + 1)N − 1. Hence, we can
express Yt0 and Yt1 in this case according to

Yt0 = √
SNRHkSt0 +Wt0

and

Yt1 = √
SNRHk+1St0e

j 2π
M λ +Wt1 .

Let H̃k = HkSt0 and H̃k+1 = Hk+1St0e
j 2π
M λ. Both H̃k and

H̃k+1 are distributed according to CN (0, 1) since the sym-
bols belong to C = {ej πM (2k+1)}M−1

k=0 for all t ∈ N (i.e.,
symbols only introduce a phase rotation) and the channel
coefficients are circularly symmetric. H̃k and H̃k+1 are also
independent with joint distribution CN (0, I2) since Hk and
Hk+1ej

2π
M λ are jointly distributed according to CN (0, I2)

and the phase rotation introduced by St0 does not change
the form of this distribution. This shows that Yt0 and Yt1
are iid complex random variables with common marginal
distribution CN (0, 1 + SNR), and their joint distribution is
given by CN (0, (1+SNR)I2). This completes the proof for
the case t0 mod N = N − 1.

For the other case t0 mod N ∈ [0 : N−2], Yt0 and Yt1 lie
in the same fading block, and they can be represented by

Yt0 = √
SNRH̃k +Wt0

and

Yt1 = √
SNRH̃kej

2π
M λ +Wt1

for some k ∈ N satisfying t0 ∈ [kN : (k + 1)N − 2]
and H̃k = HkSt0 . This establishes that Yt0 and Yt1 are
jointly Gaussian since they are a linear combination of
CN (0, 1) random variables [59]. The circularly symmetry
property follows from being the mean vector E[Y] and
the pseudo-covariance matrix E[YY�] both equal to zero.
After straightforward calculations, the covariance matrix
K = E[YY†] can be derived as in (3).

APPENDIX B
PROOF OF LEMMA 3
The following lemma will be used in our proof.
Lemma 4: Let I = [a, b) be an interval satisfying b−a <

2π and b mod 2π ≥ a mod 2π . Then, I mod 2π = [a
mod 2π, b mod 2π).
Proof: Let β = b mod 2π and α = a mod 2π . Since

b − a < 2π and β ≥ α, we can write a = k · 2π + α

and b = k · 2π + β for some k ∈ Z. For the same k,
any e ∈ I can also be expressed as e = k · 2π + η for
some η ∈ [α, β).. This shows e mod 2π ∈ [a mod 2π, b
mod 2π). for all e ∈ I and therefore I mod 2π ⊆

[a mod 2π, b mod 2π). The reverse direction [a
mod 2π, b mod 2π). ⊆ I mod 2π follows from the same
arguments.
For n = log2 M, the proof follows directly by inspecting

the definitions of Q-regions and A-regions. Thus, we will
focus on the case n ≥ log2 M + 1 for the rest of the proof.

For n ≥ log2 M+1, we express the kth A-region according

to Ak = ⋃k+ 2n
2M

i=k− 2n
2M
Bi, where Bi = {z ∈ C : Arg(z) ∈ Ii

mod 2π} for intervals Ii in the form

Ii =
[

2π

2n
i,

2π

2n
(i+ 1)

)

for i ∈
[
k + 1 − 2n

2M : k − 1 + 2n
2M

]
,

Ik− 2n
2M

=
[

2π

2n

(
k − 2n

2M

)
+ π

2n
,

2π

2n

(
k + 1 − 2n

2M

))

for i = k − 2n
2M , and

Ik+ 2n
2M

=
[

2π

2n

(
k + 2n

2M

)
,

2π

2n

(
k + 2n

2M

)
+ π

2n

)

for i = k + 2n
2M .

For i ∈ [k+ 1 − 2n
2M : k− 1 + 2n

2M ], let αi = 2π
2n i mod 2π

and βi = 2π
2n (i+ 1) mod 2π . This implies i = k · 2n + 2n

2π αi

for some k ∈ Z, which further implies αi = 2π
2n (i mod 2n).

Similarly, βi = 2π
2n (i+ 1 mod 2n).

If i mod 2n ∈ [0 : 2n−2], i+1 mod 2n = i mod 2n+1
and βi ≥ αi. Hence, using Lemma 4, we can write

Bi =
{
z ∈ C : Arg(z) ∈ 2π

2n
[i mod 2n, i mod 2n + 1)

}

= Qi mod 2n (24)

If i mod 2n = 2n − 1, we can write Ii mod 2π as

Ii mod 2π =
∞⋃
m=n

[
2π

2n
i,

2π

2n
(i+ 1)− 1

m

)
mod 2π

=
∞⋃
m=n

[
2π

2n
(
i mod 2n

)
,

2π

2n
(
i mod 2n + 1

) − 1

m

)

= 2π

2n
[
i mod 2n, i mod 2n + 1

)

= Qi mod 2n ,

where the second equality follows from application of
Lemma 4 and writing 2π − 1

m as 2π
2n (i mod 2n + 1) − 1

m
since i mod 2n = 2n − 1.

For i = k − 2n
2M and i = k + 2n

2M , similar arguments show
that Bk− 2n

2M
= QU

(k− 2n
2M ) mod 2n

and Bk+ 2n
2M

= QL
(k+ 2n

2M ) mod 2n
.

Combining all these results, we arrive at the decomposition
of Ak given in (6) for all k ∈ [0 : 2n − 1].

APPENDIX C
PROOF OF THEOREM 1
We will first obtain some preliminary results that will assist
in the proof of this theorem. Below, for a given set A ⊆ C,
we use int(A) to represent its interior points.
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Lemma 5: For any z ∈ C and k ∈ [0 : 2n − 1], there
exists a unique λ ∈ � such that zej

2π
M λ ∈ Ak. Further, if

zej
2π
M λ ∈ int(Ak) for some λ ∈ �, then zej

2π
M β /∈ cl(Ak) for

any β ∈ � with β �= α.
Proof: The existence follows from the fact that Ak is a cone

with angular width 2π
M and it includes one of its boundaries.

Thus, there must exist at least one λ ∈ � such that zej
2π
M λ ∈

Ak. The uniqueness follows from the fact that the angle
between any u ∈ Ak and v ∈ Ak is strictly smaller than 2π

M .5

If zej
2π
M λ ∈ Ak and zej

2π
M β ∈ Ak for two different λ and

β in �, then the angle between these two points is greater
than or equal to 2π

M , which is a contradiction. The last part
follows from the same angle arguments.
An important implication of this lemma, which we will

use in our proof, is that if B ⊆ Ak, then ej
2π
M λB

⋂
Ak = ∅

for all λ ∈ [1 : M − 1].
Lemma 6: For k ∈ [0 : 2n − 1] and λ ∈ �, ej

2π
M λQk =

Q
(k+ 2n

M λ) mod 2n .
Proof: By definition,

ej
2π
M λQk =

{
zej

2π
M λ : z ∈ Qk

}

=
{
z ∈ C : Arg(z) ∈

[
2π

2n
i,

2π

2n
(i+ 1)

)
mod 2π

}
,

where i = k + 2n
M λ. Hence, e

j 2π
M λQk is in the form of the

sets Bi analyzed in Appendix B. The same arguments show
that ej

2π
M λQk = Q

(k+ 2n
M λ) mod 2n .

For the proof, we will only consider the case t0 mod N ∈
[0 : N − 2], i.e., Yt0 and Yt1 are in the same fading block.
In the other case, there is nothing to prove since channel
outputs are independent (i.e., see Lemma 1) and all input
messages have the same likelihood.
Assume n ≥ log2 M + 1. For n = log2 M, the arguments

are the same and simpler. Now, by Lemma 5, there exists
at least one λ ∈ � such that ej

2π
M λQk0

⋂
Ak1 �= ∅, and

hence λ�(k) is well-defined. By Lemma 6, ej
2π
M λ

�(k)Qk0 =
Q
(k0+ 2n

M λ
�(k)) mod 2n . By Lemma 3, we have (25), shown at

the bottom of the next page.
First, consider the case (k0 + 2n

M λ
�(k)) mod 2n ∈ [k1 −

2n
2M + 1 : k1 + 2n

2M − 1] mod 2n. Then, we have

ej
2π
M λ

�(k)Qk0 = Q(
k0+ 2n

M λ
�(k)

)
mod 2n

⊆ int
(
Ak1

)
.

Thus, by Lemma 5, ej
2π
M λQk0

⋂
cl(Ak1) = ∅ for all λ ∈ �

with λ �= λ�(k). This observation has the following important
implication. Let g(y0; λ)�

∫
Qk1

fYt1 |Yt0 (y1|y0; λ)dy1. Using
Lemma 2, we have g(y0; λ�(k)) > g(y0; λ) point-wise for
all y0 ∈ Qk0 and for all λ �= λ�(k). This shows

L(λ�(k); k) =
∫

Qk0

fYt0 (y0)g
(
y0; λ�(k)

)
dy0

>

∫

Qk0

fYt0 (y0)g(y0; λ)dy0

= L(λ; k)
5. As is usual, the angle between two complex numbers u and v is defined

as Angle(u, v) = cos−1
(

Re(uv∗)
|u||v|

)
.

if λ ∈ � and λ �= λ�(k). This analysis also shows that λ�(k)
is the unique MLE in this case.
If (k0 + 2n

M λ
�(k)) mod 2n = (k1 − 2n

2M ) mod 2n, then

ej
2π
M λ

�(k)Qk0 = Q
(k1− 2n

2M ) mod 2n and only one half of

ej
2π
M λ

�(k)Qk0 (upper one) lies in Ak1 . In this case, we must
have λ�(k) ∈ [0 : M − 2] since if λ�(k) = M − 1, we have
the following chain of implications for some p, q ∈ Z and
k′ ∈ [0 : 2n − 1]:

k0 − 2n

M
= p · 2n + k′

k1 − 2n

2M
= q · 2n + k′

⇒ k0 =
(
k1 + 2n

2M

)
+ (p− q)2n

⇒ k0 =
(
k1 + 2n

2M

)
mod 2n.

Therefore, Qk0

⋂
Ak1 �= ∅ and this contradicts with the

definition of λ�(k) as being the minimum element in �

such that ej
2π
M λQk0 intersects with Ak1 . Using modular

arithmetic, it can also be seen that (k0 + 2n
M (λ

�(k) + 1))
mod 2n = (k1 + 2n

2M ) mod 2n, and therefore again only

one half of ej
2π
M (λ

�(k)+1)Qk0 (lower one) lies in Ak1 . Using
these observations and the circular symmetry in the problem,
we conclude that L(λ�(k); k) = L(λ�(k) + 1; k) when
(k0 + 2n

M λ
�(k)) mod 2n = (k1 − 2n

2M ) mod 2n. For other val-
ues of λ in � not equal to λ�(k) or λ�(k)+1, the arguments
similar to the ones above show that L(λ�(k); k) > L(λ; k).
Hence, λ�(k) is an MLE for this case as well.
If (k0 + 2n

M λ
�(k)) mod 2n = (k1 + 2n

2M ) mod 2n, then
λ�(k) = 0 and

L(0; k) = L(M − 1; k) > L(λ; k)
for all λ ∈ � not equal to 0 or M − 1 (using the same
arguments). Hence, λ�(k) is also an MLE in this final case.
Combining all of these results, we conclude that λ�(k) is an
MLE for the message estimation problem (8) for L = 2.

APPENDIX D
PROOF OF THEOREM 2
We will only consider n ≥ log2 M + 1 since (10) and (11)
agree with each other for n = log2 M. The proof for n ≥
log2 M + 1 follows from considering three difference cases
for the range of k1 : (i) k1 ∈ [ 2n

2M : 2n − 2n
2M − 1], (ii)

k1 ∈ [0 : 2n
2M − 1] and (iii) k1 ∈ [2n − 2n

2M : 2n − 1].
If k1 ∈ [ 2n

2M : 2n − 2n
2M − 1], then we can write [k1 −

2n
2M : k1 + 2n

2M ] mod 2n = [k1 − 2n
2M : k1 + 2n

2M ]. Assume first
k0 ∈ [0 : k1 − 2n

2M − 1]. Using Corollary 1, we need

k0 + 2n

M
λ ≥ k1 − 2n

2M

⇒ 2n

M
λ ≥ k1 − k0 − 2n

2M

⇒ λ ≥ M

2n
(k1 − k0)− 1

2
. (26)

VOLUME 4, 2023 2591



GAYAN et al.: THE COST OF NONCOHERENCE: AVOIDING CHANNEL ESTIMATION

The minimum integer value satisfying (26) can be equiva-
lently written according to

λ��(k) =
⌈
M

2n
(k1 − k0)− 1

2

⌉
mod M.

We note that �M2n (k1 − k0)− 1
2� is always an element of

[1 : M − 1], and the mod M operation does not change
anything in this case.
Secondly, assume that k0 ∈ [k1 − 2n

2M : k1 + 2n
2M − 1].

Then, λ�(k) = 0, and we can upper and lower bound
�M2n (k1 − k0)− 1

2� as
⌈
−1 + M

2n

⌉
= 0 ≤

⌈
M

2n
(k1 − k0)− 1

2

⌉
≤ �0� = 0,

where the lower bound is obtained for k0 = k1 + 2n
2M −1 and

the upper bound is obtained for k0 = k1 − 2n
2M . Hence, λ��(k)

coincides with λ�(k) in this case as well, and therefore it is
an MLE.
For k0 = k1 + 2n

2M , we have λ��(k) = M− 1 �= λ�(k) = 0.
However, we have proven in Appendix C that both message
indices 0 and M−1 maximize the likelihood function in this
case, and hence λ��(k) is still an MLE.
Finally, we consider the case k0 ∈ [k1 + 2n

M + 1 : 2n − 1].
Using Corollary 1, we require to have

k0 + 2n

M
λ− 2n ≥ k1 − 2n

2M

in this case. This implies we must have λ�(k) − M =
�M2n (k1 − k0)− 1

2� for the first time the above inequal-
ity is satisfied. This is equivalent to writing λ�(k) =
�M2n (k1 − k0)− 1

2� mod M, which coincides with λ��(k)
given in Theorem 2.

The remaining cases k1 ∈ [0 : 2n
2M − 1] and k1 ∈ [2n −

2n
2M : 2n−1] can be analyzed similarly to complete the proof.

APPENDIX E
PROOF OF THEOREM 3
Consider a genie-aided decoder where the genie provides
the perfect channel information {Hk}∞k=0 and the decoder uti-
lizes this information to maximize the likelihood of message
indices λ̂ = [λ̂1, . . . , λ̂L−1]� as an estimate for the actual
message sequence λ = [λt1, . . . , λtL−1 ]� transmitted from t1
to tL−1. At fading block transition times, the decoder makes a
random guess about the corresponding input message. Below,
we will assume that the quantized channel output vector
k = [k0, . . . , kL−1] corresponds to the observations on the
same channel fading block, i.e., t0 ∈ [kN : (k+ 1)N−L] for
some k ∈ N. Otherwise, we can repeat the same arguments
by dividing k = [k0, . . . , kL−1] into two different blocks at
channel transition times.

We write the likelihood function L
(
λ̂, s; h

)
for the genie-

aided detector as

L
(
λ̂, s; h

)
= Pr

{
q = k

∣∣λ = λ̂,Hk = h, St0 = s
}
.

We note that the value of the first symbol in the block is
also a parameter for the likelihood function for the genie-
aided detector since when channel knowledge is available
at the detector, the most likely scenario that will lead to
the observation q = k also depends on our estimate for
St0 . This was not the case for the detectors investigated
in Section III, and hence was not shown explicitly in that
part of the paper. See Lemma 1 as well that shows the
channel output distribution for consecutive samples in time
does only depend on the phase difference between St1 and
St0 when no channel state information is available at the
receiver.
Given λ = λ̂,Hk = h and St0 = s, the channel out-

puts Yt0 , . . . ,YtL−1 are independent, and we can further write
L(λ̂, s; h) according to

L
(
λ̂, s; h

)

=
L−1∏
i=0

Pr
{
Yti ∈ Qki

∣∣λ = λ̂,Hk = h, St0 = s
}
.

Given this information, we also have Yt0 ∼ CN (hs, 1) and

Yti ∼ CN (hsej 2π
M

∑i
j=1 λ̂tj , 1) for i ∈ [1 : L−1]. Hence, using

Lemma 2 and Lemma 3 (i.e., Qk = Ak for k ∈ [0 : 2n − 1]
in this case), we can see that L(λ̂, s; h) is maximized when

hs ∈ Qk0 and hsej
2π
M

∑i
j=1 λ̂tj ∈ Qki for i ∈ [1 : L− 1]. Using

Lemma 5, for each h ∈ C, we know that there exists a
unique s� ∈ C and λ� ∈ �L−1 that will make the means of
Yti lie in Qki for all i ∈ [0 : L− 1]. This shows

L
(
λ̂, s; h

)
≤

L−1∏
i=0

Pr
{
Yti ∈ Qki

∣∣λ = λ�,Hk = h, St0 = s�
}
,

where λ� and s� are chosen as described above for given
h ∈ C. The genie-aided detector achieves the upper bound
on the likelihood function by first estimating St0 as s� and
then calculating the optimum differential phase shifts to have
the means of channel outputs in Qki’s.
We conclude the proof by observing iteratively that if

hs ∈ Qk0 and hse
j 2π
M

∑i
j=1 λ

�
tj ∈ Qki , then λ

�
ti = (ki − ki−1)

mod M for i ∈ [1 : L − 1]. The last step follows from the
similar modular arithmetic arguments used in Appendix C
and hence skipped to avoid repetitions. This is exactly the
same MLE we arrived at in Theorems 1 and 2 for n = log2 M
when L = 2.

(
k0 + 2n

M
λ�(k)

)
mod 2n ∈

[
k1 − 2n

2M
: k1 + 2n

2M

]
mod 2n. (25)

2592 VOLUME 4, 2023



APPENDIX F
PROOF OF COROLLARY 2
To start with, we first focus on the case where n = 2 and
from equation (14), we have

p
(
SNR

) = 4Pr{Yt−1 ∈ Q0,Yt /∈ Q0 | λt = 0}.
Conditioned on a particular realization of fading coefficient
H = rejθh (i.e., |H| = r and Arg(H) = θh) and assuming
St−1 = St = ejθs , we write the conditional MEP as (27),
shown at the bottom of the page, where θ = θh+θs and Q2(·)
is the second power of Q(·). The expression for p(SNR) can
be obtained by taking the average of the above expression
with respect to the Rayleigh fading distribution f|H|(r) =
2re−r2

for r ≥ 0 and the uniform distribution f�(θ) = 1
2π

for the phase angle �. This averaging leads to the MEP
expression presented in Corollary 2 for n = 2. Since p(SNR)
is the same for n = 2 and n = 3, as given in Theorem 4,
the same MEP expression holds for n = 3 as well.

APPENDIX G
PROOF OF THEOREM 5
We will first start with a definition that will simplify the
notation below.
Definition 1: We say a function f is exponentially equal to

SNRd if limSNR→∞ log f (SNR)
log SNR = d for some d ∈ R. We write

f (SNR) e= SNRd to indicate exponential equality whenever

this limit exists. Similarly, we also write f (SNR)
e≤ SNRd

and f (SNR)
e≥ SNRd if limSNR→∞ log f (SNR)

log SNR ≤ d and

limSNR→∞ log f (SNR)
log SNR ≥ d, respectively.

We first focus on the scenario where n = log2(M). In
this case, we proved in Appendix E that the genie-aided

detector with perfect CSI and the block-2 optimum detec-
tor in Theorem 2 produce the same estimated sequence of
message indices. Given perfect CSI, the channel outputs
are independent and the genie-aided detector boils down
to symbol-by-symbol detection to estimate the most likely
input message indices. This is a similar setup investigated in
detail in [5] for the coherent detection scenario. The same
asymptotic analysis shows that the DVO = 1

2 for D-MPSK
modulation with n = log2(M).

Next, we focus on the case where n = log2(M) + 1. In
this case, we will first provide the proof for the D-QPSK
modulation and then extend it to general M ≥ 4. From
Corollary 2, we already know that p(SNR) is identical for
D-QPSK modulation with n = 2 and n = 3. Consequently,
we can deduce that DVO = 1

2 for D-QPSK with n = 3.
In order to extend the proof for n = log2(M) + 1 for

M ≥ 4, we introduce both lower and upper bounds for MEP
in equation (13) as

p
(
SNR, 4, 3

) ≤ p
(
SNR,M, log2(M)+ 1

)

≤ p
(
SNR,M, log2 M

)
, (28)

where p(SNR,M, n) is obtained by re-writing p(SNR)
in (13) as a function of M and n. The bounds in (28) play
a critical role in proving Theorem 5 for the case where
n = log2(M)+1. Specifically, these bounds exhibit an iden-
tical decay rate as SNR tends to infinity. This is evident
as p(SNR, 4, 3)

e= SNR− 1
2 and p(SNR,M, log2 M)

e=
SNR− 1

2 . Consequently, we can establish that SNR− 1
2

e≤
p(SNR,M, log2(M) + 1)

e≤ SNR− 1
2 , which implies that

p(SNR,M, log2(M) + 1)
e= SNR− 1

2 . Therefore, we can

p
(
SNR, r, θ

) = 1 − 4Pr
{√

SNRr ejθ +Wt−1 ∈ Q0,
√

SNRr ejθ +Wt ∈ Q0

}

= 1 − 4Q2
(
−√

2SNRr cos θ
)
Q2

(
−√

2SNRr sin θ
)
, (27)

p
(
SNR

) = p1
(
SNR

) + p2
(
SNR

) + p3
(
SNR

)
, (29)

where

p1
(
SNR

) = 2n

π2
(
2SNR + 1

)
∫ ∞

0

∫ yret tan
(

π

2n−1

)

0

∫ ∞

0

∫ ∞

yret−1 tan
(

2π
M +ψ

) G(y) dyimt−1 dy
re
t−1 dy

im
t dyret ,

p2
(
SNR

) = 2n

π2
(
2SNR + 1

)
∫ ∞

0

∫ yret tan
(

π

2n−1

)

0

∫ ∞

0

∫ yret−1 tan(ψ)

−∞
G(y) dyimt−1 dy

re
t−1 dy

im
t dyret ,

p3
(
SNR

) = 2n

π2
(
2SNR + 1

)
∫ ∞

0

∫ yret tan
(

π

2n−1

)

0

∫ −∞

0

∫ −∞

∞
G(y) dyimt−1 dy

re
t−1 dy

im
t dyret .

�(1) =
∫ ∞

0

∫ yret tan
(

π

2n−1

)

0

∫ ∞

0

∫ ∞

yret−1 tan
(

2π
M +ψ

) G′(y) dyimt−1 dy
re
t−1 dy

im
t dyret , (30)
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conclude that DVO = 1
2 for D-MPSK modulation with

n = log2(M)+ 1.
Finally, we move to the proof for n ≥ log2(M)+ 2 case.

To that end, we can rewrite the expression in (13) as (29),
shown at the bottom of the previous page.
Then, as SNR → ∞, it can be seen that the term

outside the integral in the p1(SNR) expression decays to
zero according to 2n−1

π2 SNR−1. Additionally, the integral
expression itself, by using the monotone convergence theo-
rem [62], can be written as (30), shown at the bottom of the
previous page, where G′(y) = exp{− 1

2‖y‖2
2 + Re(yt−1y∗t )}.

This shows p1(SNR) e= SNR−1. The arguments lead-
ing to p2(SNR) e= SNR−1 and p3(SNR) e= SNR−1 are
the same. Finally, using [5, Lemma 2], we conclude that
p(SNR) e= SNR−1, which implies that DVO = 1 for
n ≥ log2(M)+ 2.
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