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ABSTRACT mmWave communications are paving the way for next-generation cellular networks due
to their inherent ability to provide high data rates and mitigate interference. Coupled with this are the
enormous potential and challenges posed by eXtended Reality (XR) applications which are becoming
increasingly ubiquitous. In this paper, we leverage the unique characteristics of mmWave networks to re-
think and re-design fundamental network architecture and functions in order to meet the strict requirements
of deadline-driven XR applications. We propose a multi-tiered multi-connectivity architecture that allows
users (UEs) to connect to multiple base stations (gNBs) simultaneously and switch rapidly between them
in case of blockages. By replicating UE data at multiple gNBs close to the UE, we ensure that we
satisfy strict Quality of Service (QoS) constraints even with unpredictable, dynamic blockages of the
mmWave links. We show through extensive system-level simulations that our network architecture allows
us to shield UEs from high handover delays and minimizes data plane interruptions in case of blockages.
Moreover, we note that existing algorithms for network functions such as gNB selection and scheduling
are not optimized for the multi-connectivity paradigm, nor do they specifically cater to strict deadline
constraints or intermittent wireless links. We propose a Deep Reinforcement Learning framework that
selects gNBs for data replication by explicitly optimizing to meet strict deadline constraints of XR traffic.
Our Deep Learning agent analyzes global state information and predicts the best selection of gNBs
to preemptively replicate data for future transmissions. Furthermore, we propose a scheduler based on
maximal weight matching, dubbed β−MWM, which is specifically tailored to exploit multi-connectivity.
We show that our Deep Learning based Data Replication Predictor and β−MWM scheduler perform better
than existing, conventional algorithms and result in markedly better performance for XR applications with
strict deadlines.

INDEX TERMS Blockages, deadline-driven scheduling, deep learning, DQN, handover, low latency,
millimeter wave, mmWave, multi-connectivity, quality of service, reinforcement learning, XR applications.

I. INTRODUCTION

THE PROMISE of eXtended Reality (XR) applications,
which include Virtual Reality (VR), Augmented Reality

(AR), and Cloud Gaming (CG), has taken the world by
storm [1]. These services are the cornerstone of next-
generation wireless networks and fundamental changes in

network architecture and protocols are needed in order to
meet their requirements of high bandwidths, low latencies,
and strict deadlines. Currently, it is daunting to support XR
applications over 3GPP New Radio (NR) cellular networks
because XR does not perfectly fit into the existing classi-
fication of fifth-generation (5G) applications and services,
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TABLE 1. QoS requirements for XR applications fall outside those for the traditional three categories of services/applications defined for 5G networks [7]. XR is characterized
by both a high data rate and strict packet delay budget (PDB) [3], placing it in between 5G eMBB and URLLC.

typically divided into enhanced mobile broadband (eMBB),
ultra-reliable low latency communications (URLLC), and
massive machine-type communications (mMTC). Given its
high data rate and strict packet delay budget (PDB) require-
ments, XR fits into neither of these categories, instead falling
somewhere between eMBB and URLLC. The Quality of
Service (QoS) requirements of these applications are given in
Table 1 [2], [3]. Given massive interest in XR applications,
3GPP has, in recent years, taken some steps towards stan-
dardization of requirements and models for XR applications.
3GPP Radio Access Network (RAN) WG1 (“Physical layer,”
RAN1) performed a Release 17 study on evaluating NR
performance for XR applications [3]. This work now contin-
ues for Release 18 (the first 5G-Advanced release, tentatively,
until 2023), aiming to provide necessary enhancements to
better support XR services over NR.
Given the importance of catering to XR applications’ QoS

requirements in future wireless networks, it is important to
take a step back and evaluate the existing capabilities of
5G networks, and identify features that can be exploited to
further enhance performance for XR applications. 5G cel-
lular networks have already led the charge into mmWave
technology, which operates at frequencies above 24 GHz,
thereby utilizing the enormous amount of spectrum avail-
able in these frequency bands [4]. At these frequencies, the
radio propagation characteristics are starkly different from
their microwave counterparts. First, according to the Friis
transmission equation [5], the path loss can exhibit 30-40 dB
more attenuation. This higher path loss necessitates focusing
power into fairly narrow and very directional beams, that can
be realized through phased antenna arrays, whose implemen-
tation is made possible thanks to the smaller wavelengths
that correspond to these frequencies. Furthermore, due to the
exacerbated blockage and shadowing effects [6], the wire-
less links exhibit rapid variations in quality, thereby leading
to intermittency in link connectivity between the user (UE)
and the base station (gNB).
To address these challenges, and to maintain an accept-

able level of service despite this intermittency, the density
of gNBs in mmWave cellular networks is expected to
be significantly higher than in sub-6 GHz systems [8]. It
will greatly benefit the UEs to harness macro-diversity
from the nearby gNBs in sixth-generation (6G) and future

cellular networks. Exploiting multi-connectivity in the access
network to gain better performance is not a new concept, nor
is it unique to mmWave networks. In fact, multi-connectivity
was first proposed for sub-6 GHz networks with the intro-
duction of Dual Connectivity (DC) in heterogeneous Long
Term Evolution (LTE) networks in 3GPP Release 12 [9].
Although DC contributed to throughput gains, it did not gain
much traction in sub-6 GHz networks because the overhead
involved in maintaining dual connectivity far outweighed
any performance improvements to be had. With the move
towards mmWave networks in 5G, multi-connectivity has
received renewed interest due to several reasons. First, it is
easier for a UE to be within range of multiple gNBs due
to the high densification of gNBs required to provide ade-
quate coverage at mmWave frequencies. Second, directional
beams in mmWave networks offer an opportunity to provide
multi-connectivity without creating excessive interference
between neighboring gNBs. Last, meeting the strict QoS
constraints of next-generation applications such as XR pro-
vides further incentives that make the high overhead cost
of multi-connectivity tolerable from a cost-benefit trade-off
perspective. In this paper, we leverage mmWave multi-
connectivity to propose a multi-tiered network architecture
designed to enhance the performance of low latency applica-
tions, like XR, which have strict deadlines. We then use the
multi-connectivity architecture to propose several enhance-
ments to key network functions, such as gNB selection for
data replication and deadline-driven scheduling, in order
to extract maximum benefit from our multi-connectivity
architecture. The key contributions of this paper are as
follows:

• We propose a multi-tiered network architecture for
mmWave multi-connectivity in the access network that
provides better performance even with conventional
scheduling algorithms. We show that our architec-
ture allows us to shield the UEs from high han-
dover latencies in case of blockages, minimizes data
plane interruptions and enables fast switching between
multiple gNBs.

• We pose the Predictive Data Replication problem as
a reinforcement learning problem, and use a Deep Q-
Network (DQN) to solve for near-optimal solutions. The
DQN agent takes in global state information, including
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traffic and channel conditions, and finds the best set of
gNBs to replicate data for each UE.

• We also propose a maximal weight matching schedul-
ing algorithm, dubbed β-MWM, which is tailored
specifically for deadline-driven traffic in a multi-
connectivity enabled network. The β-MWM scheduler
strikes a balance between prioritizing traffic with ear-
lier deadlines and prioritizing UEs with better channel
conditions.

• We present system-level performance evaluation results
for XR applications in a multi-cell mmWave network
using the statistical traffic model given in 3GPP stan-
dards. Our results show that our DQN Predictor and
β-MWM scheduling agent outperform conventional
algorithms and lead to better performance for XR traffic
with strict deadlines.

The rest of the paper is organized as follows. Section II
presents related work. We propose our multi-connectivity
architecture in Section III. System models are described
in Section IV and problem formulation is presented in
Section V. In Section VI we describe our simulation setup
and implementation, present results obtained by our simu-
lations, and discuss the key takeaways. Finally, Section VII
concludes our paper and highlights possible avenues for
future research.

II. RELATED WORK
Multi-connectivity in mmWave networks has been studied
in [10], where the impact of gNB discovery time, handover
execution times, and degree of multi-connectivity was stud-
ied with respect to QoS criteria such as out-of-service
probability, outage duration, and radio link failure (RLF)
probability. However, the weakness of the proposed archi-
tecture was that data would either have to be replicated at
all connected base stations, which would be prohibitively
expensive in practice, or would have to be redirected from
the Master base station to the Secondary base stations, which
would incur additional delays. Moreover, the expressions
derived in [10] do not provide any explicit performance guar-
antees for XR applications. In [11], a new transport network
architecture was proposed that would enable fast control
signaling and leverage multi-connectivity, via a fiber ring,
to improve QoS for different applications. Petrov et al. [12]
considered different multi-connectivity scenarios to study the
impact of the degree of connectivity, and showed that a high
degree of multi-connectivity would enhance the reliability of
the system at the cost of significant signaling and compu-
tation overhead. On a similar note, Gapayenko et al. [13]
showed that increasing the degree of multi-connectivity up
to 4 could provide benefits in terms of lower outage prob-
ability and higher spectral efficiency. In [14], a multi-label
classification approach for user association is proposed for
multi-connectivity enabled mmWave networks. However, this
work has several drawbacks: blockages or mobility are not
explicitly addressed in the system model, the optimization
problem is framed as a system throughput maximization

problem which is not suitable for deadline-driven XR appli-
cations and the proposed method is evaluated only for a small
test case comprising of 8 gNBs and 8 UEs. Similarly, a joint
user association and power control optimization scheme is
presented in [15] with the aim of optimizing energy effi-
ciency. However, this work also does not address the unique
characteristics of XR applications, nor does it take blockages
into account.
With regards to standardization, in Release 12 3GPP intro-

duced the Intra-E-UTRA Dual Connectivity (DC) which is
the inter-site DC between two LTE base stations where
both base stations are connected to the Evolved Packet
Core (EPC). Since then, 3GPP has iteratively expanded on
use cases and functionality of dual connectivity, and it is
now a key feature of the 5G NR standard. According to
the 3GPP NR Release 16 standard [16], Multi-Radio Dual
Connectivity (MR-DC) is the term that is generally used for
multi-connectivity. With the introduction of 5G NR, 3GPP
introduced four configurations for MR-DC, of which only
one (NR-NR Dual Connectivity or NR-DC) falls under the
standalone architecture and represents the 5G equivalent of
the LTE DC. Proposals for multi-connectivity architectures in
literature (including 5G NR-DC) assume that multiple con-
nections would be active simultaneously, but don’t address
limitations in the data plane. As a result, there are two pos-
sible ways of dealing with a blockage in the primary link:
either replicating data at all connected base stations (which
would incur high overhead) or forwarding the data from the
primary to the secondary base stations (which would incur
additional delays). In order to solve this issue, we replicate
data intelligently at a subset of the connected base stations,
thus operating at the optimal point between the two extreme
solutions listed above.
The performance of XR applications in different networks

and systems has also been an area of keen interest recently.
In [17], system-level performance results for XR over a 5G-
NR network were presented and several enhancements, such
as traffic-aware scheduling, were proposed in order to boost
the performance. Petrov et al. [18] also performed a case
study that demonstrated that 5G NR can already support
XR services, but with a limitation on the number of XR
devices per cell at high data rates. A key drawback of these
studies is that they fail to explicitly take into account the
effect of blockages, which severely affect the performance
of any mmWave network. Thus, existing studies have either
been done on a) XR application performance in mmWave
networks (but without taking multi-connectivity or blockages
into account) [17], [18] or b) studying outage probabil-
ity and duration in multi-connectivity enabled mmWave
networks, but without studying the impact on XR application
performance [10], [11]. We bridge the gap between these two
and argue that it is important to explicitly model blockages
and study their impact on XR applications, and then analyze
how a multi-connectivity enabled architecture can help in
offsetting the impact of those blockages. In [19] deep neural
networks and mmWave multicast transmissions are used to
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FIGURE 1. Network architecture, illustrating the different tiers of multi-connectivity. Here, K = 3 and L = 2.

decrease the streaming latency in a cooperative VR envi-
ronment. The deep learning agent is used to estimate the
upcoming viewports of users. The users are grouped based
on predicted correlations and proactive multicast resource
scheduling is then performed to minimize the latency and
traffic volume for VR. While intriguing, this work also does
not address the effect of blockages and how data plane
interruptions in presence of blockages can be circumvented.
Reference [20] investigate the usage of highly dense THz
networks for catering to VR traffic. They show that availabil-
ity of line-of-sight links is critical for performance of THz
links, and also take self-blockages and dynamic blockages
into account. However, a multi-connectivity THz scenario is
not explored.
As XR applications operate under strict deadline con-

straints, deadline-driven scheduling is of particular interest to
us. Existing literature on deadline-driven scheduling can be
broadly classified into two categories: a) delay-constrained
wireless networks and b) communication networks with
hard deadlines. Literature belonging to the first category
deal mainly with wireless networks in a scenario where
delays are consequential to the network performance and
cannot be ignored or ruled out. However, these works often
do not associate hard deadlines with traffic and usually
use a throughput/utility maximization approach to solv-
ing the network problem. Works in the second category,
however, associate hard deadlines with traffic in different
communication networks subject to different assumptions
and constraints. An important point to note here is that these
are formulations for communication networks in general, and
not for wireless networks in particular. One main aspect of all
these works is that they are typically formulated as a network
where delivering traffic within the deadline is rewarded and
delivering it after the deadline is penalized. The optimization
problem typically seeks to maximize the amount of traffic
delivered within the deadline. Some common assumptions
taken in order to simplify the problem and make it more
tractable are:

• Packet arrivals are periodic [21], [22], [23].
• Packets are dropped from the system after their deadline
has passed [22], [23], [24].

• The channel is reliable and there are no interference
constraints [23], [24], [25].

• Centralized coordination across the network [21].
Reference [26] also models mmWave V2V networks with
hard deadline constraints similar to what we propose for
XR, and vehicle matching is optimized to minimize delays.
However, the vehicular network and scenarios considered are
significantly different from our study where we have pedes-
trian users and XR traffic. To the best of our knowledge,
deadline-driven scheduling in multi-connectivity enabled
wireless networks has not been addressed in the existing
literature.

III. MULTI-CONNECTIVITY ARCHITECTURE
We consider a mmWave wireless network comprising of a set
of Base Stations (gNBs), |M| = M, and a set of users (UEs),
|N | = N. Thus, there are up to M×N mmWave links in the
system. The critical component of our infrastructure is the
UEs’ ability to connect to multiple gNBs simultaneously, a
feature of emerging 3GPP standards [16]. The cornerstone of
this architecture is that it further devolves multi-connectivity
into two main tiers, Association and Data Replication, based
on the level of connection and data availability [27]. The
bifurcation of the multi-connectivity architecture is moti-
vated in part by the overhead costs of replicating UE data
at a large number of gNBs. By choosing to associate with
a larger number of gNBs, and replicating the data at only a
smaller subset of them we can reap the benefits of a higher
degree of connectivity while significantly reducing the over-
head costs. Moreover, the two-tier architecture allows us to
reduce the handover delay experienced by the UEs in the
vast majority of blockage scenarios. This allows us to min-
imize data plane interruptions and boost QoS performance
for XR applications. Fig. 1 depicts our multi-connectivity
network architecture.
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A. MULTI-CONNECTIVITY TIERS
Since the range of mmWave links is quite short, it is possible
that some gNBs are out of range of the UEs and, hence,
no connection is possible. Even if a gNB is within range,
it is possible that it is blocked and hence undiscovered by
the UE. We define a set Cn,t ⊂ M, which comprises all the
candidate gNBs for user n at time t:

Cn,t = {
m : σm,n > σth, |Cn,t| ≤ M∀m ∈ M}

, (1)

where σm,n is the signal-to-noise ratio (SNR) of the link
between the gNB m and UE n, and σth is the minimum
SNR required for a successful connection between a gNB-
UE pair. User n is in the range of all gNBs in Cn,t and can
associate with any of them.
In the multi-connectivity setting, we assume that a UE

can be associated with multiple gNBs at the same time.
Specifically, the UE maintains a control plane connection
with all the gNBs in the Associated set (Kn,t). We define K,
the degree of association, which determines the maximum
number of gNBs a UE will simultaneously associate with,
i.e., |Kn,t| ≤ K.

The set Kn,t ⊂ Cn,t comprises the gNBs that UE n is
associated with at time t. We assume that the best subset of
gNBs to associate with is the set of gNBs with the highest
channel quality to the UE. The algorithm for selecting Kn,t

would start with an ordered set of SNRs and pick the gNBs
corresponding to the K highest SNR values. An associated
gNB-UE pair would have an active control channel open
between them and routinely exchange control messages and
signaling required to maintain the UE state at the gNB, as
well as any signaling required for beam tracking, alignment,
and beam switching. However, associated gNBs (except for
one) do not have a data plane connection with the UE or
up-to-date UE data available for delivery.
A smaller subset of Kn,t is then chosen as the Data

Replication set of gNBs (Ln,t). gNBs in Ln,t pre-fetch UE
data and track UE data delivery status. The set Ln,t ⊂ Kn,t

is the set of all gNBs that are associated with UE n and
have copies of UE n’s data ready for transmission at time t.
It is important to note here that XR applications are highly
interactive, and generate data based on the UE’s movement
and actions. As such, data cannot be buffered in advance
as it can be for video-on-demand applications. Instead, our
architecture allows all gNBs in Ln,t to receive up-to-date UE
data, which can be done via multicast as proposed in [28],
and track acknowledgments to keep up-to-date regarding the
current delivery status of UEs’ data. We also define L, where
L ≤ K, as the degree of replication - another parameter that
determines the maximum number of gNBs that will replicate
the UE data and have it instantaneously ready for transmis-
sion, i.e., |Ln,t| ≤ L. At any given instance, a UE will have
a data plane connection open with only one Serving gNB,
which is chosen from Ln,t by the scheduling agent. The
scheduling agent’s job includes selecting a Serving gNB for
the UE from Ln,t. Thus, Ln,t consists of one master/serving
gNB and several other secondary gNBs. We assume zero

delays in the selection of a Serving gNB from Ln,t - hence,
there are no data plane interruptions until and unless all
gNBs in Ln,t get blocked.

B. HANDOVER PROCESS
The gNB status depends upon whether the link between the
gNB and the UE is blocked or unblocked. Until a gNB-UE
link becomes unblocked, the gNB cannot be discovered by
the UE. Even after a gNB-UE link gets unblocked, it remains
undiscovered until the UE discovers the gNB through phys-
ical layer procedures, such as cell search and measurement
reports. We disregard the gNB discovery time, as the discov-
ery procedure for new gNBs can occur in the background
if a UE is still associated with other discovered gNBs. A
discovered gNB is a candidate for association. The associ-
ation procedure or the association handover delay (in case
one gNB from Kn,t gets blocked, and another gNB from Cn,t
is chosen to replace it) takes up to �K ms.

The induction of a gNB from Kn,t to Ln,t incurs an addi-
tional handover delay of �L ms, which is the delay incurred
in fetching the UE data so that it is available for immediate
delivery. This transition also involves selection and is of par-
ticular interest to us because it determines the set of gNBs
where the UE’s data will be replicated. Finally, the schedul-
ing agent picks one gNB from Ln,t to be the Serving gNB.
The Serving gNB can change either due to necessity, i.e., if
the current Serving gNB gets blocked and the scheduling
agent is forced to switch to another gNB, or due to choice,
i.e., if the scheduling agent decides that switching to another
gNB is the optimal action according to its scheduling policy.
Consider the following blockage scenarios, and how they

translate to data plane interruptions at the UE:
• Serving gNB gets blocked: Instantaneous switching
occurs to another gNB in Ln,t. No handover delay is
incurred nor is there any data plane interruption.

• non-Serving gNB in Ln,t gets blocked: The gNB is
immediately dropped from Cn,t, Kn,t and Ln,t. After
a handover delay of �L ms, a new gNB from Kn,t is
added to Ln,t. Similarly, to replace the blocked gNB, a
new gNB from Cn,t is added to Kn,t after a handover
delay of �K ms. However, these handovers occur in
the background and do not interrupt the UE data plane
as long as there is still one unblocked gNB available
in Ln,t.

• gNB in Kn,t gets blocked: The gNB is immediately
dropped from Cn,t and Kn,t. After a handover delay of
�K ms, a new gNB from Cn,t is added to Kn,t. There
is no UE data plane interruption.

• All gNBs in Ln,t get blocked concurrently: UE expe-
riences a maximum data plane interruption of �L ms,
the time needed for unblocked gNBs from Kn,t to be
added to Ln,t.

• All gNBs in Kn,t get blocked concurrently: UE experi-
ences a maximum data plane interruption of (�K+�L)

ms, while new gNBs from Cn,t are chosen for Kn,t, and
Ln,t is chosen from the new Kn,t.
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Thus, the UE will be out-of-service, and hence experience
data plane interruption, in the following scenarios: 1) UE is
out of coverage or completely blocked from all of the gNBs
in its coverage region, i.e., Cn,t = ∅, 2) all the gNBs in
Ln,t get blocked, and an unblocked gNB from Kn,t is not
added promptly enough due to handover execution times to
prevent a period of blockage, and 3) all the gNBs in Kn,t

get blocked, and an unblocked gNB from Cn,t is not added
promptly enough due to handover execution times to prevent
a period of blockage.
Of course, the degree of association, K, and the degree of

replication, L, are two important parameters that influence
the extent to which the UE is shielded from data plane
interruptions in case of blockages. Associating with, and
replicating the data, at a larger number of gNBs results in
significantly larger overhead costs. We explore this trade-off
between better performance and larger overhead to determine
the optimal choice of K and L.

IV. SYSTEM MODEL
The inherent randomness of the environment is captured by
two important parts of the model: the channel state model
which models the mmWave links, and the UE traffic model
which models the statistics of the arrival processes at the
UEs and the parameters of the associated XR traffic.

A. CHANNEL MODEL
The mmWave channel for each gNB-UE link is mod-
eled according to the broadband statistical spatial channel
model (SSCM) [29] developed by NYU and used in
NYUSIM. A spatial consistency procedure developed by
NYU is also implemented to provide spatially correlated
line-of-sight/non-line-of-sight probabilities [30]. It has been
demonstrated in [31], [32] that mmWave networks tend to
be noise-limited rather than interference-limited in dense
deployments of mmWave networks due to highly direc-
tional beamforming and sensitivity to blockages. Therefore,
we also adopt this assumption in this work and the
signal-to-noise-ratio (SNR) is considered instead of the
signal-to-interference-plus-noise-ratio (SINR) at the receiver.

1) PATH LOSS MODEL

We use the close-in free space reference distance (CI) path
loss model with a 1 m reference distance and an extra atten-
uation term due to various atmospheric conditions [29]. The
path loss (in dB) is given by:

PL(f , d) = FSPL(f , 1m) + 10n log10(d) + AT + χσ (2)

where d is the 3-D transmitter-receiver separation distance
in meters, and n is the path loss exponent (n = 2 for free
space). χσ is the shadow fading (SF) modeled as a log-
normal random variable with zero mean and σ standard
deviation in dB. AT is a total atmospheric absorption term,
which depends on the carrier frequency. FSPL (f,1m) is the

TABLE 2. PLEs and shadow fading standard deviations for UMi scenario.

free space path loss in dB at a transmitter-receiver separation
distance of 1m at the carrier frequency f in GHz:

FSPL(f , 1m) = 20 log10
4π f × 109

c
(3)

= 32.4[dB] + 20 log10 f (4)

The path loss exponent (PLE) and shadow fading standard
deviation values for Urban Micro-cellular (UMi) scenario are
displayed in Table 2 [33].

2) SPATIAL CONSISTENCY PROCEDURE

The close-in free space reference distance (CI) path loss
model with a 1 m reference distance used in NYUSIM
is a drop-based channel model. In a drop, the drop-based
channel model generates a static and independent channel
impulse response (CIR) at a particular transmitter-receiver
separation distance. However, there is no correlation between
different drops. The shortcoming of a drop-based channel
model is that it generates independent channel coefficients
for different distances, even if these points are close to each
other. To realize spatial consistency while calculating path
loss, spatially-correlated line-of-sight/non-line-of-sight con-
ditions are generated [30]. A 2-dimensional (2-D) grid map
is generated to contain values of spatially correlated line-
of-sight/non-line-of-sight condition in a simulated area. The
granularity of the map is set to be 1 m, which means the dis-
tance between two neighboring grid points is 1 m. The map
of line-of-sight/non-line-of-sight condition is initialized by
assigning an independent and identically distributed Gaussian
random variable at each grid point. A 2-D exponential filter
is applied to the map, which is given by:

h(p, q) = exp

(

−
√
p2 + q2

dco

)

(5)

where p and q are coordinates with respect to the center
of the filter and dco is the correlation distance, i.e., the
distance over which the large scale parameters are assumed
to be spatially correlated. Applying this 2-D filtering, the
correlated values in the map are calculated by:

Mc(i, j) =
∑

p

∑

q

h(p, q)M(i− p+ 1, j− q+ 1) (6)

where Mc is the correlated map and M is the initial-
ized independent map. The correlation distance in a Urban
Micro-cellular line-of-sight scenario is set to be 15 m. A
transformation from Gaussian distribution to uniform distri-
bution is required to generate spatially correlated uniform
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random variables, which is given by:

ũ = g−1(ṽ) = F−1
ũ (Fṽ(ṽ)) (7)

where ũ and ṽ are the spatially correlated uniform and
Gaussian random variables, respectively, and Fũ and Fṽ are
the cumulative density functions of the uniform distribution
and Gaussian distribution, respectively.
The method of deciding the line-of-sight/non-line-of-sight

condition at a certain location is to compare a uniformly dis-
tributed random variable to line-of-sight probability at that
location. There are several line-of-sight probability mod-
els available in the literature - we use the NYU squared
model [34] for Urban Micro-cellular scenario, which is
given by:

PrLOS(d) =
(

min

(
d1

d
, 1

)(
1 − e

−d
d2

))
+
(
e
− d
d2

)2

, (8)

where d1 = 22m and d2 = 100m. Thus, the line-of-sight or
non-line-of-sight condition of a UE at a certain location is
determined by comparing correlated value ũ to the line-of-
sight probability PrLOS(d):

Condition =
{
line-of-sight if ũ ≤ PrLOS(d)
non-line-of-sight if ũ > PrLOS(d)

(9)

Note that we don’t give priority to line-of-sight links over
non-line-of-sight links when selecting gNBs for Kn,t. Instead,
gNBs for Kn,t are chosen based solely on the SNR.
By generating a map of spatially correlated line-of-

sight/non-line-of-sight conditions, similar shadow fading
values are observed at closely spaced locations, which is
a more accurate representation of reality than independent
values for close locations used in the drop-based model.

3) CHANNEL CAPACITY EVALUATION

Once the effective path losses are determined between all
UE-gNB pairs, we can compute the received power, and
hence the average SNR at each gNB:

PR[dB] = PT [dB] − PL[dB] + GT [dB] + GR[dB] (10)

SNR[dB] = PR[dB] − PN[dB] (11)

where PR is the received power, PT is the transmitted
power, GT and GR are the transmitter and receiver gains,
respectively, and PN is the noise power.
In an actual cellular system, the achieved rate will depend

on the average SNR through a number of factors includ-
ing the channel code performance, channel quality indicator
(CQI) reporting, rate adaptation and Hybrid automatic repeat
request (HARQ) protocol. However, we abstract this process
and assume a simplified, but widely-used, model [35], where
the spectral efficiency is assumed to be given by the Shannon
capacity with some loss δ:

ρ = log2

(
1 + 100.1(SNR−δ)

)
, (12)

where ρ is the spectral efficiency in bps/Hz, and the SNR
and loss factor δ are in dB. The spectral efficiency gives

us the available capacity for each UE-gNB link, and the
scheduling agent uses this information when deciding on
scheduling different UEs.

B. DYNAMIC BLOCKAGE MODEL
Dynamic blockages in mmWave cellular networks are exten-
sively studied in [36], [37] assuming a homogeneous Poison
Point Process (PPP) with dynamic blocker density λB in the
disc B(o,R). The blocker arrival rate, or blockage rate, αi at
the ith gNB-UE link is considered Poisson and was derived
in [36], [37] as

αi = �ri, i = 1, 2, . . . ,m, (13)

where ri is the 2D distance, ignoring height, between the ith

gNB-UE pair.
� is proportional to the blocker density γB and is given by

� = 2

π
γBV

hB − hR
hT − hR

, (14)

where V is the speed of the blocker and hB, hT and hR are
the heights of the blocker, the transmitter, and the receiver,
respectively.
We model the blocker arrival process as Poisson with

parameter αi blockers/sec. Note that there can be more than
one blocker simultaneously blocking the link - if a second
blocker arrives while the first blocker is still blocking the
link, the blockage duration is extended. Furthermore, we
assume the blockage duration of a single blocker is expo-
nentially distributed with parameter μ. The blocking event
of a gNB-UE link follows an on-off process with αi and μ

as blocking and unblocking rates, respectively. In the event
of a blockage, the Received Signal Strength Indicator (RSSI)
of the gNB-UE link is zero, and hence the corresponding
channel capacity is also zero. When there is no blockage,
the NYUSIM channel model described earlier is used to
calculate the path loss and, hence, the channel capacity.

C. TRAFFIC MODEL
The traffic model we assume for this study is based on the
3GPP XR (Extended Reality) traffic models proposed in [3].
Specifically, we use a generic single-stream down-link model
that can be used for VR, AR, and CG applications.
The downlink traffic is modeled as a sequence of video

frames arriving periodically at the gNB according to a
specified video frame rate. Random jitter, which follows
a truncated Gaussian distribution, is super-imposed on the
periodic arrivals to get the actual arrival time of the frames
at the gNB. The size of each frame is also random according
to a truncated Gaussian distribution.
Each traffic flow of a UE is assigned a specific traffic

type: VR, AR, or CG. The traffic type of the flow determines
the underlying parameters for the distributions governing the
frame size, jitter, and packet delay budget of the flows. Each
flow consists of a sequence of frames, and each frame is
further broken up into IP packets of 1500 bytes for delivery.
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TABLE 3. Statistical parameters for frame size.

IP packets belonging to the same frame have the same delay
budget and arrive at the gNB simultaneously.
Each UE has a separate buffer at the gNB, so traffic from

different UEs do not share a buffer. This means a UE flow
cannot experience head-of-line (HOL) blocking from another
UE’s flow.

1) FRAME SIZE

Given R, the data rate of the flow in Mbps, and F, the
frame generation rate of the flow in frames per second (fps),
the frame size is modeled as a random variable following a
truncated Gaussian distribution with the statistical parameters
given in Table 3 [3].

2) FRAME ARRIVAL

The frame arrival rate is determined by the frame rate, F,
which is given in frames per second. Hence, the inter-arrival
time for the frames is given by the inverse of the frame rate.
The periodic frame arrivals implicitly assume fixed delay
contributed by the network. However, in a real system, the
varying processing and transit delays introduce jitter in frame
arrival times at the gNB. In this model, the jitter is modeled
as a random variable that is added on top of the periodic
arrivals. Thus, the jitter follows a truncated Gaussian dis-
tribution with zero mean, 2 ms standard deviation, and a
truncation range of [ − 4, 4] ms [3].

The given parameter values and frame generation rates
ensure that the frame arrivals are always in order, i.e., the
arrival time of the next frame is always later than that
of the previous frame. The periodic arrival with jitter,
therefore, gives the arrival time for the frame with index
k(= 1, 2, 3, . . . , ) as:

T
[
k|with jitter

] = k × 1000

F
+ J ms, (15)

where J is a truncated Gaussian random variable capturing
the jitter. Note that the actual arrival times of traffic for each
UE could be shifted by a UE-specific arbitrary offset.

3) FRAME DELAY BUDGET (FDB)

The latency requirement of XR traffic in the air interface is
modeled as a limited time budget for a frame to be trans-
mitted over the air from a gNB to a UE. The delay a frame
incurs in the air interface is measured from the time that the
frame arrives at the gNB to the time that it is successfully,
fully transferred to the UE.

TABLE 4. Traffic parameters for VR, AR, and CG traffic.

If a frame exceeds its FDB, it is considered to have expired
and is no longer useful owing to the time-sensitive nature
of XR applications. Hence, expired frames are immediately
dropped and counted as a failed delivery. A partially deliv-
ered frame that expires is also considered a failure. If a frame
is fully delivered within its FDB, it is said to be success-
fully delivered. The value of the FDB varies for different
applications (see Table 4)

4) TRAFFIC TYPE PARAMETERS

XR traffic can be broadly classified into three main cate-
gories, each with its own set of parameters governing the
data rate, frame rate, and FDB: VR, AR, and CG. The param-
eters for these various XR applications, according to 3GPP
specifications [3], are specified in Table 4.

D. MOBILITY MODEL
The user mobility is modeled by a Random Waypoint
model [38]. The UEs are initially dropped uniformly into an
area around the gNBs. Each UE then randomly selects a des-
tination within the grid and moves towards it with a constant
velocity uniformly distributed between 0 and 3 kmph [39].
Upon reaching its destination, a UE selects a new destination.

V. PROBLEM FORMULATION
The first problem we explore is predictive data replication,
i.e., selecting Lt = {Ln,t,∀n}, where data would be preemp-
tively replicated [40]. The problem of selecting Lt from Kt

is interesting and non-trivial. It is not simply sufficient to
pick the best links with respect to channel quality because
other factors such as existing load at the gNBs and the UE
traffic delay budgets and statistics need to be taken into
account. The selection of Lt will directly impact our sched-
uler’s performance because it will determine which gNBs
are considered as possible servers in the scheduling decision-
making process. Thus, the selection of Lt directly influences
the scheduling decision, and hence the on-time delivery of
the XR traffic.

A. PREDICTIVE DATA REPLICATION
We formulate our problem as a Markov Decision Process
(MDP), which we can then use for our deep reinforcement
learning algorithm. Since the selection of Ln,t is independent
for each UE, we can decouple the MDP for each UE. Hence
the state and action spaces are defined for a single UE n,
while the reward function ensures that we optimize globally
over the entire system. Let π : S × A → [0, 1] be the
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predictive data replication policy, where S is the set of states,
and A is the set of actions. We now describe the state and
action sets, and the reward function.

1) STATES

Let X(f , n) be the size, in number of packets, of frame f of
UE n, and Y(f , n, t) be the number of packets of frame f of
UE n that are successfully delivered during timeslot t. Let
D(f , n) denote the packet delay budget for frame f of UE n.
Then, the expiry time for frame f of UE n is given by:

texpiry(f , n) = tarrival(f , n) + D(f , n), (16)

and the time-till-expiry at time t is given by:

ttime−till−expiry(f , n, t) = texpiry(f , n) − t (17)

. Then, we can see that a frame is successfully delivered iff:

t=texpiry(f ,n)∑

t=tarrival(f ,n)
Y(f , n, t) = X(f , n) (18)

At time t, the fraction of frame f that has been successfully
delivered is given by:

Yfrac(f , n) =
∑t′=t−1

t′=0 Y
(
f , n, t′

)

X(f , n)
. (19)

The remaining packets of an expired frame are imme-
diately dropped from the buffer, and the frame is not
re-transmitted.
The state sn,t of UE n at time-slot t consists of:

• UE index: n
• UE Connectivity Set: Kn,t

• Global Traffic Information: The fractions served of all
the frames in the buffer and their time-till-expiry:

Yfrac(f , n) ∀f , n.
ttime−till−expiry(f , n, t) ∀f , n.

• Global Channel State Information:
σt = {σm,n,t: ∀m ∈ Kt,∀m, n}.

2) ACTIONS

The action space spans over
(Kn,t
L

) ∀L ≤ K where each action
is denoted by Ln,t ∈ (Kn,t

L

)

3) REWARD

Since XR applications are primarily deadline driven, our
explicit goal is to maximize the number of frames that are
delivered within their delay budget or, equivalently, minimize
the number of frames that expire.
The total reward accrued during time-slot t is given by:

rt =
∑

f ,n

[
Y(f , n, t)

X(f , n)
− ω1(f , n, t)

(
1 + Yfrac

)]
, (20)

where,

1(f , n, t) =

⎧
⎪⎪⎨

⎪⎪⎩

1, if frame f of UE n expires and has
not fully finished transmission by
time t

0, otherwise

and ω is a constant weight.
The first term in (20) allocates a fractional reward for

delivering packets of a frame successfully and sums it over
all frames served during time-slot t. The second term in (20)
exerts a cumulative penalty in case a frame expires. The
cumulative penalty offsets the reward accrued for partial
delivery of the expired frame and imposes a higher penalty
in proportion to the fraction of the expired frame that had
already been delivered. So, for example, a frame that had
been 90% delivered before it expired will exert a much
higher penalty, a penalty of 1.9, than a frame that had been
10% delivered before it expired, which would only incur a
penalty of 1.1. Moreover, we assign a constant weight ω to
the penalty to promote faster convergence to a policy that is
averse to expiring frames.
Our optimization problem can then be represented as an

infinite-horizon decision problem:

argmaxπE

(
r0 +

∞∑

t=1

γ trt

)
, (21)

where future rewards are discounted by a discount factor γ ,
0 < γ < 1, and rt is the reward function given by Eq. (20).
We use Deep Q-Learning, an elegant solution for solving

complex MDPs, which uses a Deep Q-Network (DQN) to
estimate the Q-function for the MDP [41]. Since a DQN
outputs the Q-value corresponding to each action, we can
simplify our action space by training our DQN for L =
1, so that the DQN just learns to give a goodness metric
for selecting a gNB to be in Lt. Then, when the DQN is
deployed after training, we can use it to scale up to larger
values of L by selecting the L gNBs corresponding to the L
highest Q-values. Moreover, we make use of techniques such
as experience replay and target networks to promote faster
convergence. Algorithm 1 describes the Deep Q-learning
algorithm for the predictor.
State space explosion is a real issue in a problem of this

size and magnitude, making it difficult to train any deep
learning network. With 11 gNBs and 35 UEs, we get ∼ 600
state variables for the Predictor described earlier. Assuming
a lower bound of just 2 unique values for each state variable,
it still leads to a state space of size 2600. To reduce the state
space to a more manageable size we use an auto-encoder.
The architectures of the DQN and Autoencoder, as well as
hyper-parameters and training processes, are explained in
detail in Section VI. For each UE n, the current state is
observed and input to the Autoencoder which encodes it
to a smaller code size. The encoded state is passed on to
the Data Replication Predictor DQN which outputs Ln,t for
UE n. The scheduler uses this information (Ln,t∀n), along
with the network state, to take a scheduling action for the
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Algorithm 1 Deep Q-Learning for Predictive Data
Replication
Initialize Experience Replay Memory D
Initialize DQN with random weights
Initialize encoded state sn,t,∀n
for t = 1 : T do
With probability ε, select random Ln,t, ∀n
Otherwise select Ln,t = maxan,t Q(sn,t, an,t), ∀n
Execute action an,t = Ln,t,∀n, observe global reward
rt and state sn,t+1∀n
Store experience (sn,t, an,t, rt, sn,t+1) in D for a random
UE n
Set sn,t+1 = sn,t∀n
Sample random minibatch of experiences from D
Perform a gradient descent step

end for

FIGURE 2. System Diagram.

current time-slot which is executed in the mmWave network.
Fig. 2 shows the system diagram.
It should also be noted that while training a neural network

is computationally expensive and takes considerable time,
deploying a trained neural network is quite feasible in real-
world scenarios. Network state observations can be collected
by the gNBs over a period of time, for example a day, and
can then be sent back to a central location for offline training.
Once trained, the parameters of the neural network can be
sent to the gNBs for real-time implementation of the trained
neural network. Moreover, since the network infrastructure is
static and traffic patterns can be reliably predicted for differ-
ent times of the day, it makes sense to harness deep learning
to learn the local information and make decisions accord-
ingly. For practical deployments, several different models can
be trained according to different degrees of traffic conditions.
Telecom operators already log extensive traffic profiles which
they use to, for example, selectively switch off some compo-
nents in the gNB during low traffic hours to save power, and
devote more resources during peak traffic hours. Similarly,
gNBs are deployed after extensive site analysis to determine
the ideal placement for a given location. Therefore, it actually
is very practical to deploy Deep Learning solutions in wire-
less networks: the topology of the local area is known and
unchanging, the traffic patterns can be analyzed and divided
into different categories, and the placements of gNBs in the

given area are also known. Moreover, fine-tuning schemes
can be implemented on top of the basic deep learning frame-
work, which tunes the trained model in real-time according
to current conditions.

B. SCHEDULER
Since XR applications are constrained by strict deadlines,
we are explicitly interested in deadline-driven scheduling,
and not throughput or rate maximization as is more com-
monly done. For the single server case, the Earliest Deadline
First (EDF) policy has been proven to be optimal in wireline
networks [42]. However, the same result cannot be directly
extended to wireless networks due to uncertain channel con-
ditions of the wireless links. Shakkottai [43] extended this to
wireless networks where users are served by a single server,
and showed that a Feasible Earliest Deadline First (FEDD)
policy is optimal where the EDF policy is implemented
only over channels which are in a good state. Maximum
weighted link scheduling for wireless networks has also
been well studied for the problem of weighted sum-rate
maximization [44], [45], [46]. Note that, for networks with
fixed link capacities, the maximum weighted link scheduling
problem reduces to the classical maximum weighted match-
ing problem and can be solved in polynomial time. However,
no solution is known for the general case when the link rates
depend on the power allocation of all other links. Moreover,
the results do not extend to deadline-driven scheduling in
multi-connectivity enabled wireless networks.
In our multi-connectivity enabled mmWave network, the

scheduling agent has to find, given Lt, a feasible schedul-
ing policy P such that the number of expired frames in the
network are minimized over an infinite time horizon. We
propose a Maximal Weight Matching policy, which we dub
β-MWM, that aims to explicitly take into account the strict
deadlines of the XR traffic, while also considering chan-
nel quality and connectivity. The wireless network forms a
bipartite graph G = (V, E) with bi-partition (M,N ) and the
mmWave links forming the edges of the graph. Note that
without loss of generality, we may assume that G is a com-
plete weighted bipartite graph (we may add edges of zero
weight as necessary); we may also assume that G is balanced
as we can add dummy vertices as necessary. The problem can
then be expressed as the following maximization problem:

max
∑

(m,n)

w(m, n)x(m, n),

subject to:
∑

n

x(m, n) = 1 ∀m ∈ M,

∑

m

x(m, n) = 1 ∀n ∈ N ,

x(m, n) ∈ {0, 1} ∀m ∈ M, n ∈ N . (22)

The classical solution to this maximum weighted bipartite
matching problem in Eq. (22) is given by the Hungarian or
Kuhn-Munkres algorithm [47], [48].
The weight function, w : E → R, is of utmost impor-

tance for Maximal Weight Matching because it determines
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which edges (links) in the graph (network) are chosen to
be activated. Since XR traffic has strict deadline constraints,
our aim is to do deadline driven scheduling. However, for
wireless networks, and especially for mmWave networks
which are prone to blockages, channel capacity and con-
nectivity status also needs to be taken into account for a
good scheduling decision. We design two weight functions,
and compare the performance of the β−MWM scheduler
for both functions.
The first weight function, w1(m, n) is given by:

w1(m, n) =
⎧
⎨

⎩
β

(
1
dn

)
+ (1 − β)

(
Cm,n
Leff ,n,t

)
if m ∈ Ln,t,

0 if m /∈ Ln,t,
(23)

where dn is the deadline of the head of line (HOL) frame
of UE n, Cm,n is the current capacity of the mmWave link
between gNB m and UE n, Cmax is the maximum achiev-
able link capacity, and Leff ,n,t = |Ln,t| ≤ L. The first term
in Eq. (23) makes the weight inversely proportional to the
strict deadline of the HOL frame, thereby giving a larger
weightage to UEs with earlier deadlines. The second term
in Eq. (23) makes the weight directly proportional to the
channel capacity of the link, while also giving higher weigh-
tage to UEs with low connectivity, i.e., where |Ln,t| < L.
Moreover, β ∈ (0, 1) is a scaling parameter that marks the
relative significance of the traffic deadlines and channel qual-
ity. For β > 0.5, a higher emphasis is placed on delivering
UEs with earlier deadlines. At β = 1, the policy becomes
equivalent to the Earliest Deadline First (EDF) policy. For
β < 0.5, more weight is given to channel quality and fairness
for UEs with low connectivity.
The second weight function, w2(m, n) is given by:

w2(m, n) =
⎧
⎨

⎩

1
Leff ,n,t

(
C(1−β)
m,n

dβ
n

)
if m ∈ Ln,t,

0 if m /∈ Ln,t,
(24)

Eq. (24) implies that the utility for delivering C(1−β)
m,n packets

on time is (Leff ,n,td
β
n )−1, with β once again determin-

ing the trade-off between prioritizing deadlines or channel
capacities.

VI. SIMULATION RESULTS AND DISCUSSION
We do comprehensive performance evaluation by simulating
the mmWave network using Python. 11 gNBs are deployed
in a hexagonal grid with an inter-site distance of 100 m
and 35 UEs are dropped randomly into the area. We use
a connectivity threshold of 300 m, i.e., if a UE is within
300 m of a gNB and not blocked, the gNB is considered to
be a candidate gNB. The gNB density is sufficiently high,
such that in case of blockages, a UE always has other can-
didate gNBs to switch to. An outage is defined as an event
when all gNBs in Ln,t are concurrently blocked - this will
lead to an interruption of the data plane while the UE ini-
tiates a switch to other available gNBs. In order to mimic
a system that is not capacity-limited, we use a per-gNB
bandwidth of 400 MHz. Additionally, the system operates

TABLE 5. Simulation parameters.

in discrete time slots of 125μs, which is equivalent to an
OFDM slot that can be used for transmitting downlink or
uplink data [49]. Traffic arrivals, scheduling decisions, and
blockages operate at this granularity. However, channel state
updates are done at a larger time scale, once every sec-
ond, because the path-loss is only affected by large-scale
shadow fading, a change in which occurs on the order of
seconds [5]. We simulate downlink XR traffic for the UEs
and evaluate the performance for varying degrees of associ-
ation (K), degrees of data replication (L), dynamic blocker
densities (γB), and handover delays (�K and �L ). Since XR
traffic requires low latency and expires after a strict dead-
line, we use the percentage of frames delivered within the
deadline as our primary performance metric. This captures
the system performance better than other metrics such as
average throughput because it explicitly takes into account
only the successful traffic which was delivered within the
deadline. We perform our simulation over a mobility period
of 15 minutes. To account for the randomness in the exper-
iments, each experiment configuration is run two hundred
times and the results are averaged. The rest of the simulation
parameters are presented in Table 5.

For the selection of Ln,t from Kn,t for each UE n, the base-
line algorithm we use is the Best Channel Quality Indicator
(BEST-CQI) algorithm where Ln,t is selected based on chan-
nel quality alone. BEST-CQI is an algorithm that selects Ln,t
by starting with an ordered set of SNRs and picking the gNBs
corresponding to the L highest SNR values.

A. PERFORMANCE EVALUATION OF
MULTI-CONNECTIVITY ARCHITECTURE
We first evaluate the feasibility of our multi-connectivity
architecture and prove that it does indeed provide bene-
fits in terms of shielding the UEs from adverse effects
of blockages and minimizing data plane interruptions. In
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FIGURE 3. Effect of the degree of association (K ) and the degree of data replication (L) on the percentage of frames and IP packets successfully delivered within deadline,
with L ≤ K , �K = 20 ms, �L = 10 ms and blocker density γB = 0.01 bl/m2.

a multi-connectivity setting, it is not sufficient to just select
UEs for scheduling based on some priority value. Once a
UE is selected, another selection decision needs to be made
to match it to a gNB because multiple gNBs are available
to each UE for data transmission. A centralized scheduler
would enhance the system performance, though at the cost of
much higher overhead in terms of information exchange and
delays in relaying the control decision. For the purpose of our
simulation, we assume an omniscient, centralized scheduler
that is able to operate with zero delays.
We compare the performance of two centralized

schedulers:

• Centralized Earliest Deadline First (C-EDF): The UE
which has the HOL frame with the earliest deadline
in the network is matched to the best available Data
Replication gNB.

• Centralized Proportional Fair (C-PF): The UE priority
function is given by [51]:

P = T

R
,

where T is the current channel capacity of the UE-gNB
link, and R is the historical average data rate of the UE.
The UE with the highest priority is matched to the best
available Data Replication gNB.

1) EFFECT OF DEGREE OF ASSOCIATION (K) AND
REPLICATION (L)

Fig. 3 shows how the percentage of frames and IP packets
delivered successfully within their deadline varies with the
degree of data replication (L), for different values of the
degree of association (K). First, note that the percentage of
IP packets delivered within the deadline is always more than
the frames delivered within the deadline. Frame delivery is
only counted as successful if the entire frame is delivered
successfully within the deadline. This shows why the per-
centage of frames delivered within the deadline is a better
QoS metric for deadline-driven XR applications because it
only counts the useful throughput. Next, from Fig. 3 we
observe that there is a huge spike in performance when we
go from single connectivity (L = 1) to dual connectivity

FIGURE 4. Effect of the relative values of K and L on the average outage duration,
with γB = 0.05 bl/m2, �K = 20 ms and �L = 10 ms.

(L = 2). The availability of an extra gNB in dual connectiv-
ity ensures that the scheduler has a backup to fall back on in
case of sudden service disruption due to blockages. As we
further increase the degree of data replication from L = 2 to
L = 5, we see diminishing returns in terms of performance
improvement. This is due to the fact that the extra backup
gNBs only become useful when there are several concurrent
blockages. For example, when L = 4, the fourth gNB will
only be useful in the scenario when the first three gNBs are
concurrently blocked. Since the outage probability decreases
exponentially with the number of gNBs, as shown in Fig. 5,
we see corresponding diminishing returns as L increases.

From Fig. 3, we note that with K = 3, there is a dip
in performance going from L = 2 to L = 3. However,
this is well within the confidence intervals (±0.23%) and
the broader trend of performance increasing with multi-
connectivity remains true. In fact, from Fig. 3(c) we can
see that we boost performance from 96.5% when L = 1
to 99% when L = 5. This is a significant improvement in
performance given the fact that one of the main QoS crite-
ria for XR applications is to deliver 99% of a UE’s traffic
within the deadline [3]. Moreover, we see that the prime
benefit of increasing K is that it allows us to potentially
replicate the data at a larger number of gNBs, since L ≤ K.
However, if we fix L, there is no benefit to be gained in
further increasing K beyond K = L+ 1. For example, with
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FIGURE 5. Effect of the relative values of K and L on the outage probability, with
γB = 0.05 bl/m2, �K = 20 ms and �L = 10 ms.

L = 2, we see a similar performance, disregarding the minor
variations which are within the confidence intervals, as K is
increased from 3 to 7.
We now turn our attention towards a discussion and com-

parison of the performance of our two schedulers: C-EDF
and C-PF. The decision to use a centralized scheduler is
a deliberate one and stems from our multi-connectivity
architecture where the selection of a Serving gNB plays a
critical role in the subsequent scheduling decision and system
performance. Hence, the scheduling problem is fundamen-
tally different from single-connectivity scenarios, where
the only decision that needs to be made is the schedul-
ing decision. Thus, it is imperative that the selection and
scheduling decisions be made jointly in order to gain better
performance. Even so, neither C-EDF nor C-PF is optimal.
Simple examples can be crafted that show both schedulers
taking sub-optimal decisions.
Moreover, we acknowledge that our schedulers operate

under ideal assumptions that will not hold in real-world
scenarios, namely the availability of instantaneous channel
state and traffic information at the scheduler and the instan-
taneous relaying and execution of the scheduling decision
at the gNBs. However, our results can be used to gauge
the performance of schedulers that better emulate real-world
conditions and operate in a distributed manner.
From Figs. 3–7, we see that both C-EDF and C-PF have

similar performance, with C-PF performing better at higher
blocker densities. C-PF performs well because it jointly opti-
mizes over the UE’s historical data rate and the available
channel capacities; however, its drawback is that it does not
explicitly take into account the traffic deadlines nor does it
attempt to do delay-aware scheduling. On the other hand,
C-EDF attempts delay-aware scheduling but does not take a
joint gNB selection and scheduling decision; instead, it does
scheduling and selection sequentially which is sub-optimal.
Hence, we can see that there is a need for new schedul-
ing algorithms that are optimized for the multi-connectivity
paradigm, i.e., which do deadline-driven scheduling in con-
junction with gNB selection. We address this problem with
our β-MWM scheduler, whose performance is evaluated in
Section VI-C.

Next, we illustrate how our architecture minimizes data
plane interruptions. We are interested in the average out-
age duration, which is the amount of time it takes a UE to
recover from an outage event by resuming the data plane
connection with another gNB. At 60 fps, the average frame
inter-arrival time is 17 ms, so depending on the link capacity
available after the interruption, at most one frame is dropped
when �K = 20 ms and �L = 10 ms. From Fig. 4, we note
that when K = L, which is the case when the Association
and Data Replication tiers are collapsed into one, i.e., data
is replicated at all the associated gNBs, the average out-
age duration is upper-bounded by (�K + �L) ms. However,
the power of our multi-tier architecture is displayed when
K > L. Consider the simplest case, when K = L + 1. With
one extra gNB in Kn,t, the average outage duration falls to
approximately �L ms. Fig. 4 also shows that this benefit
does not increase with L because the response time to the
outage is determined by whether an extra gNB is available
in Kn,t when all gNBs in Ln,t get blocked. However, from
Fig. 5, we observe that increasing L decreases the outage
probability. Thus, from Figs. 4 and 5 we can conclude that
for the same value of L, K = L+1 gives better performance
than K = L, if this option is available.

2) EFFECT OF DYNAMIC BLOCKER DENSITY γB

Fig. 6 illustrates the effect of dynamic blocker density (γB)

on the percentage of frames and IP packets delivered within
the deadline. We observe that a higher blocker density
results in a significant loss of performance, especially at
low levels of multi-connectivity. Moreover, as the blocker
density is increased the boost in performance from a higher
degree of data replication also increases. This is because a
higher blocker density results in more frequent blockages,
which is reflected in a higher out-of-service probability.
Consequently, the benefit to be gained by having backup
gNBs also increases as the density of blockers is increased.

3) EFFECT OF HANDOVER DELAYS, �K AND �L

Handover Delays, �K and �L, are vital for performance
evaluation because they affect the response time to block-
ages and determine the duration of data plane interruptions.
Recall that, given the gNB density is high enough to ensure
that there are always candidate gNBs available, a UE expe-
riences a maximum data plane interruption of �L ms if
all the gNBs in Ln,t are blocked concurrently, and a max-
imum data plane interruption of (�K + �L) ms if all the
gNBs in Kn,t are blocked concurrently. From Fig. 7, we see
that the system performance decreases as �K and �L are
increased, which is due to the higher out-of-service dura-
tion as a result of higher handover delays. However, this
decrease in performance is less at higher values of L, because
the out-of-service probability decreases exponentially as L is
increased. For example, from Fig. 7(a) and 7(c) we observe
that at L = 1, performance decreases from 92.8% to 91.2%
- a decrease of 1.6% - when handover delays increase.
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FIGURE 6. Effect of the dynamic blocker density (γB) on the percentage of frames and IP packets successfully delivered within deadline, with K = 5, �K = 20 ms and
�L = 10 ms.

FIGURE 7. Effect of Association Handover Delay, �K , and Data Replication Handover Delay, �L , on the percentage of frames and IP packets successfully delivered within
deadline, with K = 5 and γB = 0.05 bl/m2.

However, at L = 2, the performance decreases from 95.5%
to 94.8% - a smaller decrease of 0.7%.

B. DQN DATA REPLICATION PREDICTOR
We now move on to the implementation and evaluation of
the Data Replication Predictor DQN. For this evaluation, we
only use the Centralized Proportional Fair (C-PF) scheduler
described earlier, and compare the performance of the Data
Replication Predictor DQN with the following algorithms:

• Best Channel Quality Indicator (BEST-CQI): L gNBs
with the best channel quality, based on most recent
measurements, are selected to be in Ln,t.

• Nearest Neighbor (NN): L gNBs nearest to the UE,
based on its current position, are selected to be in Ln,t.

• Trajectory Estimate Replication (TER): Assuming that
the UE’s current position and past mobility is known,
the trajectory of the UE for time window T is esti-
mated. gNBs closest to the estimated future position
are selected to be in Ln,t.
Since we use a low-speed mobility model, modeling
pedestrian traffic, we use a larger time window for
trajectory estimation. For high-speed mobility, such as
for vehicular traffic, the trajectory estimation window
can be reduced. Trajectory estimation based associa-
tion and replication is also a good method because it
pre-emptively removes a gNB from Ln,t when the UE

is about to leave its coverage area and adds a gNB to
Ln,t whose coverage area the UE is about to enter.

We use a blocker density (γB) of 0.01 bl/m2, and �K

and �L of 20 ms and 10 ms, respectively. Other system
parameters remain the same.

1) TRAINING ENCODER

The autoencoder comprises three fully connected hidden lay-
ers of size 512, 256, and 128 respectively, followed by a
code layer of size 64, as shown in Fig. 8(a). Thus our state
is encoded into a 64-dimensional vector, which represents an
order-of-magnitude decrease in the number of dimensions.
To train the autoencoder, a dataset comprising 2 million UE
states is generated. The autoencoder is implemented using
Keras, with the SGD optimizer, MAE loss function, ReLU
activation function, batch size of 32, and a learning rate
of 1e − 4. The loss converges in 11 epochs, as shown in
Fig. 8(b). Once the autoencoder is trained, we only use the
Encoder part to encode our state and use it as an input to
the Predictor DQN. We compare the performance of our
Predictor DQN with a BEST-CQI heuristic which simply
selects Ln,t to be the set of gNBs with best channel quality
to UE n at time t.

2) TRAINING PREDICTOR DQN

For the Predictor DQN, we use two fully connected hid-
den layers, each of size 1000, as shown in Fig. 9. Since we
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FIGURE 8. AutoEncoder.

FIGURE 9. Predictor Deep Q-Network.

train the DQN for L = 1, the output layer is of size M,
i.e., the maximum number of gNBs a UE can associate
with. The DQN is trained with the SGD optimizer, Huber
loss function, ReLU activation function, and a learning rate
of 5e − 4. We use an experience replay memory of size
10, 000. For the DQN algorithm, we use a batch size of
32, a discount factor of 0.99, and a decaying epsilon for
exploration-exploitation trade-off which decays from an ini-
tial value of 1 to a terminal value of 0.01. The DQN is
trained once every 10 time slots in the network (time periods
where there is no traffic in the network are automatically
excluded and not counted towards this). The convergence of
the DQN depends on the hyper-parameters - we empirically

FIGURE 10. Convergence of Loss Function during training.

FIGURE 11. Effect of Lt selection algorithm on the percentage of frames and IP
packets delivered within deadline, with K = 5.

chose the hyper-parameters which resulted in better conver-
gence. For our final model, it took nearly 160,000 training
steps for the DQN to converge. Since one training step was
executed after every 10 time-slots, the system ran for a total
of nearly 1.6 million time-slots. The plot of the loss function
converging during training is shown in Fig. 10.
Note that the DQN is designed such that its architecture

remains the same irrespective of load: the input to the DQN
is an encoded state which is of a fixed size equal to the
size of the code, and the output is equal to the number
of gNBs in the system. However, the DQN predicts Ln,t
for each UE individually, so N UEs require N executions
of the DQN, where the nth execution corresponds to UE
n’s encoded state being fed into the DQN and the output
being observed to determine Ln,t. Thus, with respect to space
complexity, the DQN is static with respect to load - as
increasing the number of UEs does not increase the number
of trainable parameters in the DQN. However, with regards
to time complexity, the DQN Predictor scales linearly as N
executions of the DQN are required for N UEs. However,
since the DQN executions are independent of each other,
they can be executed in parallel, but this would require the
use of multiple GPUs.
Fig. 11 shows how the percentage of frames delivered

within the deadline varies with L, with K = 5. We see
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FIGURE 12. Performance of the β−MWM scheduler, with the two weight functions given in Eqs. (23)-(24). Here, K = 5, γB = 0.02 bl/m2, �K = 20 ms, �L = 10 ms.

a significant improvement in the performance of the DQN
Predictor, especially at lower values of L. At L = 1, we
see a 1.3% performance boost when we use the DQN -
this may seem an insignificant improvement, but it is criti-
cal for reaching the 99% on-time delivery threshold set by
3GPP for XR application [3]. TER performs better than
NN and BEST-CQI, but worse than the DQN Predictor,
for lower values of L. This is because the DQN is able
to make better decisions as it also takes other information,
such as UE traffic levels and gNB loads, into account. For
higher values of L, the algorithms all converge because it
becomes likelier that the best gNBs are selected in the Data
Replication set. Moreover, the performance improvements
given by the DQN suggest that we can operate at a lower
level of multi-connectivity to achieve performance similar to
other heuristics. For example, the DQN is able to achieve
98.9% on-time delivery with L = 3, while the BEST-CQI
algorithm is only able to achieve that with L = 5. Thus,
with the DQN predictor, we incur significantly lower over-
head costs (in terms of data replication) to achieve a similar
level of performance.

C. β-MWM SCHEDULER
We showed earlier that the C-EDF and C-PF schedulers
were not necessarily optimized for the multi-connectivity
paradigm. We now proceed to illustrate performance
results for our proposed scheduler, β−MWM, which was
described in detail in Section V. We use a dynamic
blocker density (γB) of 0.02 bl/m2, �K = 20ms and
�L = 10ms. We evaluate the performance of the
β−MWM scheduler for both weight functions given in
Eq. (23) and Eq. (24).
Fig. 12 shows the comparison of the performance of

β−MWM scheduler for the two weight functions, with
varying β. Recall that β ∈ (0, 1). At β = 0, the MWM
scheduler ignores the traffic deadlines, and instead uses
only the channel capacity as the utility function for the
scheduler. At β = 1, the MWM scheduler collapses into
the earliest deadline first policy, albeit one that chooses a

FIGURE 13. Performance Comparison of β−MWM scheduler with C-EDF and C-PF.
Here, K = 5, γB = 0.02 bl/m2, �K = 20 ms, �L = 10 ms.

serving gNB randomly for the UE with the earliest dead-
line. From Fig. 12 we see that performance is worse for
lower values of β, especially at β = 0.3, irrespective of
which weight function is chosen. As β is increased, system
performance increases significantly but there are diminishing
returns with increasing β, i.e., as β increases from 0.3 to 0.5,
we see a significant boost in performance, but only a small
jump when β further increases from 0.5 to 0.7. This shows
that while it is important to take deadline constraints into
account, other network conditions, such as channel qual-
ity and connectivity status, cannot be ignored for optimal
scheduling.
Next, we compare the performance of the β−MWM

scheduler with the C-EDF and C-PF schedulers. From
Fig. 13, we can see that β − MWM scheduler outperforms
both C-EDF and C-PF. With the β−MWM scheduler, we
are able to achieve the desired 99% successful delivery rate
at L = 3, even with a comparatively high blocker density
of 0.02 bl/m2. Lastly, we note that both weight functions
provide almost similar results, which proves that maximal
weight matching, which takes some combination of dead-
lines, channel capacities, and connectivity status into account
can deliver better results than conventional algorithms which
only take one metric into account.
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VII. CONCLUSION
The world is at the cusp of a new technological revolu-
tion, with XR applications poised to fundamentally change
how we interact with the world around us. Given the
stringent requirements of XR applications, which include
strict deadlines as well as high data rates, it is neces-
sary for existing network architectures and protocols to
evolve to support these QoS constraints. In this paper,
we proposed a multi-tiered multi-connectivity architecture
that allows us to shield UEs from data plane interruptions
and reduce the response time to blockages. Moreover, we
show how existing network functions are not optimized for
the multi-connectivity paradigm. To fill this gap, we lever-
aged Deep Reinforcement Learning to propose an intelligent
Data Replication Predictor which gives the optimal selec-
tion of gNBs to replicate the data at. Furthermore, we
also proposed a heuristic scheduler, β−MWM, which takes
advantage of the multi-connectivity architecture to deliver
better performance than conventional scheduling algorithms.
However, the work in this paper focused on centralized algo-
rithms which take advantage of global state information,
a feature that could be expensive in real-world systems.
Thus, future research should focus on expanding the work in
this paper to a decentralized framework, where gNBs only
exchange information with neighboring gNBs and imperfect,
time-delayed channel measurements are available.
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