~IEEE

IEEE Open Journal of the

(.omSoc Communications Society

ABHISHEK BISHT', ASHOK KUMAR DAS"“ ' (Senior Member, IEEE), DUSIT NIYATO" 2 (Fellow, IEEE),

Received 5 September 2023; accepted 14 September 2023. Date of publication 18 September 2023; date of current version 4 October 2023.
Digital Object Identifier 10.1109/0JCOMS.2023.3316922

Encryption, Blockchain, and IPFS

AND YOUNGHO PARK "3 (Member, IEEE)

1Center for Security, Theory and Algorithmic Research, International Institute of Information Technology, Hyderabad 500032, India
2School of Computer Science and Engineering, Nanyang Technological University, Singapore
3School of Electronics Engineering, Kyungpook National University, Daegu 41566, South Korea
CORRESPONDING AUTHORS: A. K. DAS AND Y. PARK (e-mail: iitkgp.akdas @ gmail.com; parkyh @knu.ac.kr)

This work was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF)
funded by the Ministry of Education under Grant 2020R111A3058605.

ABSTRACT Secure storage and sharing of Personal Health Records (PHRs) in Internet of Medical Things
(IoMT) is one of the significant challenges in the healthcare ecosystem. Due to the high value of personal
health information, PHRs are one of the favourite targets of cyber attackers worldwide. Over the years,
many solutions have been proposed; however, most solutions are inefficient for practical applications.
For instance, several existing schemes rely on the bilinear pairings, which incur high computational
costs. To mitigate these issues, we propose a novel PHR-sharing scheme that is dynamic, efficient,
and practical. Specifically, we combine searchable symmetric encryption, blockchain technology and a
decentralized storage system, known as Inter-Planetary File System (IPFS) to guarantee confidentiality of
PHRs, verifiability of search results, and forward security. Moreover, we provide formal security proofs
for the proposed scheme. Finally, we have conducted extensive test-bed experiments and the results
demonstrate that the proposed scheme can be used in practical scenarios related to IoMT environment.

INDEX TERMS Healthcare system, searchable encryption, blockchain, security, Internet of Medical Things

Efficient Personal-Health-Records Sharing in Internet
of Medical Things Using Searchable Symmetric

(IoMT), inter-planetary file system (IPFS) decentralized storage.

. INTRODUCTION

HE INTERNET of Medical Things (IoMT) is a sub-

set of the Internet of Things (IoT), which consists
of medical devices that are interconnected with each other
to provide services. It has numerous advantages, such as
remote patient care, reduction in the number of in-person
visits to the doctors, and increase in speed and efficiency
of diagnosis, amongst many others. However, such technol-
ogy quickly becomes a target of cyber attacks and therefore
requires proper security measures to be effective. If not
secured properly, IoMT devices can breach the privacy of
the patients including, but not limited to, leakage of payment
details of the patients. Therefore, it is necessary to incor-
porate IoMT smart devices with the health infrastructure in
a secure way. The work presented in this article deals with

an efficient and practical scheme for storing and sharing
Personal Health Records (PHRs) generated with the help
of IoMT devices using blockchain technology, searchable
encryption, and IPFS.

Blockchain first came into light in 2008 when Satoshi
Nakamoto released the white paper [1] on Bitcoin — a decen-
tralized digital currency. Since then researchers have been
continuously working on its other use cases and have made
significant progress. Blockchain acts as a distributed ledger
that records transactions. However, it is not just limited to
financial transactions as in Bitcoin. It can record any data
represented as a transaction. The primary benefit of the
blockchain is that data is immutable under cryptographic
assumptions after being recorded. One will have to create a
new transaction to nullify the effect of a previous transaction.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

VOLUME 4, 2023

2225

HTTPS://ORCID.ORG/0000-0002-5196-9589
HTTPS://ORCID.ORG/0000-0002-7442-7416
HTTPS://ORCID.ORG/0000-0002-0406-6547

BISHT et al.: EFFICIENT PERSONAL-HEALTH-RECORDS SHARING IN loMT

The transactions are stored in a block where a single block
may contain an arbitrary number of transactions depend-
ing on the requirement and context of use. A blockchain
network may contain many independent nodes forming a
Peer-to-Peer (P2P) network. They interact with each other
and make decisions based on an agreement protocol, known
as the consensus algorithm. The goal of consensus is to
reach a joint agreement between the nodes in the system,
often in the presence of some faulty nodes. Several consen-
sus algorithms, such as “Proof of Work (PoW)”, “Proof of
Elapsed Time (PoET)”, Raft, and “Practical Byzantine Fault
Tolerance (PBFT)”, are in use today, each with their own
pros and cons.

Searchable encryption (SE) was first introduced by
Song et al. [2]. Its need arose from the fact that data needs
to be stored on storage servers in encrypted form to mitigate
the risks of security and privacy breaches. Nevertheless, this
comes at the cost of sacrificing some desirable functionalities.
A major one is searching over the stored data. SE is a solution
to the above problem that lets the users encrypt their data
while retaining the ability to search over it without explicitly
decrypting it. SE is categorized into two types: a) static and
b) dynamic. In the case of static SE, an entire batch of files is
processed at once. Files cannot be added or removed once the
batch has been encrypted. The only way to do so is to discard
the previous encryption and create a new one with the mod-
ified file set. On the other hand, dynamic SE allows addition
and removal of files efficiently without repeating the entire
process. SE can further be categorized into Symmetric and
Asymmetric settings based on the type of encryption used. In
a symmetric setting, the data is encrypted using symmetric or
private key cryptography, and in asymmetric setting the data
is encrypted using asymmetric or public key cryptography.
In addition, based on the number of keywords searched over
the encrypted data, SE is categorized into single-keyword SE
and multi-keyword SE. The latter is difficult to achieve, but
it has more practical value.

Inter-Planetary File System (IPFS) [3] is a protocol and
peer-to-peer file sharing network to store files in a decen-
tralized database. It uses content-based hashing to identify
a file in its storage uniquely. Data is divided into small
chunks of 256 KB (known as IPFS objects) and stored on
its decentralized system. It also provides versioning of the
files. Whenever a file is modified, a separate copy of the
modified IPFS objects is created while retaining the original
ones. It means that IPFS provides immutability to the files
stored on it.

A. PROBLEM STATEMENT AND MOTIVATION

PHRs have always been high-value targets for cyber-attacks;
therefore, securing them proves to be a significant challenge.
The necessity of being able to share health records with
selected parties, such as doctors and insurance companies,
further augments the risk of health data leakage. It has led
to the requirement of schemes that can not only store health
records securely but also allow secure sharing of health data.

2226

Such a scheme requires a guarantee of confidentiality of
the PHRSs, verifiability of correctness of the results returned
to the end user! and efficiency in terms of time and space
complexity. Moreover, with the increase in usage of Internet
of Medical Things (IoMT), it has become crucial to securely
integrate the healthcare infrastructure with IoMT.

Over the years, many solutions have been proposed in the
literature for health record storage and sharing. However,
some schemes leak too much information during their oper-
ations, other schemes do not guarantee the verifiability of
the search results, most do not provide any proof for forward
security and most are inefficient because of use of bilinear
pairings which have high computational cost. Additionally,
most of the schemes make use of centralized storage for
PHRs which makes them unreliable in case of an attack on
the centralized storage. We identified that most of the exist-
ing schemes for PHR sharing use asymmetric SE and there
are not enough works that have explored the usage of sym-
metric SE for designing a robust PHR sharing scheme with
keyword search. Therefore, by using searchable symmetric
encryption, blockchain technology, and Inter-Planetary File
System (IPFS), we propose a scheme for PHR sharing which
is verifiable, forward secure, efficient and decentralized.

B. RESEARCH CONTRIBUTIONS

As our main contribution through this work, we present
an efficient PHR-sharing solution by combining SSE,
blockchain technology, and IPFS. The existing schemes that
use blockchain or IPFS are either in-efficient or lack for-
ward security. To the best of our knowledge no existing
schemes have proposed an approach for health data storage
and sharing, that is verifiable, forward secure, efficient and
decentralized, by combining these three.

« We develop a PHR sharing scheme that maintains con-
fidentiality of PHRs by proving that it is semantically
secure against an adaptive adversary. We prove it to be
forward secure and verifiable. Confidentiality is guaran-
teed by using symmetric key encryption (SSE) for PHRs
and other private metadata. By using the “Elliptic Curve
Integrated Encryption Scheme (ECIES)” we ensure that
communication channels are secure. Verifiability of the
results returned to the user is guaranteed by blockchain,
and use of symmetric key encryption ensures that our
scheme is efficient. Finally, forward security is ensured
by the design of our scheme. Subsequently, we provide
rigorous proofs to support our claims.

« For the storage of PHRs, we use a decentralized content-
addressable file system, IPFS. Any file stored in IPFS
is uniquely identified by the hash of its contents. Our
designed scheme relies on this content-hash identity
(id) for its operation. Using IPFS has many advantages
over centralized storage, such as greater fault tolerance,

1. It differs from data integrity, which only ensures that the data is not
tampered with, after being sent and before being received.

VOLUME 4, 2023

‘IEEES IEEE Open Journal of the
Com3oc communications Society

TABLE 1. Abbreviations.

Abbreviation | Full Form
API Application Programming Interface
BN Blockchain Node
CHD Current Head Dictionary
D Doctor
DU Data User
ECDH Elliptic Curve Diffie-Hellman
ECIES Elliptic Curve Integrated Encryption Scheme
H Hospital
HS Hospital Server
IPFS Inter Planetary File System
MR Merkle Radix
P Patient
PHR Personal Health Record
REST Representational State Transfer
SE Searchable Encryption
SSE Searchable Symmetric Encryption

resistance to Denial of Service (DoS) attacks and better
scalability.

o We perform extensive experiments using different con-
sensus algorithms, namely “Practical Byzantine Fault
Tolerance (PBFT)”, Raft, and ‘“Proof of Elapsed
Time(PoET)” to demonstrate that our scheme is prac-
tical.

C. PAPER OUTLINE

The rest of the paper follows the following structure. The
relevant mathematical preliminaries needed to describe the
proposed scheme are discussed in Section II. The related
works on the existing schemes are provided in Section III.
The system architecture along with the threat model are sup-
plied in Section IV. A high-level description of the proposed
scheme with its various phases, followed by a detailed
description, is provided in Section V. Next, a detailed
security analysis of the proposed scheme is presented in
Section VI. The test-bed experiments and their extensive
results are presented in Section VII. Moreover, a compar-
ative study among the proposed scheme and other relevant
schemes has been done in Section VII. Some future works
are then highlighted in Section VIII. The article is finally
concluded in Section IX.

Il. PRELIMINARIES

In this section, we discuss the following mathematical pre-
liminaries that are used later in discussion of the proposed
scheme. We follow the list of abbreviations provided in
Table 1.

VOLUME 4, 2023

1) COLLISION-RESISTANT CRYPTOGRAPHIC HASH
FUNCTION

A keyed hash function is a pair of polynomial-time algo-
rithms (Gen, h) that are defined as follows [4]:

e Gen: It takes a security parameter 1" as input and
outputs a secret key k.
o h: It takes key k and x € {0, 1}"* as inputs, and outputs
a value y = h(x) € {0, 1}1(”) as the output, called the
message digest or hash value.
The hash function is said to be collision resistant, if for a
polynomial time adversary A it is computationally infeasible
to find a pair (x, x') € {0, 1}"* x {0, 1}" such that h(k,x) =
h(k,x’). In practice, however, un-keyed hash functions are
used, and we use the same in our work. Thus, an un-keyed
hash function is a hash function & : {0, 1}* — {0, 1}/®
which takes an arbitrary length input string x € {0, 1}* and
produces the hash output y = h(x) € {0, 1}/,

2) DICTIONARY

A dictionary is an abstract data type that is used to store
key-value pairs such that every key occurs only once. It is
also known as map, associative array or symbol table. A
dictionary must support the following basic operations:

Insertion: It requires a key-value pair as its input and
stores it in the dictionary. The key-value pair is also called
an element of the dictionary. If an element with the same
key exists, then its value is overridden by the new input
value.

Deletion: It requires the element’s key to be deleted as
the input and removes the corresponding key-value pair from
the dictionary.

Lookup: It requires a key as its input and returns the
corresponding value. An error or default value is returned if
the key is not present in the dictionary.

3) STANDARD BLOCKCHAIN MODEL

It was proposed by Kosba et al. [5] to specify the security of
the protocols using blockchain. It considers the blockchain
as a conceptual trusted party that ensures correctness and
availability, but not privacy.

4) INTER-PLANETARY FILE SYSTEM (IPFS)

It is a content-based distributed file system [3] where the
data is identified through the hash of the contents rather than
giving them an independent identifier.

5) HYPERLEDGER SAWTOOTH

It is a blockchain framework maintained by Hyperledger
foundation and provides a flexible solution for develop-
ing decentralized applications. It allows the programmers
to implement application logic in a variety of languages,
including Python and JAVA unlike other platforms such as
Ethereum, which restricts the programmer to Solidity.
Each node in a Sawtooth network runs a process known
as transaction processor. It needs to be implemented by the

2227

BISHT et al.: EFFICIENT PERSONAL-HEALTH-RECORDS SHARING IN loMT

application developer for processing the transactions of his
application. A sawtooth node can run multiple transaction
processors for different families of transactions.

6) MERKLE-RADIX (MR) TREE

It is a data-structure that stores key-value pairs and is used by
most of the blockchain frameworks to maintain their global
state. It is a combination of the Merkle hash tree and the
Radix (or Trie) tree that is used to store data and verify its
integrity through the properties of the Merkle tree.

7) ELLIPTIC CURVE INTEGRATED ENCRYPTION
SCHEME (ECIES)

It is a hybrid encryption scheme proposed by Shoup [6]. It
uses an elliptic curve key-agreement protocol, such as ECDH
and a symmetric encryption scheme. The key-agreement pro-
tocol derives the shared secret for the sender which is then
used to encrypt the data to be transferred. The encrypted data
is sent to the receiver along with the information by which
the receiver can derive the shared-secret. The receiver can
then use this information to recover the original plaintext.

8) AES-OCB3

The “Advanced Encryption Standard Offset Codebook v3
(AES-OCB3)” [7] is a symmetric key encryption algorithm
that is the result of using the “Advanced Encryption Standard
(AES)” in Offset Codebook v3 (OCB3) mode. OCB mode
integrates Message Authentication Code (MAC) with the
operations of AES in block-cipher mode. It eliminates the
need for explicitly using an authentication mechanism.

9) CONSENSUS ALGORITHMS

There are several consensus algorithms in use today. The
ones we have used in our experiments are the Practical
Byzantine Fault Tolerance (PBFT) [8], Proof of Elapsed
Time (PoET) and Raft [9].

lll. RELATED WORKS
In this section, we present the following categories of the
related works.

A. SEARCHABLE ENCRYPTION

Song et al. [2] in 2000 took the first step toward con-
structing an efficient searchable encryption scheme. Earlier
works [10] made use of Oblivious RAMs (ORAMs), and
gave a complete and general solution to the problem of
searchable encryption. However, ORAMs are quite expensive
in terms of time and space. Therefore, the researchers started
looking for alternative solutions that would be efficient.
Although the work in [2] is more efficient than ORAM, it
was linear in the total number of keywords in document col-
lection and hence was unsuitable for practical applications.
Continuing in this direction, Goh [11], in 2003, constructed a
secure inverted index and demonstrated its application in SE
through a scheme with constant search time. Their scheme,

2228

unfortunately, had a weak security model which was sub-
sequently improved upon by Curtmola et al. [12] in 2006.
They proposed two new security models — a) adaptive and
b) non-adaptive, which become the standards for securing
SE schemes. However, their scheme was static, and therefore
it had limited practical applications.

The first dynamic searchable encryption scheme was
proposed by Kamara et al. [13] in 2012 with an efficient
update mechanism. In the same year, Islam et al. [14] demon-
strated attacks possible due to access pattern disclosure and
reinforced the need for forward secrecy in SE schemes.
However, scalability was still an issue as most of the schemes
supported only single keyword search. Working in this direc-
tion, Cash et al. [15] introduced a scheme that supported
conjunctive keyword search along with the Boolean queries.

There was a growing need for forward security
after Islam et al’s work. It was first addressed by
Stefanov et al. [16] in 2013. They attempted to find a bal-
ance between security and efficiency through their scheme.
However, it relied heavily on client-side computation, which
is limited in its practical applications. Another issue that
needed to be addressed in SE was that none of the works
had ever attempted to formalize the data leakage occurring
during the operations. In 2015, Cash et al. [17], for the
first time, formalized the leakages inherent in SE schemes
and demonstrated the attacks possible due to them. Before
their work, there was no proper study of such attacks on
SE schemes. It formalized the leakages and classified the
existing schemes based on four levels of leakage.

Later, it was identified that in order to save the computa-
tional costs, a server can return partial or wrong results to
the data user. To address this issue, the requirement of veri-
fiability was added to SE schemes. In 2016, Bost et al. [18]
proposed the first scheme that supported verifiability by
modifying Stefanov’s scheme. With time, the need for more
features was identified in SE schemes — one of which was
backward privacy. It ensures that after deletion of data, future
queries cannot be performed on it. Bost et al. [19] in 2017
introduced the first SSE scheme that supported backward
privacy. In the same year, Kim et al. [20] introduced a
dynamic SE scheme with a primary focus on data deletion,
which previous schemes mainly had overlooked. In 2018,
Etemad et al. [21] presented a forward, secure, efficient, and
parallelizable dynamic SE scheme with the performance on
par with previous non-forward-secure dynamic SE schemes.
Recently, in 2022, Watanabe et al. [22] proposed a scheme
that fixed a security flaw in the backward security of
Etemad’s scheme. Additionally, there are other schemes, such
as the scheme proposed in [23]. It has focused on providing
additional features such as data de-duplication and conjunc-
tive queries while maintaining required properties of forward
and backward security.

B. BLOCKCHAIN-BASED SEARCHABLE ENCRYPTION
Hu et al. proposed the first work to make use of blockchain
in searchable encryption [24] in 2018. Their work aimed

VOLUME 4, 2023

IEEE Open Journal of the
€ Communications Society

to introduce a searchable symmetric encryption scheme in
which the results returned by a potentially malicious server
are verifiable by the data user. The authors eliminated the
use of a central server for data storage and instead used
Blockchain as its replacement. This scheme, however, has a
significant shortcoming in that Blockchain is not designed
to handle a large amount of data and using it to store large
files results in impractical latency. In the same year, the
work of Cai et al. [25] sought to prevent dishonesty both at
client and server side regarding payment for search results
by recording the logs of transactions in a public Blockchain.
This scheme, however, requires explicit verification of the
results by the client from the blockchain. Since then several
schemes [26], [27] have been proposed that did not eliminate
the central server but instead used Ethereum smart contracts
to ensure fairness between client and server. The smart con-
tract is designed in such as way that until both parties agree,
the payment will not be released. To enable forward secu-
rity in blockchain-based searchable schemes, Guo et al. [28]
introduced a verifiable and forward-secure SSE scheme that
relied on blockchain (for verifiability).

C. APPLICATION OF BLOCKCHAIN IN PHR SHARING

After the advent of blockchain in 2008 [1], several
researchers started to find its applications in other areas,
including healthcare. To this end, one of the early works
to use blockchain in the health sector was proposed by
Azaria et al. [29] in 2016. The authors attempted to store
references of medical data onto blockchain and leverage its
immutability and transparency to ensure data integrity, veri-
fiability, and data sharing. In the same year, Yue et al. [30]
proposed an app called “Healthcare Data Gateway (HDG)”
based on blockchain gives patients full control over their
health data. In the following year, Xia et al. [31] proposed
one of the early works specifically geared towards shar-
ing medical records using blockchain. They attempted
to address the access control problems associated with
health records using the immutability and autonomy pro-
vided by blockchain. Improving upon Xia et al.’s scheme,
Fan et al. [32] put forth a scheme that had efficient access
and retrieval mechanisms and sought to address the privacy
risks associated with sharing of data with third parties.

D. APPLICATION OF SE AND BLOCKCHAIN IN PHR
SHARING
In 2018, Zhang and Lin [33] proposed a scheme that used
blockchain as well as searchable encryption to provide
a health data sharing scheme. They used a combination
of private and consortium blockchains along with public
encryption with keyword search (PEKS) to build blockchain-
based secure and privacy-preserving PHI sharing (BSPP)
scheme. However, it is inefficient due to heavy dependency
on bilinear pairing.

In 2021, Wang et al. [34] proposed a PHR sharing scheme
that uses IPFS to store the PHRs. Nevertheless, it uses bilin-
ear maps for cryptographic operations, making it inefficient.

VOLUME 4, 2023

Moreover, there are some schemes [35], [36] for health
recording sharing based on proxy re-encryption. Some of
the schemes [37], [38], [39], [40] have used attribute-based
encryption to have better access control over sharing of PHR.
However, all these schemes rely on bilinear maps for secu-
rity, making them inefficient. Additionally, there has not
been any focus on forward security in these schemes, and
many are not dynamic. Unlike the schemes discussed so
far, recently, in 2021, Tang et al. [41] proposed a PHR shar-
ing scheme based on searchable symmetric encryption (SSE)
and blockchain. However, it requires the concerned hospitals
to store the data on a local server, which is not a realistic
assumption. A recent scheme proposed by Nie et al. [42]
uses IPFS to store the encrypted cipher-texts and blockchain
for meta-data. However, it is not dynamic in nature, i.e., all
the health records are encrypted at a time and there is no
mechanism to add the health records later.

E. OBSERVATIONS

We observe that there are many schemes that make use of
asymmetric searchable encryption for health data sharing.
However, the use of symmetric searchable encryption for
the same has not been explored well enough, even though
the literature of SSE is quite strong. Our work tries to
fill this research gap by providing a symmetric searchable
encryption based health data storage and sharing scheme
using blockchain technology and IPFS. The proposed scheme
is able to provide confidentiality of PHRs and other pri-
vate metadata, secure communication channels, verifiability
using blockchain, forward security, and also efficiency using
symmetric key encryption.

IV. SYSTEM MODEL
In this section, we discuss the system architecture and threat
model used in the development of the proposed s

The system model proposed in this article consists of
various patients, hospitals, a blockchain network consisting
of peer nodes maintained by hospitals, and an IPFS network
that is accessible through the Internet.

Fig. 1 shows a diagrammatic representation of our system
model. It shows two hospital instances designated as
Hospital 1 and Hospital 2. Each hospital contains a hospital
server, a Blockchain node, several doctor devices and several
medical devices. In practice there will be more number of
hospitals; however, for clarity we have shown only two hos-
pitals. Further, there are two patients designated as Patient 1
and Patient 2. In practice, there will be many patients and
each patient can visit any of the hospitals for diagnosis but
for simplicity, we have shown only two patients. Patient 1
visits Hospital 1 and Patient 2 visits Hospital 2. A patient is
alternatively called data owner. Further, we have an instance
of data user in the model. A data user can interact with any
of the hospitals and data owners. The exact nature of this
interaction will become clear in subsequent sections.

Fig. 1 shows the blockchain and IPFS networks. Each
hospital is also a part of the consortium blockchain network.

2229

BISHT et al.: EFFICIENT PERSONAL-HEALTH-RECORDS SHARING IN loMT

7.
Secure Docmr
Entries Hosp“a, Device 1
Server (HS)

Blockchain

Node (BN) PHR, D°_°‘°' edical
Generation Device 2 /' peyices

Request .
e
p—

Encrypted Doctor
PHR Device 3

5.
Encrypted
PHR

| a
Encrypted
PHR

1.
PHR
Generation
Request

19, Enciypted
Decrypted ncryptes
PHR IDs Pk
10.
success/
failure Trapdoov

ey

o.
successlT isecuve

Patient 1 failure Entries

Hospital 1

14.

15. Encrypted
Encrypted PHR ID
PHR IDs Request

Encrypled - ‘
Blockchain
Network

6.
PHR ID
—_—

Trapdoor

11.
Keyword

HR IDs

18.
Decrypted
Pi
and Keys

17.
Encrypted
PHR IDs

Data User

Com

Patient 2

Doctor
Device 3

Blockchain

Node (BN) E‘ ==
Doctor "
Device 2
Devices

Hospnal

Hospital 2

FIGURE 1. System model.

It is used to store meta-data such as the encrypted index.
IPFS, on the other hand, is independent of the hospitals and
used to store the actual PHRs in encrypted form. We can
say that the PHRs are stored in an off-chain structure that
is decentralized; thereby providing more reliability.

Apart from presenting the different entities involved in
our system model, Fig. 1 also describes the network model
of our system. The connector lines in the figure represent
communication channels between the entities. Bidirectional
arrows denote the fact that the channels are bidirectional. The
channels shown using black lines are built over the Internet
while the channels denoted using blue lines are built over
local network of the entity in which they are contained. For
instance, the communication channel between Patient 1 and
Hospital Server is shown using a black line, while that of
Doctor Device I and Hospital Server is shown using a blue line.

We have shown the various messages that are passed
between the entities in the system during its operation. These
messages are shown using the color pink and numbered in a
sequential manner so as to describe the flow of information
in the system. Note that the messages are not shown for
Patient 2 and Hospital 2 as they would be similar to that
of Patient 1 and Hospital 1. Additionally, each entity in the
system generates its own pair of elliptic curve keys which are
then used for secure communication with other entities using
“Elliptic Curve Integrated Encryption Scheme (ECIES)”.

We describe each of the entities present in the system
model in detail.

o Patient (P): A patient is a person who visits a hospital
for medical diagnosis and is also called the data owner.

2230

o Hospital Server (HS): We define hospital to be a med-
ical institution that provides services to a patient. Each
hospital that is part of our system should also maintain
a server (denoted by HS) that handles all the requests
from patients and a blockchain node (BN) that connects
the hospital to the blockchain network.

e Doctor (D): Every instance of a hospital has several
doctors associated with it and each doctor is provided
a device through which he/she can access the hospital’s
IT infrastructure.

e Data User (DU): Any entity that wants to make use
of the data uploaded into the system by data owners
is called a data user. A patient itself can also become
a data user. Another common instance of a data user
is a doctor who requires a patient’s medical history for
diagnosis. Moreover, insurance companies can also be
categorized as data users.

e Blockchain Node (BN): In our scheme, every hospital
in the ecosystem should be a part of the consor-
tium blockchain network, and thus should maintain
a blockchain node that takes part in the consensus
mechanism.

o IPFS: It is used by patients to store their Personal Health
Records (in encrypted form). It can be accessed through
the Internet.

e Medical Devices: Each hospital has a set of medi-
cal devices to diagnose patients and are connected to
the local network of the hospital. A few examples of
such devices are “Electrocardiogram (ECG) device”,
“Electroencephalogram (EEG) device” and “Magnetic
Resonance Imaging (MRI) device”, etc. A doctor can
use these devices to generate data to be included in the
PHR.

V. PROPOSED SCHEME

Till now, we have discussed about individual entities in our
system. We now move ahead and describe the interactions
between these entities which forms the core of our proposed
scheme. First, we define the various components essential
for understanding the scheme and then provide its overview
followed by a detailed description.

The proposed scheme provides dynamic updates by allow-
ing addition of new PHRs without having to rebuild the
index. It is important to note that our scheme does not pro-
vide the functionality to update the contents of an individual
PHR. It only allows addition of new PHRs dynamically, i.e.,
without having to rebuild the index. PHR records are gener-
ated by a doctor; therefore, a data owner does not need the
facility to themselves update an individual PHR. Moreover,
the literary works have only focused on addition of new
PHRs and not on updating an individual PHR. Here, we
also focus on the same. After PHR addition, a data user can
search for PHRs containing specific keywords with consent
from the data owner. For ease of understanding, we have
provided a list of notations used to describe our scheme, in
Table 2.

VOLUME 4, 2023

‘IEEES IEEE Open Journal of the
Comdoc communications Society

TABLE 2. Notations.

Notation | Definition
h(-) Collision-resistant hash function
MK Patient master key
TS Timestamp
Ex() Probabilistic ECIES encryption using public key K
Ef K Probabilistic symmetric encryption using key &
X k] Access an element of dictionary X using key k
X; Access it" element of list X
I Concatenation
U Universal set for keywords

A. DEFINITIONS

Definition 1 (PHR): A PHR is a text file containing the
diagnosis report generated by a doctor.

Definition 2 (Keyword): A keyword is a sequence of char-
acters that is delimited by a special character such as a blank
space.

Definition 3 (Secure Entries Dictionary): It is a dictionary
denoted by A and is used to store the entries of the encrypted
search index.

More details about A are presented in Section III.

Definition 4 (Trapdoor): A trapdoor is a special search
token that is issued by data owner to a data user when
the latter wants to search for the PHRs containing a given
keyword.

The exact structure of a trapdoor is provided in Section I'V.

Definition 5 (PHR Sharing Scheme): We define our
scheme as a tuple ¥ = (KwExt, SEGen, PHRAdd, TrapGen,
Search, Retld) where the algorithms are described as
follows:

o W <« KwExt(PHR): KwExt takes a PHR as input and
returns a list W of unique keywords present in the PHR.

o A < SEGen(W): SEGen takes a set of unique keywords
W as input and returns a secure entries dictionary A as
the output.

e § < PHRAdd(A): PHRAdd takes a secure entries
dictionary as input and stores its content on the
blockchain MR-tree. It returns the status of the oper-
ation denoted by s which can be either success or
failure.

o t < TrapGen(w): TrapGen takes a keyword w as
input and returns the corresponding trapdoor ¢ for
search.

o I' <« Search(t): Search takes a trapdoor ¢ as input
and returns a list I' of encrypted identifiers of PHRs
containing the keyword corresponding to ¢.

e YT <« Retld(I"): Retld takes search result I" as the input
and returns the actual PHR identifiers Y.

VOLUME 4, 2023

B. OVERVIEW

Our scheme consists of the following phases: 1) Setup,
2) Patient registration, 3) PHR generation and addition, and
4) Keyword search.

We first give an overview of the scheme in this section
and then describe each phase in detail.

In the Setup phase, the entities select security parameters,
such as public-private key pairs and other secret values.
This phase is executed only once during the system initial-
ization. The second phase, patient registration, is executed
by a patient whenever he/she visits a hospital for the first
time. After completion of this phase, the patient receives
a globally unique identifier and password. The patient uses
the same identifier and password when visiting any other
hospital later.

The third phase, PHR generation and addition, is initi-
ated by a patient when he/she requires health diagnosis. The
patient retrieves the list of doctors from the hospital and
selects a doctor for treatment. He/she then sends a request
to the chosen doctor via HS to retrieve the doctor’s public
key. Finally, he/she sends a token to the doctor via HS. The
token is later used to authenticate the patient when he/she
visits the doctor.

Upon connecting with the doctor, the patient is authenti-
cated using the token. The doctor diagnoses him/her only if
the token provided by the patient matches the one it received
earlier. Diagnosis involves collecting data from the IoMT
smart devices and giving medical prescriptions based on the
patient’s condition. The doctor then constructs a PHR of
the patient containing all this information and sends it to the
patient securely.” Upon receiving the PHR, the patient runs
KwEXxt algorithm to retrieve unique keywords from the PHR.
The patient then uploads the PHR to IPFS and receives a
unique content-id for it denoted by idy,,. Finally, the patient
runs SEGen algorithm and sends the output A from the
algorithm, to the hospital server. The hospital server sends
this data to its BN, which submits it as an add transaction to
the blockchain network. Finally, this transaction is processed
and added to blockchain by the peers. A flowchart of PHR
generation process from the perspective of a patient can be
seen in Fig. 2.

The fourth and final phase, Keyword Search, starts when
a data user wants to search for PHR containing a particu-
lar keyword. He/she requests for a trapdoor corresponding
to the keyword to be searched from the patient. The data
user sends this trapdoor to the hospital server, which, in
turn, runs the search algorithm and returns search results
containing encrypted ids of the PHRs containing the given
keyword along with some possible dummy entries. The
dummy entries are a means to provide security to our scheme
(see Section IV for details). The data user can get actual PHR
ids and decryption keys by sending the search results to the
patient/data owner. After obtaining the decrypted PHR id
from the patient, the user can then directly query IPFS and

2. Channels are secured using ECIES encryption.

2231

BISHT et al.: EFFICIENT PERSONAL-HEALTH-RECORDS SHARING IN loMT

PHR Generation

Retrieve doctors'
information from

Select a Doctor
ind receive his/her|
public key through

Send encrypted 7|
to doctor via HS

Create a token 7
and encrypt it
using Doctor's

public key

Visit the doctor
and authenticate
using T

Recieve PHR
from doctor after
dlagmms

and receive
con(enl id

Generale secure
entries dlcuonary

Send Ato HS

Keyword Search

Send the keyword
to be searched to

Recieve Trapdoor

Data Owner

it from Data Owner|

l

Recieve list of
encrypted PHR

identifiers from
HS

Sendtto HS

Send the
encrypted PHR
identifiers to Data
Owner

Recieve decrypted
PHR identifiers and

dorresponding PHR
decryption keys

Use the PHR
decryption keys to

decrypt the PHRs

Use the decrypted

PHR identifiers to

download PHRs
from IPFS

Upload encrypted
PHR o IPFS Encryptthe PHR

Wait for
success/failure

FIGURE 2. Flowcharts for PHR generation and keyword search.

download the encrypted PHRs. Since the PHRs are stored
in encrypted form, the data user first needs to decrypt them
using the key sent by patient along with the actual PHR id.
A flowchart of this process from the perspective of data user
is also shown in Fig. 2.

C. PHASES
We now describe the phases mentioned above, in detail.

1) SETUP

In this phase, the entities generate security parameters such
as public-private key pairs. It has the following sub-phases.

o Global Setup: A non-singular elliptic curve Ej(a, b) of
the form: y?> = x> 4+ ax 4+ b (mod p) is chosen where p is
a large prime, and a,b € Z, = {0, 1, 2, ,...,p — 1} such
that 4a> + 27b* # 0 (mod p) is satisfied. Additionally, a
generator G is chosen from Ej,(a, b) whose order will be as
large as p. Next, a “collision-resistant one-way cryptographic
hash function, A(-)” with output length / is chosen which
acts as a random oracle . A security parameter n is also
chosen. The keyword space which contains all the valid
keywords that can be present in a PHR is denoted by U.
Finally, for ECIES encryption, ECDH key exchange and
probabilistic AES-OCB3 encryption [7] are chosen as the
underlying components.

e Patient Setup: Each patient (device) randomly selects
an integer k, € Z; as its private key, where Z;,‘ = {1, 2,
,..., p— 1}. The corresponding public key is computed as
K, = k, - G where (-) represents elliptic curve scalar mul-
tiplication, that is, k, -G = G+ G+ --- + G, k, times. In
addition to public-private key pair, each patient randomly
selects a master key MK € {0, 1}"". Further, each patient
device maintains a dictionary which we term as “Current
Head Dictionary (CHD)”. It takes a keyword (sequence of
characters) as its key and stores a PHR id as the correspond-
ing value. Patient device also maintains a reverse look-up

2232

dictionary RLD which maps encrypted PHR ids to actual
PHR ids and the PHR decryption keys. The significance of
these dictionaries will become clear in the PHR generation
(see Section III).

e Hospital Setup: In a similar manner to a patient device,
HS randomly selects its private key kj, € Z;j and computes
public key as K, = kp - G. It is important to note that
blockchain node, BN, will also use this key because HS and
BN are maintained by the same entity (i.e., hospital). HS
also maintains a dictionary that we term as “User Dictionary
(UD)” which takes the patient’s unique id as the key and
the patient’s public key as the value. It is used to retrieve
the public key of the patient for encryption when HS wants
to send some data to the patient.

e Doctor Setup: A doctor device is assumed to be main-
tained by each doctor. Doctor device randomly selects its
private key k; € Z;; and computes the public key as
Ky = kq - G. Each doctor has a unique identity idp, for
the hospital where he/she is employed.

e Data User Setup: Any data user that wants to interact
with the system must select a private key k, randomly from
Z[;" and compute the corresponding public key as K, = k,-G.

2) PATIENT REGISTRATION

Suppose a patient, P wants to visit a hospital H. He/she
registers himself/herself by providing the public key K, to
HS and then selecting a unique id and password. This id and
password combination is used by the patient to authenticate
himself or herself while communicating with HS. Upon com-
pletion of registration, the patient receives the public key Kj,
of the hospital server HS. Note that there are other ways the
patients can receive Kj (for example, the hospital can list
its public key on its website and use a certificate authority
for its validation). However, to avoid providing unnecessary
details and to simplify the scheme, we have assumed that
the hospital server will simply send its public key back to
the patients during registration. We have used similar ways
to share public keys throughout our scheme, but if required
they can listed on a public platform. It does not have any
impact on the security of the scheme.

3) PHR GENERATION

An overview of the PHR generation process is given in
Fig. 3. We describe the entire process in detail in this section.

e [nitiation: To initiate PHR generation, a patient P
requests an updated list of doctors from the HS. The patient
P generates t € {0, 1}* as a token and then selects a doctor
D from the list and sends a request to D through HS to get
D’s public key. P then encrypts t using public key of D and
sends it to him/her via HS.

Later, when the patient interacts with D.3 he/she sends
the token t to the doctor for verification. If it matches the
token previously sent by the patient to the doctor, then the

3. Patient has the option to interact in-person or remotely depending on
the need.

VOLUME 4, 2023

IEEE Open Journal of the
€ Communications Society

Server

Doctor IPFS Blockchain

.
1]
1 1

FIGURE 3. PHR generation sequence diagram.

Algorithm 1: Keyword Extraction

Input: PHR

Initialize a set ks

for each keyword w in PHR do
| insert(ks, w)

end

Convert ks to list [

return /

doctor diagnoses the patient. If required, the doctor collects
data from the medical devices and generates a PHR. Doctor
device then encrypts the PHR using public key K, of the
patient. This encrypted PHR is finally sent to the patient P.

e Secure Entries Generation: P upon receiving the
encrypted PHR, decrypts it using his/her private key and then
runs Algorithm 2, which is an implementation of SEGen,
over the PHR to get secure entries dictionary A. Algorithm 2
is explained below in detail.

PHR upload: Algorithm 2 first generates the PHR encryp-
tion key kppr = (MK || TS), where MK is P’s master key and
TS is the current time stamp. Next, the algorithm executes
Algorithm 1, an implementation of KwExt, to generate the
list of unique keywords, W = {wg, ws, ..., w,_1}, present
in the PHR. It then encrypts the PHR using the generated
key and uploads it to IPFS, which returns a content id,
denoted by idpy,. This id is encrypted as id;hr = Eflir(idphr)
to store it in the encrypted index. The encryption is neces-
sary to prevent leakage of information to hospital. During

VOLUME 4, 2023

Ek,, (ide) R E
Ex, (KP) _ E
Ex,, (Ex,(PHR)) 5
Ex, (PHR) 5
N i ESX(PHR) E
E idphy
EK]LS(A) R E :
A
mmmmmmmcmmmcmem
success/ failure

implementation the encryption function ESX(.) is replaced
by AES-OCB3.

P finally stores the actual PHR id idy;, and PHR decryp-
tion key kpp in the reverse lookup dictionary RLD by using
id};hr as the key. RLD is used to map an encrypted PHR id
to an actual PHR id and the decryption key during keyword
search (more details are provided in Section IV).

Noise Addition: Instead of using the original set of key-
words W to generate the secure entries, we first add some
noise to it by merging Q with W. Q is a subset of the
keyword space U. The new keyword set is denoted by V.
This addition of noise is required in order to prevent attacks
against our scheme (see Section II).

Encrypted Search Index: Before going any further into
explanation of Algorithm 2, we need to understand the structure
of the encrypted search index and how it is stored in the
Blockchain. The encrypted search index can be considered
as a dictionary with a unique keyword w as the key and a
linked list as the corresponding value. The linked list stores
the encrypted identifiers of the PHRs that contain keyword w.
This encrypted search index is partially stored on the patient
device and partially in the blockchain’s Merkle-Radix (MR)
tree. Specifically, the key-set of this dictionary is stored on
the patient’s device in the form of CHD dictionary; while the
value-set, which is essentially a set of linked lists, is stored
in the MR-tree. This division is essential for the security of
the search index, because generation of trapdoor is dependent
on the key-set. If we store it on the blockchain, anyone can
publicly access it and generate the trapdoor corresponding to a
keyword. This would defeat the purpose of having a trapdoor.

2233

BISHT et al.: EFFICIENT PERSONAL-HEALTH-RECORDS SHARING IN loMT

ki |

L. o
rv’.c’/dd’l‘i,Z ki;z Ek,,,.,kl(idphr,,l) === null

null

E) Kphry (id}?hf‘o)

An entry
of CHD
/\ 1 L l
- addr; = h(kwil‘ldphnHO) >l add k Ey,. (idphr,)
[w Jidphr, aderin|F- NS
e ki = h(kUJiHidphnHl) ” i - -

FIGURE 4. A single entry of the conceptual encrypted index.

Algorithm 2: Secure Entries Generation
Input: PHR, O
TS < Current Timestamp
kphr < h(MK || TS)
W < KwExt(PHR)
Upload E}X (PHR) to IPFS and receive idp

idy, < Epy (idphy)

phr
RLD[id,’,h,] = (idphr, kphr)
V«<QuUW

for 0 <i < |V]| do

kw < h(MK || Vy)

addr < h(kw || idpp, || 0)

k < h(kw || idpn, || 1)

if CHD[V;] = null then
addrP’™ < null

kP <« null

else

idZZerv <~ CHDIV;]

addr’™ < h(lw || id);" || 0)
kP — hkw || id”r || 1)

phr
end
if V; € W then
| ¢ < EX(addr?™ k7 id,)
else
r “POEN 0, 1y
¢ < EX(addr?™ ", BN (1)
end
Aladdr] < ¢
CHDLV;] < idppr
end
return A

Fig. 4 shows one entry of this conceptual dictionary.
Recall that CHD is a dictionary maintained by the client
device. Specifically, CHD[w] stores the id of the PHR that
contains w in it and was added most recently to the system.
This PHR identifier forms the head node of the linked list
associated with keyword w along with some dummy nodes
(discussed in part - Node Generation). As mentioned ear-
lier, the linked-list corresponding to key w is used to store
the identifiers of all the PHRs that contain w. Therefore,
there is a linked list corresponding to every unique keyword
contained in the set of PHRs of a patient. Each node of
a linked list is stored individually in the MR-tree of the
blockchain and has a unique MR-tree address. A node is
linked to the next one by storing the MR-tree address of

2234

the next node in the current node. We have used a linked-
list over other data structures, such as an array, because by
design it ensures forward security (details are provided in
proof of Theorem 2).

Node Generation: As discussed earlier, each keyword
present in V should have a corresponding linked list. The
next part of the algorithm generates the nodes for these linked
lists. For each keyword w € V a new node for the linked list
corresponding to w will be created. This node is added to
the front of the linked list and becomes the new head node.
Adding the node from front, rather than back, is required
to ensure forward security. In i iteration of the for loop
present in the algorithm, a new head node for the linked
list corresponding to keyword V; is created. Specifically,
for 0 < i < |V|, the algorithm generates kw, addr and k
as follows: kw = h(MK || V;); addr = h(kw; || idpp, || 0);
k = h(kw | idppr || 1). Here, kw is an intermediate expression,
addr is the MR-tree address where the node will be stored
and k is the key which will be used to encrypt the contents
of the node.

Before constructing the new head node, the address and
decryption key of the current head node are required.
Therefore, the algorithm obtains the PHR id that forms the
current head node from CHD as idi;erv = CHDI[V;]. This id
is then used to generate the MR-tree address of the new
head node and the decryption key for the contents of new
head node as follows:

addrP™ = h(kw I ide | o)

e = h(kw lidoe | 1).
If CHD does not contain an entry for V;, then addr’™®” and
kP are set to null value.
Finally, the algorithm calculates c. If the keyword V; is
present in the PHR, then c is computed as follows.

c=EX (addr”’e", ke, idl’,hr).

Otherwise, the value of id;hr is replaced by encryption of a
random value r of same length as idyy, as follows.

¢ = B (addr™ k7 E (1)),

The condition above is necessary to find the correct PHR
identifiers during keyword search. Details are present in
Keyword Search Section IV.

Now, c is the new head node of the linked list correspond-
ing to the keyword V;. It contains three values: a) address
of the previous head, b) key of the previous head, and
c¢) encrypted PHR id or encrypted random value. Also note

VOLUME 4, 2023

‘IEEES IEEE Open Journal of the
Com3oc communications Society

Data
User

Trapdoor Request
Ek, (w, K)

>
P,

[Patient] [Hospital]
Server

Trapdoor
t

A

Ex,, (t)

[Blockchain

0o

AN

« Upon receiving
trapdoor, the Hospital
server obtains addr, k
from ¢t.

« It then retrieves the
entry at address addr
from Blockchain.

* From that entry it

ESK (addrre, ke, id;h,)ﬂ

retrieves id, . as well
as addr?™” and kP
using trapdoor.

T -
idy,, is stored in a list

Ek,(T)

T and addr is assigned

' idphr

the value of addr?™®”
and k is assigned kP"V

¢ This process is
repeated until addr?™
or kP is not null

'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
1
'
'
'
'
'
'
1
'
'
'
'
'
L

E’X(PHR)

Kphr

>

FIGURE 5. Search process.

that, in Fig. 4 we have not shown dummy nodes for the
sake of simplicity. However, in practice there will be dummy
nodes mixed with the valid nodes.

All new head nodes denoted by {c; | i € {0, 1,2, ..., |V]|—
1}} are stored in dictionary A by using addr; as the key.
The algorithm returns A as its output.

e Uploading to Blockchain: After generating A Patient P
sends it to HS which forwards it to the “Blockchain Node
(BN)”. BN then retrieves each key values pair (addr, ¢) and
stores ¢ at address addr of the MR-tree, and records this
transaction in a block. Upon completion of this operation, BN
notifies HS about the successful execution of the transaction,
which in turn shares the success response with P.

4) KEYWORD SEARCH

An overview of the keyword search process is given in
Fig. 5. This section describes the search process in detail.

e Trapdoor Generation: Suppose a data user (DU) wants
to search for a PHR of a patient P that contains a specific
keyword w. DU sends the keyword w to P to receive a
trapdoor ¢ corresponding to w. For this, P runs Algorithm 3
which calculates kw = h(MK || w). It then retrieves the PHR
id stored in head node of the linked list corresponding to w
as follows:

id) = CHD[w]

The algorithm then calculates the address and key of the
head node as follows:

addr = h(kw I idge | o)

VOLUME 4, 2023

Algorithm 3: Trapdoor Generation

Input: w
kw < h(MK || w)
if CHD[w] = null then
| idppad < nudl
else
| id)*! — CHDIw]
end
addr < h(kw || idfjfl‘jd | 0)
key < h(kw || idg;;fd I 1)
t < addr || key
return ¢

k= h(kw I idlge | 1)

addr is the MR-tree address of the head node of the linked
list corresponding to w and k is the symmetric key using
which contents of the head node were encrypted. The algo-
rithm returns ¢ = addr || k as its output which is then sent
by P as the trapdoor to DU.

e Search: DU then sends the trapdoor ¢ and its own
public key to HS after encrypting it using Kj,.* HS then
executes Algorithm 4 which directly queries the state of
the blockchain’s MR-tree using REST API. Specifically,
using the trapdoor ¢, HS obtains the address addr and key
k required to obtain the head node of the linked list. HS

4. K, can be obtained directly from hospital.

2235

BISHT et al.: EFFICIENT PERSONAL-HEALTH-RECORDS SHARING IN loMT

Algorithm 4: Keyword Search

Input: ¢

addr, key < Parse ¢

Initialize a list T’

while True do

Send a request to the blockchain node to get data
at addr

Store the response in res

if res.code = ok then

C <« res.content

addrP™ , kP’ x <= Diey(C)

Append(T, x)

if addr’™® = null then
| break

end

addr < addr’™”

key < kP"®

else
| return (not-found, null)
end

end
¢ < Eg,(I')
return (ok, c)

Algorithm 5: Retrieve Identifiers
Input: I'
Initialize list YT
for 0 <i< |I'| do
if RLD contains T'; then
idppr, kphr <— RLDI[T]
append (Y, (idpnr, kphr))
end
end
return Y

sends a request using the blockchain’s REST API to retrieve
data at the address addr of the MR-tree. The response of
the request is C = E,fK (addrP™’, kP™, x), where x can be
either idl/]hr or E,f’;r (r). x is appended to a list I by the HS.
addr?’™ and k™" are then used as the new values to obtain
the previous node. This process continues until addr’™®” or
kP is not null. After completion of Algorithm 4, HS sends
I' to DU after encrypting it using DU’s public key. Note
that, for simplicity, we assume that HTTP protocol is being
used for communication. Therefore, we have used some of
the HTTP status codes like “ok” and “not-found” in the
algorithm to denote the status of responses.

e PHR Identifier Retrieval: DU sends I' to P in order
to obtain the actual PHR identifiers. P runs Algorithm 5
to retrieve the actual identifiers of PHRs that contain w.
The algorithm uses reverse lookup dictionary RLD for this
purpose. If T'; denotes an element in I', then P checks if an
entry corresponding to I'; exists in RLD. If it exists, then
actual PHR identifier and decryption key are retrieved as

2236

idphr, kphr <= RLD[T';] and are appended to list Y along
with the PHR decryption key k. Finally, the list Y is sent
to DU which can then retrieve the encrypted PHR from IPFS
and decrypt them.

VI. SECURITY ANALYSIS

For proving the security of our scheme, we use the real-
ideal simulation paradigm [43] that is used in most of the
previous searchable encryption works [12], [13], [21] and
prove that our scheme provides semantic security against
an adaptive adversary in a semi-honest setting. First, we
define the threat model under which our system is secure.
This is followed by definition of information leakage of our
scheme in the form of leakage functions. We then show that
a simulator that takes these leakage functions as its inputs
is indistinguishable from the real protocol for the adversary.
This is followed by a proof that our scheme provides forward
secrecy and is also verifiable.

A. THREAT MODEL

We evaluate security our proposed scheme by considering
hospital as the adversary. All the important data in the system
flows through the hospital, therefore, if we can show that
our scheme is secure against an adversary with capabilities
of hospital, we can be sure that it is secure against any
adversary with lesser capabilities.

We consider a hospital to be honest-but-curious. It exe-
cutes the protocol honestly, but can try to learn about the
information it is unauthorized to access. It can do so by
using the data leaked to the hospital server or the Blockchain
node during execution of the protocol. We collectively rep-
resent this leakage in the form of leakage-functions which
are described in Section VI-B.

We assume a doctor to be trusted, because he/she is the
entity which generates the contents of the PHRs. Moreover,
by securing the communication between any two entities in
the system using ECIES encryption, we can ensure that a
doctor is not impersonated by an adversary.

B. SECURITY DEFINITIONS

Definition 6 (Search Pattern): A search pattern describes
whether a keyword previously searched for is searched again.
Formally, if m is the number of search queries that have been
made, the search pattern is a matrix Z of dimensions m x m
such that the value Z;; is 1 if w; = wj; otherwise, it is 0.
Here, w; is the keyword searched during i”* query of a data
user.

Definition 7 (Leakage): The leakage for X is defined as a
tuple L = (LsgGen» LPHRAdd> Lsearch) Where LsgGen, LpHRAdd
and Lgeqrcn, are leakages that occur during the secure entry
generation, addition and search, respectively. These leakages
are inherent in all the efficient searchable encryption schemes
present till now. Note that, our scheme does not leak any-
thing during the setup phase, because there is no interaction
between the entities during this phase. Each entity performs

VOLUME 4, 2023

IEEE Open Journal of the
€ Communications Society

the setup offline, and as a result, there is no possibility of
any leakage except through physical means.
We define LsgGen, LrHRAdd and Lseqren as follows:

o LsgGen: SEGen takes a PHR as input and gives secure
entries dictionary A as the output. In SEGen, the length
(or size) of the PHR is leaked during its upload to the
IPFS. Since the PHR is encrypted, no other information
is leaked but the length can still be figured out from
the ciphertext. We denote the length of the PHR by m.
Thus, Lsggen is defined as a function that takes a PHR
as input and outputs m.

o LpHraga: During the addition of a PHR, the only
information that is leaked by our scheme is the number
of entries in A. This is because we give only A to the
HS. Since the key is output of a hash function and the
value is output of a probabilistic encryption function,
HS can only figure out its size (the number of entries
in A) but not the actual content. Thus, Lpgraqqs takes
a set of these keywords W as input and outputs «.

o Lgearch: During search corresponding to a keyword w,
the information that is leaked to the server is the number
of files containing the keyword w, denoted by B, and
search pattern Z. Formally, Lge,., takes a keyword w
as input and outputs (8, Z).

Definition 8 (Adaptive Semantic Security for X): We
define security of our scheme similar to [21]. Let n € N
be a security parameter and m = poly(n) be a positive inte-
ger, where N is the set of natural numbers. For simplicity of
proof we assume that patient acts as a data owner as well as
a data user. This does not affect the security of the scheme
as data user is considered trusted.

Consider the experiments Idealr s g and Reals » 4 v exe-
cuted between stateful adversary A and stateful simulator S
using leakage functions Lpyrags and Lseqrch-

e Ildealr 5 ¢: Environment W asks the data owner to
run SEGen, Add or Search operation by giving it the
required information. For SEGen, W gives a PHR as
input. For Add, W gives secure-entries to be added to
blockchain as input and for Search it gives a keyword.
Data owner sends the operation to ideal functionality F.
F gives the corresponding leakage to S which returns
either abort or continue to F. For SEGen, it returns
abort or secure entries dictionary. For Add, it returns
abort or “done” and for Search, it returns abort or list
of encrypted PHR/dummy identifiers. W observes the
output and finally returns a bit b as the output.

e Reals o w: Environment W asks the data owner to
run SEGen, Add or Search operation and provides the
required information. For SEGen, it provides a PHR.
For Add, it provides a secure entries dictionary and
for Search it provides a keyword. Data Owner executes
the corresponding operation in presence of a real world
adversary A. Data Owner outputs either abort or secure
entries dictionary for SEGen. For Add it outputs abort
or ‘Done’ and for Search, it outputs abort or list of

VOLUME 4, 2023

encrypted PHR/dummy identifiers. W observes the data

owner’s output and finally returns a bit b as the output.

We say that a scheme X emulates an ideal functionality

F if for all real world PPT adversary A, there exists a PPT

simulator S such that for all polynomial time environments
W there exists a negligible function negl(n) such that:

|Pr[Realgf,A,\p(n) = 1] — Pr[ldeal]:’g,q,(n) = 1]|
< negl(n)

Definition 9 (Forward Security): A scheme ¥ = (KwExt,
SEGen, PHRAdd, TrapGen, Search, Retld) is forward
secure [16], if the leakage that occurs due to previous Add
and Search operations do not reveal any partial information
about a newly added PHR except what is revealed by
leakage L.

Definition 10 (Verifiability): A scheme ¥ = (KwExt,
SEGen, PHRAdd, TrapGen, Search, Retld) is said to be
verifiable, if the results returned to the user through the
Search operation are valid.

C. SECURITY CLAIMS

1) ADAPTIVE-SEMANTIC SECURITY

The correctness of Theorem 1 ensures that our scheme is
confidential against a PPT adversary in semi-honest model.
Once proven secure against hospital, we can be sure that
our scheme is also secure against any other adversary that
does not have access to all the leaked information.

Theorem 1: If h is a hash function and ESK(.) is a CPA
secure encryption scheme, then our PHR sharing scheme X
is secure based on Definition 8 under random oracle model.

Proof: To prove that the real game and ideal game are
indistinguishable by any PPT distinguisher, we provide an
implementation of PPT Simulator S that takes only the
information provided by leakage functions as input to sim-
ulate patient behaviour in a way that is indistinguishable
from real patient. S initializes two dictionaries LenDict and
ResDict. LenDict uses a keyword as the key and stores an
integer as the value. ResDict uses a keyword as the key and
stores a list as the value.

For SEGen, S returns a secure-entries dictionary by exe-
cuting the Ssggen, routine described in Fig. 6. The routine
takes o = |V| as the input. S obtains V using WU Q, where
W can be easily obtained from the PHR and Q is known
publicly. The routine simply creates o number of random
entries for the dictionary A and returns it as the output.
The key is a randomly chosen from {0, 1}/ and the value is
probabilistic encryption of ot Hidpn,), Here, [is the output
length of hash function, n is the security parameter and /g,
is the length of PHR identifier. The key and value of each
entry are indistinguishable based on random oracle model
and the CPA security of ESK | respectively. Thus, W is unable
to distinguish between the real and ideal games using the
SEGen operation.

During Add S simply returns ‘Done’ because the addition
of a PHR in real game does not return anything besides abort
or ‘Done’.

2237

BISHT et al.: EFFICIENT PERSONAL-HEALTH-RECORDS SHARING IN loMT

SSEGen(a)

1: Initialize dictionary A

2: forl1<j<a

3: addr & {0,1}!

4 k& {01}

5. Aladdr] = ESK (0T idpn))
6 : endfor

7: return A

SSearch (67 W)
1: if LenDictjw] = null

2: LenDict[w] < 8

3: Initialize ResDict[w] as an empty list
4: for0<i< g

5: k<« {0,1}"

6: append(ResDict[w], ESK(Olidph,r))
7: endfor

8: endif

9: if B # LenDict[w]
10 : for 0 < i < (8 — LenDict[w])

11: append(ResDict[w], E;?K(Olidphr))
12: endfor

13: LenDict|w] + B

14: endif

15: return ResDict[w]

FIGURE 6. Implementation of simulator.

During Search & must return a list of encrypted
PHR/dummy identifiers. For this & executes the routine
described in Fig. 6. It takes an input B which is the
length of the list of encrypted PHR/dummy identifiers. This
information is provided to S by the leakage function Lg.qch.
S uses LenDict to keep track of the length of the list that is
to be returned as output when keyword w is searched. When
w is searched for the first time, and the leakage correspond-
ing to it is B then a new entry (w,) is created in LenDict.
ResDict also gets a new entry with w as the key and a list
containing § encryptions of 0idphr (lid,,, 1s the length of the
PHR identifier, which depends on the hash function used by
IPES). This list is returned as the output. Each entry of the
list is indistinguishable based on the CPA-Security of ESK.
When w is searched again, the same list is returned. Now, for
the case when w is searched after addition of one or more
PHR, the simulator just adds the number of entries equal
to the difference between B and LenDict[w]. LenDict[w] is
then updated to 8 and ResDict[w] is returned. Thus, in every
case, W gets consistent results and it is therefore unable to
distinguish the ideal game from real game. |

2238

2) FORWARD SECURITY

It is an important property of any SE scheme. It ensures that
the data leaked during the operations of the proposed scheme
do not reveal any partial information about the PHRs that
will be added in the future. For example, if an adversary
knows that a PHR contains a certain keyword, he/she must
not be able to determine if a PHR that is added later contains
the same keyword or not.

Theorem 2: Our scheme X is forward-secure in semi-
honest model under the random oracle model.

Proof: When a new PHR is added, the address is com-
puted as hA(kw || idpp, || 0) (see Section III). Here, idyy, is
computed by taking the hash of the contents of the PHR
and therefore is unique for each PHR. Thus, even for a
keyword that occurs multiple times in different PHRs, the
address generated will always be a random value output by
the random oracle A. Further, new nodes are added to the
head of the linked list in the existing encrypted index. This
ensures that upon addition of a new PHR id to the same list
does not require any modification in the encrypted index.
Even in an extreme scenario where an adversary has once
queried all the keywords whose entries are in the encrypted
index,’ the adversary will not be able to figure out which
keywords are present in the newly added PHR. Hence, our
scheme is forward secure. |

3) VERIFIABILITY

Verifiability refers to the fact that the results returned by the
hospital to the user are correct. For example, an adversary
can return only partial results to the data user in order to save
computational cost. Out of total number of PHRs containing
a given keyword, the server may return only a fraction of
those. A data sharing scheme must be safeguarded against
such types of attacks.

Theorem 3: Our scheme X is verifiable under the standard
blockchain model.

Proof: According to the standard blockchain model [5],
a blockchain is trusted for correctness and availability, but
not privacy. Since a hospital server is part of a consortium
blockchain network and is honest but curious, we can be
sure that once the hospital receives a search request, it will
forward it to the blockchain node. The blockchain node will
return the correct search results from the distributed ledger
by using Algorithm 4 because it is a trusted for correct-
ness under the standard blockchain model. Therefore, the
results received by the user will always be guaranteed to be
valid. |

D. SECURITY AGAINST ATTACKS

1) QUERY RECOVERY USING FILE INJECTION

In 2016, Zhang et al. [44] proposed a query recovery attack
that could retrieve all the query made by the user. This dev-
astating attack works on the schemes where the adversary is

5. This can happen when the adversary has some pre-knowledge about
the patient’s disease.

VOLUME 4, 2023

IEEE Open Journal of the
€ Communications Society

able to inject files of their own choice and the query pattern
is leaked to the adversary during search. This attack is promi-
nent in cases such as application of SE over emails where
the adversary can just send an email containing keywords
of their own choice to the data owner.

In our case, however, this attack is resisted by the use
of dummy entries (see Algorithm 2). The attack relies on
the knowledge of a subset of keyword space (denoted by
Q) and the access pattern (the set of identifiers of files that
contain the keyword being searched), however, our scheme
hides the access pattern from the hospital by adding dummy
entries from keyword space in the secure entries dictionary.
Now, if the adversary somehow manages to inject a file
with keywords of their own choice, then when a data user
searches for a keyword w from Q, the search results (which
consists of encrypted PHR/dummy identifiers) returned do
not actually reveal if the PHR contains w or not. This is
because the result returned can be a dummy encryption. The
data user will have to query the data owner to get the actual
results. This way the adversary won’t be able to learn the
access pattern better than guessing.

2) CONTENT RECOVERY USING KNOWN KEYWORD SET

This is an attack specific to SE schemes that allows addition
of single files to the system instead of adding as a batch. If
the adversary knows a keyword set W C U, which contains
some or all of the keywords in the keyword set W of the
PHR, then after addition of a PHR the adversary can imme-
diately search for all the keywords in W’ and determine the
content of the PHR with high accuracy. This attack is very
devastating if W’ and W have large number of keywords in
common.

Our scheme provides protection against this attack by
merging a large enough set of keywords O C U with the
set of keywords W present in the PHR (see Algorithm 2).
After getting the search results, the data user has to request
data owner to execute Algorithm 5 over the search results to
get the actual PHR identifiers. This ensures that an adver-
sary cannot gets the actual PHR identifiers unless he/she
impersonates the data user. The impersonation will be pos-
sible only if the adversary can steal the private key of the
data user. Therefore, just as in previous attack, the adversary
will not be able to determine if the search results obtained
are valid or just some dummy entries. Thus, our scheme
is secure against PHR recovery using known keyword set
attack.

VIl. PERFORMANCE EVALUATION

In this section, we present the results of evaluation of the
proposed scheme under different conditions, and also provide
a comparative study with the existing competing schemes.

A. THEORETICAL ANALYSIS
In this section, we provide an asymptotic analysis of various
algorithms in our scheme.

VOLUME 4, 2023

TABLE 3. Communication cost.

Phase Cost (in bytes)
PHR request 324+ m
Add PHR upload m + 32
Secure entries upload 80|A|
Trapdoor request |w| 4 33 4 48
Search | Search request 48 4 (32 + 80)|T"| + 32|T'|
Identifier retrieval 2 x 32|T|
PHR retrieval 32+m

o Keyword Extraction: This algorithm iterates over all the
keywords present in the PHR. Therefore, it has time
complexity of O(|W|), where, |W| is the number of
keywords present in the PHR.

o Secure Entries Generation: The most time consuming
operation in this algorithm is the for-loop which iterates
over the set of keywords V. Therefore, the complexity
is O(|V)).

o Trapdoor Generation: All the operations present in this
algorithm have constant execution time. Therefore, the
time complexity is O(1).

o Keyword Search: The most time consuming operation
here is the while-loop which runs till the complete list
of nodes is extracted. Hence, the time complexity is
O(|I"'|) where T is the set identifiers corresponding to
a keyword in the encrypted index.

o Retrieve Identifiers: In this algorithm, the most time
consuming operation is the for-loop which iterates over
each element of I'. Hence, the time complexity is
oqry.

In Table 3, we show the total communication overhead of
our scheme. Here, 32 is the size of a key of the index A, or
the size of the PHR identifier, 33 is the size of public key,
48 is the size of trapdoor, 80 is the size of each entry in A
or the size of contents of a node in encrypted index and m
is the size of PHR.

B. TEST-BED SETUP AND ORGANIZATION

Fig. 7 shows the organization of our test-bed setup. We used
four desktop systems shown in Fig. 9 and a laptop shown
in Fig. 10 as the computing hardware for our simulation.
Each of the desktops had an Intel core i5 12400 processor,
16 GB RAM, and 1TB SSD, and the laptop had an Intel
core i7-9750H processor, 16 GB RAM, and 256 GB SSD.
Each of the desktops ran Ubuntu Server 22.04 LTS and had
Docker (version 20.10.22) installed on it. Docker was used
to simulate the Hyperledger Sawtooth nodes and IPFS nodes.
The laptop used Ubuntu Desktop 22.04 LTS as the Operating
System (OS). It ran an instance of the hospital server, doctor
device, and patient device. All the systems were part of the
same LAN. The entire test-bed setup took around 4000 lines

2239

BISHT et al.: EFFICIENT PERSONAL-HEALTH-RECORDS SHARING IN IoMT

M=l =[] [[| [] [en
| e[= +| || [+ & T E 5 + %% &
oo lo @ ellelle &) ISESIESS © g g/ g &
3| 188! & ceses S| & &) 5| [|B) -
(12|12 o CHEES 2 ol | ol|o B ol |o||o 8
z|z|z z g/ 8/8 3 8| |8| |8 2 3| (8|8 2

2122 o °olle o |o(|le

z||Z||2 Z||2]|2

Docker Docker Docker Docker

[] T
Host 1 Host 2 Host 3 Host 4
(Intel Core i5-12400) (Intel Core i5-12400) (Intel Core i5-12400) (Intel Core i5-12400)
1|8 T I [

[Local Area Network (LAN) ‘

Host 0
(Intel Core i7-9750H)

/

Hospital
Server

Doctor
Device

Patient
Device

FIGURE 7. Experimental setup organization.

PHR Addition

1. Register
2. Request PHR
3. search

4. Exit
Choice: 2

User Name: yen

Password: yen

Doctor ID: docl

DEBUG:urllib3.connectionpool:Starting new HTTP connection (1): Iocalnost:%Bd

Starting new HTTP connection (1): localhost:9600
DEBUG:urllib3.connectionpool:http://localhost:9600 "POST /patient/phr_gen HTTP/1.1" 200 None
http://localhost:9000 "POST /patient/phr_gen HTTP/1.1" 200 None
DEBUG:urllib3.connectionpool:Starting new HTTP connection (1): localhost:9000

Starting new HTTP connection (1): localhost:9000
DEBUG:urllib3.connectionpool:http://localhost:9000 "POST /patient/entries HTTP/1.1" 200 None
http://localhost:9000 "POST /patient/entries HTTP/1.1" 200 None

DEBUG:root:entries submitted successfully

entries submitted successfully

PHR Generated Successfully

<shelve.DbfilenameShelf object at Ox7f7d263f1720>

Keyword Search

. Register

. Request PHR
. Search

. Exit
Choice: 3

PN

User Name: yen

Keyword: trinity

DEBUG:urllib3.connectionpool:Starting new HTTP connection (1): localhost:9000
Starting new HTTP connection (1): localhost:9600
DEBUG:urllib3.connectionpool:http://localhost:9000 "POST /external/search HTTP/1.1" 200 None
http://localhost:9600 "POST /external/search HTTP/1.1" 200 None
DEBUG:root:search request successfull

search request successfull

b'QmUxPngqgXu YF38F pZ7 86VK"'

fid list: [b'QmUxPngqXUzHVUUKKSZYF38PwUhv3DpZ7wECKCANNZB6VK']
<shelve.DbfilenameShelf object at Ox7f7d2631720>

FIGURE 8. Logs outputs.

of code written mainly in Python (version 3.10.6). We used
the cryptography Python library for various cryptographic
operations. Fig. 8(c) shows the output logs during execution
of our scheme.

C. EXPERIMENTAL RESULTS

We used Secure Hash Algorithm (SHA-256) as the replace-
ment of the hash function 4. For ECIES, we use the com-
bination of ECDH key exchange and Advanced Encryption

2240

—Host 2
Host 1

FIGURE 9. Experimental setup 1.

FIGURE 10. Experimental setup 2.

TABLE 4. Timings of core operations.

Operation Time (ms)
SHA-256 0.0014
AES-OCB3 Encryption 0.0161
AES-OCB3 Decryption 0.0149
ECIES Encryption (ECDH + AES-OCB3) 0.3425
ECIES Decryption (ECDH + AES-OCB3) 0.6801

Standard (AES), wherein ECDH uses the standard SECP256-
R1 curve specified by the “National Institute of Standards
and Technology (NIST)” and AES uses offset codebook ver-
sion 3 (OCB3) mode. For symmetric key encryption and
decryption, AES in OCB3 mode is used. Table 4 shows
the timings of the core operations that have been used.
The timings shown in this table were calculated by taking the
average over timings of 1000 executions for an input size of
256 bytes, and the hardware used was Intel Core i7-9750H
@ 2.60 Hz, 16 GB RAM, and 256 GB solid-state drive
(SSD).

Next, we present the extensive simulation results for our
scheme by presenting the results of six experiments that we
carried out after the implementation of the proposed scheme.
For the experiments, we have taken a minimum number of
unique keywords in a PHR to be 200. This value is based
on the Heaps’ law [45] for English text (with K = 3.67

VOLUME 4, 2023

‘IEEES IEEE Open Journal of the
Com3oc communications Society

PHR Generation Time (No. of Keywords = 200)

—e— PBFT
—*— POET
—>— RAFT

16000

14000

12000

10000

Time (ms)
®
S
S
1S3

6000

4000

2000

4 8 12 16 20 24 28 32 36 40
Number of Blockchain Nodes

FIGURE 11. Experiment 1: results.

and B = 0.69),° and on the fact that a standard A4 page
on an average contains 350 — 450 words. Moreover, due to
limitations of computational hardware available to us, the
maximum number of blockchain nodes that we were able to
use for the experiments was 40. Beyond that number, other
factors such as context switching would influence the actual
results to a large extent.

1) EXPERIMENT 1

For this, we used a PHR with 200 unique keywords and
recorded the overall time taken to add it to the system by
varying the number of nodes in the blockchain network. We
recorded the observations for three different state-of-the-art
consensus algorithms: 1) PBFT, 2) PoET, and 3) Raft, and
presented the results in Fig. 11. For the number of nodes less
than 20, PBFT performs better than the other two algorithms.
On further increasing the number of nodes, the performance
of PBFT and Raft declines exponentially. However, for a
larger number of nodes, POET works quite well.

2) EXPERIMENT 2

We added a PHR containing 200 unique keywords to the
system for this. We then searched for a keyword and recorded
the time taken by the search algorithm against the number
of blockchain nodes. Fig. 12 shows the results using PBFT,
PoET, and Raft. It can be seen that the increase in the number
of nodes does not affect the search time. This is because our
search algorithm directly queries the state of the blockchain
using REST API and thus does not has to be processed as
a transaction by the blockchain nodes.

3) EXPERIMENT 3

In this experiment, we fixed the number of blockchain nodes
to 8 and then recorded the time taken to complete PHR addi-
tion against the number of keywords in the PHR. Fig. 13
shows the results using PBFT, PoET, and Raft. The results
show that the addition time increases linearly with the num-
ber of keywords. However, PBFT performs better than the
other two algorithms.

6. Note: § here is not related to the scheme, but is a part of the formula
in Heaps’ law.

VOLUME 4, 2023

Search Time (No. of Keywords = 200)

-3
o

—e— PBFT
—*— POET
—— RAFT

o - ~
=] S o

Time (ms)
IS
S

P

w
S

N
o

-
o

4 8 12 16 20 24 28 32 36 40
Number of Blockchain Nodes

FIGURE 12. Experiment 2: results.

PHR Generation Time (No. of Blockchain Nodes = 8)

16000
—e— PBFT

—*— POET

14000 RAFT

12000

10000

8000

Time (ms)

6000

4000 1

2000

S S P P P P O L L &
O ,\/Q ,,)0 © (70 S O QQ \90 ‘\}Q \WQ \?’Q

Number of keywords

FIGURE 13. Experiment 3: results.

100 Search Time (No. of Blockchain Nodes = 8)

—e— PBFT
—*— POET

= RAFT
80

60

Time (ms)

401

204

L N L N N O L N N L N N L
,\Q ,“53 ,,)Q O (,7(3 bQ A Q,Q gﬁ ‘\QQ '\’,\Q 00 OQ

Number of keywords

FIGURE 14. Experiment 4: results.

4) EXPERIMENT 4

We fixed the number of blockchain nodes to 8, added a
PHR, and recorded the time to search a keyword against the
number of unique keywords in the PHR. For this experiment,
we have taken a list of size one by adding only one PHR to
obtain consistent results. The reason is that the asymptotic
complexity of the search is linear in terms of entries in the
linked list corresponding to the keyword being searched. So,
having a linked list of different sizes will affect the search
results, eventually leading to inconsistent figures. Fig. 14
shows the results obtained using PBFT, PoET, and Raft, and
it can be concluded that search time is not affected by the

2241

BISHT et al.: EFFICIENT PERSONAL-HEALTH-RECORDS SHARING IN loMT

Minimum PHR Upload Time

34.178 ms

33.431ms
31.854 ms

33.814 ms
31.986 ms

29.28 ms
29.782 ms

28.092 ms

w
o

26.214 ms

26.481 ms

4 8 12 16 20 24 28 32 36 40
Number of IPFS Nodes

FIGURE 15. Experiment 5: results.
Minimum PHR Download Time
14
13 "
£
121 " 3
€ S "
3 g b w £
Ui w3 w0 . £, g E o
E I £ £ < £ © o 4
g ha 2 @ ~ © = = 4
10 & -4] o N < b l
a R N -

Time (ms)

4 8 12 16 20 24 28 32 36 40
Number of IPFS Nodes

FIGURE 16. Experiment 6: results.

number of keywords present in the PHR. This is because
the MR-tree used by sawtooth has a constant lookup time.

5) EXPERIMENT 5

In this experiment, we measured the effect of change in the
number of IPFS nodes on PHR upload time. Fig. 15 shows
that it remains unaffected by the change.

6) EXPERIMENT 6

Here, we measured the effect of the change in the number
of IPFS nodes on PHR download time. Fig. 16 shows that
it remains unaffected by the change.

D. COMPARATIVE ANALYSIS

Although there is a plethora of work on SSE using
blockchain, there are only few works on its application in
PHR sharing. However, as discussed in Section III-D, many
PHR-sharing schemes are based on public key-based search-
able encryption. A strict comparison is not possible due to the
different cryptographic parameters used by these schemes.
Nevertheless, in Table 5, we have tried to compare these
schemes with our scheme based on the expected features
from a PHR sharing scheme. An exception to the above is
a scheme proposed by Tang et al. [41], which is based on
symmetric searchable encryption and uses a technique simi-
lar to our scheme for adding PHRs to the system. However,

2242

TABLE 5. Comparison of security and functional features.

‘ Scheme A ‘ Ao ‘ As ‘ Ay | As | As ‘ Az ‘ Asg ‘
[34] Asymmetric v v X v v v X
[38] Asymmetric v v X v v v X
[26] Asymmetric v X X X v v X
[41] Symmetric v v v v v X v
Ours Symmetric v v v v v v v

Note: A;: Encryption Type, Ag: Confidentiality, A3: Dynamic, A4: For-
ward Secure, As: Verifiable, Ag: Blockchain Based, A7: Decentralized
Storage, Ag: Efficient

TABLE 6. Time complexity comparison.

’ Scheme | Setup Build Add Search
(34] o(1) - O(IW[+1A[) | O(W|+|A])
(381 o(1) - o(Iw) o(14]
[26] Oo(1) | O(|D]-[W]) - o(|D))
[46] o(1) - o(w| o(r))
Ours o(1) - o(vl) o(r))

it relies on the local storage of hospitals, unlike our scheme,
which uses the decentralized storage, and thus, it has limited
practical applications. Our scheme, though primarily based
on symmetric searchable encryption, uses elliptic curve cryp-
tography for communication between entities and, therefore,
can be categorized as a hybrid scheme.

In Table 6, we show a comparative analysis on the time
complexities of various operations involved in the proposed
scheme and other existing schemes. For the setup phase, the
time complexity for each scheme is constant. However, the
asymmetric schemes will be comparatively slower because
of the use of bilinear pairings.

All other schemes than the scheme proposed in [26], which
generates index only once at the beginning, can dynamically
add PHRs as and when required. W represents the set of
unique keywords in a PHR and D is the set of PHRs used
during the build phase. A presents in complexities of some of
the schemes is related to attribute based encryption, where
it denotes the set of attributes. In case of our scheme, V
denotes the super-set of keyword set W and I" is the set
of file identifiers corresponding to a single keyword in the
index. For most of the patients, the PHRs will not be very
large in number, and therefore, comparatively our scheme is
quite efficient during search.

VIIl. FUTURE WORKS
In this section, we list the following future research directions
that we would like to work in our future study.

A. SUPPORT FOR PARALLELIZATION
The addition of PHR in our scheme supports parallelization.
As seen in “Uploading to blockchain” part of Section V-C3,

VOLUME 4, 2023

‘IEEES IEEE Open Journal of the
Com3oc communications Society

the addition of (addr, val) pairs to the state of the blockchain
are independent of each other. Therefore, it can be modi-
fied to leverage parallelization, significantly decreasing PHR
addition time. However, the algorithm must run as a part of
a transaction processor. Therefore, all the blockchain peers
must have parallelization capability; otherwise, a single peer
without parallelization would create a bottleneck for the
entire system.

B. CONJUNCTIVE MULTI-KEYWORD SEARCH SUPPORT
Our scheme can be modified to support multi-keyword
search, but at the expense of more leakage. The modified
scheme would require the PHR ids to be encrypted using
a deterministic algorithm. The search algorithm executed
by the hospital server can take a set of keywords as input
and obtain the linked lists corresponding to the keywords.
Subsequently, it can find the common encrypted PHR ids
and return them to the user. Moreover, the process to obtain
the linked lists can be made parallel because each can be
obtained independently of the other.

IX. CONCLUSION

With the growing dependency of healthcare on IoMT infras-
tructure, we require a secure system that not only provides
confidentiality and privacy to the patients’ health data, but
also allows its secure sharing with other parties in the health-
care ecosystem. We attempted to provide a solution by
proposing a novel scheme for PHR sharing that is dynamic,
efficient and practically implementable. Our design con-
sidered various entities into consideration, including IoMT
smart devices, and provided a carefully designed protocol
for their interactions. We proved the proposed scheme to be
forward secure, verifiable and semantically secure against
an adaptive adversary. Moreover, we based our scheme on
top of a decentralized file system (IPFS) in order to make
our scheme fault tolerant and robust against attacks target-
ing centralized systems. Additionally, we provided various
insights into how this scheme can be extended to support
parallelization and conjunctive multi-keyword search.

REFERENCES

[1] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,
cryptography mailing list” Mar. 2009. [Online]. Available: https:/
metzdowd.com

[2] D. X. Song, D. Wagner, and A. Perrig, “Practical techniques for
searches on encrypted data,” in Proc. IEEE Symp.Security Privacy
(S&P), Berkeley, CA, USA, 2000, pp. 44-55.

[3] J. Benet. “IPFS-content addressed, versioned, P2P file system.” 2014.
[Online]. Available: https://arxiv.org/abs/1407.3561.

[4] J. Katz and Y. Lindell, Introduction to Modern Cryptography. Boca
Raton, FL, USA: CRC Press, 2020.

[5] A. Kosba, A. Miller, E. Shi, Z. Wen, and C. Papamanthou, “Hawk:
The blockchain model of cryptography and privacy-preserving smart
contracts,” in Proc. IEEE Symp. Security Privacy (S&P). San Jose,
CA, USA, 2016, pp. 839-858.

[6] V. Shoup. “A proposal for an ISO standard for public key encryption.”
2001. [Online]. Available: https://eprint.iacr.org/2001/112

[7] T. Krovetz and P. Rogaway, “The OCB authenticated-encryption algo-
rithm,” IETF, Fremont, CA, USA, RFC 7253, May 2014. [Online].
Available: https://www.rfc-editor.org/info/rfc7253

VOLUME 4, 2023

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(171

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

M. Castro and B. Liskov, “Practical Byzantine fault tolerance and
proactive recovery,” ACM Trans. Comput. Syst., vol. 20, no. 4,
pp- 398-461, 2002.

D. Ongaro and J. Ousterhout, “In search of an understandable con-
sensus algorithm,” in Proc. USENIX Annu. Tech. Conf. (Usenix ATC),
Philadelphia, PA, USA, 2014, pp. 305-319.

0. Goldreich and R. Ostrovsky, “Software protection and simulation
on oblivious RAMs,” J. ACM, vol. 43, no. 3, pp. 431-473, 1996.
[Online]. Available: https://doi.org/10.1145/233551.233553

E.-J. Goh. “Secure indexes.” 2003. [Online]. Available: https://eprint.
iacr.org/2003/216

R. Curtmola, J. Garay, S. Kamara, and R. Ostrovsky, “Searchable
symmetric encryption: Improved definitions and efficient construc-
tions,” in Proc. 13th ACM Conf. Comput. Commun. Security (CCS),
Alexandria, VA, USA, 2006, pp. 79-88.

S. Kamara, C. Papamanthou, and T. Roeder, “Dynamic search-
able symmetric encryption,” in Proc. ACM Conf. Comput. Commun.
Security (CCS), 2012, pp. 965-976.

M. S. Islam, M. Kuzu, and M. Kantarcioglu, “Access pattern disclo-
sure on searchable encryption: Ramification, attack and mitigation,”
in Proc. Netw. Distrib. Syst. Security Symp. (NDSS), San Diego, CA,
USA, 2012, pp. 1-15.

D. Cash, S. Jarecki, C. Jutla, H. Krawczyk, M.-C. Rosu, and
M. Steiner, “Highly-scalable searchable symmetric encryption with
support for boolean queries,” in Proc. Annu. Cryptol. Conf. (CRYPTO),
Santa Barbara, CA, USA, 2013, pp. 353-373.

E. Stefanov, C. Papamanthou, and E. Shi, “Practical dynamic search-
able encryption with small leakage,” 2013. [Online]. Available: https://
eprint.iacr.org/2013/832

D. Cash, P. Grubbs, J. Perry, and T. Ristenpart, “Leakage-abuse attacks
against searchable encryption,” in Proc. 2nd ACM Conf. Comput.
Commun. Security (CCS), 2015, pp. 668-679.

R. Bost, P.-A. Fouque, and D. Pointcheval, “Verifiable dynamic sym-
metric searchable encryption: Optimality and forward security.” 2016.
[Online]. Available: https://eprint.iacr.org/2016/062

R. Bost, B. Minaud, and O. Ohrimenko, ‘“Forward and backward
private searchable encryption from constrained cryptographic primi-
tives,” in Proc. ACM SIGSAC Conf. Comput. Commun. Security (CCS),
Dallas, TX, USA, 2017, pp. 1465-1482.

K. S. Kim, M. Kim, D. Lee, J. H. Park, and W.-H. Kim, “Forward
secure dynamic searchable symmetric encryption with efficient
updates,” in Proc. ACM SIGSAC Conf. Comput. Commun. Security
(CCS), Dallas, TX, USA, 2017, pp. 1449-1463.

M. Etemad, A. Kiipgii, C. Papamanthou, and D. Evans, “Efficient
dynamic searchable encryption with forward privacy,” in Proc. Privacy
Enhanc. Technol., vol. 2018, 2017, pp. 20-25.

Y. Watanabe, K. Ohara, M. Iwamoto, and K. Ohta, “Efficient dynamic
searchable encryption with forward privacy under the decent leakage,”
in Proc. 11th ACM Conf. Data Appl. Security Privacy (CODASPY),
Baltimore, MD, USA, 2022, pp. 312-323.

L. Chen, J. Li, and J. Li, “Towards forward and backward private
dynamic searchable symmetric encryption supporting data deduplica-
tion and conjunctive queries,” IEEE Internet Things J., vol. 10, no. 9,
pp. 17408-17423, Oct. 2023.

S. Hu, C. Cai, Q. Wang, C. Wang, X. Luo, and K. Ren, “Searching
an encrypted cloud meets blockchain: A decentralized, reliable and
fair realization,” in Proc. IEEE Conf. Comput. Commun. (INFOCOM),
Honolulu, HI, USA, 2018, pp. 792-800.

C. Cai, J. Weng, X. Yuan, and C. Wang, “Enabling reliable keyword
search in encrypted decentralized storage with fairness,” IEEE Trans.
Depend. Secure Comput., vol. 18, no. 1, pp. 131-144, Jan.-Feb. 2021.
Y. Zhang, R. H. Deng, J. Shu, K. Yang, and D. Zheng, “TKSE:
Trustworthy keyword search over encrypted data with two-side ver-
ifiability via blockchain,” IEEE Access, vol. 6, pp. 31077-31087,
2018.

H. Li, H. Tian, F. Zhang, and J. He, “Blockchain-based search-
able symmetric encryption scheme,” Comput. Elect. Eng., vol. 73,
pp. 3245, Jan. 2019.

Y. Guo, C. Zhang, and X. Jia, “Verifiable and forward-secure
encrypted search using blockchain techniques,” in Proc. IEEE Int.
Conf. Commun. (ICC), Dublin, Ireland, 2020, pp. 1-7.

2243

BISHT et al.: EFFICIENT PERSONAL-HEALTH-RECORDS SHARING IN loMT

[29] A. Azaria, A. Ekblaw, T. Vieira, and A. Lippman, “MedRec: Using
blockchain for medical data access and permission management,” in
Proc. 2nd Int. Conf. Open Big Data (OBD), Vienna, Austria, 2016,
pp- 25-30.

X. Yue, H. Wang, D. Jin, M. Li, and W. Jiang, “Healthcare data
gateways: Found healthcare intelligence on blockchain with novel
privacy risk control,” J. Med. Syst., vol. 40, no. 10, p. 218, 2016.
Q. Xia, E. B. Sifah, A. Smahi, S. Amofa, and X. Zhang, “BBDS:
Blockchain-based data sharing for electronic medical records in cloud
environments,” Information, vol. 8, no. 2, p. 44, 2017.

K. Fan, S. Wang, Y. Ren, H. Li, and Y. Yang, “MedBlock: Efficient
and secure medical data sharing via blockchain,” J. Med. Syst., vol. 42,
no. 8, pp. 1-11, 2018.

A. Zhang and X. Lin, “Towards secure and privacy-preserving data
sharing in e-health systems via consortium blockchain,” J. Med. Syst.,
vol. 42, no. 8, pp. 1-18, 2018.

Y. Wang, A. Zhang, P. Zhang, Y. Qu, and S. Yu, “Security-aware and
privacy-preserving personal health record sharing using consortium
blockchain,” IEEE Internet Things J., vol. 9, no. 14, pp. 12014-12028,
Jul. 2022.

Y. Wang, A. Zhang, P. Zhang, and H. Wang, “Cloud-assisted
EHR sharing with security and privacy preservation via consortium
blockchain,” IEEE Access, vol. 7, pp. 136704-136719, 2019.

M. Alsayegh, T. Moulahi, A. Alabdulatif, and P. Lorenz, “Towards
secure searchable electronic health records using consortium
blockchain,” Netw., vol. 2, no. 2, pp. 239-256, 2022.

H. Qian, J. Li, Y. Zhang, and J. Han, “Privacy-preserving personal
health record using multi-authority attribute-based encryption with
revocation,” Int. J. Inf. Security, vol. 14, no. 6, pp. 487-497, Nov. 2015.
[Online]. Available: https://doi.org/10.1007/s10207--014-0270--9

J. Sun, L. Ren, S. Wang, and X. Yao, “A blockchain-based frame-
work for electronic medical records sharing with fine-grained access
control,” PLoS ONE, vol. 15, no. 10, 2020, Art. no. €0239946.

S. Niu, L. Chen, J. Wang, and F. Yu, “Electronic health record sharing
scheme with searchable attribute-based encryption on blockchain,”
IEEE Access, vol. 8, pp. 7195-7204, 2019.

S. Wang, D. Zhang, and Y. Zhang, “Blockchain-based personal health
records sharing scheme with data integrity verifiable,” IEEE Access,
vol. 7, pp. 102887-102901, 2019.

X. Tang, C. Guo, K.-K. R. Choo, Y. Liu, and L. Li, “A secure and trust-
worthy medical record sharing scheme based on searchable encryption
and blockchain,” Comput. Netw., vol. 200, Dec. 2021, Art. no. 108540.
X. Nie, A. Zhang, J. Chen, Y. Qu, and S. Yu, “Time-enabled and
verifiable secure search for blockchain-empowered electronic health
record sharing in IoT,” Security Commun. Netw., vol. 2022, Dec. 2022,
Art. no. 1103863. [Online]. Available: https://doi.org/10.1155/2022/
1103863

Y. Lindell, How to Simulate It-A Tutorial on the Simulation Proof
Technique. Cham, Switzerland: Springer, 2017, pp. 277-346. [Online].
Available: https://doi.org/10.1007/978--3-319--57048-8_6

Y. Zhang, J. Katz, and C. Papamanthou, “All your queries are belong
to us: The power of file-injection attacks on searchable encryption,”
in Proc. 25th USENIX Conf. Security Symp., 2016, pp. 707-720.

H. S. Heaps, Information Retrieval, Computational and Theoretical
Aspects. Cambridge, MA, USA: Academic Press, 1978.

(30]

(31]

(32]

[33]

[34]

[35]

[36]

(37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

ABHISHEK BISHT received the Bachelor of
Technology degree in computer science from
the University of Petroleum and Energy Studies,
Dehradun, India, in 2021. He is currently pur-
suing the M.S. degree in computer science and
engineering with the Center for Security, Theory
and Algorithmic Research, International Institute
of Information Technology, Hyderabad, India.
His research interests are cyber security, search-
able encryption, IoT security, and blockchain
technology.

2244

ASHOK KUMAR DAS (Senior Member, IEEE)
received the Ph.D. degree in computer science
and engineering, the M.Tech. degree in computer
science, and the M.Sc. degree in mathematics
from Indian Institute of Technology Kharagpur
(IIT Kharagpur), India. He is currently a Full
Professor with the Center for Security, Theory
and Algorithmic Research, International Institute
of Information Technology, Hyderabad, India. He
was also a Visiting Faculty with the Virginia
Modeling, Analysis and Simulation Center, Old
Dominion University, Suffolk, VA, USA. He has authored over 370 papers
in international journals and conferences in the above areas, including over
310 reputed journal papers. His Google Scholar H-index is 80 and i10-
index is 237 with over 18300 citations. His research interests include
cryptography, system and network security, blockchain, security in Internet
of Things, Internet of Vehicles, Internet of Drones, cloud/fog comput-
ing, intrusion detection, AI/ML security, and post-quantum cryptography.
He was a recipient of the Institute Silver Medal from IIT Kharagpur.
He has been listed in the Web of Science (Clarivate™) Highly Cited
Researcher 2022 in recognition of his exceptional research performance.
He is/was on the editorial board of IEEE SYSTEMS JOURNAL, Journal of
Network and Computer Applications (Elsevier), Computer Communications
(Elsevier), Journal of Cloud Computing (Springer), Cyber Security and
Applications (Elsevier), IET Communications, KSII Transactions on Internet
and Information Systems, and International Journal of Internet Technology
and Secured Transactions (Inderscience). He also severed as one of the
Technical Program Committee Chairs of the first International Congress
on Blockchain and Applications, Avila, Spain, June 2019, International
Conference on Applied Soft Computing and Communication Networks,
October 2020, Chennai, India, and second International Congress on
Blockchain and Applications, L’ Aquila, Italy, October 2020.

%

DUSIT NIYATO (Fellow, IEEE) received the B.Eng.
degree from the King Mongkuts Institute of
Technology Ladkrabang, Thailand, in 1999, and
the Ph.D. degree in electrical and computer engi-
neering from the University of Manitoba, Canada,
in 2008. He is a Professor with the School
of Computer Science and Engineering, Nanyang
Technological University, Singapore. His research
interests are in the areas of sustainability, edge
intelligence, decentralized machine learning, and
incentive mechanism design.

YOUNGHO PARK (Member, IEEE) received the
B.S., M.S., and Ph.D. degrees in electronic engi-
neering from Kyungpook National University,
Daegu, South Korea, in 1989, 1991, and 1995,
respectively. He is currently a Professor with the
School of Electronics Engineering, Kyungpook
National University. From 1996 to 2008, he
was a Professor with the School of Electronics
and Electrical Engineering, Sangju National
University, South Korea. From 2003 to 2004,
he was a Visiting Scholar with the School of
Electrical Engineering and Computer Science, Oregon State University,
USA. His research interests include computer networks, multimedia, and
information security.

VOLUME 4, 2023

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Helvetica-Condensed-Bold
 /Helvetica-LightOblique
 /HelveticaNeue-Bold
 /HelveticaNeue-BoldItalic
 /HelveticaNeue-Condensed
 /HelveticaNeue-CondensedObl
 /HelveticaNeue-Italic
 /HelveticaNeueLightcon-LightCond
 /HelveticaNeue-MediumCond
 /HelveticaNeue-MediumCondObl
 /HelveticaNeue-Roman
 /HelveticaNeue-ThinCond
 /Helvetica-Oblique
 /HelvetisADF-Bold
 /HelvetisADF-BoldItalic
 /HelvetisADFCd-Bold
 /HelvetisADFCd-BoldItalic
 /HelvetisADFCd-Italic
 /HelvetisADFCd-Regular
 /HelvetisADFEx-Bold
 /HelvetisADFEx-BoldItalic
 /HelvetisADFEx-Italic
 /HelvetisADFEx-Regular
 /HelvetisADF-Italic
 /HelvetisADF-Regular
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

