
Received 21 July 2023; revised 18 August 2023; accepted 28 August 2023. Date of publication 15 September 2023; date of current version 16 October 2023.

Digital Object Identifier 10.1109/OJCOMS.2023.3312050

Design of an M-Ary DLCSK Communication System
Using Deep Transfer Learning

MAJID MOBINI 1, MARIJAN HERCEG 2, AND GEORGES KADDOUM 3,4 (Senior Member, IEEE)
1Department of Electrical and Computer Engineering, Babol Noshirvani University of Technology, Babol 47148-71167, Iran

2Department of Communications, Faculty of Electrical Engineering, Computer Science and Information Technology, University of Osijek, 31000 Osijek, Croatia

3Department of Electrical Engineering, University of Québec, École de technologie supérieure, Montreal, QC H3C 1K3, Canada

4Cyber Security Systems and Applied AI Research Center, Lebanese American University, Beirut 13-5053, Lebanon

CORRESPONDING AUTHOR: M. MOBINI (e-mail: mobini2002@gmail.com)

This work was supported by the Tier2 Canada Research Chair titled “Towards a Novel and Intelligent Framework for the Next Generations of IoT Networks.”

ABSTRACT Conventional coherent chaos-based communication systems require synchronization of
chaotic signals, which is still practically unattainable in a noisy environment. Moreover, in non-coherent
schemes, a part of the bit duration is spent sending non-information-bearing reference samples, which
deteriorates the Bit Error Rate performance (BER) of these systems. To tackle these problems, this paper
designs an M-ary Deep Learning Chaos Shift Keying (M-ary DLCSK) system. The proposed receiver
uses a Convolutional Neural Network (CNN)-based classifier that recovers M-ary modulated data. The
trained NN model grasps different chaotic maps, estimates channels, and classifies the received sig-
nals effectively. Moreover, we consider a Transfer Learning (TL) framework that enhances the noise
performance and classification results. Due to the generalization capabilities of TL, the trained NN can
work in different Signal-to-Noise Ratio (SNR) conditions without the need for re-training. We compare
the BER performance, complexity, and bandwidth efficiency of the M-ary DLCSK receiver with exist-
ing receivers. The results demonstrate that the M-ary DLCSK receiver is the first practical system that
achieves the theoretical BER performance of the coherent CSK systems under Rayleigh fading channels.
Moreover, the proposed system provides a considerable performance advantage compared to the exist-
ing DL-based receivers under Rayleigh fading channels. For example, the BER performance of 8-ary
DLCSK shows a gain of 0.1 over the Long Short-Term Memory (LSTM)-aided DNN systems at the
target Eb/N0 = 14dB. These features make M-ary DLCSK an attractive candidate for several applications,
such as Massive Multiple-Input Multiple Output (MIMO), Vehicle-to-everything (V2X), Quantum, and
optical communication systems.

INDEX TERMS Chaos-based communications, computational complexity, constellation diagram, deep
transfer learning.

I. INTRODUCTION

THE OBJECTIVE of any digital modulation technique
is to obtain a reliable Bit Error Rate (BER) with

minimum energy per bit. The second important objective
of digital modulations is to achieve a suitable bandwidth
efficiency (BE), which can be calculated by dividing the
data rate by the channel bandwidth. Deep Learning Chaos
Shift Keying (DLCSK) system [1], was shown to achieve
a remarkable BER performance improvement compared to
the conventional Differential Chaos Shift Keying (DCSK)

scheme. However, in the primary form of the DLCSK system
(i.e., binary DLCSK), only one bit is delivered in each
transmission. In this paper, in order to enhance the BE
of the basic DLCSK system, an M-ary DLCSK scheme is
designed based on the conventional coherent CSK modula-
tion scheme. The proposed receiver employs a Convolutional
Neural Network (CNN)-based classifier that recovers the
M-ary modulated data. The trained Neural Network (NN)
model can effectively classify the received signals from
harsh wireless channels. Moreover, we provide an approach
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based on the fundamentals of Deep Transfer Learning (DTL)
to enhances the noise performance of the M-ary DLCSK
system. The proposed DTL technique allows us to use the
trained receiver in different noise conditions without the need
for re-training.
In digital communication systems, data are transmitted

by mapping data bits to symbols, and symbols to sample
functions of analog waveforms. Conventional chaos-based
modulation schemes are commonly categorized into two
classes, i.e., coherent and non-coherent [2]. A symbol may be
retrieved by coherent detection, where the basis function can
be regenerated using chaotic synchronization. In a coherent
system, all sample functions are known. Using non-coherent
detection, sample functions are unknown at the receiver, and
the reference signals should be transmitted for the basis func-
tion recovery. In a coherent detection scheme, such as Chaos
Shift Keying (CSK) [3], [4], data is transmitted as a com-
bination of basis functions chosen from chaotic waveforms.
In coherent CSK, synchronization of the chaotic sequences
is commonly required in order to enable basis functions
recovery. A coherent CSK scheme with one basis func-
tion (i.e., antipodal CSK [3]) theoretically achieves the BER
performance of a Binary Phase Shift Keying (BPSK) system
under Additive White Gaussian Noise (AWGN) channels.
However, owing to the cross-correlation between chaotic
signals and the problem of basis function recovery, this
performance cannot be achieved practically. With no avail-
able solution to the problem of basis function recovery,
chaotic switching CSK modulation has been proposed using
two basis functions [4]. The chaotic switching CSK can
theoretically reach the BER performance of the Frequency
Shift Keying (FSK) modulation scheme under AWGN chan-
nels [5]. This level of BER performance can be achieved
only if the cross-correlation problem is solved and the basis
functions can be recovered successfully. However, since
complete synchronization is still complicated to attain in
realistic environments, this theoretical performance is not
practically attainable [6]. If it is not possible to recover the
basis functions, the DCSK scheme [7] may provide better
performance.
Non-coherent detection schemes, such as DCSK, rely

on a reference transmission, where the “reference” and
“information-bearing” signals are transmitted in successive
time slots. In fact, DCSK is a variant of CSK, where the
basis functions are transmitted over the channel (Instead
of using synchronization for the basis function recov-
ery), and the information is recovered from the correlation
between the two aforementioned signals. With non-coherent
DCSK schemes, the Channel State Information (CSI) and
synchronization of chaotic sequences are not needed on
the receiver side. However, the main weakness of DCSK
systems stems from repetition of the chaotic signals in
the time domain. This repetition leads to a degradation
of the data rate and energy efficiency, as half of the bit
time interval is used for delivering non-information-bearing
samples [8].

Most of the existing chaos-based communication systems
are based on the DCSK scheme and transmission of the
reference signals. To improve the performances of DCSK
systems, many research works have been performed to utilize
the resources in the time, frequency, space, and code domain
to enhance the data rate, remove the delay lines and further
enhance the reliability. For example, in Multicarrier DCSK
(MC-DCSK) systems [9], the reference signal is transmitted
over a predefined subcarrier frequency, and multiple data-
bearing signals sharing the same reference are transmitted
over the remaining subcarriers. Since multiple data-bearing
signals share the same reference signal, both spectrum
and energy efficiencies are improved. However, transmis-
sion errors in the reference chaotic signal would induce
error propagations when directly used for demodulations. To
address this issue, an algorithm has been proposed in [10]
to update the reference signals iteratively. In the iterative
receiver, the correlation coefficients between the reference
signal and the information-bearing signal are evaluated. The
renewed reference chaotic signal is fed back and acts as
the inputs in the next iteration. The reference signal can be
updated until the iteration-stopping criterion is reached. The
iterative receiver improves the Signal-to-Noise Ratio (SNR)
of the reference signals to compensate for the destructive
effects of the channels. However, iteration at the receiver
induces additional complexity and latency. In [11], a low-
rank approximation of matrices (LRAM) detection method
is proposed. Instead of directly using the received refer-
ence chaotic signal for demodulation, the authors proposed
to apply the LRAM method to jointly estimate the refer-
ence signal and the information-bearing signal. They used
the singular value decomposition and generalized LRAM
methods to minimize the distances between the estimates
and transmitted data. Although the SNR can be improved
by the methods presented in [10] and [11], these receivers
have poor performances under practical conditions, such as
Rayleigh fading channels.
In this paper, we would like to design a coherent CSK

receiver, without the need for chaotic synchronization or ref-
erence transmission for basis function recovery. To this aim,
we train the NN with the goal of the chaotic basis function
recovery. Indeed, the NN learns the chaotic basis functions,
adjusts its hyperparameters, and used them in order to detec-
tion of M-ary modulated data. By taking advantage of DTL,
the M-ary DLCSK system can improve the performance of
existing chaos-based modulation benchmarks.
In a communication channel, the received signal is usually

distorted by the destructive effects of the channel. Channel
estimation plays a critical role in eliminating the impacts
of wireless channels. Several pilot-aided and pilotless chan-
nel estimation methods have been proposed using DL [12].
The pilot-aided channel estimation achieves high estimation
accuracy. However, the transmitted pilot sequence occupies
the valuable time and frequency resources. In this paper, we
adopt a pilot-less approach to implicitly extract the channel
features and recover data symbols. In the proposed design,
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the received signals act as input to the NN model. The
received signals are filtered by the channel and carry the
channel features. Thus, the proposed receiver can learn the
channel features from the received signals, and needs no
additional pilot for channel estimation. The above-mentioned
design not only allows the NN to grasp the dynamics of var-
ious chaotic maps but also enables it to learn the channel
features at the same time.
In order to design a lightweight receiver, a BER-versus-

complexity study is also performed. The BER performance of
the CNN model is compared to existing NN models, such as
Bidirectional Long Short-Term Memories (BiLSTMs) [39]
under the same computational complexity conditions. The
presented complexity analysis enables us to study the depen-
dency of BER on the computational complexity and to
find the best NN model for a certain complexity level.
Furthermore, simulation results are compared with a the-
oretical lower bound to provide insightful conclusions.

A. RELATED WORKS AND MOTIVATIONS
One well-known challenge of coherent chaos-based mod-
ulations is the synchronization of the chaotic sequences
in harsh environments, where many researches have been
done to achieve a robust synchronization. The robustness
of Deep Learning (DL)-based synchronization systems was
evaluated in [6], where a chaos synchronization system has
been designed based on the trainable NN model. The results
demonstrated that DL reduces the synchronization error com-
pared to traditional synchronization systems. However, an
error remains between the recovered signal and initial sig-
nal, due to stochastic phenomena or harsh wireless channels.
This synchronization error implies that future works should
test other ways to recover the chaotic basis functions.
Two recent papers have united chaos-based communi-

cations with DL methods [14], [15]. In [14], a smart
Orthogonal Frequency Division Multiplexing (OFDM)
DCSK demodulator using a Long Short-Term Memory-aided
Deep Neural Network (LSTM-aided DNN) is suggested.
By exploiting the optimization and classification capabilities
of NNs, the LSTM-aided DNN receiver attains improved
BER performances. Similarly, in [15], the authors used the
LSTM-aided DNN architecture to provide a demodulator
for Multilevel Code-shifted Differential Chaos Shift Keying
(MCS-MDCSK) system. However, both [14] and [15] are
based on conventional DCSK modulation and reference
signal transmission. The main drawback of DCSK-based
modulations is that the reference transmission increases the
overhead, errors, and complexity of the system.
In our recent paper [1], to overcome the reference trans-

mission problems, we proposed the DLCSK system that
employs DTL for the basis function recovery. Specifically,
the main difference between the DLCSK and LSTM-aided
DNN systems [15] is that, in a DLCSK system, the trans-
mitter does not transmit the reference signals, whereas an
LSTM-aided DNN uses the reference signals for basis func-
tions recovery. The first version of the DLCSK system (i.e.,

binary DLCSK) only uses two chaotic maps and delivers
one bit in each transmission. Moreover, the cross-correlation
between the chaotic maps and the complexity aspects are not
considered in [1]. In this paper, our focus is on the design
of an M-ary DLCSK system using CNNs that can trans-
mit more than one bit in each transmission. The proposed
design enhances BE while limiting computational com-
plexity. The mentioned features make M-ary DLCSK an
attractive candidate for several applications, such as Quantum
classifiers [16], optical communications [17], secure data
transmission [18], vehicular communications [19], [20],
Internet of Things (IoT) [21], underwater communica-
tions [22], and massive Multiple-Input Multiple Output
(MIMO) systems [23].

B. INNOVATIVE ASPECTS
Innovative aspects of this paper are outlined below:

• A newM-ary DTL-based receiver is designed that allows
us to increase the BE and BER performance of conventional
M-ary chaos-based communication schemes. Different from
the existing LSTM-aided DNN receivers [14], [15], which
use DCSK-based schemes, our receiver is designed based on
the basics of the coherent CSK schemes. Thus, the proposed
M-ary DLCSK system does not transmit the reference sig-
nals, which reduces the overhead, errors, and complexity of
the system.

• The proposed design employs TL technique to enhance
its generalization capabilities. With a slightly increased com-
plexity, the trained receiver shows an outstanding robustness
against noise. Moreover, we present general expressions for
the computational complexity of the designed NN-based
receivers. This enables us to study the dependency of the
BER on the complexity and to find a light-weight NN-based
receiver.

• A geometrical approach based on the Bloch sphere is
considered to find maximally orthogonal points (or quasi-
orthogonal signals) on the constellation. In particular, in
order to reduce the negative effects of the cross-correlation
problem, we introduce a map selection algorithm to provide
a set of quasi-orthogonal chaotic maps.

• We derive a lower bound for the BER of M-ary DLCSK
systems based on the presented constellation. The difference
between this bound and simulated results leads to insightful
conclusions.
The rest of this paper is organized as follows: In Section II,

the characteristics of existing chaos-based systems are
described with an emphasis on CSK. In Section III, the
general architecture of the proposed M-ary DLCSK system,
the role of DTL, dataset generation, channel estimation, and
map selection are presented. We also introduce a theoreti-
cal lower bound for the BER of M-ary DLCSK systems.
In Section IV, we analyze the data rate and BE of the
proposed M-ary DLCSK scheme and provide a comparison
with other benchmarks. We further describe how to deter-
mine the complexity of the NN models in this Section. In
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Section V, simulation results and discussions are presented,
while Section VI draws the concluding remarks.

II. CSK SYSTEM AND WEAKNESS POINTS
The suggested transmitter is based on the conventional coher-
ent CSK transmitter, presented in [5]. In this section, the
structure of an M ary CSK transmitter, as well as exist-
ing correlation receivers, are discussed. Several derivations
of the conventional CSK modulation scheme will be used
in this paper as a comparative to illustrate the performance
improvements obtained from the contributions of this paper.

A. M-ARY CSK TRANSMITTER
Consider the conventional M-ary CSK communication
system with two (or more) basis functions, where the basis
functions can be derived from the chaotic waveforms [5].
In an M-ary CSK modulation scheme, we use continuous
chaotic signals gj(t), j ∈ {1, . . . ,M}, with a bit duration Tb.
Assume that Tb = βTc, where Tc is the time between each
chaotic sample (chip), and β is the spreading factor. Hence,
the continuous-time spreading signal gj(t) is given by

gj(t) =
β∑

k=1

gj,kh(t − kTc), (1)

where gj,k, j ∈ {1, . . . ,M} denotes kth sample of the discrete-
time chaotic sequences, presented in Table 1. Moreover, h(t)
is the square-root-raised-cosine filter, which is commonly
used as the pulse-shaping filter in communication systems.
Let si(t), i ∈ {1, 2, . . . ,M} stand for the signal set,

which is a linear combination of chaotic basis functions
gj(t), j ∈ {1, 2, . . . ,M}. The following equation indicates
the modulation process, i.e., mapping of symbols to analog
waveforms

s(z)i (t) =
M∑

j=1

w(z)
i,j g

(z)
j (t),

⎧
⎨

⎩

0 < t < Tb,
i, j ∈ 1, 2, . . . ,M,

z = 1, 2, . . . ,Z,

(2)

where s(z)i (t) is the zth modulated signal being transmitted, Z
is the total number of data symbols, gj(t), j ∈ {1, 2, . . . ,M}
are chaotic basis functions, and the weights w(z)

i,j are the
elements of the signal vector. In other words, based on the
current data symbol i(z), some weights w(z)

i,j are multiplied
by continuous chaotic signals gj(t), j ∈ {1, 2, . . . ,M}. The
vector representation of the modulated signals with energy
per symbol

√
E can be written as

s1 =
(√

E, 0, . . . , 0
)

s2 =
(

0,
√
E, . . . , 0

)

... = ...

sM =
(

0, 0, . . . ,
√
E
)
. (3)

This paper designs an M-ary DLCSK receiver based on the
constellation diagram of the classical M-ary CSK communi-
cation system. The signal-space diagram for 2-ary DLCSK

FIGURE 1. Signal-space diagram of 2-ary DLCSK (solid points on g1(t) and g2(t)),
and its extension to 4-ary DLCSK (solid points on g3(t) and g4(t)).

(solid points on g1(t) and g2(t)), and its extension to 4-ary
DLCSK using solid points on g3(t) and g4(t) are shown
in Figure 1. Unlike the LSTM-aided DNN [15], in which
the user data bits are transmitted using MCS-MDCSK mod-
ulation [44] (which is a DCSK-based scheme), the M-ary
DLCSK receiver is based on the coherent CSK modulation
scheme [5]. In such a system, a necessary condition for max-
imum noise performance is that the chaotic sample functions
should have constant energy. Therefore, in the remainder of
this paper, we normalize the chaotic basis functions such
that

∫ Tb
0 gj(t)dt = 0 and

∫ Tb
0 g2

j (t)dt = 1.

B. EXISTING CORRELATION RECEIVERS
Existing M-ary CSK receivers should be constructed with
at least M correlators. For example, considering a chaotic
switching CSK system with M = 2, where the signal set is
s(z)i (t) = w(z)

i,1g
(z)
1 (t) +w(z)

i,2g
(z)
2 (t), the message is detected by

forming the decision variables D(z)
i,1 and D(z)

i,2, i.e., correlating
the received signal with two regenerated chaotic basis func-
tions g′

1(t) and g′
2(t). The correlation receiver estimates the

elements wi,j of the signal vector. In the noise-free case, with
perfect regeneration of the chaotic basis functions, we have
g′
i(t) = gi(t). With a constant E, and orthonormal basis func-
tions in the interval [0,Tb], the outputs of two correlators
are given by

D(z)
1,1 = w(z)

1,1

∫ Tb

0
g2(z)

1 (t) dt = √
E,

D(z)
1,2 = w(z)

1,2

∫ Tb

0
g(z)

1 (t)g(z)
2 (t) dt = 0, (4)

when symbol “1” is transmitted, and

D(z)
2,1 = w(z)

2,1

∫ Tb

0
g(z)

1 (t)g(z)
2 (t) dt = 0,

D(z)
2,2 = w(z)

2,2

∫ Tb

0
g2(z)

2 (t) dt = √
E, (5)

when symbol “2” is transmitted. In particular, if D(z)
i,1 > D(z)

i,2,

the decision is “1,” and if D(z)
i,1 < D(z)

i,2, the decision is “2.”
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Consider the output of the coherent correlation receiver
under the AWGN channel. In this case, the chaotic basis
functions g′

j(t), j = 1, . . . ,M are regenerated from the noisy

received signal s(z)i (t) + ε(z)(t), where ε(z)(t) is assumed to
be independent AWGN. If we assume that the symbol “1”
has been sent, the decision variable D(z)

i,1, at the output of
the first correlator, can be written as

D(z)
i,1 =

∫ Tb

Tsync

[
s(z)i (t) + ε(z)(t)

]
g′(z)

1 (t) dt

=
∫ Tb

Tsync

[
w(z)
i,1g

(z)
1 (t) + w(z)

i,2g
(z)
2 (t) + ε(z)(t)

]
g′(z)

1 (t) dt

= w(z)
i,1

∫ Tb

Tsync
g(z)

1 (t)g′(z)
1 (t) dt

︸ ︷︷ ︸
A

+w(z)
i,2

∫ Tb

Tsync
g(z)

2 (t)g′(z)
1 (t) dt

︸ ︷︷ ︸
B

+
∫ Tb

Tsync
ε(z)(t)g′(z)

1 (t) dt

︸ ︷︷ ︸
C

, (6)

where Tsync is the synchronization transient time for each
symbol. If chaotic synchronization is retained, Tsync = 0.
Using orthonormal basis functions, the terms A and B are
equal to 1 and 0, respectively. Thus, an estimate of w(z)

i,1 is
provided by

D(z)
i,1 = w(z)

i,1 +
∫ Tb

0
ε(z)(t)g(z)

1 (t) dt (7)

The following outlines the problems of existing correlator-
based receivers:

• Synchronization problem: The decision variable is a ran-
dom variable whose mean value depends on the quality of
the basis functions recovery (see the terms A and B in (6)).
If perfect chaotic synchronization is not sustained, we have
Tsync �= 0 and g′(z)

1 (t) �= g(z)
1 (t). Using the DLCSK structure

mitigates this problem.
• Autocorrelation problem: To obtain the best noise

performance, basis functions must be orthonormal such that∫ Tb
0 g2

1(t)dt = 1 (See the term A in (6)). Chaotic basis func-
tions are at best orthonormal over a symbol duration only in
the mean, i.e., E[

∫ Tb
0 g2

1(t)dt] = 1, where E[ · ] denotes the
expectation operator [5]. The variance of the basis functions
leads to an estimation error. This error can be decreased by
increasing the length of the chaotic signals, or by normal-
izing the basis functions such that the transmitted energy E
is kept constant.

• Cross-correlation problem: In the general case,∫ Tb
0 g2(t)g′

1(t)dt �= 1 (see the term B in (6)). Some geo-
metrical approaches, such as the Bloch sphere [25], can
be employed to find maximally orthogonal points (or quasi-
orthogonal signals [26]) on the constellation. However, signal
classification becomes a complex problem when the num-
ber of classes increases [27]. The goal of the proposed map
selection algorithm is to find M points on the sphere from
a larger set of points.

• Noise problem: The term C in (6) shows that the mean
value of the decision variable can be affected by noise and
channel distortions. The DLCSK approach can reduce this
negative effect using DTL [1]. If the receiver is well trained,
DTL could extract the characteristics of the signals and
channels, which contributes to reducing this term.

III. M-ARY DLCSK SYSTEM MODEL
Figure 2 depicts the general architecture of the M-ary
DLCSK system. In this design, the proposed scheme con-
tains two main phases, namely offline training, and online
deployment. In the offline training phase, the chaotic maps
are transmitted under different channel conditions. When the
offline training phase is over, the online deployment (test)
phase initializes the modulated data transmission and data
detection. Note that the same structure is utilized for the map
selection process. However, we should select the appropri-
ate chaotic maps before the start of the training and testing
phases. Table 1 introduces the used discrete-time chaotic
sequences gk and their generator functions used in this paper.
In Table 1, a and b stand for the bifurcation parameters. For
example, the Logistic map generates non-periodic and non-
converging signals with 3.57 ≤ a ≤ 4. By choosing a set of
proper bifurcation parameters and initial values, the gener-
ated signals show chaotic properties which can be used for
several scenarios, such as secure chaos-based communication
systems [1].
The proposed M-ary DLCSK receiver has two main dif-

ferences compared to its counterparts, such as LSTM-aided
OFDM-DCSK [14] and LSTM-aided DNN [15]. The main
difference is the mechanism for recovering the chaotic basis
functions. A major weakness of the existing DCSK-based
systems is the repeated transmissions of the reference signals,
which lead to a degradation of data rate, energy efficiency,
security, and reliability. The proposed modulation scheme
drops out the reference transmissions, provides a coherent
scheme, and achieves an outstanding performance among
the chaos-based modulations. Owing to the difficulties of
attaining complete chaotic synchronization in the conven-
tional CSK systems, we propose a receiver based on the
NNs. The capabilities of the NNs enable us to achieve a
CSK receiver without the need for reference transmission or
chaotic synchronization.
Another characteristic of the M-ary DLCSK system is

that the training of the NN model is performed under SNR
variations. In particular, in each transmission, the training
SNR (σtr) is a random variable in a limited SNR range
as [σtr,min, σtr,max]dB. In this paper, σtr,min and σtr,max is
selected in the limited range [11, 23]dB and the NN model
is tested over a wide range of Eb/N0 ≥ 0dB.

A. THE PROPOSED TRAINING STRATEGY USING DTL
We first give the definitions of a domain and a task. A
domain D consists of two components: a feature space ∇
and a marginal probability distribution P(r), where r =
{r(1), . . . , r(n)} ∈ R. Given a specific domain D = {R,P(r)},
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FIGURE 2. M-ary DLCSK communications system.

a task T consists of two components: a label space J and
a function f (·) (i.e., T = {J , f (·)}). The function f (·) is not
observed but can be learned from the training data, which
consists of pairs {r(n), j(n)}, where r(n) ∈ R and j(n) ∈ J . The
function f (·) can be used to predict the corresponding label,
f (r), of a new instance r. From a probabilistic viewpoint,
f (r) can be written as P(j|r).
In this paper, we consider one source domain (i.e., DS),

and one target domain (i.e., DT). We denote the source
domain data as DS = {r(n)S , j(n)S }Nn=1, where r

(n)
S ∈ RS is the

data instance and j(n)S ∈ JS is the corresponding class label.
In our signal classification problem, DS is a set of received
chaotic signals with their associated labels. Similarly, we
denote the target domain data as DT = {r(n)T , j(n)T }Nn=1, where
the input r(n)T ∈ RT and j(n)T ∈ JT is the corresponding
output.
TL can be defined as [13]:
Definition 1: Given the source tasks TS, the source

domain DS, the target task TT , and the target domain DT ,
the aim of transfer learning is to improve the performance
of the target task TT using the knowledge from DS and TS,
where DS �= DT or TS �= TT .
In the above definition, a domain is a pair D = {R,P(r)}.

Thus, the condition DS �= DT implies that eitherRS �= RT or

P(rS) �= P(rT). In our design, the feature spaces between the
domains are similar, i.e., RS = RT . The channel coefficients
of DS and DT are also drawn from similar distributions. The
only feature which we use for TL is the SNR. In particular,
in each transmission, the training SNR is a random variable
in a limited SNR range as [σtr, min, σtr, max]dB. Since the
training is performed using stochastic SNRs and testing is
performed for a fixed SNR, the marginal distributions are
different between the two domains, i.e., P(rS) �= P(rT). In
other words, the feature spaces between the domains are
the same, but the marginal probability distributions between
the two domains are different. Therefore, the condition
P(rS) �= P(rT) is satisfied, and the target region signal clas-
sification can be formulated as a TL problem. Using this
framework, the classification function f (·) can be learned
from the training data and then used to classify the target
signals. In our problem, DS is a set of noisy signals r(n)S with
their associated labels, i.e., j(n)S . The received signals r(n)S are
filtered by the channel and carry the channel features. Thus,
the NN learns the dynamics of various chaotic maps and
the channel features at the same time. The trained NN can
classify the target signals r(z)T , z ∈ {1, . . . ,Z} and determine
the corresponding labels j(z)T , where Z shows the number of
target signals.
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TABLE 1. The used chaotic maps.

We should emphasize that in the proposed design, only
feature which we have used for TL is the stochastic SNRs. If
we train the NN with fixed SNRs, the problem reduces to a
regular DL problem. Training with random SNRs improves
the robustness and generalization capabilities of the proposed
system in noisy environments. This is especially useful when
we want to test the NN in different SNR conditions without
the need for re-training. This TL problem is also known
as transductive TL in the literature. In the transductive TL
setting, the source and target tasks are the same, while
the source and target domains are different [13]. In this
situation, no labeled data in the target domain are avail-
able, while a lot of labeled data in the source domain
are available. When P(rS) �= P(rT), the transductive TL
is related to domain adaptation, sample selection bias, and
co-variate shift methods whose assumptions are similar [13].
Note that the word “transductive” is used with several mean-
ings. In the traditional machine learning setting, transductive
learning [62] refers to the situation where all test data are
required to be seen at training time, and that the learned
model cannot be reused for future data. In this paper, we
use the definition of transductive learning presented in [13].
Unlike [62], in the categorization presented in [13], the
authors use the term transductive to emphasize the concept
that the tasks must be the same and there must be some
unlabeled data available in the target domain.
Table 2 provides a comparison between theM-ary DLCSK

and its DL-based counterparts, i.e., LSTM-aided DNN [15]

and LSTM-aided OFDM-DCSK [14], from the viewpoint of
the used features. As shown in Table 2, existing DL-based
demodulators are based on the DCSK modulation scheme.
In the LSTM-aided DNN receiver, the NN model is trained
with the MCS-MDCSK modulated signals and tested with
similar modulated signals. In fact, the basis function is recov-
ered by the transmission of the reference signals. In such
a case, a corrupted reference affects the demodulation of
one or more data-bearing signals. In other words, in the
DCSK-based modulations, transmission errors in the ref-
erence chaotic signal would induce propagation errors. The
M-ary DLCSK system is based on the coherent CSK scheme.
In the M-ary DLCSK system, the basis function recovery is
performed by training the NN. The NN learns the character-
istics of each chaotic map, where each map represents one
class. The NN adjusts its hyperparameters and uses them
in the deployment phase. Therefore, the characteristics of
each basis function are transferred from the source domain
to the target domain by reusing the hyperparameters, and we
can recover the chaotic basis signals at the receiver with-
out the need for chaotic synchronization. Consequently, in
the testing phase, we can assume that the receiver knows
the references and demodulates the unlabeled M-ary CSK
modulated signals. Although the sample basis signals are
known at the receiver side of a DLCSK system in the test-
ing phase, this knowledge is transferred from the training
phase. According to the above discussion, since the proposed
model is based on coherent modulation, the performance of
the proposed system is improved.
It is worth mentioning that in all systems presented in

Table 2, the feature spaces between the domains are similar,
i.e., RS = RT . However, in the M-ary DLCSK, since the
training is performed using stochastic SNRs and testing is
performed for a fixed SNR, the marginal distributions are dif-
ferent between the two domains, i.e., P(rS) �= P(rT). In other
words, the feature spaces between the domains are the same,
but the marginal probability distributions between the two
domains are different. Therefore, according to Definition 1,
the condition P(rS) �= P(rT) is only satisfied for the
M-ary DLCSK system. Thus, only theM-ary DLCSK system
is trained under a TL framework.

B. DATASET GENERATION FOR TRAINING AND TESTING
In the training phase, the transmitter generates M sets of the
chaotic signals, where each of these sets includes N chaotic
signals, i.e., {g′(n)

j (t)}Nn=1, j = 1, 2, . . . ,M, where n denotes
the nth signal transmission. In other words, we use M sets of
the training signals, each including S = Nβ samples, where
N is the number of signals, and β is the spreading factor.
All chaotic signals g′(n)

j (t) have equivalent class labels as

j(n)S ∈ {1, 2, . . . ,M}. The received signals r(n)S (t) act as input
to the NN in the source domain

r(n)S (t) =
L∑

l=1

α
(n)
l g′(n)

j (t − τl) + ε(n)(t), (8)
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TABLE 2. Example features of the M-ary DLCSK and LSTM-aided DNN systems.

where αnl and τl are the channel gain and delay of the lth

path, respectively. L is the number of paths, and ε(n)(t) is
independent noise, which is assumed to be AWGN with
zero mean and variance N0/2, where N0 is defined as the
Power Spectral Density (PSD) of the AWGN. After M × N
transmissions, we have a set of training vectors {r(n)S (t)}M×N

n=1 ,
and corresponding labels, {j(n)S }M×N

n=1 . Thus, the training set
of the M-ary DLCSK receiver can be expressed as

DS =
{
r(n)S (t), j(n)S

}M×N
n=1

, jS = 1, 2, . . . ,M, (9)

where M × N is the number of signals in the train-
ing set. Assuming a Rayleigh fading channel, r(n)S (t) can
be modeled as a complex-valued random variable, i.e.,
rS(t) = 	(rS(t)) + 
(rS(t)), where 	(·) and 
(·) represent
the real and imaginary parts of a complex number, respec-
tively. Therefore, the vector rS can be separated into two
vectors, i.e., rS = [	(rS),
(rS)], before being fed into the
classifier, and the training set can be rewritten as

DS =
{

[	(rS),
(rS)](n), j
(n)
S

}M×N
n=1

. (10)

After the NN training, the trained classifier can be used for
online demodulation.
To generate the test signals for the evaluation of the

proposed design, the M-ary modulator maps a symbol
i(z) ∈ {1, . . . ,M}, (1 ≤ z ≤ Z), to a chaotic waveform
s(z)i (t) using (2). A CNN can learn the channel features and
dynamics of the chaotic signals under the given environment.
Thus, the test dataset can be written as

DT =
{
r(z)T (t), j(z)T

}Z
z=1

, jT = 1, 2, . . . ,M, (11)

where Z shows the number of testing chaotic signals or target
signals.

C. CHANNEL ESTIMATION
A multipath fading channel is assumed such that the chan-
nel coefficients are constant over a symbol duration and vary
from one symbol to another. To achieve reliable communi-
cation, channel estimation plays a key role in eliminating

the impact of fading channels. In [12], the communication
system is considered as a black-box, and an end-to-end DL
architecture is used for signal detection. Using the black-
box approach mentioned above, encoding, decoding, channel
estimation, and all other functionalities of a communication
link are implicitly embedded in the NN model. This method
is not able to explicitly find the channel time-frequency
response and is not effective for applications that need to
have the complete channel response. Inspired by [12], to
eliminate the requirement of channel estimation, we adopt a
DL-based approach to implicitly extract the channels’ fea-
tures and recover the data symbols. In other words, the NN
in the source domain adjusts itself to be utilized in the target
domain. Thus, the proposed receiver needs no additional pilot
transmission for channel estimation. Note that, the channel
coefficients of DS and DT are drawn from similar distribu-
tions. In this design, the received signals (the chaotic signals
filtered by the channel) act as input to the NN model. Since
the channel influences the transmitted signals, each of the
received signals includes the channel features. Thus, the NN
can learn the dynamics of various chaotic maps, where each
of the received signals carries the channel features.
The Probability Density Function (PDF) of the channel

coefficient α in the multipath Rayleigh fading channels can
be written as [34]

q(α|δ) = α

δ2
e

−α2

2δ2 , (12)

where δ > 0 is the scale parameter of the distribution repre-
senting the root-mean-square value of the received voltage
signal. Based on the above-mentioned assumptions the NN
should be trained with complex-valued input vectors rS. At
the receiver side, these complex-valued input vectors are
split into real and imaginary parts, i.e., rS= [	(rS),
(rS)].
Thus, under the fading channels, we have two input feature
vectors. A Softmax layer estimates two probability vectors
pn,j from the above-mentioned input distribution, where jS
shows each of the possible classes (i.e., jS ∈ {1, 2, . . . ,M}),
in (13). In the test phase, we utilize this trained model to
demodulate test inputs.
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FIGURE 3. The structure of the proposed CNN-based classifier.

In this paper, we assume that the training SNR σ
(n)
tr

changes after the nth channel realization (or transmission).
In particular, σ

(n)
tr is a Gaussian random variable, such that

σ
(n)
tr ∈ [σtr,min, σtr,max], where σtr,min and σtr,max are optional

SNR bounds. In this paper, σtr, min and σtr, max are selected
in the limited range [11, 23]dB, and tested over a wide
ranger of Eb/N0 ≥ 0dB. Note that in the current form
of the DLCSK systems, we only consider one source and
one target domain including a number of chaotic signals
that are transmitted over the channels with a given distribu-
tion. Therefore, using state-of-the-art training methods, such
as meta-transfer learning, that consider multiple source fea-
tures will be effective. Furthermore, training on wider range
of SNRs and other features of practical channels can be
comprehensively investigated in future works.

D. CNN-BASED RECEIVER
Research efforts have demonstrated that CNNs are effective
in studies and applications involving chaotic signals, such as
chaotic biomedical signal analysis, speech processing, and
chaos identification systems [48], [49], [50]. Moreover, the
selection of CNNs allows us to gain useful theoretical insight
into the proposed system. We will see later that we can
calculate a lower bound approximation for the BER of a
correlation-based M-ary CSK receiver. Since correlation and
convolution operations are almost identical, the output of a
correlator can be considered an approximation of the output
of a convolutional layer. Consequently, this lower bound
can also be considered as a lower bound for the M-ary
DLCSK system. These theoretical analyses can be useful for
different purposes, such as validation of simulation results
or designing power allocation strategies.
The receiver classifies each of the received test signals rT

to the corresponding labels jT ∈ {1, 2, . . . ,M}. As shown
in Figure 3, the proposed CNN-based classifier has 16 base
layers: one sequence input layer, four 2-D convolution layers
(Conv2D), four Batch Normalization (BN) layers, and four
ReLU layers. The Fully Connected (FC), Softmax, and clas-
sification layers are located at the end of the process. The
sequence input layer is only used to fetch sequential input
values. Since each of the received vectors is separated into
two vectors, i.e., real and imaginary vectors, input values
into the NN are of size 2 × β.

In our work, four Conv2D layers are employed to simul-
taneously produce an acceptable BER performance and a

reasonable complexity level. By changing the number of
Conv2D layers between 1 and 10, we found that four
Conv2D layers result in an acceptable BER, and increas-
ing the number of Conv2D layers has no significant effect
on the BER performance. Each Conv2D layer includes nf
(1 ≤ nf ≤ 1024) sliding filters. We specify a stride size equal
to 1 for step size, with padding size 0. The BN layer normal-
izes a mini-batch of data across all transmissions. Several
BN layers are operated between the convolutional layers. In
the BN layer, the input vector is normalized to have zero
mean and unit variance. In this way, the value of input vec-
tors is adapted to the range wherein the activation functions
have high gradients. Thus, the vanishing and exploding gra-
dient problems are solved and the convergence process is
accelerated. The ReLU layer handles the nonlinearity in the
model and realizes a threshold operation to each segment of
the input, where any value less than zero is set to zero. The
FC layer enhances stability by performing more non-linear
operations and specifies the output size. For M-ary DLCSK
with M output classes, there is an FC layer with M output
neurons. We will see later that the number of input neurons
of an FC layer depends on the size of the input sequence
ns = β, filter size nk, and the number of Conv2D layers. The
Softmax layer is an activation function that delivers results to
the classification layer by computing a probability for each
input sequence U(t). The output values show the probability
that the sequence U(t) belongs to the class j. Therefore, the
Softmax layer contains j nodes, which is equal to the number
of classes. The utilized Softmax function can be expressed
as [35],

γ (U(t))j = e(U(t))j
∑

k∈K e(U(t))k
, (13)

where γ (U(t))j = pn,j is the probability that vector U(t)
belongs to the jth class (j ∈ K), and K = {1, . . . ,M} shows
all possible classes. For example, in a 2-ary DLCSK system,
pn,0 and pn,1, (1 ≤ n ≤ N), shows the probability that the
transmitted symbol is “1” or “2,” respectively.
The main objective of the training process is to mini-

mize the categorical cross-entropy cost function [36]. The
cross-entropy is a widely used cost function for classifica-
tion tasks. This function penalties the NN model for wrong
decisions and gives a larger gradient value that leads to faster
convergence. The calculated cross-entropy loss function is
given by

L(θ) = − 1

at

at∑

t=1

M∑

j=1

p′
n,j log

(
pn,j

)
, (14)

where at is the mini-batch size, θ indicates the set of network
parameters, pn,j is the Softmax layer output for class j and
observation n, and p′

n,j ∈ {0, 1} is a binary indicator that
specifies the correctness of the class label j for observa-
tion n. The Stochastic Gradient Descent (SGD) method is
widely used an iterative algorithm to solve this optimization
problem [36]. To find the optimal network parameters, the
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FIGURE 4. The structure of the proposed BiLSTM-based classifier.

SGD algorithm starts with a random initial value θ = θ0
and repeatedly updates it. L̃(θ) gives an approximation of
the cost function at each iteration, which is computed for a
random mini-batch of training samples of size at. At the end
of the training process, a network with optimized weights
and biases that can be used for online demodulation is
obtained.

E. BILSTM-BASED RECEIVER
In addition to the CNN-based DLCSK, we recommend a
classification model based on the Bidirectional Long Short-
Term Memory (BiLSTM) networks for comparative analysis.
Different types of Recurrent Neural Networks (RNNs) are
often used to learn complex dynamics from the input data.
However, classic RNNs suffer from some issues, such as
vanishing gradients and the tendency to take into account
only short-term dependencies. LSTMs are able to hold
previous information for a longer period. LSTMs have
demonstrated outstanding performance in practical chaotic
signal processing, classification of chaotic physiological sig-
nals, and prediction of non-linear dynamics [51], [52], [53].
As presented in Figure 4, based on the excellent performance
of LSTMs, we chose Bidirectional LSTMs to design an NN-
based receiver that classifies the received chaotic signals. A
BiLSTM can process input data from front to back and back
to front. The designed classifier has a well-known structure
including five base layers: a sequence input, a BiLSTM, an
FC, a Softmax, and a classification layer. Theoretical tasks
of an LSTM cell can be found in [37]. The FC, Softmax,
and classification layers are similar in both the BiLSTM
and CNN-based classifiers, as previously described in (13)
and (14).

F. MAP SELECTION
The chaotic basis signals used in the M-ary DLCSK system
can be generated by different chaotic map generators or
by a single generator with various initials or bifurcation
parameters. In all the cases mentioned above, the gener-
ated chaotic basis signals have a level of cross-correlation
that deteriorates the BER performance of the system. In

this paper, M different chaotic map generators are used to
produce the number of M chaotic signals. In each trans-
mission, based on the current data symbol, the transmitter
chooses one of these maps and transmits a segment (with
the length of β) of the produced long chaotic signals. To
reduce the negative effects of the cross-correlation, we use
relatively longer segments (i.e., β = 50) for all experiments.
Furthermore, among all possible solutions, we focus on the

map selection algorithm and demonstrate that it can effec-
tively reduce the destructive effects of the cross-correlation
by choosing a quasi-orthogonal signal set. Future studies
could examine other algorithms for improving the statisti-
cal characteristics of the chaotic basis signals or providing
strictly orthogonal basis signals. For example, the proposed
scheme can be combined with the Walsh codes [44]. In
this paper, we applied the Gram-Schmidt algorithm [24] to
the initial long signals for convenience. Alternatively, the
Gram-Schmidt algorithm can be applied to the transmitted
segments of chaotic signals. The following focuses on the
proposed map selection algorithm.
Most existing map selection algorithms analyze the cross-

correlation properties of the sequences made by the chaotic
maps [38]. In addition to the cross-correlation of the trans-
mitted signals, the BER performance of the proposed system
also depends on the selected classifier and the channel con-
ditions. If we adopt the output performance as the decision
criterion, we can consider the end-to-end effects of our
selected set of maps, whereas cross-correlation optimization
may only have a limited effect on the performance (refer
to the (6)). Indeed, we would like to choose M proper
maps using the confusion matrix [39] through a simple feed-
back mechanism. The confusion matrix contains valuable
information about the number of correctly and incorrectly
classified symbols. These correct and incorrect classifica-
tions are on the diagonal and non-diagonal elements of the
confusion matrix, respectively. Thus, we consider the total
number of incorrect classifications which is the sum of the
numbers on the non-diagonal elements.
We would like to derive an optimal policy for select-

ing a sub-set Dsel = {g(n)
j (t)}Nn=1, j = 1, 2, . . . ,M,

that contains M chaotic maps, from a larger set Dall =
{g(n)
m (t)}Nn=1, m = 1, 2, . . . ,B, where B > M. To select

M maps from the total B maps, A = (B
M

) = B!
M! (B−M)!

different cases (different sets of maps) are possible. We
realize all the possible cases, record all related confusion
matrices, and use a metric to select the case that provides
the best performance. The set that leads to a lower num-
ber of incorrectly classified symbols is selected. We define
φa = Sum{Incorrect classifications}, a = 1, 2, . . . , A, as
the selection criterion, where A shows the number of pos-
sible cases (possible sets of maps). Calculating φa for all
possible cases helps us choose the case with the best result.
φa can be calculated from the non-diagonal elements of
the confusion matrix. In other words, the total number of
incorrect classifications can be obtained by calculating the
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Algorithm 1: Selecting M Maps From B Maps
Data: A set of chaotic signals using B maps, i.e.,

Dall = {g(n)
m (t)}Nn=1, m = 1, 2, ...B. Each map

includes N chaotic signals gm(t). The selection
criterion is φa, a = 1, 2, ...,A, where
A = (B

M

) = B!
M! (B−M)! shows the number of

possible cases.
Result: Selection of M chaotic maps that lead to the

lowest φa
begin

for a = 1 : A do
Calculate all possible φa using the number of A
confusion matrices:
φa = Sum{Incorrect classifications}, a =
1, 2, ...,A.

Sort all the obtained φa;
Return M maps corresponding to the lowest φa;
End

sum of the numbers on the non-diagonal elements. Once the
best case is determined, we can extract the selected maps to
use them for training. The proposed map selection process is
summarized in Algorithm 1. After finding the proper maps,
the desired dataset can be produced. The proposed training
algorithm is also described in Algorithm 2.

G. LOWER BOUND APPROXIMATION FOR THE BER OF
M-ARY DLCSK
Obtaining complete chaotic synchronization and recovery of
the chaotic basis functions is difficult under a harsh wireless
environment. Failure to solve this problem has impeded the
theoretical analysis of coherent CSK systems. Few articles
have only analyzed the theoretical performance of the binary
CSK. Since this paper is the first attempt to design a coher-
ent M-ary DLCSK system, there is no theoretical benchmark
to compare and validate the simulation results. Therefore,
we intend to obtain the performance of a correlation-based
M-ary CSK receiver and perform a comparative
investigation.
Based on the given constellation, we can calculate the

BER of a correlator receiver. It is worth mentioning that
correlation and convolution operations are almost identical.
Thus, the output of a correlator can be considered as an
approximation of the output of a convolutional layer. In
other words, since M-ary DLCSK works with conventional
CSK transmitters, we can use the properties of CSK trans-
mitters to calculate a lower bound for the BER of M-ary
DLCSK systems under AWGN channels. However, correla-
tion receivers use synchronization for reference regeneration,
whereas M-ary DLCSK systems utilize DTL for training
and regeneration of the reference signals. Indeed, the con-
volutional layer captures the features well and reproduces
the reference signals. Since the distance between any pair
of the constellation points is equal to

√
2E, the BER of

Algorithm 2: Training of an M-ary DLCSK System
Using DTL
Data: A set of chaotic signals using M maps, i.e.,

Dsel = {g(n)
j (t)}Nn=1, j = 1, 2, ...M. For each

map, N chaotic signals are generated as
g(n)
j (t), n = 1, 2, ...,N. In addition,

[σtr,min, σtr,max] determines the training SNR
region and L shows the number of paths;

Result: A trained M-ary DLCSK receiver;
begin

for i = 1 : M do
for n = 1 : N do

Generate σ
(n)
tr ∈ [σtr,min, σtr,max];

Generate α
(n)
l , τ

(n)
l ;

Transmit nth signal, i.e., g(n)
i (t);

Receive all signals {r(n)S (t)}M×N
n=1 , with known labels

{j(n)S }M×N
n=1 ;

Separate r(n)S (t) into real and imaginary parts to
form the final training set
Dsel = {[	{rS},
{rS}](n), j(n)S }M×N

n=1 ;
Define a CNN classifier and train it using Dsel;
End

the optimum detector is independent of the transmitted sig-
nal. Thus, to compute the BER performance of the system,
we can suppose that the test signal s1 = (

√
E, 0, . . . , 0)

is transmitted. With this assumption, the received vector is
r = (

√
E + ε1, ε2, . . . , εM), where ε1, ε2, . . . , εM are zero-

mean, mutually independent Gaussian random variables with
variance N0/2.
Using the method presented in [46], the decision variables

in orthogonal signaling can be defined as Di,j = r · s′i, 1 ≤
i, j ≤ M, where s′i, 1 ≤ i ≤ M is a regenerated version of
si, 1 ≤ i ≤ M at the receiver side. Since we assumed that s1
has been transmitted, the decision variables can be written as

Di,1 = E + √
Eε1

Di,j = √
Eεi, 2 ≤ j ≤ M. (15)

The coherent correlation receiver estimates the elements wi,j
of the signal vector. In the noise-free case, with perfect
regeneration of the basis functions, s′i = si. Since we assumed
that s1 has been transmitted, if Di,1 > Di,j, j = 2, 3, . . . ,M,
the decision is “1” (i.e., the decision is correct). Thus, the
probability of a correct decision can be written as

Pc = P
[
Di,1 ≥ Di,2,Di,1 ≥ Di,3, . . . ,Di,1 ≥ Di,M|s1

]

= P
[√

E + ε1 > ε2,
√
E + ε1 > ε3, . . . ,

√
E + ε1 > εM

]
.

(16)

Events
√
E+ ε1 > ε2,

√
E+ ε1 > ε3, . . . ,

√
E+ ε1 > εM are

dependent due to the existence of the random variable ε1.
Conditioning on ε1, these events are independent. With
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independent and identically distributed (iid) random variables
εi, Pc can be expressed as

Pc =
∫ ∞

−∞

(
P
[
ε2 < ε + √

E|s1, ε1 = ε
])M−1

pε1(ε)dε,

(17)

We have

P
[
ε2 < ε + √

E|s1, ε1 = ε
]

= 1 − Q

(
ε + √

E√
N0/2

)
. (18)

Hence,

Pc =
∫ ∞

−∞
1√
πN0

[
1 − Q

(
ε + √

E√
N0/2

)]M−1

e
− ε2
N0 dε. (19)

and

Pe = 1√
2π

∫ ∞

−∞

[
1 − (1 − Q(x))M−1

]
e−

(
x−
√

2E
N0

)2

2 dx, (20)

where x = ε+√
E√

N0/2
. Pe shows the probability of error of

the considered constellation and provides a lower bound
for the simulated BER. Due to the symmetry of the con-
stellation, the probabilities of receiving any of the messages
i = 2, 3, . . . ,M, when s1 is transmitted, are equal. Therefore,
the probabilities of receiving any of the messages si when
s1 is transmitted can be written as P[si|s1] = Pe

2ϕ−1 . Assume
that s1 corresponds to a data sequence of length ϕ with “0′′
as the first bit. The error probability at this bit is the prob-
ability of detecting a si with a “1′′ at the first bit. Since
there are 2ϕ−1 sequences, the probability of error can be
written as

Pb = 2ϕ−1 Pe
2ϕ − 1

= 2ϕ−1

2ϕ − 1
Pe. (21)

The theoretical probability of error can be approximated
using (20) and (21).

IV. COMPLEXITY, DATARATE, AND BANDWIDTH
EFFICIENCY ANALYSIS
In this section, the computational complexity, data rate, and
BE of the proposed M-ary DLCSK scheme are analyzed.
Furthermore, a set of comparative analyses with chaos-based
communication benchmarks is presented.

A. COMPLEXITY ANALYSIS
The following presents a complexity study on the proposed
M-ary DLCSK receiver based on the method introduced
in [40]. The advantage of this method over other complex-
ity calculation methods is that it allows us to access the
details of layers, such as the number of convolutional fil-
ters or the number of hidden units. Since the number of
additions is often ignored in complexity evaluations, we
calculate the complexity in terms of Real Multiplications
per Symbol (RMpS) for the suggested NN architectures. As
discussed in [40] and [41], considering an offline training

process, we only evaluate the complexity at the deployment
stage, where the receiver demodulates the transmitted data.
Moreover, the complexity of nonlinear activation functions
is not considered in this paper, due to the fact that typically
their operations are based on an approximation approach,
rather than direct multiplication. For example, in the clas-
sical lookup tables-based approximation methods, the tasks
can be carried out with a few computations [45]. The num-
ber of multiplications will be zero for the input layer since
the sequence input layer only receives and groups the input
data.
We first consider the computational complexity of the

BiLSTM-based M-ary DLCSK receiver. Let β be the size
of the input sequence and ni be the number of feature
vectors, which is one and two for AWGN and Rayleigh
channels, respectively. With these values, the dimension of
the sequence input layer can be written as βni. The com-
plexity of a BiLSTM layer with nh hidden units can be
calculated as [40]

CBiLSTM = 2βninh(4ni + 4nh + 3 + no), (22)

where no is the number of outputs per symbol. The complex-
ity of the FC layer, with the output dimension of Lfc, can
be computed as βniLfc.Similarly, the complexity of the clas-
sification layer with the output dimension of Lclass can be
calculated as LfcLclass). The total computational complexity
of the BiLSTM-based M-ary DLCSK receiver is the sum
of the computational complexities of the above-mentioned
layers. As shown in Table 3, the computational complexity
per symbol of the proposed BiLSTM-based M-ary DLCSK
receiver is dependent on the values of nh, which also affects
the BER performance.
Now, we consider the computational complexity of the

CNN-basedM-ary DLCSK receiver. The computational com-
plexity of the first 1-D convolutional layer can be written
as [40]

CCNN = ninf nk(β − nk + 1), (23)

where nf shows the number of convolutional filters and nk
stands for the kernel (or filter) size. The output dimen-
sion of the first convolutional layer can be calculated as
Lc,1 = (β − nk + 1), which can be considered as the input
dimension of the next layer. In other words, the input dimen-
sion of each of the next convolutional layers, i.e., Ic,θ , can
be calculated as Ic,θ = (Lc,θ−1 − nk + 1), where 2 ≤ θ ≤ 4.
The computational complexity of the FC and classification
layers can be calculated in the way that is already described
for BiLSTM-based receivers. Finally, the total computational
complexity of the CNN-based M-ary DLCSK receiver can
be calculated by summing the calculated complexities for
all layers.
From the viewpoint of flexibility, since the total com-

putational complexity can be adjusted based on the user
requirements, the NN-based receivers can provide more flex-
ible designs. For instance, the results of this study suggest
that increasing the number of convolutional filters (nf ) or
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TABLE 3. Computational complexity comparisons.

equivalently increasing the complexity up to 106 RMpS,
can lead to an enhancement in the BER performance under
AWGN channels. However, the NNs with large RMpS (typ-
ically when RMpS≥ 108) are too complex for hardware
implementation. It is worth mentioning that all architectures
proposed in this paper have complexity values in the range
from 103 to 107 RMpS.
Table 3 provides a comparison between the complexity

of the M-ary DLCSK system and benchmark schemes. In
Table 3, the computational complexity of the LSTM-aided
DNN detector [15] is presented, where LL and Lfc,θ denote
the output dimensions of the LSTM layer and θ th FC layer,
respectively. In addition, Table 3 presents the computational
complexity of the general iterative receiver [10] and the low-
rank approximation of matrices (LRAM)-based detector [11],
where 
 stands for the number of iterations.

B. DATARATE AND BANDWIDTH EFFICIENCY ANALYSIS
In the following, we study the data rate and BE of the
proposed system and provide a comparison with other
benchmarks, namely, M-ary DCSK [42], Multilevel Code-
shifted Differential Chaos Shift Keying (MCS-DCSK) [43],
Multilevel Code-shifted Differential Chaos Shift Keying with
M-ary modulation (MCS-MDCSK) [44], and LSTM-aided
DNN systems [15]. In this paper, the data rate (R) is defined
as the number of transmitted bits per symbol duration.
In order to enhance the data rate of the binary DCSK,

an M-ary DCSK is proposed in [42]. In the M-ary DCSK
system, the basis functions are generated as a product of
Walsh functions and chaotic waveforms. The Walsh functions
assure the orthogonality of basis functions. In the M-ary
DCSK scheme, M ·β samples are needed to transmit log2M
bits of data. Therefore, the data rate and BE of M-ary DCSK
system can be written as R1 = log2M and BE1 = log2M/(M ·
β), respectively. TheM-ary DCSK system offers a good BER
performance under AWGN channels. However, the way that

the M-ary DCSK system utilizes the Walsh codes results
in a relatively low BE. Moreover, M-ary DCSK requires a
number of delay elements at the transmitter and receiver that
increases exponentially with the number of bits per symbol.
In [43], the MCS-DCSK modulation has been proposed

to carry multiple bits. Unlike the M-ary DCSK system that
uses Walsh codes to separate information-bearing signals,
the MCS-DCSK system utilizes one of the Walsh functions
for the transmission of the reference signal and uses the
remaining Walsh functions for the transmission of the refer-
ence signal and uses the remaining Walsh functions for the
information-bearing signals. Since the reference signal and a
number of information-bearing signals are transmitted in the
same slot, the BE of the MCS-MDCSK system is enhanced
considerably. However, the receiver of the MCS-DCSK
system requires a number of delay elements that reduce the
BER performance of this system. According to [43], for a
given H-order Walsh code matrix, the maximum data rate
and BE of the MCS-DCSK can be written as R2 = H − 2
and BE2 = (H − 2)/(M · β), respectively.

In [44], the authors proposed the MCS-MDCSK system by
combining MCS-DCSK with M-ary modulation. In partic-
ular, the MCS-MDCSK system uses the orthogonal Walsh
functions to carry in-phase and quadrature components of
the M-ary constellation symbols. Since the reference signal
and numerous information-bearing signals are transmitted
in the same slot, the BE of the MCS-MDCSK system is
enhanced. In the MCS-MDCSK system, N represents the
number of M-ary constellation symbols transmitted in a
symbol duration and its maximum value is Nmax = H−2

2 .
According to [44], the maximum data rate and BE of MCS-
MDCSK system can be calculated as R3 = (H−2

2 )log2M
and BE3 = (H−2

2 )log2M/(M ·β), respectively. The data rate
of MCS-MDCSK can be increased in a linear fashion with
H and in a logarithmic way with the modulation order M.
The LSTM-aided DNN system [15], proposes a DL-based
detector for MCS-MDCSK modulation and does not change
the transmitter structure of the benchmark MCS-MDCSK
system. Thus, the data rate and BE remain the same as the
MCS-MDCSK system.
In the proposed M-ary DLCSK scheme, the number of

log2M can be transmitted in each symbol duration. Thus,
its data rate is similar to the M-ary DCSK system. The
current form of the M-ary DLCSK does not use delay lines.
Moreover, since only one M-ary symbol is transmitted in
each time slot, it needs only β samples for each symbol
transmission. Note that the M-ary DCSK system transmits
M · β samples for each M-ary symbol. Thus, the BE of
the M-ary DLCSK is M times larger than the BE of an
M-ary DCSK system. Based on the above discussion, the data
rate and BE of the M-ary DLCSK system can be written
as R4 = log2M and BE4 = (log2M)/β, respectively. The
data rate and BE of M-ary DLCSK system increase with
the increment of M. The BE comparisons are presented in
Table 4, where all systems have the same spread factor β.
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TABLE 4. Data rate and bandwidth efficiency of the M-ary DCSK, MCS-DCSK,
MCS-MDCSK, LSTM-aided DNN, and M-ary DLCSK systems.

V. SIMULATION RESULTS
In this section, we perform a comparison between the
BER performance of the M-ary DLCSK and chaos-based
modulation benchmarks under AWGN and multi-path fading
channels. We also compute the complexity costs of the
suggested NN models, i.e., the BiLSTM and CNN models.

A. SIMULATION SETUP
For all the used chaotic maps, presented in Table 1, the
bifurcation parameters and initial values are chosen in such a
way that the generated signals show chaotic properties. Thus,
the generated signals can be used in secure chaos-based com-
munication systems. To generate signals by the Chebyshev
map, Initial state is set to g1 = 0.35. For other maps, ini-
tial state is set to g1 = 0.9. In order to generate different
training and testing datasets, the total number of 2 × 106

chaotic samples (4 × 104 signals of length β = 50) are first
generated using the chaotic generator functions, presented
in Table 1. In all experiments, we use fixed-length signals,
i.e., β = 50. The generated dataset is then partitioned into
the training set DS (50% of the total samples) and the test
set DT (50% of the total samples). Pre-defined functions
of the MATLAB Neural Network Toolbox are utilized to
implement the classifiers and define training options. The
learning rate, the number of epochs, and the mini-batch size
are set to η = 0.01, Ep = 12, and at = 50, respectively. In
this paper, we consider the system’s performance under the
AWGN, single-path (L = 1), and two-path (L = 2) Rayleigh
fading channels. A single-path fading model with zero delay
and an average path gain of 0 dB is considered. In addition,
a two-path channel, with identical average power gains, is
considered. The average power gain in each path is assumed
to be 0.5, (i.e., E(α2

1) = E(α2
2) = 0.5), with τ1 = 0, and

τ2 = 2. We assume that the channel coefficients (αl) and
training SNR (σtr) change after each transmission.

B. CROSS-CORRELATION PROBLEM
Consider the transmitter of a 2-ary DLCSK system. There
are two long chaotic signals with the length of 104 sam-
ples generated by two different chaotic generators. In each
transmission, the transmitter selects one of these maps based

on the current data symbol and transmits a chaotic signal
with the length of β = 50 samples. In other words, if the
data symbol “1” is to be sent, a signal generated by the
first generator, and if the symbol “2” is to be sent, a sig-
nal generated by the second generator is transmitted. Since
the investigation of short chaotic signals involves checking a
huge number of possible combinations between the chaotic
signals, we consider the correlation properties of the long
chaotic signals. Figure 5 (a) indicates the normalized cross-
correlation between a signal generated by the Logistic map
and four chaotic signals obtained by different chaotic gener-
ators, i.e., the Chebyshev, Bernoulli shift, Cubic, and Hénon
maps. All chaotic signals have the length of 104 samples. The
cross-correlation function measures the similarity between a
sequence and shifted copies of another sequence as a func-
tion of the time delay (shift). Since the cross-correlation
value is highly sensitive to the length of the chaotic signals,
the question that arises is how many samples of the chaotic
signals should be considered when we want to select a set of
proper maps. For example, as shown in Figure 5 (b), when
the length of the signals increases from 104 to 106 sam-
ples, the maximum absolute value of the cross-correlation
between the chaotic signals increases considerably. Figure 5
(c) presents the normalized cross-correlation of the noisy
versions of the chaotic signals. When SNR = 10dB, the
cross-correlation values are different with the free noise
case. We can conclude that selecting the proper chaotic maps
based on the cross-correlation values, without considering the
channel conditions, may lead to considerable performance
degradation. The BER performance investigation of the 2-ary
DLCSK system, presented in Figure 6, verifies that adopt-
ing improper chaotic maps results in remarkable performance
degradation. In Figure 6, we use different pairs of chaotic
maps to inspect the effects of chaotic map selection on
the BER performance of the 2-ary DLCSK system. When
Eb/N0 > 16dB, selecting the Logistic and Cubic maps results
in a better BER performance compared to the case where we
use the Logistic and Chebyshev maps. On the other hand,
when Eb/N0 < 16dB, selecting the Logistic and Cubic maps
leads to better performance compared to the Logistic and
Chebyshev maps. Similarly, ignoring the effects of practical
channels, such as fading correlation, may lead to consider-
able performance degradation. Thus, instead of considering
cross-correlation values, we introduce a map selection algo-
rithm that chooses the chaotic maps based on the end-to-end
performance of the M-ary DLCSK system.

C. SELECTED MAPS
In the first example, we consider the map selection problem
for a typical 2-ary DLCSK system. The data set is cre-
ated using two long chaotic signals with the length of 104

samples. Based on the current data symbol, the transmitter
chooses one of these maps and transmits a signal with the
length of β. Although the Gram-Schmidt method is used
in this paper to orthogonalize these long signals, the results
show that a level of cross-correlation remains between the

VOLUME 4, 2023 2331



MOBINI et al.: DESIGN OF AN M-ARY DLCSK COMMUNICATION SYSTEM USING DEEP TL

FIGURE 5. Normalized cross-correlation values between the Logistic map and the Chebyshev, Bernoulli shift, Cubic, and Hénon maps using (a) S = 104 free-noise samples,
(b) S = 106 free-noise samples, (c) S = 104 noisy samples (SNR = 10dB), (d) S = 104 noisy samples (SNR = 10dB) degraded by a single-path Rayleigh fading channel.

transmitted signals. Our map selection algorithm is based
on the end-to-end performance of the system, which does
not take the cross-correlation values into account. The results
show that by evaluating the merits of different chaotic maps,
we can obtain a set of quasi-orthogonal signals. In the
first example, we would like to select two proper maps
(M = 2) from a larger set consisting of five chaotic maps
(B = 5). In other words, Dsel = {g(n)

i (t)}Nn=1, i ∈ {1, 2},
and Dall = {g(n)

m (t)}Nn=1, m ∈ {1, 2, . . . , 5}. The Logistic,
Chebyshev, Bernoulli shift, Cubic, and Hénon maps are
considered as Dall. Thus, the number of possible pairs is(5

2

) = 10.
Figure 6 depicts the BER curves of four pairs from

all ten possible pairs, i.e., a case in which the Logistic
map is utilized along with the Chebyshev, Bernoulli shift,
Cubic, and Hénon maps. The obtained results indicate that
choosing the Bernoulli shift and Logistic functions leads to

better end-to-end BER performance under AWGN channels.
Figure 6 also shows the theoretical lower bounds for the BER
performances of M-ary DLCSK (20), for M = 2, 4, 8. As
shown, the BER of the chaotic switching CSK and the cal-
culated lower bound (for M=2) are almost identical. This
verifies that this lower bound is an acceptable approximation
for an M-ary DLCSK system with a single convolutional
layer. Compared to the Chaotic switching CSK, the BER
performance of 2-ary DLCSK degrades under the AWGN
channels. The main reason lies in that the BER performance
of the chaotic switching CSK is obtained assuming perfect
synchronization, whereas the performance obtained by the
2-ary DLCSK only uses a limited set of training samples
for the basis function recovery.
In Figure 7, we study the role of the confusion matrix

in the proposed map selection algorithm. In this example,
to construct a 4-ary DLCSK system, we select M = 4
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FIGURE 6. BER performance of 2-ary DLCSK system using four different pairs of
chaotic maps for σ

(n)
tr ∈ [15, 19]dB.

FIGURE 7. An example of the confusion matrix of a 4-ary DLCSK system, tested
using 2 × 104 symbols, for Eb/N0 = 18dB.

maps from the total B = 6 maps. To select four maps
from the six maps, A = (6

4

) = 15 different cases (differ-
ent sets of maps) are possible. We obtained all 15 different
confusion matrices and recorded the number of incorrectly
classified symbols φa, a = {1, 2, . . . , 15}, for these 15 con-
fusion matrices. Finally, the case which results in a lower
φa, a = {1, 2, . . . , 15}, is selected. Figure 7 depicts one of
15 possible confusion matrices of the 4-ary DLCSK system,
for test Eb/N0 = 18dB. The columns display the predicted
maps/symbols, and the rows stand for the true maps/symbols.
In this example, using 2 × 104 test symbols (106 samples),
the calculated metric is φ1 = 23 which is equal to the sum
of incorrectly classified symbols. The confusion matrix also
helps in inspecting the merits of chaotic maps and making

FIGURE 8. The effects of increasing the size of set Dall (i.e., B) on the number of
possible cases A, for M = 2, 4, 8.

design decisions. Using the proposed map selection algo-
rithm, the Logistic, Chebyshev, Bernoulli shift, and PAM
maps are selected for the transmission of a symbol set for
M = 4.

Generally, when the modulation order (M) is given, the
probability of finding a fully orthogonal signal set increases
by choosing a larger B. Consequently, with a larger B,
the probability of obtaining an improved BER performance
increases. However, when a larger B is chosen, the number
of possible cases (A) to be evaluated also increases expo-
nentially. As shown in Figure 8, by choosing a larger B, the
number of possible cases and the complexity of the map
selection algorithm augments.

D. THE EFFECTS OF TRAINING SNR
For both the training and deployment of the receiver, the
training SNR (σtr) is a key parameter to determine the per-
formances of the NN-based receiver. In Figure 9, we study
the effects of training on a relatively wide range of SNR
values. As shown in Figure 9, training on relatively lower
SNRs (σ

(n)
tr ∈ [11, 15]dB), leads to a lower BER for the

low-SNR conditions (i.e., when Eb/N0 < 14dB). Since the
training process is performed under different channel condi-
tions, NN can indirectly estimate noise distribution. However,
when σ

(n)
tr ∈ [11, 15]dB, the BER is high for Eb/N0 ≥ 14dB.

When σ
(n)
tr ∈ [15, 19]dB, M-ary DLCSK shows a more

robust behaviour for Eb/N0 ≥ 14dB. When the values of
σ

(n)
tr are relatively high, the NN can grasp the clean signals

and performs well at higher test SNRs. Summarily, in order
to obtain better BER performances in low-noise conditions,
the receiver should be trained at higher SNRs. The train-
ing options of the proposed scheme enable us to design a
receiver with a flexible data rate depending upon specific
channel conditions.
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FIGURE 9. The effects of different training SNR ranges on the performance of 2-ary
DLCSK system under AWGN channels.

In Figure 10, we address the effect of using the TL
technique. In the proposed scheme, we train the NN with
stochastic SNRs to achieve optimal BER performance over
a wide range of SNRs. If we train NN with fixed SNRs, the
problem reduces to a regular DL problem. The proposed
TL technique improves the generalization capabilities of
the system. Thus, we can employ the trained NN in dif-
ferent SNR conditions without the need for re-training. In
Figure 10, in order to further investigate the effect of train-
ing SNR, we consider two different scenarios. In the first
scenario, both the training and testing processes are per-
formed at fixed SNRs (i.e., σ

(n)
tr = σtr). In particular, we set

σtr = 11, 15, and 19dB. In the second scenario, we assume
that the training SNR changes in each transmission. In other
words, in this case, the σ

(n)
tr is a random variable such that

σ
(n)
tr ∈ [15, 19]dB. For both scenarios, the NN model is

tested over a wide range of energy per bit to noise power
spectral ratios, i.e., Eb/N0 ≥ 0dB. Training on a lower SNR
value (consider the case of σtr = 11dB) gives a good BER
performance for Eb/N0 ≤ 12dB. However, in this case, the
BER is high for Eb/N0 ≥ 12dB. Generally, the results indi-
cate that the NN trained over a relatively wide range of
SNRs is suitable for a large range of test SNRs. For exam-
ple, when σ

(n)
tr ∈ [15, 19]dB, there is up to 2dB improvement

compared to the case where the NN is trained at the fixed
SNR σtr = 19dB.

E. PERFORMANCE-VERSUS-COMPLEXITY ANALYSIS
Figure 11 depicts the effects of the nk (filter size or
kernel size) on the BER performance of the CNN-based
2-ary DLCSK under AWGN channels. In this experiment
the NN is trained on σ

(n)
tr ∈ [15, 19]dB and tested for

Eb/N0 = {6, 8, 10, 12}dB. Assuming a certain number of

FIGURE 10. The effects of training on a wide range of SNRs.

FIGURE 11. The effect of the filter size (nk ) on the BER performance of the
CNN-based 2-ary DLCSK under AWGN channels, for σ

(n)
tr ∈ [15, 19]dB.

convolutional layers (four layers), and a certain number
of filters (i.e., nf = 256), we tested different values of
nk (2 ≤ nk ≤ 10) and found that nk = 3 results in the best
BER performance. Therefore, in the rest of this paper, we
assume a constant filter size of nk = 3 and only investigate
the effects of the number of filters (nf ) on the complexity
and BER performance of the system. Table 5 presents an
example of the calculated complexity values (C) and output
dimensions (output dim.) for ni = {1, 2} and ns = 50. In this
example, we consider nf = 512 and nh = 25 for the BiLSTM
and CNN models, respectively. With ni = 1, nf = 512, and
nh = 25, both the BiLSTM and CNN models have the same
computational complexity order, i.e., 2.7 × 105 RMpS. In
this way, we can manage the computational complexity of
the used NNs.
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TABLE 5. Calculated computational complexity with ni = {1, 2}, ns = 50, nf = 512,
and nh = 25.

FIGURE 12. BER performances of the 2-ary DLCSK system under AWGN channels,
for complexity values in the [103, 107] RMpS range.

Figure 12 compares the BER performances of the sug-
gested NN models under similar computational complexity
conditions. In this simulation, the 2-ary DLCSK system is
trained with σ

(n)
tr ∈ [15, 19]dB, and tested at the target

Eb/N0 = 6, 12, 14dB. This simulation investigates which NN
model rovides better performance under AWGN channels if
we restrict the complexity to a certain level. We consider the
complexity values in the [103, 106] RMpS range. This range
guarantees that the hardware implementation of the receivers
is feasible using Field-Programmable Gate Array (FPGA)
devices [40]. The results show that the BER performance
changes with the changes of nh and nf . Although these
changes are not exactly predictable, it is observable that
the CNN model leads to a better BER performance than the
BiLSTM model when the computational complexity is less
than 106 RMpS.

Figure 13 performs a BER performances-versus-
complexity study for the suggested NNs two-path Rayleigh

FIGURE 13. BER performances of the 2-ary DLCSK system under two-path Rayleigh
fading channels, for complexity values in the [103, 107] RMpS range.

FIGURE 14. BER performances of the 2-ary DLCSK system under AWGN channels,
for different NN models and different complexity levels.

fading channels. In this experiment, the 2-ary DLCSK system
is trained with σ

(n)
tr ∈ [15, 19]dB, and tested at the target

Eb/N0 = 6, 12, 14dB. Unlike the case of the AWGN chan-
nels, the performance of the CNN model deteriorates when
nf increases. Moreover, the CNN model performs better than
the BiLSTM model when the computational complexity is
less than 105 RMpS.

Figure 14 compares the performances of the suggested
NN models for different complexity conditions under AWGN
channels. We consider the complexity values in the [103, 106]
RMpS range. The BER performance obviously improves
by increasing nh and nf . When Eb/N0 < 12dB, the best

VOLUME 4, 2023 2335



MOBINI et al.: DESIGN OF AN M-ARY DLCSK COMMUNICATION SYSTEM USING DEEP TL

FIGURE 15. BER performances of the 2-ary DLCSK system under two-path Rayleigh
fading channels, for different NN models, and different complexity levels.

performance for 2-ary DLCSK is provided by the CNN
model, with a computational complexity of about 105 RMpS
(i.e., nf = 512). Generally, increasing the complexity level
from 103 to 106 RMpS leads to about 2dB BER performance
improvement. When Eb/N0 > 12dB, increasing the number
of filters up to nf = 1024 leads to the best BER performance.
Figure 15 analyzes the BER performances of the 2-ary

DLCSK system for different complexity conditions under
two-path Rayleigh fading channels. Unlike the case of
AWGN channels, the performance of 2-ary DLCSK system
degrades by increasing nh and nf . The best performance for
2-ary DLCSK is provided by the CNN model, with a com-
putational complexity of about 103 RMpS (i.e., nf = 3).
However, we found that for higher modulation orders, i.e.,
M ≥ 4, the best performance for M-ary DLCSK is provided
by the CNN model with nf = 8.

F. BER PERFORMANCE OF M-ARY DLCSK IN AWGN
CHANNELS
Figure 16 compares the BER performances of the non-
coherent DCSK, antipodal CSK, chaotic switching CSK,
LSTM-aided DNN receiver [15], and 2-ary DLCSK systems
under AWGN channels, for σ

(n)
tr ∈ [15, 19]dB. An antipodal

CSK scheme only uses one chaotic basis function, and can
theoretically reach the noise performance of BPSK. However,
owing to the cross-correlation between chaotic signals and
the problem of basis function recovery, this performance
cannot be achieved practically. The chaotic switching CSK
is a coherent CSK scheme with two basis functions that can
theoretically reach the BER performance of the Frequency
Shift Keying (FSK) modulation scheme under AWGN chan-
nels. This level of BER performance can be achieved only if
the cross-correlation problem is solved and the basis func-
tions can be recovered at the demodulator successfully. If
it is not possible to recover the basis functions, the DCSK

FIGURE 16. BER curves of the DCSK, antipodal CSK, chaotic switching CSK,
LSTM-aided DNN (with M=2, N = 1), and 2-ary DLCSK (for σ

(n)
tr ∈ [15, 19]dB) under

AWGN channels.

scheme may provide better performance. However, the BER
performance of non-coherent receivers depends on the chan-
nel bandwidth. Further, the transmission of the reference
signals increases the overhead, errors, and complexity of the
system.
Note that the simulated antipodal CSK and chaotic switch-

ing CSK systems assume exact synchronization of the
chaotic sequences, and are only presented as a bench-
mark for comparison purposes. We tested different training
SNR intervals as [σtr,min, σtr,max]dB, and found that the
system shows a relatively better BER performance when
σ

(n)
tr ∈ [15, 19]dB. From the energy efficiency point of view,

when the receiver is previously trained using chaotic ref-
erences, we do not need to transmit (or regenerate) the
reference signals, which results in lower energy consumption.
By exploiting the optimization and classification capabilities
of NNs, the 2-ary DLCSK system attains an improved BER
performance compared to the DCSK system. As shown, the
proposed receiver obtains a BER gain of 0.2 compared to the
conventional non-coherent DCSK system at Eb/N0 = 16dB.
Figure 16 also compares the simulated BER performances

of the 2-ary DLCSK and LSTM-aided DNN systems [15].
Note that in this experiment, the computational complex-
ity of the CNN and LSTM-based DLCSK receivers is
2.70 × 105 RMpS, and the computational complexity of
the LSTM-aided DNN receiver is 2 × 105 RMpS. In the
LSTM-aided DNN system, the orthogonality is satisfied
via the Walsh codes to construct an orthogonal signal set,
whereas M-ary DLCSK produces a quasi-orthogonal signal
set through the map selection algorithm. In the LSTM-aided
DNN system, the number of M-PSK symbols transmitted
in a symbol duration is shown by N . For M = 2, the
number of the Walsh-coded signals should be greater or
equal to 2N + 1 = 3, i.e., one Walsh-coded signal is used
as the reference signal, and two Walsh codes are used for
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FIGURE 17. Q-factor levels of the DCSK, antipodal CSK, chaotic switching CSK,
LSTM-aided DNN (with M=2, N = 1), and 2-ary DLCSK (for σ

(n)
tr ∈ [15, 19]dB) under

AWGN channels.

spreading the real and imaginary parts of the PSK symbols.
For a fair comparison, it is assumed that both systems trans-
mit one symbol in each transmission (i.e., N = 1). As
indicated, the 2-ary DLCSK system provides a considerable
performance advantage compared to the LSTM-aided DNN
receiver. For example, the performance of 2-ary DLCSK
shows a gain of 0.1 over the LSTM-aided DNN system
at Eb/N0 = 16dB. The main reason lies in that the 2-ary
DLCSK system uses the previously trained NN for the
chaotic basis functions recovery, whereas the LSTM-aided
DNN system transmits the references over the AWGN chan-
nel. Based on the results obtained in Figure 16, the 2-ary
DLCSK system offers the best performance among the sim-
ulated modulation schemes in terms of the Eb/N0B. For
example, at the target BER 10−3, the CNN-based receiver
shows a 3dB Eb/N0 improvement compared to the conven-
tional DCSK, 2dB compared to the LSTM-aided DNN, and
1.5dB compared to the BiLSTM-based receiver.

In Figure 17, assuming an AWGN channel, the perfor-
mances of DCSK, antipodal CSK, chaotic switching CSK,
LSTM-aided DNN (with M=2, N = 1), and 2-ary DLCSK
(for σ

(n)
tr ∈ [15, 19]dB) are compared in terms of the

Q-factor level. The Q-factor can be calculated by Q =
20log10(

√
2 erfc−1(2×BER)). At the target Eb/N0 = 14dB,

the CNN-based receiver shows a 4dB Q-factor gain com-
pared to the conventional DCSK, 2dB compared to the
LSTM-aided DNN, and 1dB compared to the BiLSTM-based
receiver.
In Figure 18, we present a performance comparison

between M-ary DLCSK and LSTM-aided DNN systems
under AWGN channels, for M = 2, 4, 8. In the LSTM-
aided DNN system, N represents the number of M-PSK
symbols transmitted in a symbol duration and its maximum
value is Nmax = H−2

2 , where H is the number of Walsh

FIGURE 18. BER performances of M-ary DLCSK (with σ
(n)
tr ∈ [15, 19]dB) and

LSTM-aided DNN [15] systems under AWGN channels, for M = 2, 4, 8.

code sequences. For example, when M = 4, using five
Walsh-coded signals, the maximum number of transmitted
PSK symbols is Nmax = 1. Thus, for a fair compari-
son, we assume that both the LSTM-aided DNN and 4-ary
DLCSK systems transmit one symbol in each symbol dura-
tion. First, consider the BER curves of the LSTM-aided DNN
systems. When M = 4, the LSTM-aided DNN achieves
better BER performance than the case of M = 2. This
is due to the fact that with M = 4, this system can be
considered as a combination of two 2-ary modulation (i.e.,
DCSK). However, unlike the case of DCSK, the LSTM-
aided DNN system only transmits one reference signal
for the demodulation of two information-bearing signals.
In this way, the overhead per transmitted bit reduces and
the BER performance improves. The BER performance of
the LSTM-aided DNN system, except in the above spe-
cial case, deteriorates when M increases. The main reason
lies in that the decision boundaries of M-ary constellation
are decreasing when M increases. In the proposed M-ary
DLCSK system, the BER performance always deteriorates
when M increase. Compared to LSTM-aided DNN, the
M-ary DLCSK shows better performance for all values of
M. The performance of the M-ary DLCSK system deterio-
rates with the increase of M. Notably, since the proposed
system does not transmit any reference, the value of the
overhead per transmitted bit is fixed, and it has no role
in performance deterioration. A level of cross-correlation
remains between the chaotic signals, while higher-order
modulation reduces the Euclidean distance between adja-
cent symbols, thereby leading to performance degradation.
In this experiment, using the proposed map selection algo-
rithm, the Logistic, M-PAM, Tent, Bernoulli shift, Circle,
Iterative, Tent-like, and PAM maps are selected for the trans-
mission of a symbol set for M = 8. As previously discussed,
choosing proper chaotic maps has a considerable impact on
the value of this performance degradation.
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FIGURE 19. BER performances of 4-ary DLCSK (with σ
(n)
tr ∈ [15, 19]dB) and

chaos-based modulation benchmarks under AWGN channels.

Figure 19 depicts the BER performances of 4-ary DLCSK,
4-ary DCSK [42], LSTM-aided DNN receivers (with M = 4
and N = 1) [15], general iterative receiver [10], and
LRAM-based detector [11] under AWGN channels. As
shown, the 4-ary DLCSK system achieves a slightly bet-
ter BER performance than the LSTM-aided DNN system
under AWGN channels. The main reason is that the reference
signals at the M-ary DLCSK are obtained by the train-
ing, instead of the transmission over the channel. Moreover,
since the M-ary DLCSK is trained over a wider range of
SNRs, it shows a more robust behavior compared to its DL-
based counterpart. We can notice that the BER performances
of the general iterative receiver [10] and the LRAM-based
detector [11] are better than the proposed system under
AWGN channels. The reason is that these systems use addi-
tional noise reduction mechanisms. For example, an iterative
receiver evaluates the reference signals and updates them for
the next iteration. In this way, the SNR of reference signals
and obtained performance can be improved in the iterative
receiver. On the other hand, the complexity of LRAM-based
detectors and iterative receivers is very high since additional
noise reduction operations are employed for these systems.
In this simulation, the number of iterations in the general
iterative receiver is set to 100 to ensure the convergence of
the iteration.

G. BER PERFORMANCE OF M-ARY DLCSK IN
MULTI-PATH FADING CHANNELS
Figure 20 presents the BER performances of the 2-ary
DLCSK, non-coherent DCSK, chaotic switching CSK,
MCS-MDCSK [44], general iterative receiver [10], and
LRAM-based detector [11] under single-path Rayleigh
fading channels. Unlike the case of AWGN channels, 2-ary
DLCSK shows a considerable BER enhancement under

FIGURE 20. BER performances of 2-ary DLCSK (with σ
(n)
tr ∈ [15, 19]dB) and

chaos-based modulation benchmarks under single-path Rayleigh fading channels.

fading channels. The main reason lies in that the M-ary
DLCSK receiver can demodulate received signals without
the transmission of reference signals through a destructive
environment. Consider the MCS-MDCSK system, where the
reference signals are transmitted over the channel with the
goal of basis function recovery. Since the transmitted refer-
ence is corrupted by noise and fading, the receiver cannot
properly demodulate information-bearing signals. As shown,
since the destructive effects of the fading channels, such
as fading correlation, are more than the destructive effects
of the AWGN channels, the decrease in performance is
also more obvious. Unlike the case of AWGN channels,
the BER performances of the LRAM-based detectors and
iterative receivers degrade dramatically under fading chan-
nels. For example, the BER performance of 2-ary DLCSK
shows a gain of 0.2 over the general iterative receiver
and LRAM-based detector at Eb/N0 = 18dB. In addition,
Figure 20 shows that the 2-ary DLCSK system provides
a substantial performance advantage compared to the theo-
retical performance of the chaotic switching CSK [5]. The
reason is that the 2-ary DLCSK design has powerful learn-
ing and feature extraction capabilities. Moreover, since the
receiver is trained under channel variations and different SNR
conditions, it shows robust behavior against the destructive
effects of the channels.
In Figure 21, we study the effects of training SNR on the

system’s BER performance under the single-path (L = 1) and
two-path (L = 2) Rayleigh fading channels. We assumed that
the channel coefficients α

(n)
l and training SNR (σ

(n)
tr ) change

after each transmission. In the case of two-path channels, the
best BER performance for M-ary DLCSK is provided by
σ

(n)
tr ∈ [15, 19]dB. In the case of two-path channels, when

the receiver is trained at (σ
(n)
tr ∈ [11, 15]dB), M-ary DLCSK
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FIGURE 21. BER performances of 2-ary DLCSK system under Rayleigh fading
channels, for different training SNR ranges and different number of paths (L = 1, 2).

FIGURE 22. BER performances of M-ary DLCSK and MCS-MDCSK systems under
single-path Rayleigh fading channels, for M = 2, 4, 8.

reaches to the best results for Eb/N0 < 12dB. However, for
Eb/N0 > 12dB, selecting σ

(n)
tr ∈ [15, 19]dB results in a more

robust behavior.
In Figure 22, we make a performance comparison between

M-ary DLCSK and MCS-MDCSK systems over single-path
Rayleigh fading channels, for M = 2, 4, 8. When M = 2,
the MCS-MDCSK system transmits one reference signal for
the demodulation of one information-bearing signal. When
M = 4, since the MCS-MDCSK system transmits one refer-
ence signal for the demodulation of all information-bearing
signals, the overhead per transmitted bit is reduced. The
MCS-MDCSK system reaches its best performance with
M = 4. For M > 4, the BER performance of the MCS-
MDCSK system degrades since the decision boundaries of

FIGURE 23. BER performances of M-ary DLCSK, LSTM-aided DNN [15], and
FNN [47] systems under sinle-path Rayleigh fading channels, for M = 2, 4, 8.

TABLE 6. Training settings of the system used in Figure 23 (for M = 4).

the constellation are decreasing. The preferable performance
of the MCS-MDCSK system under multi-path fading chan-
nels occurs in medium modulation orders (i.e., M = 4 or 8).
Compared to the MCS-MDCSK system, the M-ary DLCSK
can exploit the capabilities of the NNs to obtain an improved
BER performance. However, since higher-order modulation
shortens the Euclidean distance between adjacent symbols,
the BER performance worsens when M increases. Moreover,
choosing improper chaotic maps may lead to considerable
performance degradation in the M-ary DLCSK systems.

In Figure 23, we make a performance comparison between
M-ary DLCSK system and its DL-based counterparts, i.e.,
the LSTM-aided DNN, and FNN receiver [47], under single-
path Rayleigh fading channels, for M = 2, 4, 8. The LSTM-
aided DNN and FNN systems are almost similar, except
that the LSTM layer is replaced with an FC layer in the
FNN system. Each input vector of the FC layer in the FNN
receiver is a concatenation of the reference signal and one of
the information-bearing signals. As indicated in Table 6 for
the case ofM = 4, to make a fair comparison, the parameters,
such as the number of convolutional filters and hidden units,
are adjusted to make the complexity and training time of the
NNs as similar as possible.
Summarily, the M-ary DLCSK system obtains an out-

standing performance compared to the existing chaos-based
benchmarks, such as the LSTM-aided DNN systems. The
main reason lies in that the M-ary DLCSK system uses the
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trained NN for the basis function recovery, instead of the
reference transmissions. Note that in the LSTM-aided DNN
receiver, a received reference is used for the demodulation of
several data-bearing signals. Thus, when a reference signal
is degraded, it affects the detection of several data bits. The
value of the BER performance improvement in scenarios
where the effect of the channel is more impressive, such
as the fading channels, is more than the AWGN channels.
For example, the BER performance of 8-ary DLCSK shows
a gain of 0.1 over the LSTM-aided DNN (with M = 8)

at the target Eb/N0 = 14dB. Note that the M-ary DLCSK
shows a level of error that does not disappear with increas-
ing the SNR. The reason is that a level of cross-correlation
remains between the used chaotic signals. Thus, designing
new architectures by considering Walsh codes and using
other orthogonalization methods can be a promising direction
for future research.
Generally, the BER performance and complexity of

the algorithms are two fundamental issues for the prac-
tical implementation of the NN-based communication
systems [40]. The M-ary DLCSK scheme has the potential
to be used in practical systems since it provides reasonable
BER performances and complexity. Moreover, the M-ary
DLCSK system does not require delay lines. Note that
most of the traditional DCSK-based schemes, such as M-ary
DCSK and MCS-DCSK schemes, require delay lines in
the transmitter and receiver, which can be challenging to
implement in practical circuits. From the viewpoint of time
complexity, the time-consumption of the proposed design
is lower than the general iterative receivers [10]. Although
the training of NNs is time-consuming, the received sig-
nals can be recovered in real-time during the deployment
phase [15]. Moreover, several parallelization approaches can
be employed to save time costs [54]. Since the computa-
tional complexity of the M-ary DLCSK can be adjusted
based on the user demands, the proposed receiver can pro-
vide a low time consumption. The proposed receiver does
not need to change the transmitter structure of the existing
M-ary CSK systems. Thus, several important aspects, such
as the security aspect, remain the same as the benchmark
CSK systems. This feature makes M-ary DLCSK a suit-
able candidate for secure communication scenarios, such as
biomedical signal transmission [55], Optical fiber and Free-
Space Optical (FSO) systems [56], [57], [58], Vehicular
Ad-hoc Networks (VANETs) [59], Non-Orthogonal Multiple
Access (NOMA) [60], and Multiple-Input Multiple-Output
(MIMO) schemes [61].

VI. CONCLUSION
This paper designed a novel M-ary DLCSK system with
flexible reliability, BE, and complexity. Unlike existing DL-
based receivers, which transmit the reference signals over the
channel for basis functions recovery, our NN-based receiver
recovers the basis functions by exploiting the power of
DTL. This paper can be considered one of the first papers
that use TL techniques in chaos-based communications.

The presented scheme can be the beginning of different
challenges and studies in different fields as outlined below:

• The proposed scheme can be considered for many
communication systems and practical applications, such as
Quantum classifiers, V2X communications, Massive MIMO
systems, Multi-user (MU) scenarios, Multiple-Access (MA)
structures, etc., where the proposed technique can be effec-
tive. In addition, in order to the performance improvement,
various techniques, such as Forward Error Correction (FEC)
codes, Multi-carrier (MC) techniques, and power allocation
strategies, can be considered.

• The problem of basis function recovery has impeded
the theoretical studies and practical applications of coher-
ent chaos-based modulations. The theoretical analysis of
the coherent CSK systems is a promising idea for future
research. The results of these analyses can be used for
different purposes, such as designing resource allocation
strategies.

• In this paper, we only considered a given environ-
ment, including a number of limited features. Therefore,
using state-of-the-art training methods, such as meta-transfer
learning, can be effective. Moreover, we assumed that the
training SNR is a random variable in a limited SNR range.
Considering other scenarios and training on wider ranges of
SNR can be investigated in future works.

• Hyper-parameter optimization is crucial to the learning
quality, complexity, and convergence rate. Using efficient
hyper-parameter optimization methods, such as the Bayesian
method or simulated annealing algorithm can yield more
reliable results.

• In this paper, we focused on the map selection algorithm
to find a pseudo-orthogonal signal set. Future studies could
examine several state-of-the-art orthogonalization methods to
find strictly orthogonal signal sets. For example, combining
with the Walsh codes and using the Gram-Schmidt algorithm
may be effective.

• In this paper, in order to reduce the negative effects of
the cross-correlation between the chaotic signals, we used a
fixed and relatively large spreading factor β = 50. Further
investigation must be carried out to find the optimal value
of β. Moreover, a large β may have destructive effects on
other criteria, such as the computational complexity. Future
research should consider interactions between beta and other
qualitative and quantitative measures.

• Using state-of-the-art NN-based approaches, such
as attention mechanisms, Multi-Layer Perceptron (MLP),
CNN+MLP, ConvLSTMs, and CNN+BiLSTM may
improve the results as was demonstrated in the case of other
applications, such as equalizers.
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