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ABSTRACT To achieve low probability of intercept (LPI) in radar networks for multiple target detection,
it is necessary to find the optimal assignment of distributed radars to targets. The multi-radar to multi-target
assignment (MRMTA) problem aims to find the best radar combination, but its brute-force (BF)-based
approach over all possible sensor combinations has exponential complexity, making it challenging to
implement in networks with a large number of radars or targets. This limits the implementation of
the BF approach in networks that prioritize low latency and complexity. To address this challenge, we
propose a supervised machine-learning (ML)-based solution for the MRMTA problem. Our proposed
implementation scheme performs the training procedure offline, leading to a significant reduction in
assignment complexity and processing latency. We conducted extensive numerical simulations to design
an ML structure with high accuracy, convergence speed, and scalability. Simulation results demonstrate the
efficiency and effectiveness of our proposed ML-based MRMTA solution, which achieves near-optimal LPI
performance with considerably lower computation time than benchmark schemes. Our proposed solution
has the potential to optimize the assignment of distributed radars to targets in LPI radar networks and
improve the performance of complex networks with low latency and complexity requirements.

INDEX TERMS Multi-radar to multi-target assignment (MRMTA), supervised machine-learning (ML),
low probability intercept radars, feed-forward neural network (FNN), radar network, information fusion.

I. INTRODUCTION

MULTI-RADAR to multi-target assignment (MRMTA)
is crucial for achieving low probability of intercept

(LPI) support and better information retrieval in distributed
radar networks [1], [2], and it has recently attracted con-
siderable attention from radar engineers [3], [4], [5], [6],
[7], [8]. LPI radars are designed to search or track targets
while remaining hidden from the enemy’s equipment, and
this property can be adapted to distributed radar networks
that are netted together [9], [10], [11], [12], [13], [14]. In
such networks, fusing radar decisions and applying loca-
tion diversity can improve the LPI property [15], [16],
[17], [18]. Efficient radar-target assignment (RTA) is cru-
cial for multi-radar multi-target networks to maintain the
LPI property while preserving constraints on detection
performance, complexity, and power budgets [19], [20].

A. RELATED WORKS
In this subsection, we provide an overview of the exist-
ing works on RTA. Yang et al. [9] proposed a method
to reduce the number of required radar switches in the
assignment scheme. They analyzed the MRMTA problem
for detecting ballistic missiles and developed an objective
function that integrates tracking accuracy and radar switch
rate. Reference [10] proposed a resource allocation scheme
that not only assigns multiple radars to each target sep-
arately but also minimizes the resource consumption of
each radar group. This resource allocation method is limited
to preserving tracking accuracies required to detect bal-
listic missile targets and aviation targets. Reference [11],
similar to [10], proposed a cooperative MRMTA in addi-
tion to dwelling time allocation for a phased array radar
network. Reference [12] transformed the task allocation
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problem of inverse synthetic aperture radar imaging into
a time resource optimization problem for a radar network.
The proposed model utilizes radar resources to meet the
required imaging resolutions. In [13], [14], [15], genetic-
based algorithms were proposed to find a solution for the
complex combinatorial MRMTA problem of radar networks.
Reference [16] proposed a heuristic algorithm to solve the
MRMTA problem considering the LPI as the objective func-
tion and detection probability as the quality-of-service con-
straint. Reference [17] proposed a binary linear programming
method to solve a linearized RTA problem. The proposed
method had obvious performance advantages in terms of the
number of RTAs and radar switches. References [18], [19]
used non-linear goal programming and mixed-integer pro-
gramming to solve weapon-target assignment schemes and
used numerical experiments to demonstrate the effective-
ness of the proposed methods. Reference [20] studied the
power allocation and RTA problem of distributed multi-input
multi-output (MIMO) radar networks and designed a joint
allocation strategy based on a two-step spectral projected
gradient-based solution.

B. MOTIVATIONS OF THIS WORK
In this subsection, we discuss the motivations behind our
work. Although MRMTA has many advantages, finding an
optimal solution requires exhaustive search, i.e., a brute-
force (BF) approach, which has exponential complexity and
is not practical for networks with a large number of tar-
gets and/or radars. This means that an optimal combination
of radars must be selected for each target by sequentially
or exhaustively searching through all possible combina-
tions, resulting in unacceptable latency and increased system
costs [16]. Therefore, an MRMTA scheme that can sup-
port latency-critical and complexity-critical networks is still
needed.
Previous research in the field of edge computing has

proposed various algorithms, such as MOERA [21] and an
A3C-based scheduler [22], to optimize resource allocation in
dynamic and stochastic environments. However, these algo-
rithms were developed for different problem domains and
may not be directly applicable to the MRMTA problem
addressed in our work. Although some preliminary work
has attempted to address this aspect [23], most studies
have designed machine-learning (ML) models with fixed
inputs, which may not be suitable for varying environmen-
tal factors such as changing numbers of radars or targets.
Notably, Meng et al. [23] have shown that MRMTA based on
deep reinforcement learning outperforms random assignment
methods and heuristic algorithms in terms of cumulative
detection duration. However, their approach may not be
viable for scenarios with limited data due to the exten-
sive training data required for deep reinforcement learning.
Moreover, their incremental search method for reducing the
action space may not be effective in highly dynamic envi-
ronments where the number of targets and radar nodes can
rapidly fluctuate. Consequently, alternative approaches are

still necessary to achieve efficient and effective MRMTA in
various scenarios.

C. OUR CONTRIBUTIONS
This paper proposes a supervised ML approach for MRMTA
using a feed-forward neural network (FNN) with preprocess-
ing and postprocessing techniques. To prepare the dataset, a
convex optimization (CO)-based algorithm for power alloca-
tion (PA) is proposed, and MRMTA labels are added through
a BF approach. During the online phase, the trained FNN
is applied to the input data to assign radars to the targets.
The proposed ML-based MRMTA eliminates the need for a
complex BF approach, which significantly reduces compu-
tation time. An adaptive FNN structure was designed using
various numerical simulations, and the effectiveness of its
adaptive designation was demonstrated for different environ-
mental factors. Succinctly, the contributions and novelties of
this paper are highlighted as follows:

• We develop a formulation for joint power allocation and
radar-target assignment (JPARTA) in multi-radar multi-
target scenarios to achieve low probability of intercept
(LPI) radar networks.

• We propose an algorithm that jointly optimizes power
allocation and radar-target assignment. Our approach
involves a convex optimization (CO)-based algorithm
for the power allocation sub-problem and a BF-based
algorithm for the radar-target assignment sub-problem.
We also introduce an alternating algorithm with two
steps for solving the JPARTA problem.

• We convert the JPARTA problem into a regression
problem to enable it to be solved using machine learning
(ML) approaches.

• We have finally incorporated ML into the JPARTA
problem to enhance its computational efficiency, making
it a more attractive option for practical implementa-
tion. Additionally, we have designed an ML structure
that ensures high accuracy, fast convergence speed, and
scalability.

D. ORGANIZATION
The organization of the paper is as follows. Section II
presents the multi-radar multi-target network model and for-
mulates the JPARTA problem to improve LPI performance.
Section III focuses on the CO approach to the PA problem.
Section IV discusses the challenges of using the BF approach
for MRMTA and presents the supervised ML framework for
MRMTA. Section V presents the implementation of the ML
framework, followed by the numerical simulations and dis-
cussions in Section VI. Finally, Section VII concludes the
paper and highlights a future direction.

II. SYSTEM MODEL AND PROBLEM FORMULATION
A. SYSTEM CONFIGURATION
In this paper, we consider a radar network architecture with
M radars and N targets, as shown in Fig. 1. We assume
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FIGURE 1. The proposed Machine-learning based LPI radar network with M radars and N targets.

that multiple radars can be assigned to each target in a
multi-target environment, meaning that a single target can
be detected by multiple radars. The radar nodes share their
detections with a fusion center through data links.1 A single
fusion center intends to combine information from the M
radars for the N targets. Therefore, there are MN possible
radar-to-target assignment schemes.
The variable ptm,n is defined as the transmit power of the

m-th radar when it is assigned to the n-th target where m ∈
M � {1, 2, . . . ,M} denoting the radar index, and n ∈ N �
{1, 2, . . . ,N} denoting the target index. According to the
well-known radar equation, the signal-to-noise ratio (SNR)
of the received signal at the m-th radar from the n-th target
can be expressed as [16]

SNRm,n =
ptm,nGtmGrmσm,nλ

2
m

(4π)3r4
m,nδm

, (1)

where Gtm and Grm are the transmitting antenna and receiving
antenna gain of the m-th radar, respectively. The average
radar cross-section (RCS) of the n-th target with respect
to the m-th radar is represented by σm,n. λm denotes the
wavelength of the transmitted wave, and rm,n is the distance
between the m-th radar and the n-th target.2 Additionally,
δm represents the thermal noise power in the radar receiver,
which can be defined as δm = KT0mBrmFrmLrm, where K
is Boltzmann’s constant (1.3 × 10−23 JK−1), T0m is the
ambient temperature (290◦K), Brm and Frm represent the
instantaneous receiver bandwidth in Hz and the noise figure
of the receiver subsystem, respectively. Finally, Lr,m denotes
the system loss.3

The detection probability of target n in the m-th radar,
PDm,n, is assumed to follow a Swerling model of type I or II
for the target RCS in this work. According to [26], it can

1. Wireless communication technologies such as microwave, satellite, and
cellular networks can serve as data links.

2. It should be noted that the information regarding the number or RCS
and distance between the radar and target can be effectively shared among
all radars through a data link, enabling the radar network to handle varying
target characteristics.

3. The simulations presented in this paper were carried out under the
assumption that the radar can distinguish targets from clutter.

be expressed as

PDm,n =
(
PFA

)(1+SNRm,n)
−1

, (2)

where PFA denotes the desired false alarm probability.

B. LPI PROBLEM FORMULATION
In scenarios with multiple targets, optimizing the usage of
network resources is crucial for minimizing the intercept
probability of the network. This involves identifying the
best subset of radars to assign to each target and optimizing
their transmit powers. It’s worth noting that the power of
radar signals received by the interceptor is directly propor-
tional to the transmit powers assigned to the selected radars.
Hence, higher transmit power leads to a higher intercept
probability [24].

The interceptor operating as a passive sensor, remains
undetectable while it senses radar signals. Furthermore, if
it intercepts only one of the radars within a network, all
radars in the network become compromised, resulting in the
entire radar network being considered intercepted. Therefore,
the probability of interception is directly influenced by the
radar with the highest power. To effectively reduce the likeli-
hood of interception, it is advised to decrease the maximum
radiated power of active radars in the network.
In this regard, our objective in this paper is to formulate the

LPI optimization problem for JPARTA. This involves con-
sidering the collective detection performance of all radars in
the network and aiming to minimize the maximum power
radiated by the radars while meeting the required detec-
tion probability for the entire network. The problem can be
stated as

(P) : min
xm,n,ptm,n

max
m∈M,n∈N

xm,np
t
m,n (3a)

subject to 1−
M∏
m=1

(
1− xm,nP

D
m,n

) ≥ PDTh,∀n ∈ N , (3b)

xm,np
t
m,n ≤ pMax, ∀m ∈M,∀n ∈ N , (3c)

xm,n ∈ {0, 1}, ∀m ∈M,∀n ∈ N , (3d)

where xm,n is the assignment index, PDTh represents the
desired detection probability, and pMax indicates the peak
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power of each radar. The constraints (3b) and (3c) consider
the global detection probability of each target, which is the
performance metric, and the limited power budget of each
radar, respectively.4

The joint optimization problem (P) is very complicated
due to the integer nature of the assignment index xm,n and the
mutual dependency of PA and MRMTA. Therefore, solving
it with rational complexity is not feasible [25]. To tackle
this issue, we solve the PA problem in the first sub-problem
for a given radar-target assignment scheme, and then, in the
second sub-problem, we select the best assignment scheme
based on the obtained powers.
Specifically, we solve the optimization problem (P) with

the following two related steps:
Step 1: Sub-problem 1- Optimizing PA for a given RTA and
repeating for all considered RTA schemes.
Step 2: Sub-problem 2- selecting the best RTA scheme based
on obtained PA schemes. The PA related to the best RTA
scheme is the optimum JPARTA scheme.

III. SUB-PROBLEM 1: POWER ALLOCATION
In the first sub-problem, we aim to solve the PA problem
for a given radar-target assignment, such as the c-th assign-
ment scheme. Specifically, we address this problem for
the n-th target using the following optimization problem
formulation:

(P1) : min
ptm,n(c)

max
m∈Mn(c)

xm,np
t
m,n(c) (4a)

subject to 1−
∏

m∈Mn(c)

(
1− xm,nP

D
m,n

) ≥ PDTh, (4b)

ptm,n(c) ≤ pMax, ∀m ∈Mn(c), (4c)

where Mn(c) represents a subset of radars assigned to the
n-th target in the scheme c. It is worth noting that the
optimization problem (4) is convex and can be solved using
a classic CO-based framework.
The cost function (4a) is designed to prioritize lower power

levels, while (2) reveals that detection probability increases
as the assigned powers grow. Consequently, it becomes clear
that achieving equality in (4b) is essential to attain the
optimal lower power level, as

1−
∏

m∈Mn(c)

(
1− xm,nP

D
m,n

) = PDTh. (5)

It is important to note that in the min-max problem, the
optimal solution involves allocating the same power to all
assigned radars [16]. This allocation strategy ensures that
the power distribution achieves a balance that minimizes the
maximum performance across all radars. By enforcing equal

4. We assume that the control center uses the OR rule for simplicity,
although there are other decision rules such as AND, or M-out-of-N. It can
be noted that this work can be similarly extended to other decision rules
as well.

Algorithm 1 Proposed Power Allocation Algorithm
1: Initialize a = 0, b = 2pMax
2: while |a− b| > ε do
3: ptn(c) = a+b

2
4: if (7) holds true then
5: b = ptn(c)
6: else
7: a = ptn(c)
8: end if
9: end while

10: ptn(c) = a+b
2

power allocation, the same power must be allocated to all
radars assigned to the n-th target, i.e.,

ptm,n(c) =
{
ptn(c), if m ∈Mn(c),
0, otherwise.

(6)

By substituting (1), (2), and (6) into (5), we can compute
ptn(c) by solving the following non-linear equation:

⎛
⎝1−

∏
m∈Mn(c)

⎡
⎣1−

(
PFA

)(1+ ptn(c)GtmGrm σm,n λ2
m

(4π)3r4m,n δm

)−1⎤
⎦
⎞
⎠

− PDTh = 0. (7)

The left-hand side of the equation is an increasing function
of ptn(c), so the unique root of the equation can be obtained
by a well-known numerical bisection-based search method.
The proposed PA algorithm is presented in Algorithm 1.
This algorithm guarantees convergence to either the root of
Equation (7) within the interval [0, pMax] or to the value of
pMax. To achieve an error smaller than ε, a minimum number
of iterations is required, given by:

n ≥ ln(2pMax)− ln(ε))

ln(2)
. (8)

IV. SUB-PROBLEM 2: MULTI-RADAR TO MULTI-TARGET
ASSIGNMENT
The second sub-problem aims to find the optimal MRMTA
scheme, which requires an exhaustive BF search over all
possible schemes. However, this approach has high computa-
tional demands, and its complexity grows exponentially with
the number of targets and radars, resulting in a complexity
of O(2MN), where O(·) describes the order of complex-
ity. Consequently, the BF approach is not practical for
real-time implementation, particularly when dealing with a
large number of targets and/or radars. Although some sub-
optimal heuristic techniques, such as those introduced in [16]
and [29], have been proposed to solve the RTA problem with
reduced complexity, their computational complexity remains
high, making them unattractive for practical implementation.
It is worth noting that optimizing the RTA in the general
case, where multiple radars can be assigned to each target in
a multi-target environment, is fundamental and essential, as
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highlighted in previous studies [11], [12], [13], [14], [15],
[16], [17], [18], [19], [20], [23].
In this subsection, we aim to bridge this gap by introducing

supervised ML to enable low-complexity MRMTA. This can
be achieved by training a FNN with a BF approach database
that returns accurate subsets of selected radars. The proposed
algorithm is summarized in Algorithm 2, which operates in
two phases: the learning phase and the prediction phase.
During the learning phase, we employ an offline BF

approach to find the optimum RTA as labeled data, while
simultaneously collecting the dataset necessary for train-
ing the ML-based model. Once the dataset is fully acquired,
the FNN is trained using the training dataset, which is then
utilized in the prediction phase. More details regarding
the proposed algorithm will be explained in the following
subsections.

A. DATASET INFORMATION
1) INPUT DATA GENERATION

In the surveillance region, which is a square area with
dimensions of L × L km2, we deploy N targets uniformly.
To adequately cover the region, M radars are distributed
throughout the network. In each individual run, the distances
of the targets to the radars are determined, resulting in the
generation of an input matrix R. This matrix R has dimen-
sions of M×N and contains the distances (rm,n) between the
m-th radar and the n-th target. A total of 100, 000 samples
are generated in this process.5

2) OUTPUT DATA GENERATION

Fusing decisions from all radars can result in excessive data
traffic over the data links connected to the fusion center,
which can increase the global false alarm probability as
more radars are fused. To account for this, we limit the
network complexity by assuming that at most l radars can
be combined to detect each target. This means that each
target can be detected based on the fusion of one, two, or
at most l radars’ decisions.
To generate the optimal RTA matrix X∗, we apply a

brute force approach over all possible assignment schemes.
The number of possible assignment schemes is equal to

C =
(
M
l

)N
= ( M!

l!(M−l)! )
N . For each assignment scheme,

we obtain ptn(c) by using a bisection-based search over
equation (7) for each n. We then determine the optimum
scheme c∗ by finding the scheme with the minimum
required effective power, which is the one that assigns
a subset of radars to the n-th target. We set x∗m,n ={

1, if m ∈M(c∗), n ∈ N
0, otherwise

in the RTA matrix.

5. It is noteworthy that while increasing the number of training samples
generally improves the performance of ML model, there is a diminish-
ing return effect. In our experiments, we observed that beyond a certain
point, adding more training samples (beyond 100, 000 samples) did not
significantly enhance the accuracy.

Algorithm 2 ML-Based Algorithm for JPARTA Problem

1: Initialize Pt = 0 ∈ R
C×N,R = 0 ∈ R

M×N,X∗ = 0 ∈
R
M×N

Phase I: Data Generation
2: for s = 1 to S do
3: A. Power Allocation Sub-Problem
4: for n = 1 to N do
5: for c = 1 to C do
6: Obtain ptn(c) using Algorithm 1
7: end for
8: end for
9: B. Radar-Target Assignment Sub-Problem

10: for c = 1 to C do
11: c∗ = min

c
max
n∈N

ptn(c)

12: for m = 1 to M do
13: for n = 1 to N do
14: if m ∈M(c∗) and n ∈ N then
15: x∗m,n = 1
16: else
17: x∗m,n = 0
18: end if
19: end for
20: end for
21: The optimal assignment matrix X∗ is converted into

a real-valued vector x.
22: end for
23: D(s) ← {R, x}, store the new entry in the learning

dataset.
24: end for
25: Train the ML model using the learning dataset D.

Phase II: Prediction
26: while True do
27: The fusion control calculates R.
28: Predict the assignment matrix X̂ using the trained

FNN.
29: Power allocation can be obtained by utilizing the

predicted assignment matrix through Algorithm 1
30: end while

To convert the target matrix X∗ into a regression problem
format, each column of X∗, i.e., [x∗1,n, x

∗
2,n, . . . , x

∗
M,n]T for

n ∈ N , is transformed into an integer value. This is done by
representing each column as a binary string, where 1 indi-
cates radar assignment and 0 indicates no assignment. For
example, if the column for target n is given as [0, 1, 1, 0],
it represents that the second and third radars are assigned
to target n, while the first and fourth radars are not. The
binary string is then converted to its corresponding inte-
ger value x̃n ∈ [1, (1− 2−l)2M]. The transformation ensures
that each column’s binary representation uniquely maps to
an integer value. The resulting transformation yields an
N × 1 vector x, which represents the radar assignments
for each target in a compact form suitable for regression
analysis.
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3) DATASET GENERATION

Let {R, x} denote a labeled dataset. We assume that �s =
{Rs, xs},∀s ∈ S = {1, 2, . . . , S} represents S different
labeled datasets. The goal of supervised learning is to learn a
general rule for mapping Rs to xs using the labeled dataset,
resulting in the estimated subset of selected radars x̂s.

4) DATASET SPLITTING

The data generated is divided into training and test datasets,
with 90% of the data allocated for training purposes, while
the remaining 10% is reserved for the test set. The test set
evaluates the model’s generalization by containing unseen
scenarios not encountered during training. This assessment
ensures accurate predictions for new data and real-world
applicability.

B. PREPROCESSING
Preprocessing is crucial in enhancing the training efficiency
of ML algorithms. The radar-target distances, denoted by
Rs = [rm,n(s)]m∈M,n∈N , have a large input span in the
range of (0,∞), which creates significant challenges in ML
convergence. To address this issue, we propose a two-step
preprocessing procedure.
In the first step, we perform dimensionality reduction

by representing the rearranged radar-target distance matrix,
i.e., Rs, as an MN × 1 vector cs. In the second step, we
normalize the vector cs using a simple per-dataset scaling
method, resulting in the input vector vs. This normalization
method ensures a stable and meaningful learning process.
Specifically, all samples are normalized using one constant
value over the entire input data, and we obtain vs = cs

max
s
||cs||∞

for s = 1, . . . , S. After applying these two preprocessing
steps, the input span is restricted to (0, 1].

To improve the training efficiency further, we also nor-
malize the labels. We use a similar per-dataset normalization
method, where every optimal radar-target assignment vector,
denoted as xs, is normalized using the maximum value of
the dataset, i.e., (1−2−l)2M . The output of the normalization
process over the label of the s-th sample of the dataset is
denoted by qs. By normalizing both the input and output, we
ensure that the target-radar distance information is preserved
while addressing the convergence issue.

C. ML STRUCTURE AND TRAINING PROCEDURE
We assume a basic fully-connected FNN architecture with
D layers consisting of an input layer, an output layer, and
D− 2 hidden layers, as shown in Fig. 2. Each layer has Nd
neurons, where d ∈ 1, 2, . . . ,D. We train the proposed FNN-
based approach using the backpropagation algorithm with the
Mean Squared Error (MSE) loss function [30], [31].
The loss function L(x, x̂) is defined as:

L
(
x, x̂

) = 1

N

M∑
n=1

(
x̂n − xn

)2
, (9)

FIGURE 2. Structure of the fully-connected feedforward neural network (FNN) used
in this paper.

where x̂ denotes the label or ground truth, and x denotes the
output of the neural network.
The optimization problem can be formulated as:

arg min
W,�

S∑
s=1

L(xs,qs), (10)

where W = {wnd→nd+1}Dd=1 and � = {θndd }Dd=1 denote
the weights and biases, respectively. We apply the
stochastic gradient descent (SGD) method [32] for the
optimization.
We randomly partition the input data into mini-batches

of size B and update the weights and biases of the neural
network based on each mini-batch. The update rule can be
formulated as:

wnd→nd+1 (e+ 1) = wnd→nd+1 (e)− α
∂L

∂wnd→nd+1

(e),

θ
nd
d (e+ 1) = θ

nd
d (e)− α

∂L

∂θ
nd
d

(e), (11)

where α is the learning rate, and ∂L
∂wnd→nd+1

(e) and ∂L
∂θ

nd
d

(e)

are the partial derivatives of the loss function with respect
to the weights and biases at the e-th epoch, respectively.
In this paper, all hidden layers use Rectified Linear Units

(ReLU) as the activation function [32]. Specifically, the
activity of the nd-th neuron can be expressed as:

yndd (e) = ReLU

⎛
⎝
Nd−1∑
m=1

wm→nd (e)y
m
d−1(e)+ θ

nd
d (e)

⎞
⎠, (12)

where ReLU(.) = max(0, .).
The partial derivative of the loss function with respect to

the weights and biases can be calculated using the back-
propagation algorithm. At each epoch, the neural network
updates its weights and biases based on the mini-batches of
the training data set, and the training process continues until
the convergence criterion is met. In this paper, we stop the
training procedure when the validation loss does not decrease
for a certain number of epochs.6

6. It’s worth mentioning that even though retraining is unnecessary for
changes in the target’s position, updating the trained ML model is necessary
when the number of radars and/or targets is changed.
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D. POSTPROCESSING
The FNN output is an N × 1 vector q̃s. To reconstruct the
RTA matrix from this vector, we propose a three-step inverse
postprocessing procedure:
• In the first step, the entries in q̃s are multiplied by

(1−2−l)2M to construct an intermediate N×1 vector p̃s.
• In the second step, we round the entries of p̃s to the
nearest integers within a bound7 of (1 − 2−l)2M , and
define this as the N × 1 vector f̃s.8

• In the final step, the integer values in f̃s are converted
to binary strings, forming the estimated RTA matrix X̃s,
which represents the subset of selected radars for each
target in the radar network.

This procedure allows for the reconstruction of the estimated
RTA matrix X̃s from the FNN output q̃s, providing the radar
assignments for each target in the radar network.

E. PERFORMANCE METRICS
To evaluate the FNN training performance, we construct a
vector of optimal indexes of the selected radars, denoted
by fs, from Xs. The MSE over epochs is then defined as
MSE = E{||fs − f̂s||22} to measure the training performance,
where ‖·‖n represents the n-norm operator, and E{·} denotes
statistical expectation. We also define the network accuracy
as the correct detection rate, given by ACC (%) = Nc

N×S ×
100, where Nc denotes the number of correctly predicted f̂s.

V. ML-BASED APPROACH IMPLEMENTATION
The implementation of FNNs codes were carried out in
Python 3.9.7 using TensorFlow 2.8.0. The batch size of 432
and a learning rate of 0.01 were selected to ensure the lowest
possible MSE with a relatively high convergence speed. To
compare the performance of back-propagation, three clas-
sic optimizers, namely adaptive moment (Adam), stochastic
gradient descent (SGD), and root mean squared propagation
(RMSProp) were adopted.9 For simplicity, all neural biases
were initialized with zero, while all link weights were ini-
tialized randomly. In our experiments, each training round
is configured with a maximum of 100 epochs, i.e., E = 100.

In this study, we aimed to design an ML structure that
ensures high accuracy, fast convergence speed, and scal-
ability. To achieve this goal and investigate the impacts of
different structures on performance, we created a set of FNN
structures and compared them. The FNN layers were spec-
ified using the same names and properties as presented in
Table 1, including the input (labeled as I), output (labeled
as O), and six hidden layers (labeled as Hn). To address
the bottleneck effect in the structures, we applied a dual-
funnel shape and a slice-reconstruct manner to the layers,
as suggested by [28].

7. The n-th entry in f̃s represents the approximate indexes of the selected
radars for the n-th target.

8. Steps 1 and 2 ensure the strict adherence of FNN outputs to the
constraint of assigning at most l radars to a single target.

9. It is important to note that various optimizers use different optimization
algorithms to adjust the ML parameters.

TABLE 1. Specifications of the FNN layers used in this paper.

In this regard, we slice the FNN Structure 6 into 13
layers and then select some layers to reconstruct new FNN
structures. We study six structures of the FNN in the exper-
iments, which are designed in the above-mentioned manner
and numbered as follows:
• Structure 6 = I,H1,H2,H4,H8,H16,H32,H16,H8,H4,

H2,H1,O
• Structure 5 = I,H1,H2,H4,H8,H16,H8,H4,H2,H1,O
• Structure 4 = I,H1,H2,H4,H8,H4,H2,H1,O
• Structure 3 = I,H1,H2,H4,H2,H1,O
• Structure 2 = I,H1,H2,H1,O
• Structure 1 = I,H1,O.

VI. SIMULATION RESULTS
To assess the effectiveness of the proposed ML-based
JPARTA algorithm (Algorithm 2), we conducted numerical
simulations under various scenarios.
The surveillance region considered in our simulations has

dimensions of 180 × 180 km2. We set M = 4 and N = 2
in Figures 3-7. However, to comprehensively evaluate the
performance of our proposed method, we extended the sim-
ulation of this study to more complex scenarios involving
N = M = 2, 4, 8 as shown in Table 3. The RCS of all targets
is assumed to be 1 m2.10

We generated the training dataset by solving sub-
problem 2 for different instantaneous target positions, which
were uniformly and randomly placed in the surveillance
region. All radars had the same parameters and were assumed
to be of airport surveillance radar (ASR)-9 type [27], with
specifications given in Table 2. We set PDTh to 0.9 for all
radars.
To provide a comprehensive evaluation of our proposed

ML-based assignment method, we have included several
simulations in the following subsections. These simulations
encompass a wide range of performance metrics, including
MSE, LPI, computational complexity, computation time, and
accuracy.

10. The MSE values are averaged over multiple runs with different
random initializations.
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FIGURE 3. MSE for different FNN structures when (a) Adam, (b) RMSProp, and (c) SGD are adopted as the optimizer.

TABLE 2. Radar parameters for airport surveillance radar (ASR)-9 type.

FIGURE 4. MSE for the fully connected feedforward neural network with Structure 2,
trained using different optimizers.

A. SELECTION OF FNN STRUCTURE AND OPTIMIZER
FOR ML
To gain insights into the performance of different FNN struc-
tures and optimizers, we compare their MSE on the training
set, which is a key performance metric, in Fig. 3 and Fig. 4.
Fig. 3 reveals that all FNN structures improve the MSE

to varying degrees, but the oversimplified Structure 1
performs relatively poorly. Interestingly, it is observed
that more complex FNN structures, e.g., Structures 3-6,
do not necessarily lead to the best performance.
Instead, Structure 2 with five layers achieves the best
performance, albeit with a longer convergence time than
Structures 3-6.

FIGURE 5. MSE of the test data for different optimizers using different FNN
structures.

Fig. 4 shows that, for the MRMTA problem, the Adam
optimizer outperforms the others with the minimum MSE.
However, the RMSProp optimizer demonstrates the fastest
convergence, and the SGD optimizer is the least suit-
able for our model, resulting in significantly higher
MSE.
Fig. 5 presents the MSE for different training algorithms

with respect to different FNN structures. A model with
the lowest MSE is considered a remarkable fit model.
The results in Fig. 5 confirm that Structure 2 with the
Adam optimizer yields the best model with minimum
error.

B. ANALYSIS OF ML TRAINING PROCESS
Fig. 6 depicts the MSE of the training and test data sets
during the training phase at different epoch levels to ana-
lyze the training process. We used Structure 2 as the FNN
structure and Adam as the optimizer to ensure sufficient
expressive power and the best optimizer. As shown in
Fig. 6, the performance of both data sets keeps improv-
ing as the number of epochs increases, and the MSE of
both the training and test data sets decreases, indicating
that overfitting has not occurred. These results demonstrate
that the trained FNN Structure 2 can perfectly explain a
training data set and generalize well, making it the best
performer among all structures for solving the MRMTA
problem.
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FIGURE 6. MSE of training and test datasets versus epoch level during the training
phase.

TABLE 3. Computational complexity and time consumption for 100, 000 samples
using different assignment methods a.

C. COMPUTATION AND SCALABILITY ANALYSIS
In this sub-section, we analyze the computational advan-
tage of supervised ML and compare it with optimal
assignment and power-based assignment. Table 3 shows
the computational complexity of each method, where
the optimal assignment needs to traverse all possibili-
ties and select the best choice using the BF approach,
and the power-based assignment assigns targets to radars
by a heuristic algorithm based on the power matrix
obtained from sub-problem 1 [16], [29]. To ensure effi-
ciency, we adopt Structure 2 with Adam optimizer as
the ML configuration. All measurements were carried out
on the same computer (i5-2450M CPU, Nvidia Geforce
GT 620M).
From Table 3, it can be observed that the computation

time of the trained FNN is much smaller than that of
optimal assignment or power-based assignment. Notably,
when M = N = 2, even with less than 2% loss in accuracy,11

the ML-based method achieves a more than 43 times increase
in time efficiency, which validates the trade-off between
accuracy and computation times of our proposed ML-based
method. While the optimal assignment has a computational

11. We also conducted k-fold cross-validation [33] (with k = 10) to
further scrutinize the performance of our proposed FNN. Remarkably, the
results obtained through k-fold cross-validation align closely with our find-
ings, confirming the robustness and reliability of our proposed ML-based
assignment.

FIGURE 7. LPI performance versus time for different RTA schemes.

complexity of O
((

N
l

)N)
and the power-based assignment

has a computational complexity of O
((

N
l

)
× N

)
[16], the

computational complexity of ML-based assignment reduces
to O(N2) [30], which is practical for many applications.

To evaluate the scalability of our proposed method, we
present the performance for different problem sizes in
Table 3, including N = M = 2, 4, 8. As shown in the
table, the computation time increases with the problem
size due to its increased complexity. However, for all
cases, the accuracy of the ML-based model remains almost
constant and entirely satisfactory. This is due to the adap-
tive design of the FNN structure with the input size, as
proposed in this paper. Therefore, our method is scalable
and can handle larger problem sizes without sacrificing
accuracy.

D. LPI PERFORMANCE ANALYSIS
Table 3 also shows that the proposed ML-based algorithm’s
radar set allocation is not matched with the labels in less than
10% of realizations. However, it is worth noting that these
different allocations do not significantly affect the power of
active radars.
In this context, aside from examining the training

performance, it is important to evaluate the impact of
employing supervised ML on the LPI performance (i.e., max-
imum transmitted power) of the netted radars. Therefore, we
evaluated the LPI performance of PA and MRMTA in the
proposed ML-based algorithm. For this purpose, we con-
sidered a scenario in which four radars in a surveillance
region with a given arrangement detect two targets with dif-
ferent azimuths and ranges. In Fig. 7, we compared the LPI
performance of the proposed ML-based assignment with the
optimal assignment, random assignment, fixed assignment,
and power-based assignment. In the random assignment, each
radar is assumed to have an equal chance of being selected
for each target, while in the fixed assignment, radars are
randomly assigned to the target and remain unchanged until
the end of the scenario.
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The results depicted in Fig. 7 indicate that the LPI
performance achieved by the proposed ML-based assign-
ment is higher than that of random and fixed RTA schemes
and approximately matches that of optimal and power-based
ones. In fact, this indicates that the proposed algorithm can
enable the fusion center to identify a near-optimal set of
radars for targets, even when the allocation does not match
the labeled data set. This ensures that the LPI performance
is not significantly degraded.

VII. CONCLUSION AND FURTHER RESEARCH
In this study, we addressed the issue of improving the LPI
performance of a radar network system in a multi-radar
multi-target environment by minimizing the maximum radi-
ated power of the network through joint power allocation
and radar-target assignment (JPARTA). To solve the JPARTA
problem, we used variable separation to transform it into
two sub-problems: power allocation (PA) and multi-radar
to multi-target assignment (MRMTA). The PA problem was
solved using convex optimization (CO), while the MRMTA
problem was tackled using a supervised ML-based approach,
which was developed to overcome the high computation time
associated with the non-linear and non-convex nature of the
problem. Extensive numerical simulations were conducted
to evaluate the effectiveness of the proposed ML-based
scheme, which showed that our algorithm was computation-
ally efficient and achieved equivalent performance compared
to the BF-based and power-based assignment methods. Our
proposed algorithm also reduced computation time by up
to 43 times compared to the benchmark. Therefore, we
have provided a new low computational complexity solu-
tion for complex MRMTA problems using supervised ML.
By employing our algorithm, the application of MRMTA
can be extended to latency-critical and complexity-critical
networks.
Future research directions can explore the possibility

of incorporating additional performance metrics into the
optimization process. For example, in addition to mini-
mizing the maximum radiated power, one could aim to
minimize the total power consumption of the radar network
or maximize the detection probability of the targets. Another
avenue for future research could involve the use of unsuper-
vised machine learning methods for MRMTA problems. For
instance, it may be worth investigating the use of clustering
algorithms, reinforcement learning or deep-Q neural (DQN)
techniques.
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