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ABSTRACT A comprehensive coverage of the state-of-the-art in quantum machine learning (QML)
methodologies, with a unique perspective on their applications for wireless communications, is presented.
The paper begins by delving into the fundamental principles of quantum computing, and then goes through
different operations and techniques that are involved in QML deployments. Subsequently, it provides an
in-depth look at various methods peculiar to quantum computing, such as quantum search algorithms,
and discusses their potentials towards maximizing the performance of wireless systems. The integration
of quantum-based learning models into the existing machine learning methodologies, such as within the
frameworks of unsupervised learning and reinforcement learning, are then examined. Taking the viewpoint
of wireless communications, diverse studies in the literature that employ QML-based optimization methods
are also highlighted. Finally, to ensure the applicability and feasibility of QML for optimizing wireless
systems, potential solutions for deployment challenges are addressed.

INDEX TERMS Next-generation wireless communications, quantum machine learning, optimization of
wireless systems.

I. INTRODUCTION

THE NEXT generation of wireless communication
networks is expected to meet an unprecedented vol-

ume of demand for wireless as a main commodity in a
plethora of economic sectors. In fact, not only the num-
ber of network clients, including users’ mobile terminals
and Internet-of-Things (IoT) devices, is expected to increase
significantly in the upcoming years [1], but also new use
cases and services with stringent quality-of-service require-
ments will continue to emerge. For instance, requirements of
up to 1 terabit of peak data rate, over 1 gigabit of user data
rate, and less than 1 millisecond of end-to-end latency, will
need to be supported by 6G [2], [3], [4]. Concurrently, the
growing concern about the impact of energy consumption
on the environment calls for a higher energy efficiency of
wireless communication networks, mandating 6G to achieve
a hundred times higher energy efficiency compared to that
of the previous generation [3], [5].

These rigorous demands call for innovative approaches
in radio access technologies. Among many promising direc-
tions, several technologies have been extensively explored to
satisfy the service requirements of future wireless systems.
In particular, reconfigurable intelligent surface (RIS) has
been regarded as a key enabling technology [6]. Chief
among the envisioned advantages of RIS deployment is the
enhancement of the coverage of the base stations and access
points by manipulating the radio propagation, mitigating the
presence of blockages along the way. In addition, extra-
large antenna arrays, each employing a massive number of
antenna elements, facilitating an expansion of the Fresnel
zone [7], can enable diverse communication scenarios, such
as those that exploit near-field communication links [8], [9].
Moreover, beyond terrestrial networks allow various non-
terrestrial communication modes to be utilized. For instance,
aerial base stations, typically implemented via unmanned
aerial vehicles (UAVs) [10], [11], can be considered as
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alternative transmission platforms due to their lucrative
benefits including rapid deployment, flexible coverage, sup-
port for temporary events, infrastructure augmentation, and
surveillance capabilities [12].

A. CHALLENGES RELATED TO EMERGING WIRELESS
TECHNOLOGIES
With the emergence of these new wireless technologies come
unprecedented challenges that need to be addressed to ensure
successful deployment and operation. In the forthcoming
discussion, we will first outline overarching challenges that
arise with the advent of emerging wireless technologies, fol-
lowed by a discussion of specific solutions based on artificial
intelligence (AI) that can effectively tackle these challenges.

1) TOWARDS NEXT-GENERATION WIRELESS
COMMUNICATIONS

Currently, 5G is in its roll-out phase, whilst 6G is expected
to be deployed by the 2030s [13]. In comparison to its 4G
predecessor, 5G offers a three-fold increase in spectral effi-
ciency, along with improved latency and reliability, allowing
for massive user connectivity and a diverse range of services
such as tactile Internet and augmented & virtual reality
[14], [15]. The next leap, the forthcoming 6G aims to achieve
over a ten-fold increase in spectral efficiency and more than
a ten-fold improvement in energy efficiency, compared to
5G [15]. With the advent of emerging technologies such as
Terahertz communications, 6G is poised to possess a sub-
stantial advantage in terms of system bandwidth, with over
300 MHz of bandwidth [15]. 6G is also expected to support
an even higher level of device connectivity, with a connec-
tion density of over 107 devices per square km [14]. Even
more fascinating, 6G will also change the paradigm of cov-
erage, due to the advent of non-terrestrial networks, making
a departure from area-based coverage to 3D wireless cover-
age [14]. The aforementioned factors are the driving force
behind the development of emerging technologies for various
aspects of wireless communications, especially that the traf-
fic growth will not only originate from users’ equipment but
also from machine-type communication devices [16]. More
elaborations on the vision of next-generation wireless com-
munications are presented in [14], [15]. A summary of the
evolution is illustrated in Fig. 1.

2) INTERPLAY BETWEEN EMERGING TECHNOLOGIES

The interplay between the aforementioned enabling technolo-
gies can provide performance gains in terms of capacity,
energy efficiency, and reliability, and more. For instance,
previous studies [17], [18] have proposed integration sce-
narios involving RISs and non-orthogonal multiple access
(NOMA) to enhance spectral efficiency via RIS-enabled sig-
nal partitions among different user terminals. However, using
several technologies concurrently can result in significant
increase in the computational complexity associated with
the optimization of the underlying parameters. For example,
in the case of integrating RIS and power-domain NOMA,

FIGURE 1. Towards the next-generation of wireless communications.

multiple parameters such as RIS phase shifting, NOMA user
pairing, and NOMA power allocation, need to be jointly opti-
mized to minimize the inter-user interference and enhance
the system performance.

3) GROWING SCALE OF THE WIRELESS SYSTEMS

Moreover, the expanded scale of wireless communication
systems can lead to a rise in the signaling and computational
overhead. This is especially true for RISs and extra-large
antenna arrays, as they may require a significant number
of pilot signals for precise channel estimation when con-
ventional estimation techniques, e.g., maximum-likelihood
approaches, are employed. In particular, RISs and extra-large
antenna arrays may demand high numbers of pilot signals
for accurate channel estimation, if conventional estimation
techniques such as those relying on maximum-likelihood
approaches are utilized.

4) DYNAMIC WIRELESS COMMUNICATION
ENVIRONMENTS

Furthermore, the ever-changing nature of wireless communi-
cation environments necessitates flexible resource allocation
strategies. In addition, considering the growing number of
wireless clients, including user terminals, IoT nodes, and
smart vehicles, it is essential to effectively allocate the lim-
ited network resources for the massive number of network
devices in real time, while ensuring communication reli-
ability and satisfying the latency constraints in complex
deployment scenarios [19].

B. AI FOR NEXT-GENERATION WIRELESS
COMMUNICATIONS
In light of the challenges mentioned earlier, there is a
growing need to embrace different approaches for optimiz-
ing wireless communication systems. Fortunately, in recent
years, significant progress has been made in the fields of AI
and machine learning (ML), accelerating the transformation
of wireless communication systems into natively intelligent
systems capable of overcoming various challenges [20], as
discussed in the following sub-sections.
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1) AI FOR THE INTEGRATION OF DIFFERENT WIRELESS
TECHNOLOGIES

Firstly, AI can facilitate the interplay between various emerg-
ing wireless communication technologies, for instance in the
design of the user grouping when leveraging the integration
of RISs and NOMA [18]. In this context, the work in [21]
employed ML to support the interplay between RISs and
MIMO (multiple-input multiple-output). Specifically, deep
learning based approaches were utilized to optimize the RIS
phase shifting and the MIMO hybrid precoders. In addition,
AI can be applied to maximize the performance of hetero-
geneous wireless communication systems, in which different
multiple access techniques, modulation schemes, and trans-
mission technologies are used to meet the service demands
of multiple user terminals.

2) AI TO TACKLE SCALABILITY ISSUES

Secondly, AI-based approaches can mitigate the scalability
issue by providing estimations based on a limited amount of
information. Deep learning, for example, can be employed in
channel extrapolation, thereby reducing the need for a large
number of pilot signals [22]. In addition, in distributed wire-
less communication networks that employ multiple access
points, a decentralized or a distributed AI framework can be
adopted to optimize the operation parameters of the network,
thereby avoiding the computational and signaling bottlenecks
that generally occur in a centralized AI framework [23].

3) AI FOR ADAPTING TO DYNAMIC ENVIRONMENTS

Thirdly, AI can serve as a key tool for adapting to the
dynamic wireless landscapes while preserving satisfactory
levels of performance, which can be a demanding task when
performed via conventional analytical approaches [24]. For
instance, in drone-based wireless communications, a moving
UAV acting as an access point needs to dynamically adapt
its transmit power and precoding in order to maintain cover-
age and minimize interference. For this purpose, AI can
have a global observation of the wireless network, e.g.,
the coordinates of the network nodes, the instantaneous
channel conditions, and the number of available transmit-
ters, while considering alterations in the communication
network, e.g., the movements of the end-users’ terminals
and the alterations of the propagation environment, in order
to dynamically optimize the communication variables such
as the transmit precoding and the power control, with the
aid of different AI-based approaches such as online learning
and reinforcement learning [24].
Nevertheless, the computational complexity of a classical-

based learning model/algorithm generally grows with the
dimension of the input data, e.g., channel state information,
as well as with the complexity of the learning model, e.g., the
number of layers composing the model, and with the num-
ber of iterations [25]. Although a single inference upon a
trained learning model could be processed within an accept-
able computational time, the parameter training of the model
may require a high number of iterations composed of a

high number of inferences. This leads to an extended train-
ing duration and limits the applicability of high-dimensional
learning models, especially for time-sensitive applications
such as those of real-time wireless systems with ultra-reliable
low latency communications (URLLC) constraints [26].

C. QUANTUM-BASED AI FOR NEXT-GENERATION
WIRELESS COMMUNICATIONS
Quantum computing, on the other hand, [27], [28], can
provide considerable computational benefit to address
the problems of next-generation wireless communications.
In particular, the increasing numbers of devices and
transceivers’ antennas lead to a substantial expansion of
possible combinations, potentially causing computational
overhead for signal detection and channel estimation, among
other things. The 3D coverage, due to the deployment of
non-terrestrial networks, might introduce challenges in beam-
forming, localization, and sensing. Beyond those factors,
6G development calls for consideration of a vast array of
performance factors. To effectively manage future wireless
systems, we will need to consider variables such as rate
fairness, transceiver availability, energy consumption, and
user throughput, among many others, all of which dictate
significant computational burdens.
In contrast to classical-based computations, which pro-

cess a string of classical bits, each containing a value of a
computational basis (either 0 or 1), quantum-based compu-
tations assume quantum bits, a.k.a. “qubits”, as the smallest
unit of computation, each representing a superposition of
computational bases enabled by a property called quan-
tum superposition. Via the processing of multiple qubits,
quantum-based computations can leverage other quantum
properties such as quantum entanglement, which allows the
state of a qubit to alter the state of another qubit, and quan-
tum parallelism, which enables simultaneous information
processing using a number of inter-connected qubits [29].
The following discusses the motivation behind the utilization
of quantum-based AI for wireless systems.

1) PERFORMANCE BENEFITS PRESENTED IN THE
LITERATURE

In the viewpoint of quantum-based ML, the quantum prop-
erties can be leveraged to achieve various benefits. In
particular, leveraging performance gains enabled by quan-
tum computing, prior studies have shown that quantum-based
learning models can attain faster training convergence [30].
Quantum-based ML methods have also been shown to
yield more accurate predictions compared to their classical-
based counterparts [31]. Furthermore, quantum-based ML
models have showcased comparable performance to those
of classical learning models while using less learning
experiments [32].

2) AVAILABILITY OF QUANTUM PROCESSING
PLATFORMS

The availability of general-purpose quantum processing
units has supported recent studies on quantum-based ML.
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In particular, IBM [33] and Google [34], among other
companies, have successfully operated multi-qubit quantum
processors. For instance, an IBM quantum computing pro-
cessor named “Condor”, slated for deployment in 2023 by
the time of writing, is expected to be able to process more
than a thousand qubits [35]. In parallel, D-Wave has made
its specific-purpose quantum processing units commercially
available since 2011 [36]. These milestones have spurred
researchers to explore quantum-based ML on functioning
quantum computing platforms, targeting various use cases.
For example, a recent study [37] employed the D-Wave quan-
tum computing platform for quantum annealing to optimize
vector perturbation for transmit precoding in MIMO systems.
Nonetheless, in considering the potential benefits of

quantum-based ML, we identified a noticeable scarcity of
literature exploring the applications of quantum-based ML
methodologies that are specifically tailored for the upcoming
wireless systems, as detailed in the subsequent discussion.

D. EXISTING SURVEYS ON QML UTILIZATIONS IN
WIRELESS SYSTEMS
1) QML FOR GENERAL APPLICATIONS

Prior survey works have covered various QML schemes and
their application in various scenarios [39], [40], [41], [42].
The authors in [40] presented an overview of different quan-
tum learning models, such as quantum neural networks
and quantum perceptrons. The said study also covered
alternative quantum learning frameworks such as quantum
adiabatic learning, which employs continuous interference
operation instead of discrete interference operation, con-
sisting of sequential quantum gates. In [41], the authors
explored various quantum-based models including quantum
Hopfield networks, and focused on optimizing parameters
for QML schemes. Besides, the authors in [42] discussed
potential applications of QML in different scenarios such
as object detection and control. However, the research land-
scape reveals a noticeable gap in the utilization of QML
techniques for optimizing wireless communication systems.
So far, the majority of examples in the literature have focused
on quantum-based approaches applied to image processing
tasks.

2) QML FOR NEXT-GENERATION WIRELESS SYSTEMS

Several surveys covered various applications of QML for
the optimization of wireless communication systems. In par-
ticular, [27] provided an early outlook on how to employ
QML for future wireless networks. Interestingly, the study
also addressed the increase in computational requirements
w.r.t. the size of learning models, e.g., in terms of the
number of layers of a neural network. Nonetheless, read-
ers might benefit from a more detailed explanation about
how to apply QML for wireless applications, as certain
aspects, such as input encoding, deviate from the conven-
tions of classical ML. In [27], the authors discussed the
potential use of ML methods for different layers of the

wireless communication protocol stack, including the physi-
cal layer (e.g., RIS phase shifting and spectrum allocation),
data-link layer (e.g., for latency constraint), network layer,
and application layer, and described how QML could pro-
vide benefits such as the reduction of the computational
complexity. As discussed in [28], it is worth considering
the possibility of incorporating quantum-based optimization
techniques as short- and long-term objectives in future wire-
less communication systems. To realize this, the possibility
of integrating quantum computations and future radio access
networks, e.g., for resource management, was also discussed
in [28]. Meanwhile, the authors of [39] explored the poten-
tial role of QML in optimizing 6G communication systems,
and the authors of [38] highlighted the potential applica-
tions of QML in improving channel estimation and enabling
multi-user communications. A brief comparison between the
survey content of this paper and the above-mentioned works
is presented in Table 1.

E. THE PAPER’S CONTRIBUTIONS
The surveys mentioned above mainly focused on exploring
the potential of utilizing QML in wireless communications.
However, we assert that there is a pressing need for more
comprehensive discussions that also delve into specific use
cases to demonstrate the practicality and efficacy of QML
for enhancing wireless communications. Building upon the
aforementioned discussions, the contributions of this work
can be summarized as follows:
• This study addresses the possible gains of employ-
ing QML in optimizing wireless communications while
also discussing the existing limitations. Additionally,
the study fills the research gap by addressing the lack
of surveys in the current literature on the applications
of QML specifically focused on optimizing wireless
communications.

• To effectively convey the benefits of QML in the context
of wireless communications, this paper presents a com-
prehensive tutorial designed to inspire researchers to
apply QML techniques to maximize the performance of
wireless systems. This paper covers various techniques
in QML, including encoding methods for classical-
valued inputs, strategies for obtaining QML outputs,
and parameter optimization techniques. The fundamen-
tal principles of quantum computing, such as quantum
superposition and quantum gates, are also discussed to
assist readers who are drawn to this captivating research
area.

• This study not only explores the potential of using
QML for optimizing wireless communications but also
demonstrates the implementation feasibility through
various use cases. Deployment challenges and solutions
are also discussed.

The following content of the paper is structured as follows.
In Section II, the basic concepts of quantum computation and
QML are presented. In Section III, different types of QML-
based optimization methods are discussed. In Section IV,
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TABLE 1. Position of this paper w.r.t. related surveys on the utilization of QML in wireless systems.

various use cases of QML applications for wireless commu-
nications are addressed. In Section V, the challenges with
applying QML to wireless communications are covered. The
paper is concluded in Section VI.
Notation: The operations of norm, conjugate, transpose,

and conjugate transpose are indicated by ‖·‖, (·)∗, (·)T, and
(·)†, respectively. Vectors and matrices are denoted as bold
lower- and upper-case characters, respectively. N (μ, σ 2) and
CN (μ, σ 2) indicate normal and circular normal distributions,
respectively, with mean μ and variance σ 2, while U(x0, x1)

symbolizes the uniform distribution within x0 and x1. vec(·)
denotes the vectorization operator. The hyperbolic tangent
operation is indicated by tanh(·). The notation of Var(·)
stands for the variance of a random variable. An identity
matrix is denoted as I, and ⊗ denotes the Kronecker operator.
Finally, j = √−1.
Key Terms: Here, we define four key paradigms of the

quantum technology:

• Quantum Computing: Quantum computing exploits
quantum bits, i.e., qubits, each of which can represent
both 0 and 1 in superposition. When multiple qubits are
involved, this property facilitates quantum systems to
leverage quantum parallelism, enabling them to solve
complex computation problems.

• Quantum Communications: Quantum communications
adopt different quantum properties, such as quan-
tum entanglement, to establish communication channels
that are more resilient to security concerns such as
eavesdropping.

• Quantum Computing-Assisted Communications:
Quantum computing-assisted communications refer to
the integration of quantum computing techniques to
improve the efficiency and performance of communi-
cation systems. This paradigm aims to exploit quantum
computing units for addressing challenges such as
parameter optimization and resource allocation.

• Quantum Machine Learning-Assisted Communications:
QML-assisted communications explore the synergy

between quantum computing and ML techniques to
enhance communication systems. Based on the pro-
vided data, these algorithms can extract meaningful
information, identify patterns, perform classifications,
and optimize communication parameters. By integrat-
ing quantum computing and ML, this paradigm enables
more efficient data processing, adaptive resource alloca-
tion, and intelligent decision-making in communication
networks.

II. FUNDAMENTALS OF THE QUANTUM MACHINE
LEARNING PROCESS
A. QUANTUM BITS, SUPERPOSITION, AND
ENTANGLEMENT
1) QUANTUM BITS AND QUANTUM SUPERPOSITION

The fundamental distinction of quantum computing from
classical computing lies in the utilization of qubits, as the
smallest units of computation. In contrast with a classical
bit, which can only represent either the computational basis
of |0〉 = ∣

∣1 0
∣
∣T or |1〉 = ∣

∣0 1
∣
∣T, each qubit can hold a

superposition of orthonormal bases of |0〉 and |1〉. Therefore,
as shown in Fig. 2, the state of each qubit can be represented
in a multi-dimensional space, known as Hilbert space. In the
case of binary representation [43], each n-th qubit can be
represented as

|qn〉 =
[

ρ0
ρ1

]

= ρ0|0〉 + ρ1|1〉
= cos(θ/2)|0〉 + ejϕ sin(θ/2)|1〉, (1)

where |ρ0|2 and |ρ1|2 are related to the probabilities of
obtaining 0 and 1 during observation, respectively, and where
θ and ϕ are the polar and azimuth angles for angular rep-
resentation, respectively. Here, the Dirac’s ket notation, as
in |qn〉, represents the state in a column vector form, while
the Dirac’s bra notation, such as 〈qn|, corresponds to the
complex conjugate of the ket notation.
Employing Multiple Qubits: The adoption of a greater

number of qubits, the core elements that constitute quan-
tum computing, could significantly improve the quantum
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FIGURE 2. Quantum state representation in Hilbert space, using Bloch sphere. The
surface of the sphere represents all possible states of arbitrary qubit with state |ψ〉,
with the poles denoting the two computational bases, i.e., |0〉 and |1〉.

system’s capabilities. Depending on the number of available
qubits, N, a particular composite quantum state |�〉 can be
expressed as a tensor product of different individual quantum
states, denoted as |q1〉, . . . , |qn〉, . . . , |qN〉, such that

|�〉 = |q1〉⊗· · ·⊗|qn〉⊗· · ·⊗
∣
∣qNqubit

〉 =
2Nqubit−1

∑

n=0

ρn|n〉, (2)

where ρn is associated with basis |n〉. The Kronecker prod-
uct is denoted by ‘⊗’. As it can be observed from (2),
the number of computational bases increases exponentially
with the number Nqubit of qubits, thereby emphasizing the
computational gain that can be obtained.
Quantum Entanglement: Further, the state of entangled

qubits cannot be decomposed as individual qubits, as the
measurement of one qubit affects another. As an exam-
ple, an entangled two-qubit state can be expressed as
∣
∣ψ+

〉 = 1/
√

2|00〉+ 1/
√

2|11〉 [44]. As a result, it is not possi-
ble to decompose an entangled state as a tensor product of
individual states of different qubits [40].

2) QUANTUM GATES

These gates are the building blocks of quantum operations
that can be applied to qubits to alter their states. Some exam-
ples of quantum gates include Hadamard gates, denoted as

H ≡ 1√
2

[

1 1
1 − 1

]

, which can be used to introduce quan-

tum superposition. For example, applying a Hadamard gate
to |0〉 yields H|0〉 = 1/

√
2|0〉 + 1/

√
2|1〉. Pauli X, Y, and

Z gates, represented by X ≡
[

0 1
1 0

]

, Y ≡
[

0 − j
j 0

]

, and

Z ≡
[

1 0
0 − 1

]

, respectively, can also be utilized to introduce

radian rotations by φ around the x, y, and z axes, respectively.
In particular, a Pauli X gate can be used to switch the ampli-
tudes corresponding to different basis states. For example,
applying a Pauli X gate to a quantum state |q〉 = ρ0|0〉+ρ1|1〉
results in X |q〉 = ρ1|0〉 + ρ0|1〉.

There are different rotation gates that allow for state
rotation around x, y, and z axes, denoted by Rx(θ) ≡

[

cos(θ/2) − j sin(θ/2)

−j sin(θ/2) cos(θ/2)

]

, Ry(θ) ≡
[

cos(θ/2) − sin(θ/2)

sin(θ/2) cos(θ/2)

]

,

and Rz(θ) ≡
[

e−jθ/2 0
0 ejθ/2

]

, respectively. These rotation

gates can be used to implement radian rotations by the
variable θ , which makes them useful in a variety of
parameterized quantum operations.
Furthermore, various controlled gates can be employed for

connecting different qubits and facilitating quantum entan-
glement, as the state of one qubit can influence the state of
the other qubit. In particular, controlled X gate, controlled
Y gate, and controlled Z gate, denoted by

Cx(|qt〉, |qc〉) ≡

⎡

⎢
⎢
⎣

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎤

⎥
⎥
⎦
, Cy(|qt〉, |qc〉) ≡

⎡

⎢
⎢
⎣

1 0 0 0
0 1 0 0
0 0 0 −j
0 0 j 0

⎤

⎥
⎥
⎦
,

and Cz(|qt〉, |qc〉) ≡

⎡

⎢
⎢
⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

⎤

⎥
⎥
⎦
,

respectively, act on two qubits, one being the control qubit
|qc〉 and the other being the target qubit |qt〉.

Most quantum gates used in quantum computing are uni-
tary operations, which means that they can be represented as
unitary matrices. A quantum operation U can be considered
unitary if it satisfies the condition U†U = IN , where IN is an
identity matrix with N = 2Nqubit diagonal entries, with Nqubit
being the number of qubits used for the quantum operation.
This condition ensures that the gate preserves the norm of
the quantum state and is reversible, meaning that the orig-
inal quantum state can be recovered from the output state
by applying the conjugate of the gate, which is useful in
many quantum computing applications, including quantum
communication protocols.

3) QUANTUM MEASUREMENTS

When classical values are required from a given quantum
circuit, quantum measurements can be performed to obtain
the expected output of the quantum system. Presenting a
quantum measurement as the state projection onto the z-
axis, given O0 and O1 as the projection operators for
the computational basis states |0〉 and |1〉, respectively, the
probabilities of obtaining classical bits 0 and 1 from the
measurement can be specified by leveraging the Born’s
rule. That is, P(0) = 〈ψinit|U〉†O0U |ψinit〉 and P(1) =
〈ψinit|U〉†O1U |ψinit〉, where ψinit is the initial state of the
quantum system, e.g., |ψinit〉 = |0〉, and U is a unitary
quantum operation.
Once a quantum measurement is performed on a particu-

lar qubit, its quantum state is collapsed into one of its basis
states, either |0〉 or |1〉, based on the probabilities presented
before, and the state of the qubit prior to the measurement
cannot be retrieved. Eventually, assuming M as the measure-
ment operator, the classical-valued output can be obtained
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FIGURE 3. Overview of a generic QML process.

as o =M(U |ψinit〉〈ψinit|U〉†
)

. Specifically, using the men-
tioned z-axis measurement, the output can be acquired as
o = √P(0)|0〉〈0|U |ψinit〉 + √P(1)|1〉〈1|U |ψinit〉.
In the context of QML-based optimization for wireless

communication systems, it is necessary to perform quantum
measurements to convert the quantum states of the quantum
system into classical-valued wireless variables, e.g., power
control coefficients, that can be interpreted by the classical
components of the communication system.

B. THE TRAINING PROCESS IN QML
To put the discussed concepts of quantum computing into
use, this part provides a comprehensive overview of the
various steps involved in a typical QML process, as illus-
trated in Fig. 3, while covering different aspects of the QML
framework such as data processing and parameter training.

1) INITIALIZATION

Prior to the training, initialization processes involving data
preparation and qubits preparation, are typically performed to
improve the learning convergence and accuracy, and ensure
consistent performance over a wide range of data sets:
(a) Data Preparation: The acquired data needs to be pre-

processed, e.g., by using (i) dimension reduction to
reduce the computational complexity, and (ii) data
normalization to avoid bias towards particular values
that have larger/smaller magnitudes. In the context
of wireless communications, sparse channel data can
be pre-processed to reduce the data dimension [45].
In particular, when supervised learning is assumed,
it is necessary to prepare reference points beforehand
(Section II-B1 will further elaborate on this). The col-
lected training data can be divided into separate batches,
which can be subsequently utilized for different train-
ing phases or allocated among different learning models,
e.g., in the instance of distributed learning [46].

(b) Qubits Preparation: For the quantum system, the states
of the qubits need to be prepared beforehand [47].
Typically, the states of Nqubit qubits can be prepared
as basis states, such as |0〉⊗Nqubit . Each of these qubits
can also be prepared as a superposition of states, e.g.,
(1/
√

2|0〉 + 1/
√

2|1〉)⊗Nqubit , which can be attained by
applying a Hadamard gate H to each qubit in the basis
state, which can be expressed as H⊗Nqubit |0〉⊗Nqubit .

2) FEATURE PROCESSING WITH ENCODING
OPERATION

The goal of encoding is to map classical-valued data feature
into Hilbert space [48]. For instance, an encoding operation
to process input vector x, composed of Ninput input elements,
can be realized by using a set of parameterized gates [48]:

Uencode(x) ≡
Nencode
qubit
⊗

i=1

Ry
(

fpre(xi)
)

, (3)

where fpre indicates pre-processing operation. As expressed
in (3), to cover all the input feature elements, the num-
ber of qubits for the encoding process can be defined by
Nencode
qubit = Ninput. We map each pre-processed input, rep-

resented as fpre(xi) in (3), to the state of its associated
qubit. Specifically, employing the angle encoding methodol-
ogy [44], and initializing each qubit as |0〉, the state of
each i-th qubit can be altered as |φi〉 = Ry(fpre(xi))|0〉,
i ∈ {1, . . . ,Nencode

qubit }. Such encoding operations can also be
expanded as parameterized quantum operations, used for dif-
ferent machine learning tasks. In particular, the study in [49]
employs trainable quantum embedding operations to classify
input data features into different clusters.

3) QUANTUM PREDICTION MODELS

In QML, quantum prediction models can be defined as quan-
tum operations that are compiled using different quantum
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gates, and designed to learn patterns from the training data
and provide estimations on new data. A range of quantum-
based prediction models has been proposed in the literature,
e.g., quantum perceptrons, quantum convolutional neural
networks, and quantum graph neural networks, each utiliz-
ing different combinations of quantum gates to perform ML
tasks. These models can be specified as follows.
(a) Quantum Perceptrons: Quantum perceptrons are

quantum-based learning models that draw inspiration
from biological neurons, similar to the classical per-
ceptrons, and learn from the training data by iteratively
adjusting their parameters commonly referred to as
weights. Defining θ = {θj}Nparam

j=1 as its set of Nparam
parameters, where Nparam can be set as Nparam = Ninput,
a generalized quantum perceptron can be expressed
as [50]
∣
∣ψpercep

〉 ≡ Upercep Uencode(x)|0〉⊗Ninput

≡ Uactiv

Ninput
⊗

j=1

Rx
(

θj
)Ry

(

fpre
(

xj
))|0〉⊗Ninput , (4)

where Uactiv ≡ ⊗Ninput
j=1 Cx(|ψout〉,

∣
∣
∣ψ

[j]
percep

〉

)|0〉⊗Ninput+1

indicates the activation operation, comparable to the
activation function in classical perceptron, to model
non-linear responses of the assumed objective function.
Here,

∣
∣
∣ψ

[j]
percep

〉

signifies the state of the j-th qubit cor-

responding to
∣
∣ψpercep

〉 ≡
∣
∣
∣ψ

[1]
percep

〉

⊗ · · · ⊗
∣
∣
∣ψ

[j]
percep

〉

⊗
· · · ⊗

∣
∣
∣ψ

[Ninput]
percep

〉

, specified in (4), while |ψout〉, which
is initialized as |ψout〉 = |0〉, is the designated output
state. In addition, multiple quantum perceptrons can be
compiled together to form a quantum neural network
capable of performing even more complex ML tasks. It
is worth noting that a number of inter-connected quan-
tum perceptrons can be assembled to form a quantum
neural network [30].

(b) Quantum Convolutional Neural Networks: Quantum
convolutional neural networks hold an advantage when
processing high-dimensional data, thanks to their capac-
ity to reduce the dimensionality of the processed input,
such as during the optimization process of a MIMO
system. Each of them processes two distinct layers,
called convolution and pooling layers, in an alternating
manner, which can be expressed as

UQCNN ≡ U [L]
pool U [L]

conv· · · U [l]
pool U [l]

conv· · · U [1]
pool U [1]

conv,

(5)

where L is the number of layers, and where U [l]
pool

and U [l]
conv are the l-th pooling and convolutional lay-

ers, respectively, for l ∈ {1, . . . ,L}. Next, we provide
a detailed description of the convolution and pooling
layers: (i) Convolution layers, which are employed as
kernels to extract the features of the embedded training
data and change the initial quantum states towards the

desired states (particularly towards the Hamiltonian of
the optimization problem), can be expressed as [51]

U [l]
conv ≡ (Rz(π/2)⊗ I) Cx(|q1〉, |q2〉)

(

I⊗Ry

(

θ
[l]
2

))

Cx(|q2〉, |q1〉)
(

Rz

(

θ
[l]
1

)

⊗Ry

(

θ
[l]
2

))

Cx(|q1〉, |q2〉) (I⊗Rz(−π/2)), (6)

and (ii) Pooling layers, which are employed to reduce
the dimensionality of the processed information. Issues
may occur when we decode the information processed
in the quantum system into the classical system, as high-
dimensional quantum states now need to be presented as
high-dimensional classical-valued matrices. Quantum-
based convolutional neural networks can solve such
dimensionality issues by utilizing pooling layers to
reduce the dimension of the processed information [52].
It can be expressed as

U [l]
pool ≡

(

I⊗Ry

(

θ
[l]
2

))

Cx(|q2〉, |q1〉)
(

Rz

(

θ
[l]
1

)

⊗ Ry

(

θ
[l]
2

))

Cx(|q1〉, |q2〉)(I⊗Rz(−π/2)).

(7)

(c) Quantum Graph Neural Networks (QGNNs): Such neu-
ral networks can be used to process the relations
between different data features that are presented as
quantum states. For example, a QGNN can be used to
reveal the relations between the coefficients of channels
pertaining to the user terminals in a wireless system.
These relations can be represented as a graph with sev-
eral nodes and vertices. In quantum circuits, these nodes
and vertices can be realized using parameterized quan-
tum gates [53], [54]. Let Nnode be the total number of
nodes. N[i]

neighbor is the number of nodes neighbouring
each i-th node, i ∈ {1, . . . ,Nnode}. As shown in [53],
[54], a QGNN operation can then be expressed as

Ugraph

≡
Nnode−1

∏

i=1

⎛

⎜
⎝Cx(|qi+1〉, |qi〉)⊗

⎛

⎜
⎝

N[i]
neighbor−1
⊗

j=1

Cx
(∣
∣qj+1

〉

,
∣
∣qj

〉)

⎞

⎟
⎠

⎞

⎟
⎠

Nnode∏

i=1

⎛

⎜
⎝Ry(θi)⊗

⎛

⎜
⎝

N[i]
neighbor
⊗

j=1

Rz
(

θi,j
)

⎞

⎟
⎠

⎞

⎟
⎠. (8)

In this instance, the value of each i-th node is repre-
sented by the term Ry(θi), where θi is the parameter
associated with that specific node. In addition, each j-th
neighbouring node of the said i-th node is denoted by
Ry(θi), where θi,j corresponds to the parameter associ-
ated with the j-th neighbour. Moreover, in (8), a set of
Cx(·) gates is employed to provide connections between
different qubits.
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4) OBTAINING CLASSICAL-VALUED OUTPUTS VIA
QUANTUM MEASUREMENTS

In order to bridge quantum- and classical-based computa-
tions, measurement operations can be performed. If the QML
model optimization is done classically, one needs to obtain
the classical value as the output of the QML operation. In
particular, given output state

∣
∣ψout

〉

, measurement on the
quantum system considering basis state |0〉 can be projected
as

〈

ψout
∣
∣A†

0A0
∣
∣ψout

〉

.

5) OPTIMIZING THE PREDICTION MODELS

In general, before performing the gradient-based
optimization processes of the QML model via train-
ing, we need to first define the calculation of the training
loss, and then identify how to obtain the gradient of the
loss. Both are required within algorithms aiming to adjust
the parameters of the given learning model towards better
prediction capability, such as those with gradient-descent
approaches.
Training Loss: The goal of the optimization process

of the QML is the minimization of the defined train-
ing loss, which is designed to showcase the capability of
the given QML model to estimate the given optimization
variables. Given Ndata as the number of features of the
training data, the training loss for a quantum-based model,
denoted as L, can be defined as the measure of the dif-
ference, referred to as the fidelity, between the desired
outputs and the actual outputs of the model, as follows [55]:
L(θ) = 1

Ndata

∑Ndata
j=1 〈ψ̂out

j |ψout
j |ψ̂out

j 〉, where ψ̂out
j is the

desired output state, ψout
j is the instantaneous output state

of the quantum-based model, and θ is the set of param-
eters of the quantum-based model. To mitigate the issue
of over-fitting and to prevent the model from becoming
excessively specialized to the given training datasets, which
can negatively impact the generalization performance on
new datasets, regularization terms can be introduced in
the loss/cost function, which can now be expressed as
L(θ) = 1

Ndata

∑Ndata
j=1 (〈ψ̂out

j |ψout
j |ψ̂out

j 〉−λ‖θ‖2), where λ‖θ‖2
is the regularization term that employs L2 regularization with
λ being the regularization parameter, e.g., λ = 0.001, to
penalize overly large parameter values [56].

III. QUANTUM MACHINE LEARNING METHODS FOR
OPTIMIZING WIRELESS SYSTEMS
Since we have covered the general pipeline of QML
processes, we will now proceed to the analysis of var-
ious quantum-based optimization methods that have been
proposed in the literature, delving into their respective pro-
cedures and elaborating on their potential utility for wireless
communication systems.

A. QUANTUM ALGORITHMS FOR OPTIMIZING
WIRELESS SYSTEMS
The upcoming subsection will explore a range of quantum
algorithms that exploit the unique properties of quantum
mechanics, such as superposition and entanglement, and

are, therefore, exclusive to quantum computing. Examples
include quantum algorithms that perform better than classi-
cal algorithms in solving some problems, such as quantum
search algorithms.

1) ORACLE-BASED OPTIMIZATION METHODS

Oracle-based algorithms, e.g., the Grover’s algorithm and
the Simon’s algorithm [60], [61], employ Oracle operators
to identify the intended solutions. In classical computing,
to determine whether a certain entry satisfies the desired
condition, typically, the classical processor needs to evalu-
ate each input in sequence. On the other hand, in quantum
computing, a quantum Oracle can evaluate the condition
for all possible entries simultaneously, leveraging quan-
tum parallelism through super-positioned quantum states.
Consequently, Oracle-based quantum algorithms may offer
significant computational advantages over classical meth-
ods. In particular, Grover’s algorithm provides a significant
computational advantage over classical search algorithms,
allowing for the search of an entry among M items in a time
complexity of O(√M), as opposed to the O(M) complexity
of typical classical search algorithms [60].
To enhance clarity and comprehension, the forthcoming

explanation will discuss the inner working of a quantum
Oracle, specifically in the context of the aforementioned
Grover’s algorithm [60]. Given M entries of possible solu-
tions, let each state included in |1〉, . . . , |x〉, . . . , |M〉 be the
representative of a corresponding index of a solution. Let
us now assume the indexes of the data entries to be rep-
resented as a superposition of quantum states, expressed as
|�〉 = ∑N−1

x=0
1√
M
|x〉. Here, each index has equal proba-

bility, hence signifying that each of the indexes holds an
equal likelihood of being the desired entry. Subsequently, an
Oracle operator, denoted by Uoracle, is applied upon the state
|�〉, thus transforming the state as Uoracle|�〉 ≡ (−1)f (x)|�〉,
where f (x) is a function that results in f (x) = 1 only for
a particular index state |x〉 that meets the search criterion,
thereby allowing an operation of phase flip on the amplitude
of the desired index state to negative. A reflection operator,
denoted by Uref, is then adopted to amplify the amplitude of
the desired index, thus enhancing its chance of being identi-
fied as the desired solution, while suppressing the amplitudes
of the rest of the indexes.
The above-described process is iterated for approximately

π/4
√
M� times to proportionally increase the amplitude of

the desired index state compared to the rest of the states.
Eventually, quantum measurement is performed to obtain the
index of the desired entry.
Applications for Optimizing Wireless Communications:

The potential of Oracle-based algorithms to significantly
enhance the efficiency of search processes makes them
promising candidates for accelerating search-based tasks
such as those of maximum-likelihood based MIMO detec-
tors, as in the study of [62], which often require searching
through large spaces of possible solutions. Moreover, the
authors of [63] and [64] cover the applications of different
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Oracle-based algorithms, among other quantum algorithms,
for the purpose of optimizing wireless communications.

2) VARIATIONAL QUANTUM EIGENSOLVER (VQE) BASED
OPTIMIZATION METHODS

VQE algorithms are commonly employed to determine the
state that corresponds to the ground energy of a quan-
tum system. Such problem may be converted into the
QML task of finding the parameter set θ̂ that can lead to
energy minimization of the quantum system at hand. Let us
define UVQE(θ) as the utilized VQE operator, with θ as its
parameter set. The best set of parameters can then be iden-
tified by solving θ̂ = argminθ 〈0|(UVQE(θ))

†OUVQE(θ)|0〉,
where O denotes the observable that is Hamiltonian
[65], [66].
Applications for Optimizing Wireless Communications:

The task of minimizing the energy of a particular quan-
tum system can indeed be transformed as the problem of
minimizing a cost function associated with the considered
performance metric of the wireless system. Specifically,
this cost function can be formulated as a quadratic
unconstrained binary optimization (QUBO) function [65].
Such transformation allows for the application of VQE
algorithms in addressing diverse wireless communica-
tion problems. One such problem is channel detection
based on maximum likelihood, which has been examined
in [66].

3) QUANTUM APPROXIMATE OPTIMIZATION ALGORITHM
(QAOA) AND ADIABATIC QUANTUM COMPUTING

The QAOA harnesses the synergistic capability of quantum
and classical computing, integrating a quantum circuit com-
posed of a set of unitary operators to estimate the desired
quantum states, alongside a classical optimization algorithm
tasked with finding the optimal parameters for the quantum
circuit. This combined approach allows QAOA to effi-
ciently solve optimization tasks, positioning it as a promising
methodology to tackle a variety of combinatorial prob-
lems encountered in the field of wireless communications
[67], [68].
Applications for Optimizing Wireless Communications:

In [67], QAOA is employed to solve the channel decoding
problem in digital communication channels. For this purpose,
formulation of the Hamiltonian cost function based on the
channel decoding problem is presented, with the objective
of generating codeword that minimizes the Hamming dis-
tance. Using the QAOA, which aims to minimize the energy
cost of the given Hamiltonian function, an optimized code-
word can be obtained. In [68], QAOA is employed to solve a
scheduling task in a satellite-assisted wireless system, aiming
to minimize the occurrence of overlapping coverage areas.
To achieve this objective, the scheduling task is reformu-
lated as a combinatorial problem known as the max-weight
independent set (MWIS) problem, which can be efficiently
solved using the QAOA.

4) OTHER APPLICATIONS OF QUANTUM
TECHNOLOGIES

In addition to quantum-based optimization methods, other
promising quantum technologies hold prospects for wireless
communications. One such example is quantum cryptogra-
phy, which utilizes the principles of quantum mechanics to
provide secure communications. Moreover, quantum com-
munication protocols can provide direct transmission of
quantum states between different parties. In particular, the
authors of [69] provided interesting communication cases
using drones with quantum processing capabilities. By lever-
aging quantum entanglement, a communication network can
be established using drones, such as UAVs, as the nodes for
quantum-based communications.

B. INTEGRATION OF QUANTUM-BASED OPERATIONS
WITH EXISTING ML METHODOLOGIES
As depicted in Fig. 4, quantum-based prediction models,
each of which leverages quantum operations to process esti-
mate outputs, hold the potential to empower the existing
ML methodologies, often classified as supervised learning,
unsupervised learning, and reinforcement learning. These
methodologies have progressed along with the advancement
of wireless systems [70], [71], [72], [73], [74]. In particular,
some distributed ML approaches, such as ensemble learn-
ing and federated learning, have incorporated NOMA and
over-the-air computation to augment resource efficiency [75].
Hence, they can exploit the computational gain offered by
quantum computing, since factors such as the increase in the
number of devices generally translate into spikes in the com-
putational complexity when classical computing approaches
are used.

1) SUPERVISED LEARNING

Overall, the training process of a supervised learning frame-
work works by comparing the outputs of the learning model
and the references from the training datasets. Accordingly,
the selection of suitable parameters for a learning model
relies on maximizing the likelihood between the outputs
of the model and the corresponding references from the
acquired dataset. By adopting this approach, some of the
popular schemes in supervised QML are discussed as
follows.

(a) Quantum-Based Support Vector Machines: Similar
to classical-based support vector machines (SVMs),
a quantum-based SVM can be employed to classify
a number of multi-dimensional data points by defin-
ing a multi-dimensional separator called hyperplane,
that is drawn in a manner that maximizes the margin,
which corresponds to the distance between the hyper-
plane and the closest data points belonging to each
class, referred to as the support vectors. Nonetheless,
quantum SVMs differ from classical SVMs in that they
encode the data points as the quantum states [76], lever-
aging the inherent properties of quantum computations

VOLUME 4, 2023 2213



NAROTTAMA et al.: QML FOR NEXT-G WIRELESS COMMUNICATIONS: FUNDAMENTALS AND THE PATH AHEAD

FIGURE 4. General taxonomy of QML utilized for optimizing wireless communications. Different supporting aspects of QML methodology, such as parameter optimization, are
also presented [57], [58], [59].

such as quantum parallelism and superposition, which
can potentially lead to computational speed-up [77].
Applications for Optimizing Wireless Communications:
Thanks to their innate capability to handle high-
dimensional input data, quantum SVMs with kernel
methods can facilitate accurate predictions for decod-
ing problems in wireless systems that entail high-
dimensional channel information, such as massive
MIMO systems [78], [79].

(b) Quantum-Based Decision Trees and Random Forests:
Quantum decision trees employ tree-like prediction
models, in which the branches of the trees repre-
sent the decision based on inputs while the leaves
return corresponding outputs. Distinguished from classi-
cal decision trees, quantum decision trees are processed
as quantum-based operations involving a number of
quantum gates. In particular, the quantum decision
tree method presented in [80] determines node split-
ting based on the quantum entropy, which captures the
uncertainty inherited in the quantum system, instead of
using stochastic variables as in their classical counter-
parts. Furthermore, a quantum random forest can be
constructed as a compilation of multiple quantum deci-
sion trees, with each tree presented as a quantum-based
model processing quantum states.
Applications for Optimizing Wireless Communications:
Low-complexity quantum decision trees and quantum

random forests can be applied to relay selections in
ultra-dense networks [81], which are characterized by a
high number of access points and thereby require real-
time decisions over a vast space of possible solutions.

2) UNSUPERVISED LEARNING

Unsupervised learning methodology, as opposed to super-
vised learning, has the potential to discover the underlying
patterns in the data without requiring the inclusion of
predefined reference points, commonly referred to as labels
in the training dataset.
When dealing with unlabeled data set D = {xi}Ni=1, the

optimization algorithms face the challenge of autonomously
estimating the desired solution yi corresponding to each input
xi. In tasks such as classification or segmentation, this self-
guided process is commonly known as clustering. It aims
to identify clusters among data points, and each cluster can
then be interpreted as a certain class or label denoted by yi.
Note that unsupervised learning can encompass generative
tasks, such as those in generative adversarial neural network
frameworks, which have also been explored as quantum
algorithms [82], [83].

QUANTUM-BASED CLUSTERING ALGORITHMS

In clustering tasks, the k-means algorithm is arguably
one of the most notable algorithms. It is an iterative,
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non-deterministic algorithm, or heuristics, that can solve NP-
complete problems with commendable accuracy in different
cases [84].
The unsupervised learning algorithm, commonly known

as k-means, is widely utilized in various problem domains.
It typically has a complexity of O(Ndata) per iteration given
Ndata data points, which is desirable. Nonetheless, it may
have limitations in terms of flexibility and may be more
effective when applied to well-structured data sets. The algo-
rithm takes data points compiled as v = {vi}Ndata

i=1 ∈ R
η

as inputs, with η indicating the data dimension. It aims
to partition them into k subsets named clusters, accord-
ing to a similarity measure defined a priori, typically
the Euclidean distance between points. It then produces a
set of k cluster centers, referred to as centroids.1 During
deployment, the alternation between the following two steps
takes place until convergence is achieved: First, each data
point is assigned a label to indicate that it belongs to
a certain cluster, determined based on its proximity to
different centroids. Second, each centroid is adjusted by
taking the average of the data points assigned to the cor-
responding cluster, ensuring it to accurately represents the
cluster.
In addition, quantum Gaussian mixtures employ probabil-

ity distribution to cluster the data points, while the probability
density values of the data points are presented as quantum
wave functions, yielding possible performance gains thanks
to quantum parallelism [86], [87].

3) REINFORCEMENT LEARNING

Unlike supervised and unsupervised learning methods, rein-
forcement learning (RL) methods continuously learn and
adapt to changing conditions by leveraging ongoing feed-
back from the environment, which in this case is the wireless
system, and applying a set of actions, e.g., altering the
transmit precoding, in accordance with the state of the wire-
less system, e.g., the channel conditions. The action taken
by the RL model results in a cumulative reward, which
serves as a measure indicating the learning progress of
the learning agent. To provide an example in a practical
wireless scenario, an additional reward point of +1 can be
awarded if there are no outages at any mobile terminals
in a considered system, while any outage could result in
a penalty, e.g., −5. Following is a discussion of quantum-
based learning techniques that employ the aforementioned
methodology.

(a) Quantum-Based Q-Learning: Q-learning methods are
commonly utilized in RL to deduce optimized Q-tables,
which serve as mapping tables that return the ideal
action A(t) given the current state S(t). In general, con-
sidering the Bellman equation, the update process of
the Q-table can incorporate the expected future reward,
and can be expressed as [88], [89], [90]:

1. As starting points, k initial centroids can be selected randomly or using
efficient heuristics as those in k-means++ algorithm [85].

Q
(

S(t),A(t)
)

← Q
(

S(t),A(t)
)

+�
[

R(t+1)

+ γ max
Â(t)

Q
(

S(t+1), Â(t)
)

− Q
(

S(t),A(t)
)]

, (9)

where � and γ indicate the learning rate and the dis-
count rate, respectively, and Â(t) is the ideal action for
time t. In wireless communication systems, Q-learning
can be used to determine the transmit precoding in beam
tracking, for instance, given channel information of the
moving user as the state [88], [89]. Moreover, train-
able deep learning models can function as Q-tables,
allowing the handling of continuous, complex-valued
input variables, such as channel information. In this
regard, quantum-based learning models can also be
employed [90].

(b) Quantum-Based Experience Replay: The experience
replay methodology utilizes a record of the previous
training sequences, each called buffer, as a reference
to aid the current training process. By randomly taking
samples from this buffer during the training process,
the learning model can circumvent the possibility of
over-fitting to the current experience. To do so, an
experience replay buffer stores a record of past data
points, generally presented as a tuple of information
comprised of elements related to the prior learning iter-
ations. For each t-th time step, it can be expressed as
E (t) � {S(t),A(t),R(t);S(t+1)}, in which S(t), A(t), and
R(t) respectively denote the state of the environment, the
action applied upon the environment, and the acquired
reward [91], [92], [93]. In addition, S(t+1) denotes the
state at the (t+ 1)-th time step. Due to this advantage,
several works assumed the use of experience replay to
maximize the reward. For example, the authors in [91]
exploited experience replay buffer in a quantum-based
RL framework. It is worth noting that experience replay
buffers have been utilized in various classical RL frame-
works as well. For instance, the work of [92], [93]
prioritizes stored experiences based on their relevance
to the learning process, e.g., giving higher priority to
the frequently occurring experiences.

(c) Quantum-Based Actor-Critic Methods: Unlike other RL
methods that use a single model, e.g., Q-learning, the
actor-critic methods employ two different learning mod-
els: the actor, which is responsible for determining the
actions to take using a policy function, and the critic,
which is utilized to evaluate those selected actions by
examining the current state using a state-value function.
Such configuration allows for different benefits such
as enhanced capability in handling continuous action
spaces. In classical ML, conventional learning models,
e.g., classical deep neural networks, are typically used
to represent the actor and the critic [94]. However, in
real-time wireless communication scenarios with high
data processing requirements, e.g., larger state spaces
in optimizing the energy efficiency of an IoT network
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with a high number of nodes, classical actor-critic meth-
ods may encounter constraints regarding the processing
time, as two separate learning models (actor and critic
neural networks) need to be trained, which can pose a
challenge in learning convergence [95]. To mitigate this
issue, variational quantum circuits, which leverage the
fundamental characteristics of quantum mechanics, such
as superposition and entanglement, can be used for the
actor and critic models, e.g., as done in [95], offering
potential benefits such as prediction accuracy thanks
to the enhanced learning capability of the quantum
models.

Applications for Optimizing Wireless Communications:
Different quantum learning models can be employed in actor-
critic frameworks, taking advantage of the continuous action
space offered by the quantum models to handle optimization
problems pertaining to dynamic wireless environments. For
example, in the recent work [91], quantum-based actor
and critic models were involved in the optimization of the
flying trajectory of UAVs to maximize the QoS of the
UAV-based wireless communication, and showed increased
learning convergence compared to the classical model.

IV. APPLICATIONS OF QUANTUM MACHINE LEARNING
IN WIRELESS SYSTEMS
A. QML FOR PHYSICAL LAYER
Due to its advantage in efficiently solving complex
optimization problems in polynomial time, quantum-based
methods can be utilized in a variety of physical-layer opti-
mizations, including high-dimensional optimization spaces
as those encountered in massive MIMO systems.
Leveraging the said advantages, quantum-based

optimization methods have been employed to effi-
ciently manage the transmit power allocation in MIMO
systems, enabling optimal allocation of the limited resources
in scenarios requiring high data speeds under complex
channel conditions. For instance, the work of [96] presented
a quantum-based decomposition of Vandermode matrix,
which holds potential in a range of applications involving
high-dimensional computation, such as signal recovery and
channel modeling for MIMO systems.
A quantum bacterial foraging optimization algorithm was

proposed in [97] for optimizing the power coefficients and
tilt angles of the transmit antennas in MIMO communication
systems. The results demonstrated superior performance in
solving combinatorial optimization problems compared to
classical bacterial foraging optimization algorithms, espe-
cially in the case of parallel non-gradient optimization, in
which multiple variables with unknown gradient functions
are involved.
Another quantum-inspired heuristic algorithm, termed

quantum-behaved particle swarm optimization (QPSO), was
employed in [98] towards maximizing the data rate of a rail-
way wireless communication system. The study considered
factors such as transmit power and spectral allocation, as

well as practical restrictions such as Doppler shift caused
by the train’s velocity.
Another notable application of QML for physical-layer

design is to accurately estimate the channel state information,
which is crucial for reliable data transmission. Quantum
algorithms, such as the quantum support vector machine
(QSVM) [79], can be employed to improve channel estima-
tion. QML algorithms can utilize the unique properties of
quantum systems to enhance the accuracy and efficiency of
channel estimation tasks [99].

B. QML FOR SIGNAL INTELLIGENCE
Owing to their ability to efficiently solve complex
optimization problems in polynomial time, quantum-based
optimization methods have emerged as promising approaches
to enhance signal intelligence in emerging wireless commu-
nication models which typically involve high-dimensional
optimization spaces, such as in massive MIMO systems,
and high-order signal modulation. The subsequent discussion
outlines how different quantum-based methods can be ben-
eficial for signal intelligence, including enhanced accuracy
and improved data processing time.

1) QUANTUM-BASED METHODS FOR SIGNAL
PROCESSING AND DETECTION

The process of signal processing could also benefit from
different quantum-based algorithms. In particular, quantum
search algorithms can be adopted in signal detection, as it
is done in [100], which utilized a modification of the Dürr
& Høyer algorithm, a quantum search algorithm based on
Grover’s algorithm described in Section IV-B1, to deter-
mine possible signal realizations in MIMO systems, based
on the maximum-likelihood principle. In addition, the work
of [101] incorporated a modified Dürr & Høyer algo-
rithm for multi-user detection, designed for direct-sequence
spreading in space-division multiple access (SDMA). In
other instances, quantum-based heuristic algorithms have
been applied to address the issue of a high peak-to-
average power ratio (PAPR). Specifically, the study of [102]
employed a quantum-inspired evolutionary algorithm that has
a low computational complexity, and is capable of reduc-
ing the PAPR in orthogonal frequency-division multiplexing
(OFDM) systems. The work of [103] expands the applica-
tion of quantum-inspired evolutionary algorithms by utilizing
them in multi-objective PAPR reduction.

2) QUANTUM-BASED TECHNIQUES FOR SIGNAL
CLASSIFICATIONS

Thanks to their capabilities in handling complex combi-
natorial problems, quantum-based methods are particularly
well-suited for the classification of signal constellations. For
example, in the study of [104], a quantum annealing-based
optimization method was utilized to classify signal constel-
lations in a large-scale MIMO system. To this end, the
maximum-likelihood-based classification problem at hand
was initially converted into a quadratic unconstrained binary
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optimization (QUBO) problem, and then solved by using
a quantum annealing methodology. The proposed approach
has been adopted for different modulation techniques, such
as quadrature phase-shift keying (QPSK) and quadrature
amplitude modulation (QAM). The work of [105] extended
this approach to accommodate higher order modulation,
namely, 64-QAM.

C. QML FOR HIGHER LAYERS
Different quantum-based optimization methods have been
specifically crafted for the data link layer, to provide
secure communication links and error corrections, among
others.

1) QUANTUM TECHNOLOGIES TO ENHANCE
COMMUNICATION SECURITY

As quantum computing platforms advance, thereby becoming
more capable of exponentially faster calculation compared
to classical processors, they pose a threat to many of the
cryptographic techniques currently in use, as these tech-
niques rely on computationally hard mathematical problems,
such as factorization of large numbers, which serve as
the basis of the Rivest–Shamir–Adleman (RSA) encryp-
tion methodology. The work in [106], [107] suggests
that quantum routines such as Shor’s algorithm have the
capability to provide the solution to factoring problems
and thereby, in theory, can break the popular encryption
approach, posing threats to institutional services, many of
which rely on RSA for securing information such as user
passwords.
In response to this concern, different counter-measures

have been made in the field of cryptography, including the
development of quantum-based cryptography, such as quan-
tum key distribution (QKD). In particular, QKD allows a
secure exchange of secret key used for the encryption and
decryption of a message, as any eavesdropping attempts on
the key exchange will inevitably introduce errors that can be
detected by both the sender and the receiver, alerting them
to the threat [108].
Interestingly, QML can also be employed to enhance

the security aspects of wireless networks. In particular,
the authors of [109] addressed the utilization of QML to
mitigate quantum-based security attacks on wireless com-
munication networks. Moreover, in [28], blind quantum
computing, which allows transmission of information to
a remote quantum processor using an encrypted quantum
state, was advocated to maintain the confidentiality of the
data.

2) QUANTUM ERROR CORRECTION TECHNIQUES

In addition to providing enhanced security, quantum tech-
nologies are particularly useful for error corrections, espe-
cially in quantum-based communications, which rely on the
quantum mechanism such as quantum entanglement to trans-
mit information, or in quantum-inspired communications,

which use classical systems to mimic the behavior of quan-
tum systems. In particular, a quantum-based error-correction
technique called Shor’s code can correct one error in a set
of nine physical qubits [110]. The method encodes each log-
ical qubit into different physical qubits, and detects errors
by identifying the occurrence of bit-flip or sign-flip of the
transmitted qubit.

D. QUANTUM CONVOLUTIONAL NEURAL NETWORK
FOR MAXIMIZING ENERGY EFFICIENCY IN RIS-AIDED
MULTIPLE ACCESS
To showcase the feasibility and merits of using QML
to maximize the performance of wireless communication
systems, let us consider the problem of energy-efficiency
maximization of RIS-aided multiple access as a particular
use case. Thanks to RISs, we now have enhanced control
over wireless propagation, enabling us to effectively manage
the transmission for different user terminals by mitigating
interference and obstructions.
Several studies considered quantum-based optimization

methods for RIS assisted systems. In [111], a quantum
Ising model was adopted to minimize the number of
required time slots in various RIS-enabled communication
scenarios, taking the RIS phase-shift coefficients as the
optimization variables. The authors of [112] employed a
quantum optimization scheme based on quadratic uncon-
strained binary optimization to maximize the power of
the received signal in different scenarios; different num-
bers of base stations (BSs), RISs, and user terminals were
assumed [112, Tab. 1]. In that work, the D-Wave hybrid
solver demonstrated a significantly lower computational
time, especially for a larger number of RIS elements, in com-
parison to the Nelder-Mead simplex scheme [112, Fig. 10].
Besides, the authors of [113] employed Ising models for
optimizing RIS parameters.
With regard to the integration of RIS and multiple

access, various works have exploited RISs to enhance the
performance of the next-generation multiple access tech-
niques, such as those of NOMA and rate-splitting multiple
access (RSMA) [114]. In [115], RIS was deployed to assist
RSMA, whereas different variables were also optimized to
enhance energy efficiency, defined by the ratio between
the sum-rate and the total consumed power. In [116], it
is shown that the deployment of RISs within an RSMA-
based system allows for various performance benefits, such
as enhanced spectral efficiency. In [117], the outage prob-
ability of a RIS-assisted RSMA system was investigated.
Further, the authors of [117] examined the occurrence of
outage in a simultaneous transmitting and reflecting RIS
(STAR-RIS) aided system, evaluating the influence of the
RIS phase-shift and RSMA power splitting coefficients.
Besides, various studies explored the utilization of RIS in
multiple access protocols, e.g., NOMA [118]. The work
of [18] introduced a multiple access method based on
the integration between RIS and NOMA. Also, the work
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of [119] examined the capacity of a STAR-RIS aided NOMA
system.

1) APPLICATION SCENARIO

Now, let us consider a wireless communication system that
employs uplink power-domain NOMA for K user terminals,
with each having L antennas, to transmit messages to the BS
equipped with M antennas. Due to the presence of blockages
in the service area, there is a lack of possibilities for estab-
lishing direct LoS links between the user terminals and the
BS. To overcome this challenge, a RIS is exploited to pro-
vide indirect links from the user terminals to the BS through
passive beamforming.
Optimization Objective: Due to the growing concern of

energy consumption and environmental sustainability [120],
our focus here is on the maximization of the energy effi-
ciency of the communication system. The optimization
problem can be formulated as follows:

max
W,�

μ = 1

P
Rsum(W,�)

s.t. C1: φi ∈ E, ∀i ∈ {1, . . . ,N},
C2: wkλkP

Tx
k ≤ PTxk , ∀k ∈ {1, . . . ,K}, (10)

where Rsum denotes the sum-rate, P is the total power con-
sumption of the system, PTxk and λk denote the maximum
transmit power and the NOMA power ratio coefficient of the
k-th user terminal, respectively, W = {wT

k }Kk=1 ∈ [0, 1]L×K is
the power control matrix, wk denotes the transmit precoder
of each k-th user, ∀k ∈ {1, . . . ,K}, � = diag(τ ) ∈ C

N×N
denotes the phase-shift matrix pertaining to the passive beam-
forming with τ = {eiφi}Ni=1 denoting the phase-shift elements
of the RIS. In (10), constraint C1 signifies that each i-th
phase-shift element defines its phase from the available dis-
crete phase set E = {2π(r−1)/Nopt}2sr=1, where s denotes the
number of classical bits used to process phase shifting. The
constraint C2 ensures satisfying the power budget of each
user terminal.
Channel Model and Input Feature: Considering the uti-

lization of a RIS to allow indirect links from the user
terminals to the BS, cascaded propagation channels are
assumed, where hk and H denote the channels from the
k-th user to the RIS, and from the RIS and to the BS,
respectively. Therefore, the end-to-end channel between the
k-th user terminal and the receiving BS, via the RIS, can
be expressed as Hk = Gdiag(τ )hk [121]. Herein, the nor-
malized Ĥk is utilized as the classical input, denoted by
xin = vec(Ĥk/‖Ĥk‖) ∈ C

1×KNTx , for our quantum-based
learning model.
Utilizing Quantum Convolutional Neural Network for

Dimensional Reduction: The approach to solve the problem
specified in (10) is described as follows. First, the phase-
shift matrix � is optimized using the approach presented
in [122], where the phase-shift coefficients are selected from
set E to satisfy constraint C1. Subsequently, to account for
the increase in input dimensionality due to the utilization of
the RIS, we utilize a quantum convolutional neural network

FIGURE 5. The training convergence of the quantum-based learning model
employing quantum variational and convolutional layers, aiming to maximize the
energy efficiency of an uplink RIS-assisted NOMA system.

based optimization framework (cf. (5) in Section II-A3) to
estimate the power control matrix W. The output of the
quantum model is then normalized within the range of [0, 1]
to satisfy constraint C2. Given the channel information Hk,
∀k ∈ {1, . . . ,K}, the classical input for the QML, denoted by
xin = vec(Ĥk/|Ĥk|) ∈ C

1×KNTx , is transformed into a quantum
state using the encoding methodology set forth in (3).

The performance of the proposed design in terms of train-
ing convergence is demonstrated in Fig. 5. Here, the training
approach described in Section V is assumed, with the loss
function defined as L = − log(μ) = − log(Rsum) + log(P).
The initial value of each parameter of the quantum model is
set as π/2. The numerical simulation was conducted under the
following set-up: K = 2, L = 1, M = 4, and N = 8; the cal-
culation of power consumption P follows that of [123], while
the computation of channels G and hk, ∀k ∈ {1, . . . ,K},
follows those of [117] and [124].
In Fig. 5, the notion of “quant. var.+ conv” indicates the

integration of a quantum convolutional layer and a quantum
variational layer, while the term “quant. conv” indicates
the utilization of the convolutional layer alone.2 The results
show that the combination of variational and convolutional
layers can produce a lower training loss, although this con-
figuration requires a higher number of parameters. Indeed,
the integrated model has 16 parameters, while the model
with a single convolutional layer has 8 parameters. The
figure also demonstrates that the employed quantum convolu-
tional neural network is able to reduce the input dimension
significantly. For instance, considering the aforementioned
parameters and quantum convolutional neural network with
one layer, the process has been streamlined from using
Nqubit = 8 qubits for input encoding to performing measure-
ment on two qubits as the output, thereby enabling more

2. The authors are grateful for the access to IBM Q quantum computer
via IBM Qiskit [33] to conduct this optimization. IBM, the IBM logo, and
ibm.com are the trademarks of International Business Machines Corp. The
views articulated in this paper are of the authors, and do not necessarily
reflect the official policy or position of IBM or the IBM Quantum team.
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efficient measurement and parameter optimization. Despite
the availability of higher numbers of qubits in today’s
quantum computing systems, the parameters of the learn-
ing models, one of which yields the result shown in Fig. 5,
are still predominantly trained using classical algorithms.
Introducing a substantially large number of parameters could
potentially impose a computational burden on the classical
system (this concern will be discussed in Section V-B2).
Nonetheless, quantum systems involving large numbers of
model parameters will be featured in future works.

V. CHALLENGES IN QUANTUM MACHINE LEARNING
Moving forward, we will discuss about the challenges related
to the training processes and the deployment of QML
algorithms, particularly with regard to their viability for
optimizing wireless systems.

A. TRAINABILITY OF THE QUANTUM LEARNING
MODELS
Numerous QML techniques employ model-driven estimators,
which are implemented as a sequence of quantum operators
with adjustable parameters, to generate desired solutions.
As an illustration, given the information about prior spectral
occupancies, the quantum-based model can be employed to
minimize uplink collisions between multiple devices, as the
authors of [125] did with classical models. Thus, our task
is to maximize the accuracy of the parameterized model via
training.
Therefore, the ability of the model to be trained using

the available dataset becomes paramount. Although com-
plex QML models involving a high number of qubits and
quantum gates can represent a wide range of optimization
solutions, they may encounter a trainability issue, which is
referred to as the barren plateau phenomenon, limiting their
performance.
For better understanding, we can consider the gradient of

the training loss as a particular random variable, which can
become very large as the number of qubits increases, and
resulting in the vanishing gradient problem. The phenomenon
of barren plateau which occurs during the model training can
be expressed as Var(∇�L(�)) = 2(〈0|V2|0〉−〈0|V |0〉)

N2−1
(Tr(O2)−

Tr(O2)
N ) [126], [127], where ∇�L(�) describes the gra-

dient of the loss function w.r.t. the parameter set �, O
is the Hermitian representation of the state of the quan-
tum system at hand, V symbolizes a fixed Hermitian, and
Tr(·) is the trace operator. Based on the study of [128],
the variance of the loss gradient can be approximated as
Var(∇�L(�)) ≈ 2−Nqubit , where Nqubit is the number of
entangled qubits employed by the system.
In light of the above examination, one can observe that

the ability of the quantum-based model to process differ-
ent outcomes will be reduced as the scale of the quantum
processing system increases. Unfortunately, for most wire-
less scenarios, we do not have the luxury of downsizing
the quantum model, especially in the case of heterogeneous

networks. Faced with this dilemma, one strategy is to reduce
the number of parameters to be optimized during a given
training phase. This approach has been adopted in various
methodologies, including layer-wise training [129], [130].
Still, it is non-trivial to develop quantum learning mod-
els that can be trained effectively to solve different ML
tasks. This may involve improving existing algorithms, such
as variational quantum algorithms, and identifying poten-
tial advantages that can be attained by employing quantum
systems.

B. QUANTUM COMPUTING PROCESSORS
The advancements in quantum computing have opened
the doors for its deployment strategies in communication
networks. It is possible to imagine that scalable quantum
processors could be placed close to microcells, empowering
machine-to-machine communications. In particular, quantum
processors that are co-located with local servers can be uti-
lized to maximize the reliability of massive machine-type
communication (mMTC) systems [131].
Nonetheless, quantum computers are still in their early

stages of development and face some hardware limitations,
which include high error rates, short coherence times, and
limited connectivity between qubits. These factors make it
challenging to implement and scale QML algorithms effec-
tively, and need particular R&D efforts to reap out the full
benefits of QML.

1) DECOHERENCE AND NOISE IN QUANTUM SYSTEM

The current generation of quantum processors is prone
to quantum decoherence and quantum noise, which can
have adverse effects on their accuracy. Quantum deco-
herence refers to the loss of the ability in maintaining
quantum properties such as superposition and entangle-
ment. Quantum noise refers to the random fluctuations that
can affect the quantum state, arising from factors such as
thermal fluctuations. The authors of [132] investigated the
impact of decoherence on the performance of QML, in
particular for performing classification tasks on an image
dataset, showing that decoherence has a negative influence
on accuracy. Developing robust error mitigation techniques,
including error correction and error suppression, is therefore
indispensable.
Interestingly, the presence of noise in a quantum system

can be leveraged for the benefit of the optimization process.
In particular, the authors of [133] advocate taking advan-
tage of noise in Oracle-based quantum optimization (cf.
Section V-B1), potentially making optimization processes
more efficient. Moreover, the authors of [134] propose a
quantum-based ML framework that can effectively han-
dle noise and decoherence, while even utilizing noise
as a random variable to mitigate over-fitting, which can
otherwise hinder its ability to perform classifications on
different data sets. Furthermore, the authors of [135]
reported the utilization of properly adjusted noise in quantum
systems to enhance the performance of quantum annealing
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methodologies, specifically in relation to convergence time.
Nonetheless, it should be noted that a higher noise level in
quantum annealing could compound errors in certain wire-
less applications, such as multi-user MIMO detection [136].
This amplification of errors may, in turn, affect its detection
accuracy.

2) QUANTUM-CLASSICAL INTEGRATION

This issue can arise from the integration of quantum
prediction models into the existing AI frameworks, as the
quantum model may still rely on classical computers to
optimize the parameters of quantum-based models, which
can limit the computational advantages that can be achieved
by quantum computing. One potential solution involves the
utilization of quantum-based algorithms to optimize the
parameters of the quantum prediction models, as shown
in [137], which proposed a quantum-based algorithm for
optimizing the parameters of classical neural networks, open-
ing up the possibility to extend their utilization for quantum
neural networks. Nevertheless, the development of scalable
quantum algorithms for parameter optimization remains an
active area of research. Here, it is important to note that most
of the high-dimensional data about wireless systems, such as
signal constellation and sparse channel information, is con-
ventionally stored as classical memory, and thereby requires
encoding operations to be processed by QML models.
Furthermore, as of the time of writing, there is still a

lack of studies on the implementation of quantum systems
for optimizing RF hardware in practical conditions—apart
from those studies assuming simulated wireless environ-
ments, e.g., [91], [138]. In addition, in order to efficiently
integrate classical and quantum systems and take advantage
of their complementary strengths, the development of hybrid
algorithms and software frameworks is essential.
Regarding current achievements in wireless communica-

tions, classical technologies have made remarkable con-
tributions in supporting signal processing, enabling high
data rate transmissions, and facilitating robust error cor-
rection [4], [72]. However, there are certain computational
problems in next-generation wireless communications that
will pose challenges for classical computing systems, such
as tackling large-scale optimization problems and handling
post-quantum security [108], [109]. These problems can be
addressed using quantum computing processors, which pro-
vide computational efficiency and have the unique ability to
handle quantum communication protocols.

C. QUANTUM HARDWARE
Quantum computers are still in their early stages of develop-
ment and face hardware limitations. These limitations include
high error rates, short coherence times, and limited qubit
connectivity [34], [110], [139]. Such factors make it chal-
lenging to implement and scale QML algorithms effectively.
In addition, quantum computers that are available today are
prone to errors due to various noise sources, such as deco-
herence and gate imperfections. The effects of noise can

significantly impact the accuracy and reliability of QML
algorithms. Therefore, developing robust error mitigation
techniques, including those of error corrections and error
suppressions [108], is crucial to ensure the correctness of
the quantum computations.
Wireless systems can benefit from employing quantum

computations, with examples such as quantum annealing
utilizations for low-density parity check (LDPC) decod-
ing [140]. Quantum computing functionalities can com-
plement edge and central computing platforms, offer-
ing quantum-aided task offloading for different purposes
in wireless communications [141]. Nevertheless, current
quantum computing hardwares typically require exten-
sive physical space and added equipment, such as for
cryogenic purposes. These factors could affect their prac-
ticality and necessitate additional human resources for
operations [142].
Due to the aforementioned limitations, it is anticipated

that early quantum computing for wireless communications
deployments may take the form of cloud computing fea-
tures to facilitate the functioning of many BSs in certain
regions [42]. The advent of quantum fog computing, which
can manage several macro and micro BSs, may represent
the next major development. It can be argued that the ideal
implementation of quantum edge computing occurs when it
is utilized at the edge level. This approach allows a specific
macro BS to directly access low-latency quantum computa-
tions, thereby providing immediate support for time-sensitive
tasks such as device localization and channel estimation [23].
In addition, the concept of task offloading between a cen-
tral quantum computing unit in the cloud and its subsidiary
quantum computing processor in the edges or fogs is indeed
intriguing. Specifically, the cloud can effectively manage
centralized tasks such as the activation and power control
of BSs in a given area. On the other hand, the quantum
computing units in the fog can handle ad hoc tasks, such as
facilitating device-to-device communications.

VI. CONCLUSION
This paper provided a comprehensive overview of the art
of QML methods and their applications in wireless com-
munication systems, exploring various aspects of QML,
such as quantum-based operations and techniques, and dis-
cussing their merits in meeting the efficiency requirements
of wireless communication systems. It has been shown that
different quantum-based models can also empower exist-
ing ML methodologies, such as supervised, unsupervised,
and reinforcement learning methods, emphasizing the fact
that QML techniques should be positioned synergistically
with their classical counterparts to meet the requirements
of future wireless communication systems. The paper has
highlighted the versatility of QML in addressing diverse
optimization tasks in wireless communications by featuring
various QML applications, such as resource allocation, signal
processing, and security enhancement. The paper has also
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covered challenges that need to be addressed to allow practi-
cal applications of quantum-based optimization for wireless
systems and networks, such as those related to training, quan-
tum computing hardware, and integration. Tackling these
challenges eventually calls for interdisciplinary collaboration
across the fields of quantum computing, machine learning,
and wireless communications.
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