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ABSTRACT Low-density lattice codes (LDLCs) achieve near-capacity performance on additive white
Gaussian noise (AWGN) channels. The M-Gaussian decoder is the state-of-the-art message passing decoder
for LDLCs in terms of the error performance. However, this decoder has complexity O(Md−1) with
messages represented by Gaussian mixtures, where d is the degree of an LDLC and M is the number
of Gaussian functions for approximating each check node message. In this paper, we establish the
correspondence between Gaussian functions for approximating a variable node message and points of a
certain lattice. Based on this lattice viewpoint, the problem of approximating a variable node message is
formulated as a lattice point enumeration (LPE) problem. Then, an LPE decoder with linear complexity
O(d) is proposed. Our simulation results validate that the LPE decoder achieves almost the same error
performance as the M-Gaussian decoder.

INDEX TERMS Low-density lattice codes, message passing, decoding complexity, lattice point
enumeration.

I. INTRODUCTION

ACCORDING to Shannon’s channel coding theorem, a
code can be decoded at an arbitrarily small error prob-

ability if the transmission rate is lower than the channel
capacity [2]. However, Shannon’s theorem was proved by
using a random code. Later, various structured codes were
proposed, among which lattice codes possess great potential
for practical applications and theoretical generalization [3].

Low-density lattice codes (LDLCs) were proposed in [4]
and were shown to achieve near-capacity performance on
AWGN channels. Several studies on relay networks using
LDLCs were presented in [5], [6], [7], [8], [9], [10], [11].
Analogous to the well-known low-density parity check
(LDPC) codes [12], LDLCs can be decoded using a mes-
sage passing decoder. However, the messages exchanged
between check nodes and variable nodes are probability
density functions (PDFs), instead of log likelihood ratios.
Several LDLC message passing decoders [4], [13], [14],

[15], [16], [17] have been proposed in the past two
decades. The decoder in [4] exhibits the best-known error
performance. Each PDF message in [4] is approximated by a

vector of sampled values of the PDF. However, to provide a
sufficient approximation accuracy, the required vector length
for each message is impractically large, e.g., 1024. Later,
Gaussian mixtures are used for approximating the messages.
To keep the complexity affordable, the Gaussian mixture
reduction (GMR) decoder was proposed in [13]. Specifically,
multiple Gaussian functions of a mixture are approximated
by a single Gaussian function. By applying the GMR, each
message at most contains T Gaussian functions. The GMR
decoder in [13] has complexity O(n · t · d · K2 · T4), where
n is the code length, t is the number of iterations, d is the
degree of the LDLC and K is called the number of repli-
cations for check node messages. The GMR decoder was
further improved in [14] with complexity O(n · t · d ·K · T3).
Nevertheless, the GMR is applied to every intermediate
message and the GMR decoders [13], [14] may result in
undesirably complicated implementation. Besides, manually
adjusting two parameters is always needed for the GMR
decoder to achieve the best performance. It is reported in [14]
that the GMR decoder has a performance loss of 0.1 – 0.2 dB
compared to the best-known error performance.
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TABLE 1. Comparison of different Gaussian-mixture-based decoders for the LDLC
of code length n = 104 and degree d = 7.

Compared to the GMR decoders, the M-Gaussian decoder
proposed in [15] only requires the selection of one integer
parameterM. Each check node message is approximated with
a mixture containing M Gaussian functions. Computing each
variable node message involves a product of d−1 check node
messages. As a result, the complexity of the M-Gaussian
decoder is O(n · t ·Md−1). The best-known error performance
is achieved by the 2-Gaussian decoder for low-to-moderate
LDLC dimensions, while the 3-Gaussian decoder is required
for moderate-to-high dimensions (see [15, Fig. 9]). Later, a
shuffled version of the M-Gaussian decoder was proposed
in [16] with average complexity O(n · t · 1.4d−1). Compared
to parallel message passing decoders which update variable
node messages in parallel, shuffled message passing decoders
update variable node messages in a specified sequence. As
a consequence, the messages updated later benefit from the
information of the messages updated earlier. Thus, the shuf-
fled decoders enjoy faster decoding convergence than the
parallel counterparts. It is very likely to explore the shuf-
fled design for many message passing decoders. However,
in this paper, we will focus on the design of a parallel mes-
sage passing decoder for LDLCs. The shuffled version is
out of the scope of this paper. To further reduce decod-
ing complexity, a faster decoder was proposed in [17] with
complexity O(n·t ·d). Each variable node message is approx-
imated with a mixture containing at most two Gaussian
functions. However, compared to the 2-Gaussian decoder,
the decoder in [17] has performance loss of 0.2 dB and
0.3 dB in the waterfall region for n = 103 and n = 104,
respectively (see [17, Fig. 3]). The complexity and error
performance of Gaussian-mixture-based decoders are sum-
marized in Table 1. The error performance is evaluated by
the distance from the channel capacity at the symbol error
rate of 10−5.
There exists a clear trade-off between the

error performance and the complexity of existing
decoders [15], [17]. Approximating each variable node
message with more Gaussian functions leads to better error
performance but higher complexity. The opposite holds
when approximating the variable node message with fewer
Gaussian functions. However, the M-Gaussian decoder

may consider many unimportant Gaussian functions for
approximating messages. Then, an intriguing question is, is
it possible that a decoder with polynomial (or even linear)
complexity in d can achieve the best-known performance
as the M-Gaussian decoder? The difficulty in answering
this question lies in the lack of a flexible scheme for
choosing Gaussian functions for approximating variable
node messages. Our work in this paper provides an
affirmative answer. We first mathematically establish the
correspondence between the Gaussian functions used to
approximate a variable node message and the points of a
certain lattice. This lattice viewpoint converts the problem
for approximating messages to a lattice point enumeration
(LPE) problem which can be solved by the list sphere
decoding (LSD) algorithm [18], [19]. As a result, the
number of Gaussian functions for approximating messages
can be flexibly chosen by adjusting the radius of the sphere.
The lattice viewpoint serves as the foundation for our
decoder design. Contributions of this work are summarized
as follows:

• We formulate the problem of approximating a vari-
able node message as an LPE problem. Whether a
Gaussian function is essential for approximating the
variable node message depends on the distance between
its corresponding lattice point and a query point. From
this lattice viewpoint, we establish a unified framework
for interpreting some existing decoders [15], [17]. By
geometrically interpreting the Gaussian functions used
for approximating a variable node message in various
decoders, it can be deduced that the error performance
of the M-Gaussian decoder for any value of M can
be approached by a decoder that enumerates the lattice
points within a sufficiently large sphere.

• The lattice viewpoint makes it possible to allow
only essential Gaussian functions to be considered for
approximating a variable node message. For efficiently
addressing the LPE problem, a simplified LSD algo-
rithm is derived by exploiting the relationship between
diagonal and off-diagonal entries of the generator matrix
of the underlying lattice. Based on the LSD algorithm,
an LPE decoder is proposed for decoding LDLCs.

• The complexity of the LPE decoder is dominated by
that of the LSD algorithm. With a judiciously chosen
search sphere, we show that the LPE decoder achieves
the complexity O(n · t · d) and almost no performance
loss compared to the M-Gaussian decoder. In addition,
a complexity comparison of the LPE decoder and the
M-Gaussian decoder in terms of the required number
of floating-point operations is provided to demonstrate
the superior efficiency of the LPE decoder.

Part of this work was presented in a conference version [1].
In this paper, different from [1], a rigorous derivation of
the lattice viewpoint for the decoder design is presented.
Besides, geometrical interpretation of different decoders is
demonstrated. Further, performance analysis and numerical
evaluation for the proposed LPE decoder are provided.
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The rest of this paper is organized as follows. Section II
introduces the preliminaries of LDLCs and basic operations
on Gaussian and Gaussian mixtures as well as the LSD
algorithm. In Section III, we present a detailed derivation of
the lattice viewpoint for LDLC decoding, and geometrical
interpretation of different decoders. A simplified LSD algo-
rithm and the LPE decoder are presented in Section IV.
The analysis on the complexity and required number of
floating-point operations of the LPE decoder is provided
in Section V. Numerical results are shown in Section VI.
Finally, Section VII concludes the paper.
Notation: Non-bold italic letters denote scalars. Boldface

lowercase and uppercase letters denote vectors and matri-
ces, respectively. The function sgn(a) is 1 if the scalar a is
positive and −1 if it is negative. The Hadamard product of
two vectors a and b is represented by a � b. The Hadamard
inverse of the vector a is denoted by a◦−1 [20]. Let AT

and A−1 denote the transpose and inverse of the matrix A,
respectively. Let diag(a) denote the square diagonal matrix
with the elements of vector a on the main diagonal. We use

N (x;m, v) = 1√
2πv

e−
(x−m)2

2v to denote the Gaussian function
of the random variable x with the mean m and the variance v.
The convolution of two functions f (x) and g(x) is denoted
by f (x) ∗ g(x).
II. PRELIMINARIES
This section presents necessary background knowledge.

A. LATTICES AND LATTICE CODES
An n-dimensional lattice �, defined by an n × n full-rank
generator matrix G, is a discrete additive subgroup of R

n.
A lattice point x ∈ � is an integral linear combination of
all columns of G

x = Gb, (1)

where b ∈ Z
n is the information column vector.

If a lattice point is transmitted as a codeword over the
AWGN channel, the channel observation is

y = x + n, (2)

where n is the additive Gaussian noise random vector with
zero mean and covariance matrix σ 2I. For simplicity, in this
paper, we consider the power-unconstrained AWGN chan-
nel. Thus, any lattice point could be a codeword. Since the
definition of the signal-to-noise ratio (SNR) becomes mean-
ingless without power constraint, the volume-to-noise ratio
(VNR) [21], measured by the lattice constellation density
and σ 2, is considered for the power-unconstrained channel:

VNR = |det(G)|2/n

2πeσ 2
. (3)

The definition of VNR generalizes the concept of channel
capacity by measuring the maximum lattice point density
that can be recovered. That is, the unconstrained AWGN
channel capacity is achieved if the error probability can be
arbitrarily small when σ 2 ≤ | det(G)|2/n

2πe .

B. LOW-DENSITY LATTICE CODES
A low-density lattice code (LDLC) [4] is characterized by
the inverse of its generator matrix H = G−1. The matrix H
is sparse and is named the check matrix of the LDLC. More
explicitly, every row and column of H has only d nonzero
entries where d � n is named the degree of the LDLC.
All nonzero entries are assigned random signs. Besides, The
absolute values of the d nonzero entries in each row or
column are given by a generating sequence {1,w, . . . ,w} of
d elements, where w =

√
α
d−1 with a constant α satisfying

0 < α < 1 [13], [14], [15], [16], [17].

1) LDLC MESSAGE PASSING DECODER

Since H = G−1, the check equations for an LDLC are
naturally represented by Hx = b. Based on H, a Tanner
graph is constructed with check nodes representing the check
equations and variable nodes the coordinates of x. An edge
between the i-th check node and the j-th variable node of
the Tanner graph exists if Hi,j 	= 0.

The LDLC message passing decoder derived in [4] is
shown below. During one iteration, the following steps are
performed:

• Initialization: the k-th variable node sends its connected
check nodes the channel message

fk(x) = N
(
x; yk, σ 2

)
(4)

for k = 1, . . . , n.
• Check node messages: After receiving the messages
from d connected variable nodes, the j-th check node
calculates the message sent to its i-th connected variable
node in three steps, for j = 1, . . . , n and i = 1, . . . , d.

1) Convolution step:

p̃j,ji(x)

= fj1,j

(
x

Hj,j1

)
∗ · · · ∗ fji−1,j

(
x

Hj,ji−1

)

∗fji+1,j

(
x

Hj,ji+1

)
∗ · · · ∗ fjd,j

(
x

Hj,jd

)
(5)

where ji is the index of the i-th variable node
connected with the j-th check node, and fji,j(x) is
the message sent from the ji-th variable node to
the j-th check node.

2) Stretching step:

p̂j,ji(x) = p̃j,ji
(−Hj,ji x

)
. (6)

3) Periodic extension:

pj,ji(x) =
∑
z∈Z

p̂j,ji

(
x+ z

Hj,ji

)
. (7)

Then, the j-th check node will send the message pj,ji(x)
to its i-th connected variable node.
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• Variable node messages: Once obtaining the messages
from d connected check nodes, the k-th variable node
calculates the message sent to its i-th connected check
node in two steps, for k = 1, . . . , n and i = 1, . . . , d.
1) Product step:

f̃k,ki(x) = N
(
x; yk, σ 2

) d∏
l=1,l 	=i

pkl,k(x), (8)

where kl is the index of the l-th check node
connected with the k-th variable node.

2) Normalization:

fk,ki(x) = f̃k,ki(x)∫∞
−∞ f̃k,ki(x)dx

. (9)

• Final decision: when the maximum number of iterations
is reached, the final step is performed for every variable
node:

f fk (x) = N
(
x; yk, σ 2

) d∏
l=1

pkl,k(x), (10)

the codeword is estimated as x̂ with each coordinate

x̂k = arg max
x

f fk (x), (11)

and the integer message vector is detected as

b̂ = ⌊Hx̂
⌉
. (12)

For the derivation of the above decoder, interested readers
are referred to [4].

2) CONVERGENCE OF THE VARIANCES OF VARIABLE
NODE MESSAGES

As the iteration proceeds, the variable node messages tend to
be single Gaussian functions. Let Vi denote the variance of
the variable node message that is sent from the k-th variable
node to its i-th connected check node. The convergence of
Vi is [4]

lim
t→∞Vi =

{
0 if |Hki,k| = w
σ 2(1 − α) if |Hki,k| = 1

. (13)

C. OPERATIONS ON GAUSSIAN FUNCTIONS
AND GAUSSIAN MIXTURES
To calculate variable node messages, the product of two
Gaussian functions and the moment matching approximation
are described below.

1) PRODUCT OF TWO GAUSSIAN FUNCTIONS

Given N (x;m1, v1) and N (x;m2, v2), the product of them
is a weighted Gaussian function cN (x;m, v) where

v =
(

1

v1
+ 1

v2

)−1

, (14)

m = v

(
m1

v1
+ m2

v2

)
, (15)

c = 1√
2π(v1 + v2)

e
− (m1−m2)2

2(v1+v2) . (16)

2) MOMENT MATCHING APPROXIMATION

A Gaussian mixture is a weighted sum of Gaussian func-
tions, i.e., f (x) = ∑N

i=1 ciN (x;mi, vi) with
∑N

i=1 ci = 1.
The moment matching approximation is commonly used
in [15], [16], [17] to approximate a Gaussian mixture using a
single Gaussian function by minimizing the Kullback-Leiber
divergence between them [15]. The mean and variance of
the approximating Gaussian function are

m̄ =
N∑
i=1

cimi (17)

and

V̄ =
N∑
i=1

ci
(
m2
i + vi

)
−
(

N∑
i=1

cimi

)2

, (18)

respectively.

D. LIST SPHERE DECODING ALGORITHM
Given an arbitrary point q ∈ R

n and a lattice � with the
generator matrix G, the LPE problem is to find a list of
lattice points satisfying

‖q − Gz‖2 < β2. (19)

The list sphere decoding (LSD) algorithm, the variant of
SD [18], [19] with a list output, is an efficient tree search
for solving the LPE problem. Suppose that G is an upper
triangular matrix, the search can be performed layer by layer
using successive interference cancellation. The Euclidean
distance between the query point q and the current searched
point is used as the metric. Let D2

k denote the squared
partial Euclidean distance at the k-th layer. The metric is
accumulated as

D2
k = D2

k+1 +
(
qk −

n∑
i=k

Gk,izi

)2

, (20)

where k = n, n− 1, . . . , 1 and Dn+1 = 0. In this paper, we
consider the depth-first SD. The search starts from the n-th
layer (root layer) to the first layer (leaf layer). If Dk ≥ β for
k = n−1, . . . , 1, we will move up to the (k+1)-th layer and
update zk+1 following the Schnorr-Euchner ordering [22].
If Dk < β for k = n, . . . , 2, we will move down to the
(k − 1)-th layer for the search. If the algorithm reaches the
first layer (leaf layer) and D1 < β, the current searched
lattice point is stored and the algorithm continues to seek
another point satisfying (19). The algorithm will stop when
Dn ≥ β and output a list of integer vectors z.

In case G is not upper triangular, one could apply the
QR decomposition to G such that G = UR, where U is an
orthogonal matrix and R is an upper triangular matrix. Then,
the constraint (19) becomes ||UTq − Rz||2 < β2.
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III. LATTICE VIEWPOINT FOR LDLC DECODING
In this section, we first further derive the expression of
variable node messages. Based on the derivation result, we
then elaborate on the lattice viewpoint for LDLC decoding.
Similar to what is done in [15], [23], we also apply the
moment matching approximation to the variable node mes-
sages so that the messages exchanged between nodes are
single Gaussian functions.

A. VARIABLE NODE MESSAGES WITH THE MOMENT
MATCHING APPROXIMATION
As shown in (8), each variable node message is obtained by
calculating the product of d − 1 check node messages and
the channel message. Without loss of generality, we focus
on the message sent from the k-th variable node to the d-th
connected check node:

f̃k,kd (x) = N
(
x; yk, σ 2

) d−1∏
l=1

pkl,k(x)

= N
(
x; yk, σ 2

) d−1∏
l=1

∑
zl∈Z

N
(
x; al + zl

Hkl,k
, vl

)
, (21)

where al and vl are the mean and variance of p̂kl,k(x), the
check node message before the periodic extension. For ease
of presentation, in the sequel, we change the notations of
some variables in (21) by letting pl(x) = pkl,k(x) and hl =
Hkl,k. Then,

f̃k,kd (x) = N
(
x; yk, σ 2

) d−1∏
l=1

∑
zl∈Z

N
(
x; al + zl

hl
, vl

)
. (22)

Due to the product step, f̃k,kd (x) is a Gaussian mixture
containing infinite Gaussian functions. For practical imple-
mentation, only a finite number of Gaussian functions can
be considered. Assume that f̃k,kd (x) is approximated by con-
sidering N Gaussian functions. Define N integer vectors
zs ∈ Z

d, for s = 1, . . . ,N, where zs � [zs,1, . . . , zs,d]T .
The s-th Gaussian function is expressed as

csN (x;ms,V) =
d∏
l=1

N
(
x; al + zs,l

hl
, vl

)
, (23)

where N (x; yk, σ 2) is viewed as the d-th factor with vd �
σ 2, ad � yk, zs,d = 0, hd = 1. According to (14)–(16),

1

V
=

d∑
l=1

1

vl
, (24)

ms = V

(
d∑
l=1

al + zs,l/hl
vl

)
, (25)

cs = Ce
− V

2

∑d−1
i=1

∑d
j=i+1

(ai+zs,i/hi−aj−zs,j/hj)2
vivj , (26)

where C is a normalization factor such that
∑N

s=1 cs = 1.

The mean (25) and scaling coefficient (26) can be written
in a vectorized form as

ms = V(zs + h � a)T(h � v)◦−1 (27)

and

cs = Ce−
1
2 (zs+h�a)TQ(zs+h�a), (28)

respectively, where h = [h1, . . . , hd−1, 1]T , a =
[a1, . . . , ad−1, yk]T , v = [v1, . . . , vd−1, σ

2]T and Q = Q1 −
Q2 with

Q1 � diag

([
1

h2
1v1

, . . . ,
1

h2
d−1vd−1

,
1

σ 2

])
(29)

and

Q2 �

⎡
⎢⎢⎢⎢⎢⎣

√
V

v1h1
...√
V

vd−1hd−1√
V

σ 2

⎤
⎥⎥⎥⎥⎥⎦

[ √
V

v1h1
, . . . ,

√
V

vd−1hd−1
,

√
V

σ 2

]
. (30)

The derivation of (28) from (26) is given in the Appendix. We
can see that the s-th Gaussian function for approximating the
variable node message corresponds to an integer vector zs.
Next, to simplify the message passed between

nodes [15], [23], the moment matching approximation is
used such that the variable node message is further approx-
imated by a single Gaussian function. According to (17)
and (18), for achieving good approximation by moment
matching, we are keen on finding a list of zs giving
sufficiently large cs|ms| and csm2

s , i.e.,

{zs : cs|ms| > ρ1} ∪
{
zs : csm

2
s > ρ2

}
, (31)

where ρ1 and ρ2 are two scalar parameters and should be
judiciously chosen to achieve a desired trade-off between the
approximation accuracy and search complexity. According
to (27) and (30), it is intriguing to note that

m2
s/V = (zs + h � a)TQ2(zs + h � a). (32)

Then, we have

cs|ms|
= Ce−

1
2 (zs+h�a)TQ(zs+h�a)

√
V(zs + h � a)TQ2(zs + h � a)

(33)

and

csm
2
s

= CVe−
1
2 (zs+h�a)TQ(zs+h�a)(zs + h � a)TQ2(zs + h � a).

(34)
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B. LATTICE VIEWPOINT
The straightforward search for (31) is infeasible due to the
complicated expressions of cs|ms| and csm2

s . For the tractabil-
ity of search, we alternatively consider searching the list of
zs defined by{

zs : (zs + h � a)TQ(zs + h � a) < β2
}
. (35)

The search for (35) should find a list of zs corresponding to
Gaussian functions having sufficiently large cs > Ce− 1

2 β2
.

Nevertheless, in what follows, we will show that the list of
zs defined by (31) can still be found by the search for (35).
Based on (32), we have

m2
s/V > (zs + h � a)TQ1(zs + h � a) − β2. (36)

Thus, the searched integer vectors in (35) correspond to
Gaussian functions with

csm
2
s > CV

(
(zs + h � a)TQ1(zs + h � a) − β2

)
e−

1
2 β2

(37)

and

cs|ms| > C
√
V
(
(zs + h � a)TQ1(zs + h � a) − β2

)
e−

1
2 β2

.

(38)

Note that the search region associated with (35) is a sphere
of radius β. Then, the list of zs defined by (31) can be a
subset of (35) as long as the sphere of radius β covers the
search region associated with (31).
By applying the Cholesky factorization to Q, the constraint

in (35) becomes

‖R(z + h � a)‖2 < β2, (39)

where the subscript s of z is omitted for ease of presentation
and R is an upper triangular matrix satisfying Q = RTR.
Note that each lattice point Rz corresponds to a Gaussian
function for approximating a variable node message. We
now have a lattice viewpoint to interpret the problem of
finding essential Gaussian functions for approximating the
variable node messages. Clearly, searching a list of z with
the constraint (39) is an LPE problem with the query point
q = −R(h � a). Then, the LSD algorithm can be utilized
to enumerate the desired integer vectors.

C. GEOMETRICAL INTERPRETATION OF DIFFERENT
DECODERS
From the lattice viewpoint, we can geometrically compare
the number of Gaussian functions used for approximating
each variable node message in the M-Gaussian decoder [15]
and the low complexity decoder [17]. Each Gaussian func-
tion corresponds to a lattice point. A 2-dimensional example
is depicted in Fig. 1 where calculating each variable node
message needs the product of two check node messages
(d = 3). The solid circle dots represent lattice points Rz
and the red star is the query point −R(h � a).
For theM-Gaussian decoder, each check node message is a

mixture containingM Gaussian functions. WhenM = 2, four

FIGURE 1. Geometrical interpretation of the M-Gaussian decoder [15] and the low
complexity decoder [17] from the lattice viewpoint: solid circle dots represent the
lattice points Rz and the red star is for the query point −R(h � a). The 2-Gaussian
decoder considers four lattice points on the edges of the parallelogram enclosed by
blue solid edges. The 3-Gaussian decoder considers nine lattice points within and on
the edges of the parallelogram shaped by red dashed edges. The decoder in [17]
considers two lattice points of purple color. The LSD algorithm enumerates five lattice
points within the dash-dot circle of the radius β.

lattice points on the blue solid edges, which are determined
by considering the two closest lattice points to the query
point in each lattice dimension, are used for approximating
each variable node message. Similarly, nine lattice points
within the parallelogram shaped by the red dashed edges
are considered by the 3-Gaussian decoder.
The decoder in [17] focuses on the parallelogram shaped

by the blue solid edges, i.e., the region considered by the
2-Gaussian decoder. However, at most two lattice points
(marked by purple color in Fig. 1) within this region are
considered by the decoder in [17]. The two lattice points
are approximately to be the nearest to the query points.
Clearly, this decoder sacrifices the approximation accuracy
for the variable node messages.
A trade-off between decoding performance and complex-

ity exists in different decoders. The M-Gaussian decoder
greedily considers all lattice points within a parallelogram,
while the decoder in [17] only considers a fixed number
of them. Consequently, the M-Gaussian decoder has better
error performance but higher complexity than the latter one.
Besides, for approximating variable node messages, unim-
portant Gaussian functions may be used if M is too large and
essential Gaussian functions may be ignored for small M.
For achieving a flexible trade-off, in this paper, we consider
the lattice points within a sphere centering at the query point,
which can be searched by applying the LSD algorithm. In
the example of Fig. 1, five lattice points within the sphere of
radius β are found by the LSD algorithm, which considers
one more essential Gaussian function than the 2-Gaussian
decoder and discards four unimportant Gaussian functions
used in the 3-Gaussian decoder.
The interpretation from the lattice viewpoint indicates

that the performance of the M-Gaussian decoder can be
approached by choosing lattice points within a sufficiently
large sphere.
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IV. SIMPLIFIED LSD ALGORITHM AND THE PROPOSED
LPE DECODER
In this section, based on the specific relationship between
diagonal and off-diagonal entries of R, a simplified LSD
algorithm is derived first. Then, the LPE decoder is intro-
duced.

A. GENERATOR MATRIX OF THE LATTICE FOR THE LPE
PROBLEM
This subsection provides an explicit expression of R which
is the generator matrix of the lattice involved in the LPE
problem presented in Section III-B. Thanks to the specific
structure of Q (see (29) and (30)), we first have

S−1QS−1 = I − ttT = R̃T R̃, (40)

where t � [sgn(h1)
√
V/v1, . . . , sgn(hd)

√
V/vd]T and S �

diag([(h2
1v1)

−1/2, . . . , (h2
dvd)

−1/2]). The matrix R̃ is the
Cholesky factor of I − ttT , which can be efficiently solved
by the method proposed in [24]. For obtaining R, one more
step is needed:

R = R̃S. (41)

Then, the entries of R are

Rij =

⎧
⎪⎪⎨
⎪⎪⎩

1√
h2
j vj

√
1−∑i

l=1 t
2
l

1−∑i−1
l=1 t

2
l

j = i

1√
h2
j vj

−titj√
1−∑i

l=1 t
2
l

√
1−∑i−1

l=1 t
2
l

i < j ≤ d
(42)

where 1 ≤ i ≤ d and
∑0

l=1 = 0.
It is notable that Rdd = 0 since

∑d
l=1 t

2
l = 1, which means

that the last row of R is all zeros. However, since zd is fixed
to be zero according to our formulation in (23), the first d−1
rows of R are sufficient for applying the LSD algorithm.

B. SEARCH RADIUS FOR THE LSD ALGORITHM
The choice of search radius will affect the complexity of the
LSD algorithm since it affects the number of visited nodes
inside the search space. Note that the basis length of the
lattice spanned by R is

∥∥R:,j
∥∥ =

√
1

h2
j vj

(
1 − t2j

)
<

√
1

h2
j vj

. (43)

We could heuristically set the initial choice of the search
radius as the upper bound of the largest basis length,

maxj
√

1/(h2
j vj). However, according to (13), vj will con-

verge to zero if |hj| = 1, which causes an infinitely large
search radius. Thus, we set the initial choice of the search
radius by only considering |hj| = w, i.e.,

β1 = max
j

√
1

h2
j vj

s.t. |hj| = w. (44)

By considering the right-hand side of (28) as a func-
tion of zs, we notice that (28) indicates a lattice Gaussian
distribution [25] of variance 1 centered at −R(h � a).

Then, the scaling coefficient cs equals the probability of
the lattice point Rzs. The nearest lattice point to −R(h � a)
should have the largest probability. From this perspective,
we should avoid searching for any lattice points with rel-
atively small probabilities compared to the nearest lattice
point to −R(h � a). However, since it is usually difficult to
know the nearest lattice point to the query point before the
search, we consider the Babai point [26] instead. Let DB
denote the distance between the Babai point and the query
point. The probability of the Babai point is Ce− 1

2D
2
B . We

set a threshold ε such that only lattice points with proba-
bility larger than εCe− 1

2D
2
B are searched with 0 < ε < 1.

Equivalently, the corresponding search radius β2 should sat-

isfy Ce− 1
2 β2

2 = εCe− 1
2D

2
B . Then, β2 =

√
D2
B + 2 ln(1/ε). By

taking (44) into consideration, we set the search radius

β = min

{
β1,

√
D2
B + 2 ln(1/ε)

}
. (45)

In this paper, we set ε = 10−5. Since we choose to apply
the LSD algorithm with the Schnorr-Euchner ordering, the
Babai point must be the first candidate to be enumerated.
Thus, finding out DB introduces no additional complexity.
By simulation, at the first iteration, we observe that the

LSD algorithm may output an empty list of candidates
with the search radius (44) at a slight probability. For this
rare case, the affected variable node message just keeps
unchanged and waits for being updated at the next iteration.
The probability of obtaining an empty list will be presented
in Section VI-C.

C. SIMPLIFIED LSD ALGORITHM FOR LDLC DECODING
The LSD algorithm can be simplified by exploiting the spe-
cific expression of Rij and Rii in (42). Denoting p = h � a,
the left-hand side of (39) can be further expanded as

‖R(z + p)‖2 =
d−1∑
i=1

R2
ii

⎛
⎝zi + pi + 1

Rii

d∑
j=i+1

Rij
(
zj + pj

)
⎞
⎠

2

=
d−1∑
i=1

R2
ii(zi − γi)

2, (46)

where

γi = −pi − 1

Rii

d∑
j=i+1

Rij
(
zj + pj

)
(47)

for i = 1, . . . , d − 1. For the LSD algorithm, we mainly
focus on simplifying the calculation of γi in this subsection.
Define two d-dimensional vectors f and g with elements

fi = 1 −
i∑

l=1

t2l (48)

and

gi =
√
h2
i vi, (49)
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for i = 1, . . . , d. According to (42),

Rij
Rii

= −
√
h2
i vi√
h2
j vj

· titj

1 −∑i
l=1 t

2
l

= −gititj
figj

. (50)

By substituting (50) into (47), we have

γi = −pi + giti
fi

d∑
j=i+1

tj
gj

(
zj + pj

)
. (51)

To further simplify the calculation of γi, we introduce
a d-dimensional vector u with ud = √

Vad/vd. For i =
1, . . . , d− 1, once zi is found, ui is computed in a recursive
manner:

ui = ti
gi

(zi + pi) + ui+1. (52)

Substituting (52) back into (51),

γi = −pi + giti
fi
ui+1, (53)

for i = 1, . . . , d − 1.
By introducing the vectors f, g and u, we simplify the

calculation of γi. By (42), (48), and (49), we further have
R2
ii = fi

g2
i fi−1

. Now, the inputs to the LSD algorithm include

f, g, p, t, β, and R2
ii for i = 1, . . . , d − 1. Note that the

complexities for computing all these inputs are only O(d).
Besides, the complexities for computing each ui and γi are
O(1) due to (52). For ease of direct implementation, the
simplified LSD algorithm is summarized in Algorithm 1.
Assume that N lattice points Rzi are searched by the LSD
algorithm, for i = 1, . . . , n. Two lists will be output by the
algorithm. The first list L subsumes the N integer vectors
zi for i = 1, . . . , n, corresponding to the N searched lattice
points. Mathematically, L � {z1, . . . , zN}. The second list
D contains N squared Euclidean distances between lattice
points Rzi and the point −R(h � a), i.e., D � {||R(z1 +
h � a)||2, . . . , ||R(zN + h � a)||2}.

D. LPE DECODER
The proposed decoder based on the lattice viewpoint is
introduced in this subsection. For computing check node
messages, the convolution and stretching steps are the same
as (5) and (6), respectively. Since the integers in the periodic
extension step (7) are found by the LSD algorithm under
our formulation, we can avoid the periodic extension step.
Thus, only the steps for obtaining variable node messages
are presented.

• Variable node messages: for computing the message
sent from the k-th variable node to one of its connected
check node,
1) obtain the input messages sent from d−1 remain-

ing connected check nodes:

p̂l(x) = N (x; al, vl), (54)

where l = 1, . . . , d − 1.

Algorithm 1: Simplified List Sphere Decoding

Input: f, g, p, t, ud, R2
ii, β (see (45), (48), (49)

and (52))
Output: L, D

1 L = ∅,D = ∅, k = d − 1, distd = 0
2 γk = −pk + tkgkuk+1/fk // see (53)
3 zk = �γk�
4 sk = sgn(γk − zk)
5 distk = distk+1 + R2

kk(zk − γk)
2 // update the

search metric
6 while k ≤ d − 1 do
7 if distk < β2 then
8 if k == 1 then
9 add z into L and dist1 into D
10 zk = zk + sk
11 sk = −sk − sgn(sk)
12 distk = distk+1 + R2

kk(zk − γk)
2

// update the search
metric

13 else
14 uk = tk(zk + pk)/gk + uk+1 // see (52)
15 k = k − 1 // move down to the

next layer
16 repeat steps 2-5

17 else
18 if k == d − 1 then
19 return
20 else
21 k = k + 1 // move up to the

previous layer
22 repeat steps 10-12

2) obtain the vectors h = [h1, . . . , hd−1, 1]T ,
a = [a1, . . . , ad−1, yk]T and p = h � a.

3) find the vectors t, f, g and the first d− 1 squared
diagonal elements of R.

4) find the list L of integer vectors z and the list D
of squared distances between all obtained lattice
points Rz and the query point −R(h�a) by using
Algorithm 1.

5) If L = ∅, the variable node message keeps
unchanged and waits for being updated at the next
iteration. Else, for each candidate in L, calculate
the corresponding Gaussian function according
to (24), (25), and (28). Obtain the Gaussian mix-
ture by taking the sum of these Gaussian functions.
Note that the scaling coefficients in the mixture
should be normalized by their sum. Then the
variable node message is approximated by apply-
ing the moment matching approximation to the
Gaussian mixture.
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V. COMPLEXITY ANALYSIS FOR THE PROPOSED
DECODER
A. COMPLEXITY ORDER ANALYSIS
The complexity order of our proposed decoder is determined
by that of computing check node messages and variable node
messages. As presented in Section IV-D, the complexity of
computing a variable node message is further dominated by
that of the LSD algorithm. In this subsection, we first analyze
the complexity order of the simplified LSD algorithm. Then,
the complexity of the proposed LPE decoder is presented.

1) COMPLEXITY ORDER OF SIMPLIFIED LSD
ALGORITHM

We first analyze the complexity of the LSD algorithm which
is the most complicated step for computing variable node
messages. The LSD algorithm traverses d− 1 layers and its
complexity depends on the number of visited nodes at each
layer. Each node at the k-th layer represents the integer zk.
For k = 1, . . . , d − 1, we define

Pk(β)

�
{
zk:d−1 ∈ Z

d−k:
∥∥Rk:d−1,k:d−1zk:d−1 − qk,d−1

∥∥ < β
}

(55)

as the set of searched partial integer vectors zk:d−1 �
[zk, . . . , zd−1]T . Due to the constraint of the search radius
β, visited nodes at the k-th layer consist of the nodes sat-
isfying zk:d−1 ∈ Pk(β) and those simultaneously satisfying
zk:d−1 /∈ Pk(β) and zk+1:d−1 ∈ Pk+1(β). Thus, the number
of visited nodes at the k-th layer is |Pk(β)|+|Pk+1(β)|. The
complexity for searching all nodes at the k-th layer is

(|Pk(β)| + |Pk+1(β)|)O(1). (56)

Then, for all layers, the overall complexity is

d−1∑
k=1

(|Pk(β)| + |Pk+1(β)|)O(1) = O(1)

d−1∑
k=1

|Pk(β)|, (57)

where we define |Pd(β)| = 0.
The cardinality |Pk(β)| can be estimated by calculating the

volume ratio between the search sphere and the fundamental
region of the lattice spanned by Rk:d−1,k:d−1 [24], i.e.,

|Pk(β)| ≈ βd−k∏d−1
i=k Rii

Vd−k, (58)

where Vd−k is the volume of a (d − k)-dimensional ball of
unit radius and is upper bounded by 5.2638 [24]. According
to (42), we have

d−1∏
i=k

Rii =
√√√√ t2d

1 −∑k−1
l=1 t

2
l

d−1∏
i=k

1√
h2
i vi

. (59)

Then,

βd−k∏d−1
i=k Rii

=
√√√√1 −∑k−1

l=1 t
2
l

t2d
· βd−k

d−1∏
i=k

√
h2
i vi

=
√√√√1 +

d−1∑
l=k

σ 2

vl
· βd−k

d−1∏
i=k

√
h2
i vi. (60)

For ease of analysis, assume that the variances of check
node messages vi’s are approximately the same if their cor-
responding hi’s are the same. Note that this approximation
should hold accurately after the first few iterations. Because
of the convolution (5) and stretching (6) steps, the variance
of the i-th input check node message is

vi = 1

h2
i

d∑
j=1,j 	=i

h2
j V̄j, (61)

where V̄j is the variance of the variable node message with
the moment matching approximation from the last iteration.
According to (13) and (61),

vi ≥
{

0 if |hi| = 1
σ 2(1−α)

w2 if |hi| = w
. (62)

Besides, note that β ≤ β1 due to (45). We then have

βd−k
d−1∏
i=k

√
h2
i vi �

{
1 if |hk| = · · · = |hd−1| = w
β
√
vi if |hi| = 1 for some i.

(63)

It is now prepared to decide the order of |Pk(β)| with
the knowledge of the relationship between σ 2 and vi. By
combining with (58), (60), (62), and (63), two cases are
considered depending on whether there is one check node
message corresponding to |hi| = 1:

• When |hk| = · · · = |hd−1| = w,

|Pk(β)| � Vd−k

√
1 + (d − 1)

w2

1 − α

(a)∼ O(1), (64)

where (a) is due to w =
√

α
d−1 and the fact that α is a

constant.
• When |hk| = · · · = |hi−1| = |hi+1| = · · · = |hd−1| = w
and |hi| = 1,

|Pk(β)| � Vd−k

√
1 + (d − 2)w2

1 − α
+ σ 2

vi
· β

√
vi

� Vd−k

√
β2vi

1 − α
+ β2σ 2

� Vd−k

√
vi

σ 2(1 − α)2
+ σ 2

σ 2(1 − α)
. (65)

According to (61), for |hi| = 1, we have vi ≤ (d − 1)

w2σ 2 with the initialization V̄j = σ 2. Thus,

|Pk(β)| � Vd−k

√
α

(1 − α)2
+ 1

1 − α
∼ O(1). (66)

By combining (64) and (66), the complexity of the LSD
algorithm is

d−1∑
k=1

|Pk(β)| ∼ O(d). (67)
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2) COMPLEXITY ORDER OF THE LPE DECODER

The complexity of computing a variable node message is
dominated by that of the LSD algorithm. As mentioned in
Section IV-C, the complexities for computing the inputs to
the simplified LSD algorithm are all O(d). According to (67),
the search complexity of LSD algorithm is also O(d). For
computing the check node messages, the convolution of sev-
eral Gaussian functions is equivalent to taking the sum of
their means and variances, whose complexity is again O(d).
Thus, we conclude that the complexity order of the LPE
decoder is O(n · t ·d). It is worth noting that LDLCs achieve
slightly better error performance than the multilevel LDPC
lattices [27] of the same dimensions. With linear complexity,
the proposed LPE decoder further makes LDLCs competitive
with the multilevel LDPC lattices.

B. ANALYSIS ON THE NUMBER OF OPERATIONS
Although the complexity order for the LPE decoder has
been analyzed in Section V-A, for evaluating the complexity
more explicitly, the comparison of floating-point opera-
tions (flops) between the LPE decoder and the M-Gaussian
decoder [15] is presented in this subsection. A flop is
assumed to include a real addition, subtraction, multiplica-
tion, or division. Besides, computing a square root needs 6
flops according to the IEEE floating-point representation [28]
and 14 flops are needed for approximating an exponential
function [29].

1) LPE DECODER

For one particular check node message, in the convolution
step, calculating the mean needs d − 1 multiplications and
d− 2 additions. In the stretching step, one more division is
needed. Similarly, 2(d−1) multiplications and d−2 additions
are needed to calculate the variance in the convolution step
and two divisions are used in the stretching step. Thus, 5d−4
flops are counted for each check node message.
For one particular variable node message, four

d-dimensional vectors t, f, g,p, and the squared diagonal
entries of R should be calculated first. The elements in
these vectors can be either directly computed or iteratively
obtained as mentioned before. Overall, computing these
vectors needs 23d flops.
For the simplified LSD algorithm, 12 flops (from step 14

to step 16 in Algorithm 1) are required whenever a node
is visited at one layer. Then,

∑d−1
k=1 12Nk flops are needed

for the search where Nk is the number of visited nodes at
the k-th layer. Then, for each candidate in L, a Gaussian
function is computed as described in (24), (25), and (28).
Note that all Gaussian functions have the same variance
which needs 2d flops and should be computed only once
for all candidates. Besides, calculating the scaling coefficient
is simple since the value of (z + h � a)TQ(z + h � a) is
already given in the list output of Algorithm 1. Taking the
normalization of scaling coefficients into consideration, the
number of flops for computing one variable node message

are 12
∑d−1

k=1 Nk+ (4d+15)L+2d with L being the list size.
Finally, the moment matching approximation needs 6L flops.
It is critical to emphasize that Nk and L are related to

Pk(β) which is defined in Section V-A. Explicitly, we have
Nk = |Pk(β)| + |Pk+1(β)| and L ≤ |P1(β)|. From (64)
and (66), Nk and L are O(1). Therefore, the number of flops
needed per variable node message is linear in d. In each
variable node, the LPE decoder and the M-Gaussian decoder
need to store L and Md−1 Gaussian functions, respectively.
Since L is merely O(1), the LPE decoder needs less storage
than the M-Gaussian decoder.

2) M-GAUSSIAN DECODER

Similar to the LPE decoder, for one check node message, the
convolution and stretching steps take 5d−4 flops. Additional
3M + 1 flops are needed in the periodic extension.

For updating variable node messages, a forward-backward
recursion is utilized in [15] for computing d messages sent
from one variable node simultaneously. For the comparison,
we first compute the number of flops needed for calculat-
ing d messages. Then, we use the average number of flops
over d as the computational cost for one message. Given
d input check node messages pl(x), the forward-backward
recursion first computes two sequences of auxiliary messages
{θ0(x), . . . , θd−1(x)} and {φ2(x), . . . , φd+1(x)}, where

θl(x) = θl−1(x) · pl(x), (68)

for l = 1, . . . , d − 1 with θ0(x) = 1, and

φl(x) = φl+1(x) · pl(x), (69)

for l = d, d−1, . . . , 2 with φd+1(x) = 1. Then, each message
sent from the k-th variable node is computed by multiplying
two auxiliary messages as well as the channel message:

f̃l(x) = N
(
x; yk, σ 2

)
· θl−1(x) · φl+1(x). (70)

Counting the numbers of flops needed for the aforemen-
tioned calculations is trivial referring to (14)–(16). However,
it should be mentioned that each auxiliary message is a
Gaussian mixture, and normalization of scaling coefficients
is always needed. Besides, the variances of all Gaussian
functions of a mixture are the same, which should be com-
puted only once. The number of flops for obtaining d
variable node messages is (65d− 66)Md−1 + 66(Md −M2)/

(M − 1) + 5d2 + 5d − 20.
The numbers of flops needed per message for the LPE

decoder and the M-Gaussian decoder [15] are summarized
in Table 2.

VI. NUMERICAL RESULTS
Since the M-Gaussian decoder with a sufficiently large M
achieves the best-known performance [15] and can be inter-
preted from the proposed lattice viewpoint, it is employed
as the benchmark for the comparison with the LPE decoder
in diverse aspects.
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TABLE 2. The number of flops needed for the M-Gaussian and LPE decoders, where d , Nk and L are the degree of an LDLC, the number of visited nodes at the k -th layer and
the list size, respectively.

A. NOISE THRESHOLD
The asymptotic performance of the LPE decoder is first
evaluated by considering the noise threshold. However, the
true density evolution needs the joint distribution of the
means and variances of messages, which is computation-
ally intractable for LDLCs. Alternatively, we perform the
Monte Carlo density evolution [15], [30] for acquiring the
noise threshold.
We first define two sets of messages M(1) and M(w).

Messages in M(1) correspond to |hi| = 1 and those in
M(w) to |hi| = w. The set M(1) contains 105 messages
while M(w) has (d − 1) · 105 messages. All messages are
denoted by means and variances. For initialization, all means
of messages in both sets are randomly generated from the
Gaussian distribution N (0, σ 2) and all variances are set to
be σ 2.
For the inputs of check/variable nodes, one message is

drawn from M(1) and d−1 messages are taken from M(w),
all randomly. The calculation of check/variable node mes-
sages follows decoding steps in the LPE decoder. The outputs
of check/variable nodes will be the updated message sets for
variable/check nodes iteratively. When the mean of message
variances in M(w) is below 0.001 within 50 iterations, the
convergence is declared [15], [30].
As reported in [15], increasing M beyond 3 provides no

visible improvement in the error performance. We only com-
pare the noise thresholds of LDLCs employing our decoder
with those using the 3-Gaussian decoder, as indicated in
Fig. 2. Since the value of d is commonly set to 7 [4], we
also set d = 7 in the simulation. The noise threshold provides
the limit of error performance of a decoder when the code
length tends to infinity. As will be shown in Section VI-B,
the gaps from the capacity of different decoders approach
to the noise thresholds indicated in Fig. 2. The lowest
noise threshold is 0.64 dB with α = 0.75. The 3-Gaussian
decoder and the LPE decoder achieve almost the same noise
thresholds.

B. FINITE LENGTH PERFORMANCE SIMULATION
Assuming that no power constraint is considered, the symbol
error rate (SER) performance for different code parameters
is shown in Fig. 3. Note that a symbol error is declared
if b̂i 	= bi for i = 1, . . . , n. The generating sequences
are

{
1, 1/

√
3, 1/

√
3
}

for n = 102 with d = 3, and{
1, 1/

√
7, . . . , 1/

√
7
}

for n = 103, and 104 with d = 7,
respectively. Simulation results are obtained by assum-
ing that the all-zero codeword is transmitted through the

FIGURE 2. Noise thresholds of LDLCs with d = 7 measured by VNR using the LPE
decoder and the 3-Gaussian decoder.

FIGURE 3. SER performance comparison between the M-Gaussian decoder with
M= 2, 3 and the LPE decoder for different LDLC parameters.

TABLE 3. Probability of an empty list output for the LSD algorithm at the first
iteration with n = 104, d = 7 and w = 1/

√
7.

AWGN channel and the maximum number of iterations is
set to 100.
As illustrated in Fig. 3, the SER performance is almost

the same for n = 102 and n = 103 when applying the
LPE decoder and the M-Gaussian decoder. However, for
n = 104, the LPE decoder outperforms 0.15 dB over the
2-Gaussian decoder for the SER of 10−5 and still achieves
almost the same performance as the 3-Gaussian decoder.
The 2-Gaussian decoder may miss some essential Gaussian
functions for approximating variable node messages, whereas
the LPE decoder achieves better approximation. As a conse-
quence, the LPE decoder provides better SER performance
than the 2-Gaussian decoder.
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FIGURE 4. Message comparison between the 3-Gaussian and LPE decoders for the non-empty list case: messages are shown before and after the moment matching at
different iterations.

C. PROBABILITY EVALUATION FOR EMPTY LIST
OUTPUT OF LSD ALGORITHM
As mentioned in Section IV-B, the LSD algorithm may out-
put an empty list at a low probability. We evaluate the
probability by decoding 100 noisy codewords with parame-
ters n = 104 and d = 7. Note that each variable node should
generate d messages. Thus, there are 7 × 106 samples under
evaluation in total. The empty list output is only found at
the first iteration. The variable node message will not be
updated if an empty list is output. We provide the probabil-
ity of an empty list output at the first iteration in Table 3.
The probability of an empty list is around 10−5. In other
words, for decoding one codeword, the message updating
could be delayed at most by one iteration at a probability
of 10−5.

D. MESSAGE VISUALIZATION
For examining the approximation accuracy, the variable node
messages in the LPE decoder are visualized in this subsec-
tion, as well as those obtained by applying the 3-Gaussian
decoder. For different iterations, messages in the 3-Gaussian
decoder and the LPE decoder are compared for the same
pair of variable and check nodes. Since the LPE decoder

may encounter an empty list output at a probability of 10−5,
the comparison is shown for both non-empty list case and
empty list case.
The message visualization for the non-empty list case is

depicted in Fig. 4. Messages before and after the moment
matching approximation are visualized. At the first iteration,
the messages in two decoders are slightly different but
become almost the same with the iteration going on. The sim-
ilarity of messages for the 3-Gaussian and the LPE decoder
indicates that our decoder design has almost no degradation
in terms of approximation accuracy. The consistent results of
noise thresholds and error performance for the 3-Gaussian
and the LPE decoder in previous subsections are further
validated.
The message comparison for the empty list case is shown

in Fig. 5. At the first iteration, the message in the LPE
decoder is set to be the channel message since it cannot
be updated as shown in Fig. 5(a). Although messages in
two decoders at early iterations mismatch with each other in
terms of their means and variances, they still become similar
after sufficient iterations. In other words, the effect caused
by the empty list at the first iteration can be remedied as
long as the number of iterations is sufficiently large.
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FIGURE 5. Message comparison between the 3-Gaussian and LPE decoders for the empty list case: messages are shown before and after the moment matching at different
iterations.

E. COMPARISON ON THE NUMBER OF FLOPS
As analyzed in Section V-B, the number of flops needed
to compute a variable node message depend on the number
of visited nodes Nk and the list size L of the simplified
LSD algorithm. Since the number of visited nodes at each
layer and the list size may vary when computing different
variable node messages, the average values of Nk and L are
considered [31]. We first evaluate the average number of
visited nodes and that of the list size per variable node mes-
sage numerically. Then, we calculate the average number of
flops needed per message for both the M-Gaussian decoder
and the LPE decoder.
The average list sizes at different iterations are depicted in

Fig. 6 for n = 103 and 104 with different values of VNR. The
maximum average list size does not surpass 13 for all consid-
ered cases, which potentially indicates that the best-known
performance could be achieved by considering a fewer num-
ber of Gaussian functions than that used in the M-Gaussian
decoder. Besides, the trend of the average list size matches
well with the inherent property of the message passing
decoder. At early iterations, the average list size increases
since the decoder tries to approximate every variable node
message with a maximum number of Gaussian functions.
After reaching the peak, the list size starts decreasing because

FIGURE 6. Average list size for n = 103, 104 and d = 7 at both low and high VNR in
different iterations.

of the convergence property of the decoder. Particularly, the
list size becomes one when the convergence is declared,
which means that only one Gaussian function is dominant
for approximating each variable node message. Besides, the
convergence speed of the list size is sensitive to the value
of VNR. It takes only 10 iterations to reach the convergence
at high VNR (2 dB), but needs more than 40 iterations to
declare the convergence at low VNR (0.7 dB).
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FIGURE 7. The average number of visited nodes at each layer for n = 103, 104 and d = 7 at both low and high VNR in different iterations (layer 1 is the root layer and layer 6 is
the leaf layer).

The average number of visited nodes at each layer is
shown in Fig. 7 by simulation with n = 103, 104 and d = 7.
Since the number of visited nodes may vary with iterations
and values of VNR, the first 50 iterations are considered at
both low and high VNR. It is observable that the trend of
the average number of visited nodes is consistent with that
of the average list size.
For the M-Gaussian decoder, the number of flops needed

per variable node message is a constant regardless of the
iteration index as given in Table 2. While for the LPE
decoder, the number of flops is related to the average num-
ber of visited nodes and list size which both vary with
iterations. For this reason, the maximum average number of
visited nodes and list size over different iterations are con-
sidered to compute the number of flops needed for the LPE
decoder. In Fig. 8, we show the average numbers of flops
needed per variable node message for the LPE decoder and
the M-Gaussian decoders with M = 2 and 3. For d ≥ 4, it is
shown that the LPE decoder needs fewer flops on average
than the M-Gaussian decoders. In particular, the number of
flops of the LPE decoder is 33.9% of that of 2-Gaussian
decoder and only 3.2% of that of 3-Gaussian decoder
when d = 7.

FIGURE 8. Comparison between the M-Gaussian decoder and the LPE decoder in
terms of the average number of flops needed per variable node message with n = 103

and VNR = 1 dB.

F. RUNTIME COMPARISON
The runtime comparison between the M-Gaussian decoder
and the LPE decoder is shown in Fig. 9 using MATLAB
2017b on a single computer, with an Intel Core i5-6500
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FIGURE 9. Runtime comparison for different decoders with n = 103 and VNR = 1 dB.

CPU, a RAM of 8 GB, and Windows 10 Enterprise oper-
ating system. By choosing n = 103, the exponential and
linear complexity orders in d for two decoders are con-
firmed in Fig. 9, respectively. It is obvious that the LPE
decoder always has less runtime than the 3-Gaussian decoder
and becomes faster than the 2-Gaussian decoder when d is
larger than 5. The result of the runtime comparison is con-
sistent with that of the comparison on the number of flops
in Section VI-E. Specifically, for d = 7, the LPE decoder
achieves around (1-0.0791/0.4865)×100% = 83.7% runtime
saving compared to the 3-Gaussian decoder.

VII. CONCLUSION
In this paper, an efficient LPE decoder for LDLCs has been
proposed from the lattice viewpoint. For approximating the
variable node messages in the form of Gaussian mixtures,
each Gaussian function is first related to a lattice point in a
specific lattice. A simplified LSD algorithm is then derived
for efficiently enumerating lattice points corresponding to
essential Gaussian functions. Compared to the M-Gaussian
decoder whose complexity is O(n·t ·Md−1), the LPE decoder
has only linear complexity O(n · t ·d). Nevertheless, the LPE
decoder still achieves almost the same noise threshold and
error performance as the M-Gaussian decoder. As an exam-
ple, for n = 1000 and d = 7, compared to the 3-Gaussian
decoder, the proposed LPE decoder reduces the number of
flops and runtime by 96.8% and 83.7%, respectively.

APPENDIX
DERIVATION OF (28) FROM (26)
Define âi � ai + zs,i/hi. The exponent of (26) becomes

V
d−1∑
i=1

d∑
j=i+1

(âi − âj)2

vivj

= V

2

d∑
i=1

d∑
j=1

(âi − âj)2

vivj

= V
d∑
i=1

d∑
j=1

â2
i

vivj
− V

d∑
i=1

d∑
j=1

âiâj
vivj

. (71)

Let â = [â1, . . . , âd]T . The first term in the right-hand side
of (71) can be written as

V
d∑
i=1

d∑
j=1

â2
i

vivj

(b)=
d∑
i=1

â2
i

vi

= âTdiag([1/v1, . . . , 1/vd])â

= (zs + h � a)TQ1(zs + h � a), (72)

where (b) is due to (24). The second term in the right-hand
side of (71) is

V
d∑
i=1

d∑
j=1

âiâj
vivj

= âT

⎡
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V
v1v1

· · · V
v1vd

...
. . .

...
V
vdv1

· · · V
vdvd

⎤
⎥⎦â

= (zs + h � a)TQ2(zs + h � a). (73)

Since Q = Q1 − Q2, the scaling coefficient (26) becomes
cs = Ce− 1

2 (zs+h�a)TQ(zs+h�a).
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