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ABSTRACT Advanced Indoor Positioning Systems (IPS) based on Received Signal Strength (RSS)
fingerprints have been paramount in 6G network research and commercial exploitation due to their cost-
effectiveness and simplicity. Despite their popularity, the advent of 6G has prompted a shift towards
exploring Deep Learning algorithms to further enhance their performance and precision. Deep Learning
research typically demands large datasets, leading to reliance on data augmentation and crowdsourcing
techniques for data collection. However, the traditional centralization of data in crowdsourcing poses
privacy risks, and here is where Federated Learning (FL) comes into play. In light of this, our study
introduces FL to bridge this divide in a decentralized way, eliminating the need for servers to acquire
labeled data directly from users. This approach aims to minimize localization error in RSS fingerprints,
preserve user privacy, and reduce system latency, all key goals for 6G networks. Moreover, we explore
the use of power transmission techniques to further decrease the latency in the FL system. Our simulation
outcomes confirm the superiority of FL over traditional Stochastic Gradient Descent (SGD) methods
considering critical evaluation metrics like localization error and global loss, paving the way for efficient
6G implementation.

INDEXTERMS Federated learning, indoor localization, received signal strength, power transmission, edge

devices, privacy.

. INTRODUCTION

HROUGH the journey of innovation over the years,

there has been tremendous focus in the areas of cloud
computing and Machine Learning (ML). This is because
Artificial intelligence (Al), specifically ML is anticipated
to be very significant in the design of the sixth genera-
tion (6G) networks [1]. As the inclusion of IoT devices
in these technologies is projected to rise over the com-
ing years, security has become an underlying issue that
must be addressed regarding the technologically evolved
world [2], [3]. Advanced Web technologies, ML, and the
adoption of a large number of sensors have enabled data
collection through mining and scraping, which pave the way
for the emergence of big data. Big data creates opportunities

for several innovative solutions, however, it comes with the
cost of centralized data and the vulnerabilities associated
with data storage on central servers [4].

Currently, the Internet is largely based on the traditional
client-server model, which involves the end user (client)
communicating back and forth with a server in order to
gather or act upon the data stored in the server or in a
database. The underlying issue with this model is associ-
ated with the servers or the database (which are centralized)
that hold the data. The data can include a user’s personal
information which serves as a risk and concern for the user.
Thus, the idea of decentralization was widely adopted in
both academia and industries, which encourage the explosive
research performed on Federated Learning (FL) [5].
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The rise in use cases of FL applications is foreseeable due
to the rise in demand for data as well as its security. The
traditional approach in training models requires users’ data
to be exchanged from the server and the user and vice versa
(this does not account for a shared model amongst users in a
network). To this end, the FL technique includes a centralized
server (i.e., edge server in this context) communicating with
users (i.e., edge devices in this context). This technique acts
as a data security protocol that issues a global model to
edge devices. The edge devices proceed to use their own
local data to train the given model. Once trained, the local
model’s results (excluding the local data) are transferred to
the edge server from every edge device, and the new global
model is aggregated on the central server.

Indoor localization is another heavily researched topic
given that it can be used as an alternative to Global
Positioning System (GPS) in areas where GPS signals are
not available [6], and applications that require user’s location
such as museums tours, the guiding system for the visually
impaired, etc. Whilst this area of study is beneficial for sev-
eral applications, it may pose numerous risks in user privacy
if not properly managed.

One of the major drawbacks of indoor localization systems
is acquiring information on users’ location through the cen-
tral server [7]. This introduces the opportunities for unethical
measures that may include tracking a client’s location in real-
time. Location tracking is generally unethical since the user’s
data gathered can be used for malicious intent or can be sold
to a third party for profit [8]. Along with security issues,
there is also a potential latency issue as well that is faced
when transmitting and receiving data to and from a server. To
solve latency-related issues, Multi-access Edge Computing
(MEC) emerges, where edge devices send their computa-
tional tasks to what is known as an edge server in an effort
to complete a task [9]. Several task-uploading schemes that
consider the communication of multiple edge devices with
the edge servers were proposed in the literature [10], [11].

To this end, FL can be implemented in an effort to mitigate
the latency concerns as well as security risks that come with
including the WiFi fingerprinting technique in client-server
communication within the domain of indoor localization. For
example, dynamic APs can be utilized to distribute local
models used in FL system. Using these dynamic APs, the
updated models can be efficiently distributed to participat-
ing edge devices as the models improve and evolve. As
a result, the latest model versions are available to all FL
devices, improving indoor localization accuracy and relia-
bility. Optimizing the positioning of these dynamic APs to
assist in the FL process is crucial especially in 6G networks,
where optimum network performance without compromising
user privacy is vital.

Therefore, this research paper focuses on integrating data
privacy and reducing latency in an indoor localization system
by utilizing FL. The primary objective is to enhance the
existing system model for dynamic APs [12]. The utiliza-
tion of dynamic APs offers several advantages, including
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improved localization accuracy, addressing connection and
latency issues, and serving as a dynamic feature that extends
coverage. Specifically, the system incorporates mobile APs,
referred to as dynamic devices, which move through areas
where clients are not in close proximity to static APs. These
dynamic APs expand the coverage area, thereby providing
better service to users in various sections of the indoor
environment. Consequently, this approach ensures sufficient
service provision for clients throughout the indoor environ-
ment while safeguarding the privacy of location data stored
on edge devices.

The main contributions of this paper can be summarized
as follows:

« Integration of dynamic APs with FL to achieve reduced
localization error according to the Received Signal
Strength (RSS) fingerprints. This approach simultane-
ously maintains user privacy and minimizes system
latency.

o Creation of a real-time indoor environment simulation
involving multiple users, replicating typical scenar-
ios accurately. This simulation aids in evaluating the
effectiveness of the proposed approach.

o Implementation and analysis of the FL technique
using the UJllndoorLoc dataset to demonstrate its
performance in terms of data security and latency reduc-
tion. This dataset serves as a reliable benchmark for
evaluating the proposed FL system.

The rest of this paper is organized as follows: Section II
addresses the constraints associated with data security in
an indoor localization system. This includes the challenges
posed by transmitting a user’s complete WiFi fingerprint to
a central server. Furthermore, it explores relevant previous
work in tackling this issue and examines the application of
FL in the context of localization. Section III provides a com-
prehensive explanation of FL, encompassing its algorithmic
aspects and implementation details. In Section IV, the exper-
iment itself is described, along with a step-by-step account
of the FL process employed. Section V presents the results
obtained from the experiment, highlighting the performance
of the FL technique in comparison to alternative approaches.
Furthermore, it discusses the findings related to energy con-
sumption within the system and investigates the impact of
power transmission among static APs. Section VI entails
a discussion of the obtained results and offers conclud-
ing remarks. Additionally, it provides insights into potential
future advancements that can be explored using the approach
proposed in this research.

Il. RELATED WORK

In recent years, the issue of privacy in indoor localization has
received significant attention, leading to various experimental
approaches aimed at addressing this concern. Concurrently,
FL is used to address security issues related to storing clients’
private information on centralized servers. This section gives
background on the latest advancements in the field, explor-
ing state-of-the-art research that investigates data security
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in Indoor Positioning Systems (IPS) and the methodologies
employed to tackle this fundamental challenge.

A. FEDLOC: FEDERATED LEARNING FRAMEWORK

The development of the FedLoc framework, which employs
Federated Learning (FL) in the context of indoor localiza-
tion, aims to overcome various limitations faced by indoor
localization applications. The paper examines the algorithms
commonly used in FL and explores practical applications of
this technique [13]. The authors highlight the drawbacks of
traditional training and testing models, particularly the sub-
stantial storage requirements associated with storing large
volumes of data. In response, the FedLoc framework is intro-
duced to address these challenges by focusing on optimizing
server space utilization, scaling network capacity to accom-
modate more users, preserving data privacy, and enhancing
the overall network performance. The core principle of the
FedLoc framework involves restricting mobile users/agents
from locally collecting data on their devices, instead lever-
aging local data from a network of users to approximate a
global model [13].

To present the performance of the FedLoc framework,
the authors conducted experiments using a Gaussian Process
State Space Model (GPSSM) for indoor target tracking. The
objective was to develop a collaborative and data-driven
approach to learn human walking trajectories. This involved
collecting 50 trajectories comprising a total of 25,000 sam-
ples. During training, three mobile users contributed 15
trajectories each, which were used to train both the local
and global models stored on the edge server. The intent was
to leverage these trajectories to improve the global model’s
accuracy [13].

However, upon comparing the training and testing results
of the recorded movements within the experimental area,
the authors observed unsatisfactory outcomes. The accuracy
of trajectory estimation was compromised due to the choice
of the Gaussian Process model. Consequently, it became
apparent that a greater number of Access Points (APs) were
required to achieve more precise positioning, along with the
potential need for additional data to improve the model’s
performance. Our approach addresses this issue by utiliz-
ing dynamic APs strategically distributed throughout the
indoor environment in our model, ensuring a significant
improvement in performance.

B. LIGHTWEIGHT PRIVACY PRESERVING SCHEME
(LWP2)

To tackle the challenges of cost and privacy in localiza-
tion applications, a Lightweight Privacy-Preserving Scheme
(LWP?) was introduced in a previous work [14]. This scheme
was specifically developed to overcome the limitations of
existing data privacy frameworks employed in the field of
indoor localization. The primary focus of this experiment was
on reducing the time required for transmitting and receiv-
ing data between the end device and the localization server
(i.e., the central server).
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The LWP? framework was inspired by the observation of
traditional approaches to the problem. In these approaches,
users’ locations are calculated by the server using an algo-
rithm in ciphertext space, and the encrypted results are
returned to ensure privacy and data protection. Building
on this concept, the LWP? scheme encrypts a user’s Wi-
Fi RSS and transmits it to the server. Upon receiving the
RSS information from the end user, the server searches for
the k closest fingerprints resembling that user and performs
matrix operations to determine the user’s location in space.

While this experiment successfully improves data privacy,
it introduces a reliance on matrix operations that can be com-
putationally intensive and costly, particularly in systems with
numerous end users. Furthermore, the experiment did not
consider the latency associated with the localization process
after undergoing matrix operations. Real-time localization
applications face constraints not only in terms of result accu-
racy but also in achieving these results within an acceptable
time frame. In light of these observations, our approach takes
into account the missing latency component in the LWP?
framework and incorporates it into our model. By address-
ing both the accuracy and latency aspects, our approach aims
to overcome the limitations identified in the [14], ensuring
efficient real-time localization results while maintaining data
privacy.

C. PSEUDO LABEL-DRIVEN FEDERATED LEARNING
One significant challenge in ML today is the scarcity of
data available for various applications. To address this issue,
mobile crowdsourcing has emerged as a method to col-
lect large volumes of information for system calibration.
Despite the growing popularity of indoor localization, there
is a pressing need for approaches that can efficiently gather
a substantial number of RSS fingerprints to train accurate
models. In response to this challenge, a Centralized Indoor
Localization method using Pseudo-labels (CRNP) was intro-
duced, which leverages FL to ensure data privacy during
experimentation.

The CRNP technique involves collecting a limited number
of labeled data (RSS fingerprints) alongside a large set of
unlabeled data. This approach reduces the reliance on collect-
ing labeled data while improving system performance. The
experiment revealed that the utilization of extensive location
data while preserving privacy can result in high network
costs due to the expenses associated with data transmission
and storage. This led to the development of CRNP.

While CRNP facilitates the collection of labeled fin-
gerprint data, the pseudo-label technique is employed to
extract information from the unlabeled crowdsourced data.
By combining these methods with the FL approach, a
decentralized solution is achieved, resulting in a robust
indoor localization system. The experimental results demon-
strate improved training and testing accuracy using this
approach, although the network cost performance remains
consistent when comparing the centralized and decentralized
approaches.
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TABLE 1. Federated learning timeline.

Year and
Ref.

Summary

2018 [15]

Evaluates the threats faced by FL in the form of sybil-based poisoning attacks and proposes FoolsGold, a mechanism that identifies
poisoning sybils based on the differences in client updates, without bounding the number of attackers, requiring external information,

or making extensive predictions about users and their information.

2018 [16]

Reveals an unintended information leakage about participants’ training data in FL systems and presents passive and active inference
attacks that gives an attacker a way to infer specific data points and properties of others’ training data.

2019 [17]

Presents FL framework on mobile devices that can be scaled in production environment, utilizing TensorFlow, and discusses its

high-level design, challenges, solutions, and future directions.

2020 [18]

Introduces sparse ternary compression (STC), a compression framework tailored for FL, which combines top-k gradient sparsification

with downstream compression, ternarization, and encoding of weight updates.

2020 [19]

Proposes a novel framework called noising before model aggregation FL (NbAFL) that adds artificial noise to client parameters
before aggregation to ensure differential privacy, and provides theoretical analysis on convergence and tradeoffs between convergence

performance and privacy protection levels in NbAFL.

2021 [20]

Addresses the dynamic FL problem in a power grid mobile edge computing setting by proposing a delay deadline constrained FL
framework and formulating a dynamic client selection problem, with two online client selection algorithms proposed to optimize

utility in the learning framework.

2021 [21]

Explores the resource allocation problem in Wireless FL networks (WFLNs), emphasizing the interdependence and fluctuating levels
of learning rounds for the final learning outcome, highlighting the need for an optimized long-term perspective in allocating limited

wireless resources for FL in classic wireless networks.

2022 [22]

Proposes a new method to improve indoor localization in FL by considering the reliability of local clients, using Monte Carlo dropout
with Bayesian technique to improved efficiency in using computational resources.

2022 [23]

Introduces a Prediction based Semi-supervised Online Personalized FL (PSO-PFL) method to address the challenges of frequent data
collection, privacy exposure, and user-specific localization requirements in fingerprint-based indoor localization using deep learning
and FL.

2023 [24]

Proposes a FL framework called FedLoc3D to address the challenges of classifying building-floor classification and Latitude-Longitude
Regression (LLR) in fingerprinting-based indoor localization, using a Convolutional Neural Network (CNN) with depth-wise separable
convolutions for classification of the building floors and a Deep Neural Network (DNN) with autoencoder and data augmentation
for LLR. The framework enables collaborative learning on data that are decentralized and heterogeneous and are operating over an

imperfect network in a wide 3-D space.

D. PRESERVING PRIVACY IN WIFI LOCALIZATION WITH

PLAUSIBLE

Privacy preservation is a critical area of focus in the
domain of localization, particularly indoor localization, and
researchers are devoting significant efforts to enhance the
existing systems. In this context, the experiment introduces
a novel approach called the Location Preservation Algorithm
with Plausible Dummies (LPPD) [25], which sets itself apart
from other related works.

The LPPD process begins when a user initiates a request
for indoor localization services and collects RSS measure-
ments associated with their precise location. To protect the
privacy of a user, the user identifies an available Cloaking
Region (CR) where their location can be concealed. Within
this chosen CR, “dummy locations” are mapped to corre-
sponding “dummy signals.” Instead of transmitting the exact
user location to the central server, this approach involves
sending queries containing both the user’s location and the
dummy locations to the localization server. The server then
calculates estimated locations for both the dummy locations
and the user, which are subsequently returned to the user.
By comparing the received locations, the user can determine
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their own location using the RSS signals privately, without
disclosing the exact location to the central server. Table 1
provides a summary of recent research studies from the liter-
ature that propose the adoption of FL in indoor localization
systems.

lll. FEDERATED LEARNING ALGORITHM

FL is optimally elaborated by separating the system into their
own entities; edge device(s) and edge server. This section
discusses the overview of the FL algorithm and the methods
used to achieve the desired performance in the context of
IPS.

A. OVERVIEW

The significance of FL arises from addressing vulnerabilities
in data transmission and reception between entities. Recent
efforts have introduced various FL variants, including cen-
tralized, decentralized, and heterogeneous FL. In traditional
approaches, a data pipeline with a central server hosting
machine learning models is used for predictions, but this
compromises data privacy. In contrast, FL. enables real-time

VOLUME 4, 2023



‘IEEES IEEE Open Journal of the
Comdoc communications Society

n dynamic
model APs

trained local Aggregated

global model

C] I- o sending trained local model @ .\\
Wireless
© sending global model back connection

FIGURE 1. Model Setup.

Edge server

Indoor Local
space Dataset

model training and privacy preservation by updating mod-
els directly on client devices (edge devices) using local data.
The updated models are then aggregated on the central server
to create a global model by averaging the weights, enhanc-
ing learning efficiency and reducing global communication
frequency. The consolidated global model is sent to all edge
devices, and this cycle is repeated iteratively as depicted in
Figure 1.

The concept of federated learning FL is rooted in col-
laborative machine learning, where edge devices, such as
mobile devices, work together to keep local data on their
respective devices rather than on a central server. FL offers
benefits such as reducing latency by avoiding sending data
to a central server and back to edge devices. Furthermore,
FL enables edge devices to make predictions even with-
out Internet connectivity by training models directly on the
devices. Additionally, FL helps reduce the overall system
cost by mitigating the burden on the central server, as it
receives smaller models from individual edge devices instead
of continuous raw data. This distribution of overhead to the
devices reduces the need for expensive hardware.

While initially introduced in [26] to address privacy
concerns, it was later recognized that the FL also has a
significant impact on reducing latency during training. The
time taken to transfer data from the server to edge device(s)
is used to determine the effectiveness of FL, and improved
latency opens up new use cases. One such use case, as
depicted in Figure 2, involves dynamic access points (APs)
that can change their location based on the RSS strength at
a given moment, depending on the user’s proximity.

B. ALGORITHM
Federated averaging is very significant in the context of FL,
as it is a fundamental concept introduced in [26]. While the

VOLUME 4, 2023

Algorithm 1: K Clients Are Indexed by k; B Is the Local
Minibatch Size, E Is the Number of Local Epochs, and
n Is the Learning Rate

Server Executes:
initialize wy
for each round t =1,2, ... do
g < max(C-K, 1)
S; <—(random set of g clients)
for each client k € S; in parallel do
| wf,, < ClientUpdate (k, w,)
end
k

K m
Wikl <= D j—1 Wi

end
ClientUpdate (k, w):
B <« (split Dy into batches of size B )
for each local epoch i from 1 to E do
for batch b € B do
| w<«w—nVLw;b)
end
end
return w to server

FIGURE 2. Mobile AP Acting as a Dynamic AP [12].

initial introduction of FL defines the concept, algorithm 1
provides a clear presentation of the underlying process as it
unfolds. In a nutshell, The Federated Averaging algorithm
involves initializing a global model, distributing it to selected
clients (i.e., g clients chosen randomly, where parameter C
controls the fraction of selected clients stored in S;) for local
training, aggregating their updated models through averag-
ing, and iteratively updating the global model. The client
update is done by splitting Dy datasets into batches of size B,
which is stored in B as shown in Algorithm 1.

IV. EXPERIMENT
Having presented the federated averaging algorithm, it is
time to focus on the equations pertaining to the utilization of
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RSS measurements. As mentioned earlier, the initial iteration
involves initializing a global model based on locally trained
models, which are then collected by the central server, as
shown in Figure 1. The RSS fingerprints are initially col-
lected by edge devices, indicating that the initial models
originate from these devices. The inputs (n) represent the
number of access points (APs) distributed in the indoor envi-
ronment, which is set to 520 based on the UlJlIndoorLoc
dataset. Essentially, m data points (RSS measurements) are
collected from n APs, and each AP is associated with k sets
of clients acquiring RSS measurements.

A. PREPROCESSING PHASE

Each location coordinate obtained from an RSS fingerprint
is represented as the i-th sample per measurement, given in
Cartesian coordinates as

Y= [xivi]  VieM (1)

where x; and y; represent the x and y coordinates, respec-
tively, and M denotes the set RSS training samples.

Considering that each training sample i includes /; RSS
values obtained from a subset of the total APs in the building,
it follows that /; < k, since not every edge device will
have access to all APs. Thus, the measurement vector is
represented as

Sl':|:r,'j1...rij...rlei],V,'EM,jEL,‘ 2)

where r;; denotes the RSS value for the j-th AP in the i-
th training sample, M represents the set of all RSS training
samples, and L; represents the subset of APs with RSS values
in the i-th training sample.

During the initialization of the Multi-Layer Perceptron
(MLP) model, the input layer size is determined by the
number of users or clients, denoted as k. If an AP is not
in proximity for coverage during the i-th sample, the corre-
sponding RSS value in the input vector is set to a predefined
minimum value Q, indicating the absence of coverage. The
input vector for the MLP model during the i-th sample is
represented as

Xi:[ril"'rij"'rik] (3)

with r;; = Q for j ¢ L;, indicating the RSS values for APs
that are not included in the subset near the client. In other
words, the unreadable APs are marked as constants.

B. SERVER-SIDE TRAINING PHASE

After preprocessing the data and dividing the training sam-
ples into batches, the server starts by initializing the global
model, which in this case is an MLP. As mentioned earlier,
the number of input nodes in the MLP is determined by the
number of access points (APs) in the building. The number
of hidden nodes and hidden layers is based on the size of
the training samples and the likelihood of the model over-
fitting or underfitting with these hyperparameter settings.
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Additionally, the output layer of the MLP consists of two
nodes to output the x and y coordinates.

Similar to a typical neural network, the MLP model used
in the federated averaging algorithm employs backpropaga-
tion, which leads to a minimization problem. The equation
involved in this process is similar to the one presented
in [27], highlighting the dependence on the loss function f.

m
min % > S ow ui v @)

i=1
The minimization process begins once the global model is
distributed to the edge devices. In this context, u; represents
the label for the iy sample, v; denotes the input training
vector, w corresponds to the model weights, and y indicates
the number of training vectors used in the global model.
It’s important to note that the minimization process takes
place exclusively within the server, where the global model

is aggregated.

C. DISTRIBUTION PHASE

During the communication rounds in the federated averaging
algorithm, which represent the iterations of transmitting the
global model and receiving local models from edge devices,
the averaging and distribution of training samples occur.
Each round involves k clients collecting training data (RSS
measurements) from the APs in their proximity, indicated
by their respective measurement locations within the build-
ing. As the positions of APs is dynamic throughout the
experiment, the mobility of edge devices leads to changes
in training samples based on their location in the build-
ing. Equations (5) and (6) capture the essence of federated
averaging, a fundamental concept described in [28], within
this technique:

N
1
wt! = T > miwh, 5
p=1
N
H' = Z m (6)
p=1

Once the federated averaging process is finished, the
updated global model is sent back to the edge devices, where
they repeat the local model training process using the updated
global model, and this cycle continues until convergence is
achieved. Table 2 presents a list of parameters that provide a
concise description of the equations presented in the context.

V. RESULTS AND DISCUSSIONS

A. EXPERIMENT SETTINGS AND RESULTS ANALYSIS
The experiment focused on accuracy and computing time per
training round using the UJIndoorLoc dataset, which con-
tains approximately 20,000 samples from a 4-floor building
covering an area of 105,300 square meters. Each sample
includes RSS readings from 520 static APs, location data,
and a time stamp. Two cases, classical Stochastic Gradient
Descent (SGD) and FL, were considered with different
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TABLE 2. Parameter description.

Parameters

Y; ith sample per RSS measurement
Yi y-axis location

T; x-axis location

S; RSS values per 7 training sample
Tij RSS value from AP

% ith training sample

jth AP

Set of all the RSS training samples

APs in the training sample

Input vector for model
Model weights

Loss function

Number of training vectors in model

total number of training samples

=3 || | X =2~

Communication round

TABLE 3. FL parameters.

Parameter Value

TensorFlow & Keras
Adam, Adaddelta, Adagrad and

Adopted Libraries

Optimizers
Adamax
Learning Rate 0.0001
B1, B2 0.1,0.99
Hidden Layer Formation 20 x 10 x 10 x 10 x 10
Activation Function ReLu

Loss Function Mean Absolute Error (MAE)

Batch Size 100

Number of Epochs in a Round 10

Number of Access Points n 520

Number of Users k 15 to 40
Number of Training Samples 3000 to 15000
Number of Test Samples 3000

parameters. The FL technique utilized an MLP model with
20x10x10x10x10 layers, taking into account the hardware
limitations of mobile devices. The number of epochs was
set to 20, the batch size to 100, and the experiment analyzed
the impact of FL (with different optimizers) on comple-
tion time per iteration while considering the constraints of
power consumption and computational time. The experiment
also included numerous hidden layers in the MLP model to
explore the potential for extracting additional features. The
conclusions were drawn based on the effect of FL on com-
pletion time per iteration, considering both time and accuracy
and expanding the number of clients. Table 3 presents the
hyperparameters for the FL system.

Figure 3 displays the comparison of five optimizers,
including four federated learning (FL) approaches and the
classical SGD optimizer. Adagrad, Adadelta, and Adam opti-
mizers demonstrated convergence with minimal noise during
the training phase, while SGD and Adamax did not converge
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— FL {Adam)
175 FL (Adaddelta)

—— Classical SGD
150 —— FL (Adagrad)

FL (Adamax)

Global Loss
=
(=]
=}

Training Rounds

FIGURE 3. Global Loss per Training Round.

— FL {Adam)
- FL {Adaddelta)
1 —— FL (Adagrad)
= FL {Adamax)
24 A
o
E
=
22 1
20

Taining Rounds

FIGURE 4. Communication Round Time per Training Round.

2500 1 — FL {Adam)

FL {Adaddelta)
—— FL (Adagrad)
2000 1 — FL (Adamax)

1500 1
u

Tim

1000 1

500 A

T T
0 20 40 &0 80 100
Taining Rounds

FIGURE 5. Cumulative Communication Round Time per Training Round.

and showed noise in their predictions. Despite starting with
low global loss, SGD failed to achieve convergence, while
Adamax, despite incorporating FL, also failed to converge,
although it performed better than SGD.

Figure 4 illustrates the training time for each train-
ing round, with noticeable differences in completion times
among the optimizers. Adadelta outperformed the other opti-
mizers in terms of speed. Additionally, Figure 5 presents
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the cumulative time taken to complete 100 training rounds,
further confirming Adadelta’s superior performance.

Based on these results, FL yielded comparable benchmark-
ing metrics to training and testing with classical SGD. While
these results may be considered insignificant by some engi-
neers, adopting FL in an indoor environment ensures privacy
preservation among clients, low latency, and high accuracy.

B. ANALYSIS OF THE ENERGY CONSUMPTION
CONSTRAINTS

FL, renowned for its privacy preservation, has the potential
to reduce overall energy consumption. In applications involv-
ing access points (APs), power measurements play a crucial
role in assessing the sustainability of an indoor positioning
system (IPS) based on energy efficiency [29]. This section
considers evaluations of power transmission from APs in
relation to completion time and incorporates the convergence
of localization error when adjusting the training ratio.

1) EDGE DEVICE COMPUTATIONS AND MODELS

Based on the number of edge devices present in the environ-
ment, the number of active local models will correspond to
the number of edge devices. Each local model is trained on
its own batch of size b utilizing Dy, (i.e., local data), which is
stored exclusively on the edge device denoted by K. As men-
tioned earlier, local models are trained on edge devices using
the distributed local model received from the edge server.
Therefore, all edge devices, including the k-th device, receive
the same local model but train it with their respective unique
local data. The local models undergo a specified number of
training steps (epochs) denoted by e. The following equa-
tion represents the local computation delay, indicating the
time required for the batch in the local model to complete
training for all epochs:

- |Dy|®
T]imp =¢ fkcmp @)

fkC P represents the clock speed (in GHz) and ® represents
the number of cycles necessary to compute a sample of
data in the batch. Thus, this equation leads to the following
equation representing the amount of energy required from
each edge device in an effort to complete training per local
model. The equation equates to E,imp

cmp Ok ¢ .cmpy\3 .cmp
Ek - ?(fk ) Tk @®)

Additionally, o represents the capacitance coefficient due
to a given edge device. After substituting 7,"" in the
equation, we are left with the following,

EM = %(e ,jmp)2|Dk|q>) 9)

As discussed earlier in this work, once the edge devices
have completed their local training, they are transmitted
to the edge server (central server) to be aggregated via
federated averaging and thus the cycle continues until con-
vergence. These equations display the power results that were
calculated throughout the steps taken place.
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FIGURE 6. Completion Time vs. Power Transmission.

2) TRANSMISSION POWER ADJUSTMENTS

Regarding completion time, Figure 6 demonstrates the corre-
lation between transmission power and the time required for
IPS completion, providing insights into power optimization.

In indoor environments, the accuracy of RSSI as a distance
estimation metric is affected by obstructions and dynamic
environmental conditions, which impact transmission signals.
Figure 6 illustrates a power decay curve, where unknown
nodes (edge devices) and anchor nodes (APs) are utilized
to estimate distances. By comparing different algorithms in
terms of completion times and transmission power, this fig-
ure offers a cost-effective and efficient solution for IPS.
While higher transmission power results in lower comple-
tion time, it also leads to increased costs and potentially
reduced efficiency. Thus, dynamically adjusting power based
on the real-time positioning of edge devices can introduce
new ideas and improve system performance.

The importance of efficiency is highlighted, as high trans-
mission power may not be necessary when devices are
inactive or out of range. This emphasizes the significance
of adjusting transmit power manually or dynamically when
the spatial RSSI metric of the AP exceeds a threshold value
and meets the coverage criteria.

Typically, RSSI values range from O to approximately -
100, with O indicating optimal signal strength between the
AP and the edge device within coverage, while -100 indi-
cates weak or no signal. On the other hand, the transmission
power in Figure 6 represents the strength of the AP trans-
mitter. Together with RSSI, transmission power influences
the signal strength between the AP and the edge device, with
RSSI being proportional to transmission power. Increasing
transmission power enhances the AP’s signal broadcasting
capability, resulting in broader coverage. Improved coverage
leads to stronger signals in more areas, reducing instances of
high latency. Ultimately, lower latency due to higher power
transmission results in reduced localization error and comple-
tion time, facilitated by faster data transfer between devices
and APs.
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C. ANALYSIS OF THE POWER MAP POSITIONING

Figure 7 presents the experimental results for localization
error with respect to the training ratio adjustment. The
observed convergence of the discrepancy indicates improved
learning as the training ratio increases. This is consistent with
machine learning principles, as utilizing more data for model
training in supervised learning leads to better predictions.

The UllIndoorLoc dataset comprises four subsets: train-
ing data, unlabeled fingerprints, validation data, and testing
data. To incorporate more data into the experiment, both val-
idation and training data were included in the training ratio.
All optimizers were assigned the same batch size, ensur-
ing that every edge device had an equal number of training
data samples. This characteristic explains why SGD did not
outperform the other optimizers. If the data distribution had
been uneven, SGD could have performed better in terms of
low localization error. However, in our experiment, the data
distribution was balanced.

Figure 6 and Figure 7 can be combined to strike a balance
between adjusting the transmit power to the lowest possi-
ble setting while maintaining a sufficiently low localization
error, as demonstrated in [30]. In Figure 7, the localization
error decreases as the training ratio increases. The typical
ratio of 80% training data (including validation in this case)
and 20% testing data is commonly used for development
purposes. The power of FL lies in continuously providing
multiple users in the environment with shuffled and random
data, effectively acting as a data augmentation technique.
Shuffling data and using cross-validation techniques increase
variance in experiments with limited data. Each new batch
of data presented to the edge device appears as a fresh batch,
continuously improving the learning process. This explains
why FL algorithms show significant improvement over time.
Despite slower initial learning, the algorithms make substan-
tial progress in later training rounds as more training data
becomes available.

Similar to a power-varying system, the training-to-testing
ratio must be adjusted to an appropriate value to facilitate

VOLUME 4, 2023

effective learning and provide sufficient testing data for
higher confidence in the system during production. Lastly,
establishing constraints is essential for IPS. These constraints
can include reducing energy consumption, handling large
data volumes, or operating with fewer restrictions to achieve
the lowest possible localization error.

VI. CONCLUSION AND FUTURE RESEARCH
DIRECTIONS

FL in an indoor environment opens the possibilities in
expanding and allowing applications that may lack secu-
rity or require low latency amongst a network of clients.
This work has primarily focused on the effectiveness of a
crowd sourced system in an indoor environment. The fore-
seeable future has and will have this algorithm included in an
effort to increase connectivity in the world of growing IoT
devices, demand for security, and demand for bandwidth.
The results display the similarities that occur whilst com-
paring a commonly utilized method of training a model and
achieving a global minimum (SGD) with several common
methods used in a federated manner. We are able to notice
that both the time that it took to compute per round as well
as the amount of loss that there was per round was simi-
lar. Additionally, the results regarding localization error and
transmission power encourage the use of FL, as its expansion
may allow a system to perform with optimal security, low
latency, reduced transmit power, and similar error to that of
the traditional approaches within an IPS.

This technique cannot improve independently, there-
fore the following challenges lie ahead: limited battery
and memory, handling non-i.i.d data, and scaling client
devices [18]. Though, there are shortcomings and limitations,
as our hardware increases in performance, as client partici-
pation becomes more predictable, and as improvements are
made to equally distributed data to clients in the environment,
this algorithm will improve over time. This implementation
focuses on latency of the central server, as well as what is
lost per iteration according to time.

In regards to the future use cases and implementations
of the FL algorithm, it can be extended to several existing
project such the one depicted in Figure 2 [12]. Originally,
the mobile robot was used in order to traverse the area in
which the experiment had taken place in order to gather
and conclude location estimates after having collected RSS
fingerprints, which were later used to train the model to
create these estimates. Additionally, FL has its use case in
this experiment which can be further extended. Considering
the mobile robot is solely used for the training phase in
order to gather and collect fingerprints, it can also have its
use in real-time, as well as during the training and testing
phases.

Essentially, these mobile APs can best serve as “dynamic”
APs, in a system where they are able to dynamically change
their locations based on the proximity of the users in
the indoor environment. After training, a collection of end
users (on their mobile devices) are allowed to travel freely.
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Depending on the signal strength read from the mobile
device, along with the location estimates learned from train-
ing, the mobile robot would act as a dynamic AP and move
closer to the proximity of the client(s) to provide better
signal strength thus providing better quality of service. As
mentioned earlier, the significance of this mobile AP is
the alternative to the reduction of power consumption. As
opposed to increasing the transmitting power of static APs,
the dynamic APs are allowed to move towards the areas in
which edge devices may not be covered under the signal
strengths of the static APs. This would lead to a continuous
system involving no requirements for adjustments in power,
but rather a mobile AP(s) that responds during instances
involving insufficient coverage.
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