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ABSTRACT The integrated use of non-terrestrial network (NTN) entities such as the high-altitude platform
station (HAPS) and low-altitude platform station (LAPS) has become essential elements in the space-
air-ground integrated networks (SAGINs). However, the complexity, mobility, and heterogeneity of NTN
entities and resources present various challenges from system design to deployment. This paper proposes a
novel approach to designing a heterogeneous network consisting of HAPSs and unmanned aerial vehicles
(UAVs) being LAPS entities. Our approach involves jointly optimizing the three-dimensional trajectory and
channel allocation for aerial base stations, with a focus on ensuring fairness and the provision of quality
of service (QoS) to ground users. Furthermore, we consider the load on base stations and incorporate
this information into the optimization problem. The proposed approach utilizes a combination of deep
reinforcement learning and fixed-point iteration techniques to determine the UAV locations and channel
allocation strategies. Simulation results reveal that our proposed deep learning-based approach significantly
outperforms learning-based and conventional benchmark models.

INDEX TERMS Deep reinforcement learning, high-altitude platform station, resource allocation, fairness,
unmanned aerial vehicles, non-terrestrial networks.

I. INTRODUCTION

RECENTLY, the integrated use of non-terrestrial network
(NTN) entities such as high-altitude platform stations

(HAPSs) and low-altitude platform stations (LAPSs) has
become essential elements in the space-air-ground integrated
networks (SAGINs). These entities can complement the
space segments to provide high-quality network access to
global users. For example, the use of HAPSs together with
unmanned aerial vehicles (UAVs) being LAPSs can be well
suited for meeting capacity and coverage demands, such
as temporary events-driven coverage, greenfield coverage,
terrestrial backhaul, and white spot reduction [1], with the
capability of keeping the round-trip-time latency down to
within 10 ms. However, the great promises of such HAPSs
and LAPSs in a SAGIN come with challenges. One challenge
in an important and generic scenario is fairness assur-
ance in the overall quality of experience (QoE) for ground
users. The heterogeneous NTN entities, resources, and

dynamics of UAV trajectories add much complexity to the
system modeling and solutions.
Most recent works have proposed to address UAVs and

HAPS separately. For UAVs, the recent results focus on tra-
jectory and resource management within a UAV network
where multiple UAVs are employed. The optimization of
UAV trajectory for quality of service (QoS) performance
and coverage is discussed in [2], [3]. Deep Q-network
(DQN) [4], [5] and reinforcement learning methods [6] have
been applied to UAV trajectory optimization, while deep
learning methods [7], [8], [9] for optimal resource man-
agement have been proposed. HAPS has been studied as
a standalone system providing uplink and downlink to the
ground users [10] and as part of a SAGIN system [11], [12].
In order to address the dynamic nature of an integrated

system consisting of HAPS and LAPS entities, Q-learning
is considered an effective technique for solving an optimal
solution in system modeling. However, it poses limitations
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when the mobility of ground users and UAVs is considered.
Furthermore, it must deal with the exponential growth of
states and actions when exploring an optimal solution in a
high-dimensional space. A new approach is needed to solve
the theoretical limits while meeting generic QoE or QoS
requirements in an integrated system setting. In the context
of a HAPS-UAV-enabled heterogeneous network, such an
approach needs to be applied to the fundamental challenge
in resource allocation and UAV trajectory planning, consider-
ing practical deployment configurations. This challenge has
hardly been well addressed in the current works.
This work proposes a deep reinforcement learning-based

algorithm for aerial base stations (ABSs) to provide network
services in a highly dynamic environment where the mobility
of ground users and UAVs presents a challenge for conven-
tional reinforcement learning techniques such as Q-learning.
This is due to the potential for failure caused by the curse of
dimensionality. The proposed algorithm uses neural networks
to approximate Q-value functions to address this issue, allow-
ing the UAVs to operate autonomously and intelligently
adapting to rapidly changing conditions. In particular, we
make the following contributions:

• We construct a high dynamic scenario of an aerial
heterogeneous network in a diverse environment, con-
sidering both HAPSs and UAVs while considering user
mobility.

• We employ the deep reinforcement learning algorithm to
intelligently optimize the trajectory and transmit channel
of UAVs.

• Our proposed solution considers loads of ABSs and
incorporates them into the trajectory design and
resource allocation process, which determines the aver-
age resource utilization at ABSs and the system’s ability
to provide sufficient QoS to users. Furthermore, we
optimize fairness among users in the system.

• The proposed approach is the joint utilization of deep
reinforcement learning and fixed-point iteration tech-
niques for addressing the complex and dynamic nature
of our problem.

• We compare the performance in terms of fairness, rate,
and outage between the proposed and reinforcement
learning-based benchmarks.

The remainder of the paper is structured as follows.
Section II overviews the related work. Section III presents the
system model and problem statement. Section VI discusses
the Q-learning and our proposed DQN-based scheme for a
joint resource management and trajectory design. Section V
evaluates the proposed scheme in comparison with the typical
algorithms and variations.

II. RELATED WORK
In recent years, the integration of HAPSs and UAVs into
communication networks has gained significant attention as a
promising solution for extending wireless coverage and pro-
viding access to remote areas. HAPS provides a high-altitude

persistent coverage that can reduce the number of cell tow-
ers required, resulting in lower capital and operational costs.
Furthermore, the mobility of UAVs allows for dynamic
deployment in areas with high user density, thereby improv-
ing the overall network capacity. The use of multiple HAPSs
and UAVs in a network can also provide improved reliabil-
ity. Most of the works focus on optimizing the trajectory of
UAVs to enhance network performance and coverage. These
studies have proposed various trajectory design algorithms
based on non-learning and learning algorithms, with the aim
of maximizing the network’s coverage area and enhanc-
ing user throughput. In [2], a trajectory design algorithm
based on deep reinforcement learning for a single UAV
is proposed. The solution aims at maximizing the uplink
sum rate of users. To maximize the spectral efficiency of
a network composed of a ground base station (BS) and
UAVs, a deep reinforcement algorithm to optimize the loca-
tions of UAVs is developed in [3]. Moreover, it is assumed
that users have different QoS. In [4], a UAV is employed
for emergency communication support for users. The objec-
tive is to maximize the number of served users and uplink
data rate by optimizing the UAV trajectory and transmission
power of users. A DQN-based algorithm is proposed to solve
the UAV trajectory problem. Additionally, a successive con-
vex approximation-based algorithm is proposed for power
control at the level of users, based on the optimized UAV
trajectory. To optimize the trajectory of a single UAV for
mobile edge computing, a double deep Q-network algorithm
is proposed in [5]. The authors in [7] utilize a deep learn-
ing algorithm for dynamically allocating radio resources for
uplink and downlink. In [8], the authors propose a rein-
forcement learning approach to address the challenge of
traffic offloading in an aerial network. The proposed solution
employs a double Q-learning algorithm with an improved
delay-sensitive replay memory mechanism to train the nodes
to make intelligent offloading decisions based on both local
and neighboring historical information. Additionally, they
utilize a joint information collection technique and an offline
training mechanism to further enhance the efficiency of the
algorithm. In [6], the authors propose an energy-efficient
UAV path planning based on reinforcement learning and
satisfaction algorithms. To maximize the throughput of an
aerial network, learning-based mechanisms are implemented
in [9], [13]. In [14], the learning algorithms are surveyed
in UAV-assisted SAGINs. However, the existing studies are
restricted to only UAV networks and do not consider HAPS.
On the other hand, the integration of HAPSs in UAV

networks can enhance the capabilities of aerial networks,
providing a cost-effective solution to meet the increasing
demands for high-speed and reliable communication. In [15],
the authors propose a transmission scheme that combines
the HAPS and the ground-to-space transmission to improve
terrestrial communication and reduce transmission power.
They develop a transmission control strategy, where ground
users can switch between the two transmission schemes
with a probability, which is determined to maximize overall
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FIGURE 1. An illustration of the system model.

throughput. In [16], a solution is developed to improve
the reliability of uplink communications by fusing free-
space optics (FSO) and radio frequency (RF) technologies.
The proposed solution utilizes a HAPS, as a relay station.
Furthermore, two system models, single-hop and SAGIN-
based dual-hop are investigated for uplink communication
with hybrid FSO/RF links. The impact of HAPS deployments
on terrestrial networks is investigated in [10]. It analyzes both
co-channel and adjacent channel deployment scenarios with
both unsynchronized and synchronized time-division duplex-
ing (TDD). The results indicate that the synchronized TDD
scenario requires a smaller inter-system distance than the
unsynchronized case for the co-channel case. In the adja-
cent channel case, the interference-to-noise ratio is always
below a certain threshold for both unsynchronized and syn-
chronized scenarios. Furthermore, results for full buffer and
bursty traffic models under different traffic loads are consid-
ered. In [11], low Earth orbit (LEO) satellites and HAPSs
are used to provide access and data backhaul to remote area
users which aims at maximizing the revenue of LEO satel-
lites. The problem is formulated as a mixed integer nonlinear
programming. To solve the problem, matching algorithms are
proposed. In [12], the authors consider a system composed
of a HAPS and a set of UAVs, in which the locations of
all the ABSs are fixed. To solve the problem of power and
sub-carrier allocation, a heuristic greedy algorithm is used.
However, the aforementioned work focused on HAPSs does
not take into account the fairness issue in the system and
most studies consider static scenarios for users in the system.

III. SYSTEM MODEL AND PROBLEM STATEMENT
A. SYSTEM MODEL
In this section, we present the system formulation and the
problem statement. As depicted in Fig. 1, the considered
HAPS-UAV-enabled heterogeneous network is heteroge-
neously constructed with HAPSs and low altitude platforms
(LAPs) or UAVs. We consider the downlink transmission of
the system composed of a set of UAVs U and a set of HAPSs

M as ABSs. Let B = U ∪M denote the set of total ABSs
in the system. Furthermore, we assume that LEO satellites
provide backhaul connectivity for the ABSs. The set of total
users and the set of users associated with ABS b ∈ B at time
instant t are represented by K and Kb(t) ∈ K, respectively.
The three-dimensional (3D) location of ABS b is denoted by
zABSb (t) = (xb(t), yb(t), hb(t)), where (xb(t), yb(t)) and hb(t)
are the horizontal coordinate and the altitude of ABS b at
time instant t, respectively. Generally, discrete-time sampling
is adopted to update the system configuration. We consider a
discrete-time setting N = {0, 1, 2, . . . ,N}. We assume that
the HAPSs are fixed and the UAVs fly at a fixed speed vU.
Therefore, the location of UAV u ∈ U is updated as follows:

zABSu (t + 1) = zABSu (t)+ vU(t)Ts, (1)

where Ts and zABSu (t) are the duration of each time slot and
the location of UAV u at time instant t, respectively.

B. USER MOBILITY MODEL
We assume that the users move according to a random walk
mobility model [17]. Let zUEk (t) = (xk(t), yk(t), hk) denote
the coordinate of user k ∈ K at time instant t ∈ N , where
(xk(t), yk(t)) and hk are the horizontal coordinate and the
height of user k at time instant t, respectively. Obviously,
the heights of the users are fixed. In this model, the users
change their speeds and movement directions with zero pause
time at each time slot. At each time, the speed of user k,
vk(t), is randomly determined from the predefined ranges
[vmin

UE , v
max
UE ] following a uniform distribution, where vmin

UE and
vmax
UE denote the minimum and maximum speed of the users,
respectively. Furthermore, the movement direction for user k,
φk(t), is randomly chosen from the ranges [0, 2π ] according
to a uniform distribution. Therefore, for each user k ∈ K,
the velocity vector is [vk(t) cosφk(t), vk(t) sinφk(t)].

C. RADIO PROPAGATION AND SIGNAL QUALITY
We assume that at each time slot, the network topology
is quasi-static, and the channel state information is con-
stant. We adopt the International Telecommunications Union
(ITU) path loss model between the users and the ABSs. The
path loss model between HAPS m ∈ M and user k ∈ K
includes the free space path loss (FSPL) model which can
be expressed as [18]

Lm,k(t) = 32.44+ 20 log10 fHAPS + 20 log10 dm,k(t) [dB],

(2)

where fHAPS and dm,k(t) are the HAPS’ operating frequency
in Mega Hertz (MHz) and the distance in kilometers between
user k and HAPS m at time t, respectively.
To model a channel between user k and UAV u, we con-

sider the model described in (3) which includes line-of-sight
(LoS) and non-LoS components. The probability of having
a LoS link between user k and UAV u depends on the
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environmental characteristics and it can be written as [6]

prLoSu,k (t) =
J∏

n=0

[
1− exp

(
−

[
hu(t)−

(
n+ 1

2

)
(hu(t)−hk)
J+1

]2

2ξ2

)]
,

(3)

where J = � ru,k(t)
√
αβ

1000 − 1�, and α, β and ξ represent
statistical environment-dependent parameters [19, Table 1].
Here, parameter α represents the ratio of land area cov-
ered by buildings to total land area, β denotes the mean
number of buildings per unit area, and ξ is the distri-
bution of building height. This blockage model can be
used for air-to-ground transmissions with any transmit-
ter/receiver heights and for a broad spectrum range [20].
Here, ru,k(t) =

√
(xu(t)− xk(t))2 + (yu(t)− yk(t))2 denotes

the horizontal distance between UAV u ∈ U and user k ∈ K
at time t. Therefore, the probability of having a non-LoS
link at time t can be determined as prNLoSu,k (t) = 1−prLoSu,k (t).

Let du,k(t) =
√
r2
u,k(t)+ (hu(t)− hk)2 be the 3D distance

between UAV u and user k at time t. The channel gain
between UAV u and user k can be written as [21]

Lzu,k(t) = δzu + ηzu log10 du,k(t)+ χ zu [dB], (4)

where superscript z ∈ {LoS,NLoS} denotes a LoS or non-
LoS component. Parameters δzu and η

z
u represent the reference

path loss and the path loss exponent, respectively. Here,
χ zb denotes a zero-mean Gaussian random variable with a
standard deviation σ zb,SF in dB.

We assume that the HAPSs transmit over the orthogo-
nal channels and also there is no interference between the
HAPSs and the UAVs (spectrum overlay access). However,
multiple UAVs can transmit over the same channel and
cause co-channel interference. Let ωH and ωU denote the
total bandwidth for the HAPSs and the UAVs, respectively.
The total bandwidth ωU (or ωM) is divided into |QU| (or
|QM|) orthogonal channels with bandwidth ωU/|QU| (or
ωM/|QM|), where QU (or QM) is the set of available chan-
nels for the UAVs (or the HAPSs). Let pu and gu,k(t) denote
the transmit power of UAV u and the channel gain between
UAV u and user k at time instant t, respectively. Therefore,
the maximum achievable data rate to user k provided by
UAV u can be expressed as

Cu,k(t) = ωU

|QU| log2
(
1+ γu,k(t)

)
[bps], (5)

where γu,k(t) denotes the signal to interference plus noise
ratio (SINR) at the receiver of user k associated to UAV u,
which can be written as

γu,k(t) = Iu,k(t)pugu,k(t)∑
u′∈U\u pu′gu′,k(t)ρu′(t)1(qu(t)=qu′ (t)) + σ 2

0

, (6)

where qu(t) and σ 2
0 is the transmit channel of UAV u at time t

and the noise power, respectively. Here, ρu(t) represents the
load of UAV u at time t. This model takes into account
the load-coupling effect in Long-Term Evolution (LTE)
networks, which is represented by a system of non-linear

equations based on the joint stationary distribution of active
flows in all cells [22]. The proposed technique requires solv-
ing a system of linear equations whose dimension increases
exponentially with the number of cells. The load coefficient
is added to the denominator of the SINR to capture the
impact of cell loads on interference and accurately assess
the performance of the network. It acknowledges the interde-
pendence between cells and their load factors, which reflect
the utilization of available resources within each cell. A low
load factor implies sufficient network capacity to meet the
demand, while a high load factor indicates congestion and
an increased service outage.
The binary element Iu,k(t) ∈ {0, 1} indicates the associ-

ation between UAV u and user k at time t which can be
defined as follows:

Iu,k(t) =
{

1, if user k is associated to UAV u at time t,
0, o.w.

(7)

The achievable rate for user k associated to HAPS m is
given by

Cm,k(t) = ωM

|QM| log2
(
1+ γm,k(t)

)
[bps], (8)

where γm,k(t) denotes the SINR at the receiver of user k
associated to HAPS m, which can be defined as

γm,k(t) = Im,k(t)pmgm,k(t)

σ 2
0

, (9)

where pm and gm,k(t) denote the transmit power of HAPS m
and the channel gain between HAPS m and user k, respec-
tively. Im,k(t) ∈ {0, 1} represents the association between
HAPS m and user k at time t which can be defined as follows:

Im,k(t) =
{

1, if user k is associated to HAPS m at time t,
0, o.w.

(10)

Let Km(t) and Ku(t) denote the set of associated users
to HAPS m ∈M and UAV u ∈ U , respectively. According
to Iu,k(t) and Im,k(t) defined in (7) and (10), we can define
Ku(t) and Km(t) as follows:

Ku(t) =
{
k|k ∈ K, Iu,k(t) = 1

}
, (11)

and

Km(t) =
{
k|k ∈ K, Im,k(t) = 1

}
. (12)

D. LOAD AND USER-ABS ASSOCIATION POLICY
Now, we define the load of ABS b ∈ B at time instant t as
follows [23]:

ρb(t) = ∑
k∈Kb(t)

ϑk
ζk Cb,k(t)

� fb(ρ(t)), (13)

where ϑk and 1/ζk are the packet arrival rate and the mean
packet size of user k, respectively. Here, ϑk/ζk represents the
user rate requirement. Under this definition, we can consider
heterogeneous users, which have different user rate require-
ments. Vector ρ(t) = (ρ1(t), . . . , ρ|B|(t)) denotes the load
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vector which comprises the load of all the ABSs in the
system. Let f (ρ(t)) = (f1(ρ(t)), . . . , f|B|ρ(t))T . Thus, we
can express (13) in the form of a vector as follows [24]:

ρ(t) = f (ρ(t)). (14)

Due to the inter-cell interference, load conditions at the
ABSs are dependent. Indeed, the accurate measurement of
load can be a complex task, especially when the network
is subject to rapid changes and varying traffic patterns.
In our proposed approach, we address this challenge by
employing an approximation method to calculate the load
on ABSs. However, obtaining real-time and precise load
measurements in dynamic network conditions can be chal-
lenging. Therefore, we adopt a practical approach to estimate
the load on ABSs using a fixed-point algorithm. This algo-
rithm computes approximate ABSs’ loads by leveraging the
concept of average interference [22].
It is worth noting that f (ρ(t)) is a standard

interference function. Therefore, the non-linear load cou-
pling equation (14) can be solved by the fixed point iteration
algorithm starting from an arbitrary initial ABS load vector
ρ0 > 0 as follows [9]:

ρι = min
(
f
(
ρι−1

)
, 1

)
, (15)

where ρι denotes the load vector at iteration ι ∈ {1, . . . ,NFP},
and NFP is the total number of fixed point iterations. To
ensure the system is stable, we need to guarantee loads of
the ABSs not exceed the value one. However, in the case
that a load of an ABS b exceeds the threshold one, it would
drop some of its associated users to achieve ρb ≤ 1 [25].
Definition 1: A function f (n) is called a standard

interference function if for all n ≥ 0, the following properties
are satisfied [26]:

1) Positivity: f (n) > 0,
2) Monotonicity: n ≥ n′ ⇒ f (n) ≥ f (n′),
3) Scalability: αf (n) > f (αn) for α > 1.

Lemma 1 indicates that the BS load vector ρNFP converges
to the fixed point solution of (14).
Lemma 1: If the fixed point of (14) exists, then it is

unique, and can be iteratively obtained by (15) as NFP goes
to infinity.
Proof: In the Appendix, it is proved that fb(ρ(t))

is a standard interference function [22]. Furthermore,
[26, Th. 7] prove that min(fb(ρ), 1) is a standard interference
function. Then, by using [26, Th. 2], the convergence is
proved.
The assignment of the users to the ABSs needs to be

addressed. Due to the mobility of the users in the system,
they are expected to periodically assess their performance
and make necessary adjustments. If a user is not satisfied
with its current ABS association, it may change its serving
ABS and establish a new association. Therefore, new users
and users that are currently experiencing an outage require to
initiate new association procedures in order to be associated
with new ABSs. Given the fixed locations and the transmit

channels of the ABSs, each user is associated with an ABS
based on the following user association policy:

b∗k(t) = arg max
b∈B

{
pbgb,k(t)

}
. (16)

E. PROBLEM FORMULATION
Given the described system, the objective is to maximize
fairness among the users while minimizing the load of the
ABSs under the constraint of load. The optimized parame-
ters are the UAVs’ trajectories and the transmission channels.
By considering the load of UAVs, we can optimize resource
utilization while also ensuring that UAVs are not overloaded,
which can lead to decreased QoS and network performance.
For a dynamic system captured by a flow-level queuing
model M/M/1, the average number of flows at UAV u is given
by ρu

1−ρu . From Little’s formula, minimizing the average num-
ber of flows is equivalent to minimizing the average delay
experienced by a typical flow. Moreover, we aim to strike
a balance between fairness and resource utilization in aerial
heterogeneous networks, which we believe is critical for
ensuring a robust and reliable network infrastructure that can
support a wide range of applications and user groups. Here,
we introduce the fairness factor to the objective function
named Jain’s fairness index, the most widely-used fairness
metric in wireless networks’ applications. The Jain’s fairness
index at time t can be defined as follow [27], [28], [29]:

F(t) =
( ∑

k∈K C̄k(t)
)2

|K|(∑
k∈K C̄k(t)2

) . (17)

where C̄k(t) is the total data rate for user k until time instant
t expressed as follows:

C̄k(t) =
∑

τ≤t

∑

b∈B
Cb,k(τ ). (18)

The definition in (17) reveals that the fairness index F(t)
is continuous so that a change in a user rate results in a
change in the fairness index. Furthermore, it is applicable to
any size of users’ sets in the system. Besides, it is bounded
between 1

|K| and 1, in which a totally fair system has a Jain

index of 1 while 1
|K| corresponds to the least fair system.

Therefore, the higher value of the fairness index is the result
of the smaller differences among the total data rates of the
users {C̄k(t)}k∈K. Note that Jain’s fairness index takes into
consideration all the users in the system, not only the users
with poor performance [30]. In addition, it is mostly used
for assessing long-term fairness performance. Furthermore,
fairness and loads of the ABSs are unitless metrics, and
they are the functions of the locations of the ABSs and the
resource allocation procedure. Thus, we can combine them
to define a reward function. Furthermore, the configuration
of the system can be determined by the transmit channels
of the ABSs q(t) = (q1(t), . . . , q|B|(t)), the locations of the
ABSs ZABS(t) = (zABS1 (t), . . . , aABS|B| (t)), and the association
indicators I(t) = {Iu,b}b∈B,k∈K.
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Our goal is to maximize an objective function which
captures both fairness and load of the ABSs. In this regard,
the optimization problem can be expressed as follows:

max
q(t),ZABS(t)

∑

t∈N

∑

b∈B

∑

k∈Kb(t)

(
φbF(t)+ ψb(1− ρb(t))

)

(19a)

s.t. xu(t) ∈ [xmin, xmax], ∀u ∈ U , (19b)

yu(t) ∈
[
ymin, ymax

]
, ∀u ∈ U , (19c)

hu(t) ∈ [hmin, hmax], ∀u ∈ U , (19d)

qu(t) ∈ QU, ∀u ∈ U , (19e)

ρb(t) = fb(ρ), ∀b ∈ B, (19f)

0 ≤ ρb(t) ≤ 1, ∀b ∈ B, (19g)

Ib,k(t) ∈ {0, 1}, ∀b ∈ B,∀k ∈ K, (19h)∑

b∈B
Ib,k(t) ≤ 1, ∀k ∈ K, (19i)

where φb and ψb indicate the weight parameters for the
fairness index and the load of ABS b on the objective func-
tion, respectively. xmin and xmax are the minimum and the
maximum point of horizontal ordinate in a Cartesian coor-
dinates of the system, respectively. ymin and ymax denote the
minimum and the maximum point of vertical ordinate in a
Cartesian coordinates of the system, respectively. hmin and
hmax indicate the minimum and the maximum altitude of the
UAVs, respectively. The constraints in (19b)–(19d) determine
the feasible area in the 3D space for the locations of the
UAVs at each time instant t in the system. The constraint
in (19e) represents the constraint on the set of available
channels for the UAVs. The constraints in (19f)–(19g) guar-
antee the limitation on the load of the ABSs. The constraints
in (19h)–(19i) ensure each user k is associated with at most
one ABS at each time instant t.

The following remarks characterize the difficulties in solv-
ing the problem formulated in (19). First, due to the presence
of binary association indicators I(t) = {Iu,b}b∈B,k∈K and
non-convex optimization problem, the problem in (19) is
NP-hard. Moreover, due to the mobility of the users and the
inherent highly dynamic nature of the system, the problem is
very difficult to solve and it is intractable to find a globally
optimal solution. Given the non-convexity and high com-
plexity of the problem in (19), our pragmatic target is to
find a high-performance solution in a reasonable amount of
time.
Due to the inherent hyper-heterogeneity characteristics

of SAGINs, we can use a hybrid method combination of
a centralized and distributed approach. In this regard, we
take advantage of both approaches. The advanced hardware
processing units with fast computation speed and compat-
ibility with various algorithms make to utilize the DQN
algorithm in a distributed manner at the levels of the UAVs.
The benefits of distributed approaches in wireless networks,
such as reducing the signaling overhead and robustness to
failures and attacks, have been widely recognized in the lit-
erature [8], [31]. For the centralized part, we assume that

there is a cloud radio access network (C-RAN) for sharing
information regarding the data rates of the users to calculate
fairness [32]. In this regard, at the beginning of each time
slot, the C-RAN broadcasts the calculated Jain’s fairness
index to the UAVs. Then, the UAVs are allowed to employ
the broadcasted data and process their own information.
Thus, Once a new UAV is launched into the system, it will
first listen to the beacons, and then will start the action selec-
tion process. At the end of the time slot, each ABS calculates
the data rates of its associated users and send these values to
the C-RAN. This procedure results in a more adaptive and
flexible system and can reap the benefit of both centralized
and distributed approaches.

IV. DEEP REINFORCEMENT LEARNING-BASED LINK
OPTIMIZATION
In this section, we first present an overview of Q-learning and
DQN. Then, a DQN-based scheme for resource management
and trajectory design is proposed. It utilizes both load and
fairness using a replay memory method to achieve the formu-
lated objective function which is described in (19). Since the
load balancing and fairness optimization problem is a high
dimensional and high state/action problem, we must employ
novel and state-of-the-art methods such as DQN algorithm.
The proposed algorithm enables UAVs to learn the entire
network environment to adjust their positions jointly while
determining their transmit channel. Finally, we present a
detailed state, action, and reward function design.

A. LEARNING MODEL
The use of learning methods in wireless networks has
received unprecedented attention, in which they show sig-
nificant improvements over traditional mechanisms. Among
them, reinforcement learning (RL), e.g., Q-learning, has
achieved remarkable success for different problems in com-
plex and highly dynamic systems. In RL, agents interact
with the environment and take action. Then, they observe
the consequences of their actions which can lead to learning
their optimal policies. This success is due to the procedure
of effectively finding the optimal policy for a finite Markov
decision process (MDP). The MDP can be expressed as a
four-tuple < S,A,R,P >, where S implies the observable
environment states, A is the set of alternative actions. R
indicates the reward function for taking action a ∈ A in
state s ∈ S [33], [34], [35]. P : S ×A× R→ [0, 1] is the
state transition probability distribution function. The actions
of an agent are selected based on a policy π : S → A, which
is a mapping from the state space to the action space. RL
algorithms aim at learning an optimal policy a = π(s) ∈ A.
The agent will adjust its policy π in order to maximize its
long-term expected return E[Gn], which is given by [36]:

G(n)
�=
∞∑

k=0

γ kR(n+ k), (20)

where G(n) is the accumulated discounted reward, and 0 ≤
γ ≤ 1 is the discount factor of future reward, which makes
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trade-off immediate rewards with the rewards generated in
future time instants. Let Qπ (s, a) represent the action-value
function of executing action a under state s following policy
π as the average cumulative discount reward. The action-
value function can be defined as follows:

Qπ (s, a) = Eπ [G(n)|S(n) = s,A(n) = a]. (21)

In Q-learning, an agent in a state takes an action and
observes a reward. To select an action, it has two options:
choosing an action with the highest Q-value or selecting a
random action. Then, it updates the Q-table based on the
observed reward. Q-learning is an off-policy reinforcement
learning algorithm, in which it gradually improves its strate-
gies with its accumulation of experience and strives to find
the best action at any state. To evaluate the quality of an
action-state pair, the algorithm updates the Q-value func-
tion using the Bellman equation according to the weighted
average of the current Q-value function and the reward as
follows [37]:

Q
(
s(t), a(t)

)← Q
(
s(t), a(t)

)+ α
(
r(t)+ γ max

a

Q
(
s(t + 1), a

)− Q(
s(t), a(t)

))
(22)

where Q(s(t), a(t)) is the Q-value function for state s(t) and
action a(t) at time t, and α is the learning rate. Note that
this table-based reinforcement learning method is suitable
for problems with limited action-state space. Despite the
great empirical success of Q-learning, it is less applicable to
real-world problems. This is due to the fact that most real-
world problems are complex and have large or continuous
action-state spaces so that they remain unaddressed hinder-
ing the deployment of Q-learning-based solutions. Therefore,
using the table-based Q-learning algorithms to solve those
problems is challenging and it is not feasible to apply them
directly to complex and highly dynamic environments. To
practically use RL algorithms for problems with large or
continuous action-state space, the function approximation
method can be employed. DQN is an extension of the Q-
learning algorithm that combines deep neural networks with
a reinforcement learning framework. In the DQN algorithm,
a deep neural network is employed to approximate Q-values
instead of using a Q-table to represent Q(s(t), a(t)) which
can allow us to deal with large action-state spaces. However,
the Q-Network will take the state as an input and return
the expected Q-values for every action. Thus, Q(s(t), a(t);θ)
is the estimated Q-value function during the iterative pro-
cess, which is approximated by the neural network with
the weights of θ . In the training process, Q(s(t), a(t);θ) is
updated by adjusting weights θ . In our system, we choose to
represent the state as a multi-dimensional array that contains
the information of the 3D location and transmit channel of
a UAV, in which the location is normalized and a one-hot
decoder is used for the channel. The action space includes
the movement direction and the transmit channel of UAVs.
We will discuss further the elements of our proposed model
in Section IV-B.

Given the environment, each UAV learns to take the best
action depending on the current state during the training
phase. In the Q-learning method, it updates its Q-table
according to the returned reward value which shows how
good it is to take a given action in a given state. On the other
hand, in a DQN method, the model is not represented using
a table, but it is represented by a set of weights and biases
in a neural network referred to as a Q-network compared to
the Q-table. The DQN is composed of two neural networks
including the policy and the target network. To train the
models, the weights and biases of policy and target networks
are initialized randomly. To optimize the learning process, a
replay memory, shown in Fig. 2, is incorporated for updating
the Q-network [38]. Replay memory is an efficient tech-
nique to reuse previous experiences, and it allows the agent
to learn from earlier memories. In this regard, experiences
are stored in a memory buffer with a fixed size. When the
replay memory is full, the oldest memories are erased [39].
Furthermore, to update the agent’s parameters, a random
batch of experiences is sampled from the replay memory.
Using replay memory can address the issues relevant to the
temporal correlations and enhances data usage and computa-
tion efficiency. It stores the agent’s instances which include
the past state, selected action, reward, and the next state
given the selected action. Let < s(t), a(t), r(t), s(t + 1) >
represent a sample from the replay memory. Then, the agent
randomly samples a batch from the replay memory. To take
an action, an ε-greedy model is used, which allows the agent
to explore its action space, and it can be defined as follows:

a(t) =
{
a random action, with probability ε
arg maxa∈A Q(s(t + 1), a;θ), with probability 1− ε,

(23)

where ε > 0 is an exploring ratio which is adaptively updated
according to the following expression:

ε ← εend + (εstart − εend) exp
(−τ/εdecay

)
, (24)

where εstart and εend denote the start value and the end
value for the ε-greedy threshold, respectively. εdecay is the
threshold decay, and τ indicates as many as steps done for
selecting an action based on the Q(s(t), a;θ). The output of
the policy network Q(s(t), a;θ) is used as the decision of the
agent, whereas the output of the target network is used to
update the networks through computing a loss function which
compares the outputs of the policy and target networks. To
choose action a(t), at time instant t, state s(t) is fed into
the neural network with weights θ , and a(t) is obtained as
a(t) = arg maxa Q(s(t), a;θ) or through a random selection
according to (23), where Q(s(t), a;θ) denotes the outputs of
the neural network corresponding to all possible actions a.
After taking action a(t), the agent received reward r(t) and
moves to the next state s(t + 1). Then, the DQN is trained
by minimizing the prediction error of Q(s(t), a(t);θ) using
the loss function Lδ(y, ŷ). We use the Huber loss to minimize
the loss so that when the loss is small, it acts as the mean
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FIGURE 2. Overview of the DQN structure.

squared error (i.e., L2 loss), whereas the loss is large, it
acts as the mean absolute error (i.e., L1 loss) which makes
it more robust to outliers for the noisy estimations of the
neural networks [40]. The loss is calculated over a batch of
transitions sampled from the replay memory as follows [8]:

Lδ
(
y, ŷ

) =
{

1
2

(
y− ŷ)2

, if|y− ŷ| ≤ δ
δ|y− ŷ| − 1

2δ
2, otherwise,

(25)

where y and ŷ denote the output of the learning system,
i.e., Q(s(t), a(t);θ), and the target value, respectively. The
target value ŷ can be estimated as

ŷ = r(t)+ γ max
a
Q

(
s(t + 1), a(t);θtarget

)
. (26)

Parameter δ > 0 specifies the threshold at which to change
between delta-scaled L1 and L2 loss. Here, the target value
ŷ is computed based on the obtained reward and predicted
discounted reward γ maxa Q(s(t + 1), a(t);θtarget) given by
the target network, where θtarget denotes the weights of the
target network. Unlike the policy network, which continu-
ously updates its weights based on the observed rewards and
actions, the weights of the target network are not updated
iteratively. Instead, they are periodically updated by copy-
ing the weights of the policy network after a specified time
interval [41]. Note that to calculate the loss function, the
agent picks a random batch from the replay memory rather
than using a single sample which leads to improving the
learning stability. After calculating the loss, it is fed into
an optimizer to update the weights and biases of the neural
networks. In our model, we use RMSprop optimizer which

is an adaptive algorithm to evaluate gradient updates [42].
The update rules in RMSprop are as follows:

E
[
g2

]

t
= ηE

[
g2

]

t−1
+ (1− η)g2

t , (27)

θ(t + 1) = θ(t)− α√
e
[
g2

]
t + ε

gt, (28)

where gt is the gradient at time t. Parameters η and α

denote the constant forgetting factor and the initial learning
rate, respectively. θ is the weights and biases in the neural
networks, respectively. Then, these updates are applied to
the model. Fig. 2 illustrates a structure of a DQN approach
for a UAV in an aerial network.

B. DQN-ASSISTED UAV OPERATION ALGORITHM
In the proposed approach, UAVs are seen as agents which
interact with the system environment in a sequence of dis-
crete time instances. At each time t, each UAV u observes
the state su(t), takes action au(t) and receives the reward
ru(t). Then, it moves to the new state su(t + 1) at time
t + 1. Furthermore, each UAV utilizes a replay memory
Du with a certain capacity to store the transition sam-
ple < su(t), au(t), ru(t), su(t + 1) >. In the context of the
described problem, we define the state su(t), action au(t),
and reward ru(t) for UAV u at time instant t as follows:

• State representation su(t): each UAV u ∈ U deter-
mines state su(t) from its location, i.e., zABSu (t) =
(xu(t), yu(t), hu(t)), and transmit channel qu(t). Here, we
introduce an encoder to encode the UAV’s transmitted
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channel information into a unique vector using a one-hot
code. In one-hot encoding, a variable is represented by a
one-hot vector, e.g., 1→ [0, 1, 0, 0], 4→ [0, 0, 0, 0, 1].
More precisely, one-hot encoding is a process, which
is used to convert categorical variables into a suit-
able form feeding to Q-networks [43]. Thus, the UAV
translates each state into a 0 − 1 string, and then it
sends the state vector into the Q-network. The UAV’s
location is normalized by the minimum and the maxi-
mum values of the UAV’s altitude, point of horizontal,
and vertical ordinate. In this regard, the state of UAV
u can be expressed as su(t) = {x̄u(t), q̄u(t)}. Here,
x̄u(t) = (

xu(t)
xmax−xmin

,
yu(t)

ymax−ymin
),

hu(t)
hmax−hmin

) denotes the
normalized value of the UAV’s location zABSu (t), and
q̄u(t) is the one-hot encoded of the transmit channel
qu(t) ∈ Q.

• Action: For each UAV u ∈ U , action au(t) =
{zu(t), qu(t)}, where zu(t) ∈ Z and qu(t) ∈ Q denote
the movement direction and transmit channel of UAV u
at time t, respectively. The set of movement directions
is defined as [44], [45], [46], [47], [48], [49], [50]

Z = {
up, down, left, right, forward, backward, fixed

}
.

(29)

Although UAVs can fly in arbitrary directions, modeling
all possible movements can be computationally expen-
sive and complex. By assuming a constant velocity
and coordinated turns, the movement model can be
simplified to a smaller number of directions [48].
Although this simplification may not capture all possible
movement directions, it allows us to balance between
accuracy and computational complexity which provides
a more tractable and computationally efficient model.
Therefore, the action space for each UAV u ∈ U can
be described as

A = {au(t)|au(t) = {zu(t), qu(t)}, zu(t) ∈ Z, qu(t) ∈ Q}.
(30)

• Reward: the reward is the objective of the dynamic
resource management and trajectory design problem.
This function is consistent with the mathematical for-
mulation of our optimization problem. Thus, for each
UAV u ∈ U , the reward function is related to load and
fairness, and according to (19), it can be defined as
follows:

ru(t) = φuF(t)+ ψu(1− ρu(t)). (31)

After taking action au(t) by UAV u, it receives the
reward ru(t) and moves to the new state su(t + 1).

To approximate the Q-function values, each UAV utilizes
two deep networks for policy and target networks with the
same four fully connected layers while they have different
weights and biases. From Fig. 3, we can see that the neu-
ral network is composed of three parts, including the input
layer, hidden layers, and output layer. In our model, we

FIGURE 3. Structure of the policy network.

employ 4 hidden layers with 256, 128, 64, and 32 nodes.
For the activation function, ReLU is selected. Furthermore,
after each layer except the output layer, we apply layer
normalization and drop out with probability 0.2. The layer
normalization technique can enhance the performance and
stability of neural networks [51]. It normalizes the inputs to
a layer, thereby enabling the utilization of higher learning
rates and faster convergence. The dropout technique oper-
ates by randomly disconnecting the connections between
neurons in connected layers based on a certain dropout
rate to reduce the dependency between neurons [52]. The
input of the neural network corresponds to the state of the
UAV, and the output corresponds to action-value approxi-
mations. For the policy network, the input is the current
state-action pair (su(t), au(t)) and the output is the predicted
value Q(su(t), au(t);θ). For the target network, the input is
the next state su(t + 1) and the output is the maximum
Q-value of the next state-action pair so that the target value
of (su(t), au(t)) for UAV u can be calculated as follows:

ŷu(su(t), au(t)) = ru(t)+ γ maxa Qu
(
su(t + 1), au(t);θtarget

)
.

(32)

To address the challenges of slow learning and increased
sample complexity in our learning method, we employ
several strategies. These strategies include the use of
replay memory to break temporal correlations, the intro-
duction of a target network to stabilize learning, reward,
state and reward normalization techniques, and a balanced
exploration-exploitation trade-off using an exploring ratio.
By carefully designing our algorithm and tuning parameters,
we aim to optimize learning efficiency, achieve satisfactory
performance, and strike a balance between exploration and
exploitation. These collective strategies can help to overcome
the challenges and improve the effectiveness of our learning
approach.
It is important to note that each UAV has its own DQN

network, with its own unique set of neural network weights,
distinct from the other UAVs. Algorithm 1 presents the
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Algorithm 1 DQN-Based Algorithm for 3D Trajectories and
Resource Management in Aerial HetNets
1: Input: a differentiable Q-value function parameteriza-

tion Qu(s, a;θ) and θtarget = θ , ∀u ∈ U
2: Initialization: a replay memory Du,∀u ∈ U
Initialization of the UAVs’ locations:

3: fABS(0) ⇐ fH, B∗ ⇐ H, u = 0, fUAVu (0) = {},∀u ∈
{1, . . . , |U |}

4: while u < |U | do
5: for ∀l ∈ L do
6: for ∀b ∈ B∗ do
7: rl,b = ||f l − fABSb ||
8: end for
9: rmin

l = min
b∈B∗

rl,b

10: end for
11: l∗ = arg max

l∈L
rmin
l

12: L⇐ L\{l∗}, fABS(0)⇐ fABS(0) ∪ {f l∗}, B∗ ⇐ B∗ ∪
{u}, fUAVu (0) = f l∗

13: u⇐ u+ 1
14: end while

Learning procedure:
15: for episode: = 1,Nepisode do
16: while t < N do
17: t← t + 1
18: for each k ∈ K do
19: Update zUEk (t) based on the random walk mobility

model described in Section III-B
20: Associate user k to an ABS according to (16)
21: Update the user association indicators according

to (7) and (10)
22: end for
23: for each u ∈ U do
24: Select an action according to (23)
25: Update the location zABSu (t) based on au(t)

and (2)
26: Calculate reward ru(t) according to (31) and

move to the next state su(t + 1)
27: Store the transition sample

< su(t), au(t), ru(t), su(t + 1) > into Du

28: Sample a stochastic minibatch of samples from
Du

29: Compute target value according to (32)
30: Update weights θ by minimizing the loss (25)
31: Update the target network parameters θtarget every

NT steps as θtarget = θ
32: end for
33: end while
34: end for

pseudocode for our proposed approach. It is noteworthy
that we apply the heuristic-based initialization for our
proposed DQN-based approach. In this algorithm, the hor-
izontal location of a new UAV is determined based on the

furthest distances from the other BSs in the system [53]
(lines 3-14). We define the set of all predefined locations
for the UAVs as L and a single location in this set as l.
The two-dimensional (2D) coordinate of a location l is rep-
resented by f l while the vector composed of the locations of
the ABSs in the system is represented by fABS(0). The ini-
tial ABS locations, fABS(0), are determined by the HAPSs,
as fABS(0) ⇐ fH, where fH = (fABS1 , . . . , fABS|H| ) represents
the 2D locations of all HAPSs. fUAVu (0) denotes the selected
location for UAV u. The set of current ABSs in the system,
B∗, is initialized with the set of HAPSs. At each iteration,
the algorithm determines the initial location of a new UAV.
The 2D distance, rl,b, between each ABS b in B∗ and loca-
tion l is calculated (lines 6-8). Then, the distance between
location l and the nearest ABS in set B∗, which is denoted
by rmin

l is calculated (line 9). Finally, the location l∗ with
the farthest distance from ABSs in B∗ is selected as the
UAV location, denoted as l∗ (line 11). Then, the location l∗
is removed from L and its coordinate f l∗ is added to the
ABS locations in fABS(0) (line 12). To initialize the trans-
mit channels of the UAVs, we adopt a random selection,
in which the UAVs choose their channels from a uniform
distribution, i.e., πu,q = 1

|Q| for ∀u ∈ U and ∀q ∈ Q, where
πu,q is the probability assigned channel q ∈ Q for UAV
u ∈ U .
Based on Alg. 1, we can derive the time complex-

ity of the proposed DQN scheme. If we consider the
steps 5-13 takes t0, steps 19-21 takes t1, steps 24-31
takes t2, then the total time taken can be expressed as
t0·|U |+Nepisode·(N·(|K|·t1+|U |·t2)). The main term affecting
the execution time in this expression is N ·Nepisode. Therefore,
the time complexity can be derived as O(N ·Nepisode). For the
Q-learning algorithm, the worst-case complexity for action
executions has a bound of O(n3

s ) [54], where ns is the size
of the state space. Therefore, the Q-learning in our paper
has the time complexity as O(N · n3

s ). In addition, because
the use of HAPSs mainly affects the initialization phase in
Alg. 1, i.e., ABS locations, the complexity upper bounds
will be kept the same for the DQN and Q-learning schemes
without using HAPSs.

V. SIMULATION RESULTS
In the simulation scenario, a 1000 × 1000 m2 area is
considered, and a set of users are uniformly distributed
throughout the area. Furthermore, a HAPS is located at
the center of the area at a height of 20 km from the
ground [55]. Table 1 summarizes the system parameters
employed in the simulations. The simulation results are
obtained by averaging over numerous independent runs with
variations using practical configurations. Furthermore, the
performance of our proposed DQN scheme is evaluated
through comparison with several benchmark algorithms as
follows:
• DQN-No HAPS: To demonstrate the advantages of
incorporating HAPS, the DQN-No HAPS scheme is
implemented. In this approach, only UAVs are employed
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TABLE 1. System-level simulation parameters.

for data transmission to the users, without the presence
of HAPS. The UAVs optimize their trajectories and
transmit channels using the proposed DQN algorithms.

• Q-learning: In the Q-learning approach, both UAVs and
HAPSs are deployed to provide service to the users. The
2D positions and the transmit channels of the UAVs are
optimized using a Q-learning technique. The altitude of
the UAVs is set at hmax.

• Q-learning-No HAPS: In this benchmark algorithm, no
HAPSs are employed, and only UAVs provide service
for users. The UAVs optimize their trajectories and
transmit channels using a Q-learning technique, flying
at the fixed altitude of hmax.

Fig. 4 presents the impact of the number of UAVs on
Jain’s fairness index defined in (17), which is used to quan-
tify the distribution of resources among the users in the
system. It shows that as the number of UAVs increases,
Jain’s fairness index improves. The main reason is that
the additional UAVs provide more resources and cover-
age to the network which leads to a more fair distribution
of resources among users and ensures an enhanced user
experience and improved network performance. Furthermore,
the DQN approach significantly outperforms the benchmark
algorithms. This improved performance is due to the abil-
ity of the DQN approach to learn from experience and
adapt to changing conditions in the system. However, for
a system with a single UAV, the Q-learning (or Q-learning-
No HAPS) approach slightly performs better than DQN (or

FIGURE 4. Average fairness versus the number of UAVs for a system with 200 users.

FIGURE 5. Average outage per ABS versus the number of UAVs for a system with
200 users.

DQN-No HAP) mechanism. This is due to the fact that in
the Q-learning algorithm, the altitude of the UAV is set at
the maximum altitude. Thus, it can cover more area and
support more users due to providing a high probability of
LoS links.
As shown in Fig. 5, the performance of the proposed DQN

approach is compared with the benchmark algorithms in
terms of outage users. The figure illustrates the relation-
ship between the number of UAVs and the average number
of outage users and the scalability of our proposed DQN
approach. Outage users refer to users which experience dis-
connection or a drop in the received data rate. Therefore, it
is imperative for network operators and service providers to
effectively monitor and manage the number of outage users
to ensure the sustainability and reliability of the network. In
addition, the number of outage users is a critical performance
metric and can be used to assess the efficacy of network
optimization strategies and resource allocation algorithms.
From Fig. 5, it can be observed that, as the number of
UAVs increases, the average number of outage users per
ABS decreases for all methods. However, the proposed DQN
approach outperforms the benchmark algorithms, demon-
strating its effectiveness in reducing the number of outage
users and improving service coverage. This result high-
lights the effectiveness of the proposed DQN approach in
improving the resource allocation and 3D trajectory design
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FIGURE 6. Average load per ABS versus the number of UAVs for a system with 200
users.

for UAV-based communication systems. The reason for the
decrease in the average number of outage users as the number
of UAVs increases is due to the improved resource allocation
and more efficient utilization of the available UAVs. With
a larger number of UAVs, the loads are balanced over the
ABSs, and thus more users can be served which reduces
the number of users without service. Additionally, having
more UAVs with effective interference management methods
enables a more flexible design and better serves the users.
Note that increasing the number of ABSs in the system may
cause more interference if the resource is not allocated prop-
erly. The benchmark algorithms without HAPSs which only
employ UAVs, degrade the performance in terms of outage
users. This is due to the limited coverage area of UAVs
which leads to inadequate service quality for some users,
especially in dense areas. In contrast, the proposed DQN
approach which leverages both UAVs and HAPSs, provides
a larger coverage area and improved service quality, thus it
reduces the number of outage users.
Fig. 6 shows the average load per ABS as the number of

UAVs increases. The results indicate that in the proposed
approach, as the number of UAVs increases, the average
load per ABS decreases. This behavior helps to alleviate the
overloading of the ABSs and ensures efficient and stable ser-
vice provided to the users. Furthermore, the results indicate
that the benchmark methods are not capable of effectively
balancing the load in the system, in which with the increas-
ing number of UAVs, there is a limited decrease in average
load. Specifically, for the dense deployment of UAVs, the
proposed DQN approach shows an improvement in terms
of load balancing compared to the benchmark algorithms.
The gap between the proposed approach and the bench-
mark algorithms becomes larger as the number of UAVs
increases which demonstrates the effectiveness of the DQN
approach in ensuring a balanced distribution of load among
the ABSs in densely deployed UAVs scenarios by managing
the resource and optimizing the 3D locations of the UAVs.
The average reward, defined in (31), per UAV as a function

of the number of UAVs is depicted in Fig. 7. The average
reward can be considered as a suitable performance metric to
assess the success of the methods in optimizing the system’s

FIGURE 7. Average reward per UAV versus the number of UAVs for a system with
200 users.

objective. A higher reward value indicates that the algorithm
is successful in satisfying the objective function, while a
lower reward value indicates that the algorithm is encoun-
tering difficulties to achieve desired outcomes. As illustrated
in Fig. 7, the DQN approach outperforms the benchmark
algorithms in terms of the average reward achieved by
the UAVs. The improvement in reward achieved by the
proposed DQN approach is a result of the decreased load
of the ABSs and improved fairness among users. By opti-
mizing the UAV’s trajectories and transmission channels, the
DQN approach ensures an equitable distribution of resources,
thereby improving both load balancing and fairness. Since
the reward function captures both load and fairness, thus
improving both parameters results in a higher overall reward
compared to the benchmark algorithms. However, it should
be noted that for scenarios involving a single UAV, the Q-
learning approach performs slightly better than the DQN
approach. This is due to the fact that in the Q-learning
method, the altitude of the UAV is set at the maximum alti-
tude, enabling it to cover a larger area with a high probability
of LoS. Additionally, in the scenario with a single UAV, due
to the lack of interference, setting the altitude of the UAV at
the maximum altitude results in improving the performance
of the Q-learning method. However, employing more UAVs
may increase interference in the system, which requires crit-
ical factors such as load balancing and fairness provisioning
to be optimized dynamically and intelligently. Additionally,
the scenarios without the utilization of the HAPS result in
a decreased reward compared to the scenarios that employ
the HAPS. The main reason is that the HAPS provides an
additional layer of support for service coverage, which leads
to improved fairness.
Fig. 8 illustrates the average rate per user versus the

number of UAVs deployed in the system. This figure
shows a comparison of the performance of the proposed
DQN approach with the benchmark algorithms and provides
insights into the impact of the number of UAVs on the system
performance in terms of users’ rates. It can be observed
that with increasing the number of UAVs, the average rate
per user tends to improve. This is due to providing more
resource for the users, and thus they have more opportunities
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FIGURE 8. Average rate per user versus the number of UAVs for a system with 200
users.

to select their serving ABSs which lead to offloading outage
users from highly loaded ABSs to lightly loaded ABSs. In
addition, the DQN approach manages interference efficiently
in the system and this can lead to an increase in the num-
ber of users served by the ABSs which results in higher
user rates. Similarly, by optimizing the location of UAVs
and resource allocation, it is possible to reduce interference
and improve user rates. Note that increasing the number
of UAVs may cause increasing interference and the over-
loading of ABSs. However, the joint channel allocation and
trajectory optimization techniques allow us to effectively
manage interference in the UAV-assisted networks. Thus, by
strategically deploying a moderate number of UAVs, we can
effectively enhance the overall network capacity and improve
user experience. In addition, for the initialization of UAVs’
locations, we use an algorithm based on the furthest dis-
tances from the other ABSs in the system to reduce the
interference among the ABSs in the system. Furthermore,
this figure shows the integration of the HAPS and UAVs
can improve the user rate significantly compared to con-
ventional aerial communication systems. For instance, the
proposed DQN approach enhances the user rate up to about
77% compared to the DQN-No HAPS method for 2 UAVs.
It is important to note that the improvement in user rate
depends on the deployment scenario, resource allocation,
and the number of ABSs used.
Fig. 9 shows the performance of the DQN approach and

the benchmark algorithms in terms of Jain’s fairness index
versus different numbers of users. This figure can measure
the distribution of resource among the users in the system.
We can observe that the DQN scheme achieves improved
performance in terms of fairness compared to the bench-
mark algorithms. This can provide valuable insight into the
scalability, flexibility, and ability of the DQN method to allo-
cate resources fairly for a varying number of users based on
the states of the system. Furthermore, the performances of
all methods decrease as the number of users in the system
increases. This is due to the fact that as the number of users
increases, the availability of resources in the system becomes
limited. Thus, it shows the importance of effectively and
fairly allocating resources among the users. Furthermore, in

FIGURE 9. Average fairness versus the number of users for a system with 5 UAVs.

FIGURE 10. Average outage per ABS versus the number of users for a system with
5 UAVs.

the absence of the HAPS, only the UAVs provide service
for the users which can lead to a decrease in Jain’s fairness
index as resources are not distributed fairly among users.
Fig. 10, illustrates the average number of outage users for

the DQN method and the benchmark algorithms. It can be
seen that the DQN approach yields better performance com-
pared to the benchmark algorithms. Obviously, for a fixed
number of ABSs, as the number of users in the system
increases, the demand for resources also increases, poten-
tially leading to a higher number of outage users. Moreover,
Fig. 10 demonstrates the contribution of the HAPS to the
reduction of outage users. The deployment of HAPSs has
the potential to significantly decrease the number of outage
users and can help to alleviate resource scarcity in the dense
system. In the absence of HAPSs, the system relies solely on
UAVs, which can lead to limited network coverage, resulting
in a higher number of outage users.
In Fig. 11, the average reward is plotted versus the num-

ber of users in the system to evaluate the performance of all
the methods under different load conditions. As the num-
ber of users in the system increases, the UAVs are faced
with a greater challenge in balancing the load and distribut-
ing resources fairly and efficiently. We can observe that the
DQN algorithm demonstrates higher rewards compared to
the benchmark algorithms due to its improved performance
in load balancing and fairness. Compared to the benchmark
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FIGURE 11. Average reward per UAV versus the number of users for a system with 5
UAVs.

FIGURE 12. The convergence behavior of the DQN approach for the scenarios with
one and two UAVs and 200 users.

algorithms, the DQN algorithm achieves better load balanc-
ing by dynamically adjusting resource allocation through
channel allocation and 3D trajectory design based on the
current state of the system.
Fig. 12 shows the convergence behavior of our proposed

approach for the systems composed of one UAV and two
UAVs with 200 users. We can observe that the DQN
approach converges within reasonable numbers of iterations
for these scenarios. For the case of a single UAV, the
DQN algorithm converges after approximately 100 iterations.
However, for the scenario with two UAVs, it converges at
around 220 iterations. Note that the convergence behavior is
influenced by the number of UAVs in the system, in which
increasing the number of UAVs can lead to slower conver-
gence. This is due to the fact that with increasing the number
of UAVs, interactions between multiple UAVs (i.e., agents)
increase which results in growing the complexity of the
problem. It is important to note that the convergence char-
acteristics can be impacted by the problem’s complexity,
network conditions, and parameter settings.

VI. CONCLUSION
In this paper, we have addressed an important problem of
joint trajectory and resource management design in HAPS-
UAV-enabled heterogeneous networks composed of HAPSs

and UAVs as ABSs. To solve the problem, we have employed
a DQN algorithm which is able to handle the complexity of
the problem. Moreover, we have utilized a fixed-pint iteration
method to find the load of ABSs. Simulation results have
shown that the integration of HAPSs and UAVs can signifi-
cantly improve the performance of the network compared to
conventional communication systems and a Q-learning-based
mechanism in terms of fairness, user rate, and outage.

APPENDIX
PROOF OF SIF FOR LOAD
To demonstrate that ρb in our paper satisfies the three con-
ditions of a standard interference function (SIF), we refer to
[25, Proposition 1], which states that concave functions are
SIFs. Our goal is to establish that ρb is indeed a concave
function. To begin the proof, let to write the load function
as the composition ρb =∑

k∈Kb
(F ◦ Gb)(., k) with

F(z) = 1

log2
(
1+ z−1

) (33)

and

Gb(k, ρ) = 1

Ib,kpbgb,k

( ∑

b′∈B\b
pb′gb′,kρb′1(qb(t)=qb′ (t)) + σ 2

0

)
.

(34)

Since summation over the users is a linear function and
function Gb(k, ρ) is an affine function. Thus, it is needed to
show that function F(z) is concave and the second derivative
of function F(z) for z > 0 is negative. The second derivative
of function F(z) is as follows:

F′′(z) = −
ln(2)

(
(2z+ 1) ln

(
1+ 1

z

)
− 2

)

z2(z+ 1)2 ln3
(

1+ 1
z

) . (35)

The condition for f(z) to be concave (i.e., F′′(z) < 0) is
satisfied by fulfilling the following inequality:

ln

(
1+ 1

z

)
>

2

2z+ 1
, z > 0. (36)

Now, we need to show that (36) is fulfilled. In this regard,
we define the following functions, which are presented
in (36), as follows:

F1(z) = ln

(
1+ 1

z

)
(37)

and

F2(z) = 2

2z+ 1
. (38)

Fig. 13 shows functions F1(z) and F2(z). In the limit,
when z→ 0, we have

lim
z→0

F1(z) = +∞, lim
z→0

F2(z) = 2. (39)

Thus, in the case that z→ 0, limz→0 F1(z) > limz→0 F2(z).
Furthermore, the limits for z→∞ are

lim
z→∞F1(z) = 0, lim

z→∞F2(z) = 0. (40)
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FIGURE 13. F1(z) and F2(z).

FIGURE 14. F ′
1(z) and F ′

2(z).

Therefore, in the case that z → ∞, the limits of both
functions, F1(z) and F2(z), approach to zero. To show the
validity of F1(z) > F2(z) for z > 0, we obtain the derivative
of both functions as follows:

F′1(z) = −
1

z2
(

1+ 1
z

) < 0, F′2(z) = −
4

(2z+ 1)2
< 0

(41)

Fig. 14 shows functions F′1(z) and F′2(z). Now, using the
recursive method, we investigate the validity of F′1(z) <

F′2(z). Thus, we assume that this is valid for z �= ∞. Thus,
we have

− 1

z2
(

1+ 1
z

) < − 4

(2z+ 1)2
⇒ 4z2 + 4z < 4z2 + 4z+ 1

⇒ 1 > 0 (42)

We can see that (42) is trivial, indicating that all the
equations are recursive and the proposition F′1(z) < F′2(z)
holds for z �= ∞ values.
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